1
|
Xiao G, Cui Y, Zhou L, Niu C, Wang B, Wang J, Zhou S, Pan M, Chan CK, Xia Y, Xu L, Lu Y, Chen S. Identification of a phenyl ester covalent inhibitor of caseinolytic protease and analysis of the ClpP1P2 inhibition in mycobacteria. MLIFE 2025; 4:155-168. [PMID: 40313980 PMCID: PMC12042115 DOI: 10.1002/mlf2.12169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 05/03/2025]
Abstract
The caseinolytic protease complex ClpP1P2 is crucial for protein homeostasis in mycobacteria and stress response and virulence of the pathogens. Its role as a potential drug target for combating tuberculosis (TB) has just begun to be substantiated in drug discovery research. We conducted a biochemical screening targeting the ClpP1P2 using a library of compounds phenotypically active against Mycobacterium tuberculosis (Mtb). The screening identified a phenyl ester compound GDI-5755, inhibiting the growth of Mtb and M. bovis BCG, the model organism of mycobacteria. GDI-5755 covalently modified the active-site serine residue of ClpP1, rendering the peptidase inactive, which was delineated through protein mass spectrometry and kinetic analyses. GDI-5755 exerted antibacterial activity by inhibiting ClpP1P2 in the bacteria, which could be demonstrated through a minimum inhibitory concentration (MIC) shift assay with a clpP1 CRISPRi knockdown (clpP1-KD) mutant GH189. The knockdown also remarkably heightened the mutant's sensitivity to ethionamide and meropenem, but not to many other TB drugs. On the other hand, a comparative proteomic analysis of wild-type cells exposed to GDI-5755 revealed the dysregulated proteome, specifically showing changes in the expression levels of multiple TB drug targets, including EthA, LdtMt2, and PanD. Subsequent evaluation confirmed the synergistic activity of GDI-5755 when combined with the TB drugs to inhibit mycobacterial growth. Our findings indicate that small-molecule inhibitors targeting ClpP1P2, when used alongside existing TB medications, could represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Genhui Xiao
- Global Health Drug Discovery InstituteBeijingChina
| | - Yumeng Cui
- Global Health Drug Discovery InstituteBeijingChina
| | | | - Chuya Niu
- Global Health Drug Discovery InstituteBeijingChina
| | - Bing Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Jinglan Wang
- Global Health Drug Discovery InstituteBeijingChina
| | | | - Miaomiao Pan
- Global Health Drug Discovery InstituteBeijingChina
| | - Chi Kin Chan
- Global Health Drug Discovery InstituteBeijingChina
| | - Yan Xia
- Global Health Drug Discovery InstituteBeijingChina
| | - Lan Xu
- Global Health Drug Discovery InstituteBeijingChina
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Shawn Chen
- Global Health Drug Discovery InstituteBeijingChina
| |
Collapse
|
2
|
Singh A, Ottavi S, Krieger I, Planck K, Perkowski A, Kaneko T, Davis AM, Suh C, Zhang D, Goullieux L, Alex A, Roubert C, Gardner M, Preston M, Smith DM, Ling Y, Roberts J, Cautain B, Upton A, Cooper CB, Serbina N, Tanvir Z, Mosior J, Ouerfelli O, Yang G, Gold BS, Rhee KY, Sacchettini JC, Fotouhi N, Aubé J, Nathan C. Redirecting raltitrexed from cancer cell thymidylate synthase to Mycobacterium tuberculosis phosphopantetheinyl transferase. SCIENCE ADVANCES 2024; 10:eadj6406. [PMID: 38489355 PMCID: PMC10942122 DOI: 10.1126/sciadv.adj6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
There is a compelling need to find drugs active against Mycobacterium tuberculosis (Mtb). 4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme in Mtb that has attracted interest as a potential drug target. We optimized a PptT assay, used it to screen 422,740 compounds, and identified raltitrexed, an antineoplastic antimetabolite, as the most potent PptT inhibitor yet reported. While trying unsuccessfully to improve raltitrexed's ability to kill Mtb and remove its ability to kill human cells, we learned three lessons that may help others developing antibiotics. First, binding of raltitrexed substantially changed the configuration of the PptT active site, complicating molecular modeling of analogs based on the unliganded crystal structure or the structure of cocrystals with inhibitors of another class. Second, minor changes in the raltitrexed molecule changed its target in Mtb from PptT to dihydrofolate reductase (DHFR). Third, the structure-activity relationship for over 800 raltitrexed analogs only became interpretable when we quantified and characterized the compounds' intrabacterial accumulation and transformation.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Samantha Ottavi
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Inna Krieger
- Department of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX 77843, USA
| | - Kyle Planck
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Andrew Perkowski
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Takushi Kaneko
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | | | - Christine Suh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - David Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | | | - Alexander Alex
- AMG Consultants Limited, Camburgh House, 27 New Dover Road, Canterbury, Kent, CT1 3DN, UK
- Evenor Consulting Limited, The New Barn, Mill Lane, Eastry, Kent CT13 0JW, UK
| | | | - Mark Gardner
- AMG Consultants Limited, Camburgh House, 27 New Dover Road, Canterbury, Kent, CT1 3DN, UK
| | - Marian Preston
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Dave M. Smith
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Yan Ling
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Bastien Cautain
- Evotec ID (Lyon), SAS 40 Avenue Tony Garnier, Lyon 69001, France
| | - Anna Upton
- Evotec ID (Lyon), SAS 40 Avenue Tony Garnier, Lyon 69001, France
| | | | - Natalya Serbina
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | - Zaid Tanvir
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | - John Mosior
- Department of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX 77843, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guangli Yang
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ben S. Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Kyu Y. Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX 77843, USA
| | - Nader Fotouhi
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
3
|
Ahmed S, Chowdhury S, Gomez J, Hung DT, Parish T. Benzene Amide Ether Scaffold is Active against Non-replicating and Intracellular Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:1981-1992. [PMID: 37708378 PMCID: PMC10580325 DOI: 10.1021/acsinfecdis.3c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/16/2023]
Abstract
New drugs to treat tuberculosis which target intractable bacterial populations are required to develop shorter and more effective treatment regimens. The benzene amide ether scaffold has activity against intracellular Mycobacterium tuberculosis, but low activity against extracellular, actively replicating M. tuberculosis. We determined that these molecules have bactericidal activity against non-replicating M. tuberculosis but not actively replicating bacteria. Exposure to compounds depleted ATP levels in non-replicating bacteria and increased the oxygen consumption rate; a subset of molecules led to the accumulation of intrabacterial reactive oxygen species. A comprehensive screen of M. tuberculosis strains identified a number of under-expressing strains as more sensitive to compounds under replicating conditions including QcrA and QcrB hypomorphs. We determined the global gene expression profile after compound treatment for both replicating and nutrient-starved M. tuberculosis. We saw compound-dependent changes in the expression of genes involved in energy metabolism under both conditions. Taken together, our data suggest that the scaffold targets respiration in M. tuberculosis.
Collapse
Affiliation(s)
- Sara Ahmed
- TB
Discovery Research, Infectious Disease Research
Institute, Seattle, Washington 98104, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Sultan Chowdhury
- TB
Discovery Research, Infectious Disease Research
Institute, Seattle, Washington 98104, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - James Gomez
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Deborah T. Hung
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, Seattle, Washington 98104, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| |
Collapse
|
4
|
Yadav V, Boshoff HI, Trifonov L, Roma JSO, Ioerger TR, Barry CE, Oh S. Synthesis and Structure-Activity Relationships of a New Class of Oxadiazoles Targeting DprE1 as Antitubercular Agents. ACS Med Chem Lett 2023; 14:1275-1283. [PMID: 37736177 PMCID: PMC10510505 DOI: 10.1021/acsmedchemlett.3c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
The continuing prevalence of drug-resistant tuberculosis threatens global TB control programs, highlighting the need to discover new drug candidates to feed the drug development pipeline. In this study, we describe a high-throughput screening hit (4-benzylpiperidin-1-yl)(1-(5-phenyl-1,3,4-oxadiazol-2-yl)piperidin-4-yl)methanone (P1) as a potent antitubercular agent. Structure-activity guided synthesis led to the discovery of several analogs with high in vitro potency. P1 was found to have promising potency against many drug-resistant strains, as well as drug-susceptible clinical isolates. It also showed cidality against Mtb growing in host macrophages. Whole genome sequencing of genomic DNA from resistant mutants raised to P1 revealed mutations in decaprenylphosphoryl-β-d-ribose 2'-oxidase (DprE1). This novel oxadiazole scaffold expands the set of chemical tools for targeting a well-validated pathway to treat tuberculosis.
Collapse
Affiliation(s)
- Veena
D. Yadav
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
(NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Helena I. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
(NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Lena Trifonov
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
(NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Jose Santinni O. Roma
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
(NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Thomas R. Ioerger
- Department
of Computer Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Clifton E. Barry
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
(NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Sangmi Oh
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases
(NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Downes SG, Doyle S, Jones GW, Owens RA. Gliotoxin and related metabolites as zinc chelators: implications and exploitation to overcome antimicrobial resistance. Essays Biochem 2023; 67:769-780. [PMID: 36876884 PMCID: PMC10500201 DOI: 10.1042/ebc20220222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
Antimicrobial resistance (AMR) is a major global problem and threat to humanity. The search for new antibiotics is directed towards targeting of novel microbial systems and enzymes, as well as augmenting the activity of pre-existing antimicrobials. Sulphur-containing metabolites (e.g., auranofin and bacterial dithiolopyrrolones [e.g., holomycin]) and Zn2+-chelating ionophores (PBT2) have emerged as important antimicrobial classes. The sulphur-containing, non-ribosomal peptide gliotoxin, biosynthesised by Aspergillus fumigatus and other fungi exhibits potent antimicrobial activity, especially in the dithiol form (dithiol gliotoxin; DTG). Specifically, it has been revealed that deletion of the enzymes gliotoxin oxidoreductase GliT, bis-thiomethyltransferase GtmA or the transporter GliA dramatically sensitise A. fumigatus to gliotoxin presence. Indeed, the double deletion strain A. fumigatus ΔgliTΔgtmA is especially sensitive to gliotoxin-mediated growth inhibition, which can be reversed by Zn2+ presence. Moreover, DTG is a Zn2+ chelator which can eject zinc from enzymes and inhibit activity. Although multiple studies have demonstrated the potent antibacterial effect of gliotoxin, no mechanistic details are available. Interestingly, reduced holomycin can inhibit metallo-β-lactamases. Since holomycin and gliotoxin can chelate Zn2+, resulting in metalloenzyme inhibition, we propose that this metal-chelating characteristic of these metabolites requires immediate investigation to identify new antibacterial drug targets or to augment the activity of existing antimicrobials. Given that (i) gliotoxin has been shown in vitro to significantly enhance vancomycin activity against Staphylococcus aureus, and (ii) that it has been independently proposed as an ideal probe to dissect the central 'Integrator' role of Zn2+ in bacteria - we contend such studies are immediately undertaken to help address AMR.
Collapse
Affiliation(s)
- Shane G Downes
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds LS1 3HE, U.K
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Finger V, Kucera T, Kafkova R, Muckova L, Dolezal R, Kubes J, Novak M, Prchal L, Lakatos L, Andrs M, Hympanova M, Marek J, Kufa M, Spiwok V, Soukup O, Mezeiova E, Janousek J, Nevosadova L, Benkova M, Kitson RRA, Kratky M, Bősze S, Mikusova K, Hartkoorn R, Roh J, Korabecny J. 2,6-Disubstituted 7-(naphthalen-2-ylmethyl)-7H-purines as a new class of potent antitubercular agents inhibiting DprE1. Eur J Med Chem 2023; 258:115611. [PMID: 37421887 DOI: 10.1016/j.ejmech.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Phenotypic screening of an in-house library of small molecule purine derivatives against Mycobacterium tuberculosis (Mtb) led to the identification of 2-morpholino-7-(naphthalen-2-ylmethyl)-1,7-dihydro-6H-purin-6-one 10 as a potent antimycobacterial agent with MIC99 of 4 μM. Thorough structure-activity relationship studies revealed the importance of 7-(naphthalen-2-ylmethyl) substitution for antimycobacterial activity, yet opened the possibility of structural modifications at positions 2 and 6 of the purine core. As the result, optimized analogues with 6-amino or ethylamino substitution 56 and 64, respectively, were developed. These compounds showed strong in vitro antimycobacterial activity with MIC of 1 μM against Mtb H37Rv and against several clinically isolated drug-resistant strains, had limited toxicity to mammalian cell lines, medium clearance with respect to phase I metabolic deactivation (27 and 16.8 μL/min/mg), sufficient aqueous solubility (>90 μM) and high plasma stability. Interestingly, investigated purines, including compounds 56 and 64, lacked activity against a panel of Gram-negative and Gram-positive bacterial strains, indicating a specific mycobacterial molecular target. To investigate the mechanism of action, Mtb mutants resistant to hit compound 10 were isolated and their genomes were sequenced. Mutations were found in dprE1 (Rv3790), which encodes decaprenylphosphoryl-β-d-ribose oxidase DprE1, enzyme essential for the biosynthesis of arabinose, a vital component of the mycobacterial cell wall. Inhibition of DprE1 by 2,6-disubstituted 7-(naphthalen-2-ylmethyl)-7H-purines was proved using radiolabelling experiments in Mtb H37Rv in vitro. Finally, structure-binding relationships between selected purines and DprE1 using molecular modeling studies in tandem with molecular dynamic simulations revealed the key structural features for effective drug-target interaction.
Collapse
Affiliation(s)
- Vladimir Finger
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika, Heyrovskeho 1203, 50005, Hradec Králové, Czech Republic; Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Tomas Kucera
- Faculty of Military Health Sciences, University of Defence, Trebesska, 1575, 500 01, Hradec Králové, Czech Republic
| | - Radka Kafkova
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Lubica Muckova
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic; Faculty of Military Health Sciences, University of Defence, Trebesska, 1575, 500 01, Hradec Králové, Czech Republic
| | - Rafael Dolezal
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Jan Kubes
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika, Heyrovskeho 1203, 50005, Hradec Králové, Czech Republic
| | - Martin Novak
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika, Heyrovskeho 1203, 50005, Hradec Králové, Czech Republic; Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Lukas Prchal
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Levente Lakatos
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117, Budapest, Hungary; National Public Health Center, Albert Flórián út 2-6, Budapest, 1097, Hungary
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Michaela Hympanova
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic; Faculty of Military Health Sciences, University of Defence, Trebesska, 1575, 500 01, Hradec Králové, Czech Republic
| | - Jan Marek
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic; Faculty of Military Health Sciences, University of Defence, Trebesska, 1575, 500 01, Hradec Králové, Czech Republic
| | - Martin Kufa
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika, Heyrovskeho 1203, 50005, Hradec Králové, Czech Republic; Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Vojtech Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Jiri Janousek
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Lenka Nevosadova
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika, Heyrovskeho 1203, 50005, Hradec Králové, Czech Republic
| | - Marketa Benkova
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Russell R A Kitson
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika, Heyrovskeho 1203, 50005, Hradec Králové, Czech Republic
| | - Martin Kratky
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika, Heyrovskeho 1203, 50005, Hradec Králové, Czech Republic
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117, Budapest, Hungary; National Public Health Center, Albert Flórián út 2-6, Budapest, 1097, Hungary
| | - Katarina Mikusova
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Ruben Hartkoorn
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika, Heyrovskeho 1203, 50005, Hradec Králové, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Králové, Sokolska 581, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
7
|
Singh V, Dziwornu GA, Chibale K. The implication of Mycobacterium tuberculosis-mediated metabolism of targeted xenobiotics. Nat Rev Chem 2023; 7:340-354. [PMID: 37117810 PMCID: PMC10026799 DOI: 10.1038/s41570-023-00472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/29/2023]
Abstract
Drug metabolism is generally associated with liver enzymes. However, in the case of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), Mtb-mediated drug metabolism plays a significant role in treatment outcomes. Mtb is equipped with enzymes that catalyse biotransformation reactions on xenobiotics with consequences either in its favour or as a hindrance by deactivating or activating chemical entities, respectively. Considering the range of chemical reactions involved in the biosynthetic pathways of Mtb, information related to the biotransformation of antitubercular compounds would provide opportunities for the development of new chemical tools to study successful TB infections while also highlighting potential areas for drug discovery, host-directed therapy, dose optimization and elucidation of mechanisms of action. In this Review, we discuss Mtb-mediated biotransformations and propose a holistic approach to address drug metabolism in TB drug discovery and related areas. ![]()
Mycobacterium tuberculosis-mediated metabolism of xenobiotics poses an important research question for antitubercular drug discovery. Identification of the metabolic fate of compounds can inform requisite structure–activity relationship strategies early on in a drug discovery programme towards improving the properties of the compound.
Collapse
Affiliation(s)
- Vinayak Singh
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Godwin Akpeko Dziwornu
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
8
|
Liu F, Zhou J, Hu M, Chen Y, Han J, Pan X, You J, Xu M, Yang T, Shao M, Zhang X, Rao Z. Efficient biosynthesis of (R)-mandelic acid from styrene oxide by an adaptive evolutionary Gluconobacter oxydans STA. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:8. [PMID: 36639820 PMCID: PMC9838050 DOI: 10.1186/s13068-023-02258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND (R)-mandelic acid (R-MA) is a highly valuable hydroxyl acid in the pharmaceutical industry. However, biosynthesis of optically pure R-MA remains significant challenges, including the lack of suitable catalysts and high toxicity to host strains. Adaptive laboratory evolution (ALE) was a promising and powerful strategy to obtain specially evolved strains. RESULTS Herein, we report a new cell factory of the Gluconobacter oxydans to biocatalytic styrene oxide into R-MA by utilizing the G. oxydans endogenous efficiently incomplete oxidization and the epoxide hydrolase (SpEH) heterologous expressed in G. oxydans. With a new screened strong endogenous promoter P12780, the production of R-MA was improved to 10.26 g/L compared to 7.36 g/L of using Plac. As R-MA showed great inhibition for the reaction and toxicity to cell growth, adaptive laboratory evolution (ALE) strategy was introduced to improve the cellular R-MA tolerance. The adapted strain that can tolerate 6 g/L R-MA was isolated (named G. oxydans STA), while the wild-type strain cannot grow under this stress. The conversion rate was increased from 0.366 g/L/h of wild type to 0.703 g/L/h by the recombinant STA, and the final R-MA titer reached 14.06 g/L. Whole-genome sequencing revealed multiple gene-mutations in STA, in combination with transcriptome analysis under R-MA stress condition, we identified five critical genes that were associated with R-MA tolerance, among which AcrA overexpression could further improve R-MA titer to 15.70 g/L, the highest titer reported from bulk styrene oxide substrate. CONCLUSIONS The microbial engineering with systematic combination of static regulation, ALE, and transcriptome analysis strategy provides valuable solutions for high-efficient chemical biosynthesis, and our evolved G. oxydans would be better to serve as a chassis cell for hydroxyl acid production.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Junping Zhou
- School of Biotechnology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengkai Hu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yan Chen
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jin Han
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Minglong Shao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Recent advances in the catalytic N-methylation and N-trideuteromethylation reactions using methanol and deuterated methanol. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Pujari V, Rozman K, Dhiman RK, Aldrich CC, Crick DC. Mycobacterial MenG: Partial Purification, Characterization, and Inhibition. ACS Infect Dis 2022; 8:2430-2440. [PMID: 36417754 DOI: 10.1021/acsinfecdis.2c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Menaquinone (MK) is an essential component of the electron transport chain (ETC) in the gram-variable Mycobacterium tuberculosis and many Gram-positive pathogens. Three genes in the M. tuberculosis genome were annotated as methyltransferases involved in lipoquinone synthesis in mycobacteria. Heterologous expression of Rv0558 complemented an ubiE (the quinone C-methyltransferase involved in ubiquinone and menaquinone synthesis) deletion in Escherichia coli, and expression in a wild-type E. coli strain increased quinone C-methyltransferase specific activity by threefold. Rv0558 encodes a canonical C-methyltransferase or, more specifically, a S-adenosylmethionine/demethylmenaquinol methyltransferase. Partially purified recombinant protein catalyzed the formation of MK from demethylmenaquinone (DMK), although the activity of the recombinant protein was low and appeared to require a cofactor or intact membrane structure for activity. Membrane preparations from irradiated M. tuberculosis also showed poor activity; however, membrane preparations from wild-type Mycobacterium smegmatis showed robust, substrate-dependent activity. The apparent Km values for demethylmenaquinone and SAM were 14 ± 5.0 and 17 ± 7.0 μM, respectively. Interestingly, addition of dithiothreitol, dithionite, NADH, or other substrates of primary dehydrogenases to reaction mixtures containing membrane preparations stimulated the activity. Thus, these observations strongly suggest that demethylmenaquinol is the actual substrate of MenG. Ro 48-8071, previously reported to inhibit mycobacterial MK synthesis and growth, inhibited Rv0558 activity with an IC50 value of 5.1 ± 0.5 μM, and DG70 (GSK1733953A), first described as a respiration inhibitor in M. tuberculosis, inhibits MenG activity with an IC50 value of 2.6 ± 0.6 μM.
Collapse
Affiliation(s)
- Venugopal Pujari
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kaja Rozman
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Rakesh K Dhiman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Dean C Crick
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
11
|
Poulton NC, Rock JM. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:997283. [PMID: 36325467 PMCID: PMC9618640 DOI: 10.3389/fcimb.2022.997283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is among the most difficult infections to treat, requiring several months of multidrug therapy to produce a durable cure. The reasons necessitating long treatment times are complex and multifactorial. However, one major difficulty of treating TB is the resistance of the infecting bacterium, Mycobacterium tuberculosis (Mtb), to many distinct classes of antimicrobials. This review will focus on the major gaps in our understanding of intrinsic drug resistance in Mtb and how functional and chemical-genetics can help close those gaps. A better understanding of intrinsic drug resistance will help lay the foundation for strategies to disarm and circumvent these mechanisms to develop more potent antitubercular therapies.
Collapse
|
12
|
Miotto P, Sorrentino R, De Giorgi S, Provvedi R, Cirillo DM, Manganelli R. Transcriptional regulation and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:990312. [PMID: 36118045 PMCID: PMC9480834 DOI: 10.3389/fcimb.2022.990312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial drug resistance is one of the major challenges to present and future human health, as the continuous selection of multidrug resistant bacteria poses at serious risk the possibility to treat infectious diseases in the near future. One of the infection at higher risk to become incurable is tuberculosis, due to the few drugs available in the market against Mycobacterium tuberculosis. Drug resistance in this species is usually due to point mutations in the drug target or in proteins required to activate prodrugs. However, another interesting and underexplored aspect of bacterial physiology with important impact on drug susceptibility is represented by the changes in transcriptional regulation following drug exposure. The main regulators involved in this phenomenon in M. tuberculosis are the sigma factors, and regulators belonging to the WhiB, GntR, XRE, Mar and TetR families. Better understanding the impact of these regulators in survival to drug treatment might contribute to identify new drug targets and/or to design new strategies of intervention.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Rita Sorrentino
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Stefano De Giorgi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
13
|
Singh R, Kumar S, Bhardwaj VK, Purohit R. Screening and reckoning of potential therapeutic agents against DprE1 protein of Mycobacterium tuberculosis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Warrier T, Romano KP, Clatworthy AE, Hung DT. Integrated genomics and chemical biology herald an era of sophisticated antibacterial discovery, from defining essential genes to target elucidation. Cell Chem Biol 2022; 29:716-729. [PMID: 35523184 PMCID: PMC9893512 DOI: 10.1016/j.chembiol.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023]
Abstract
The golden age of antibiotic discovery in the 1940s-1960s saw the development and deployment of many different classes of antibiotics, revolutionizing the field of medicine. Since that time, our ability to discover antibiotics of novel structural classes or mechanisms has not kept pace with the ever-growing threat of antibiotic resistance. Recently, advances at the intersection of genomics and chemical biology have enabled efforts to better define the vulnerabilities of essential gene targets, to develop sophisticated whole-cell chemical screening methods that reveal target biology early, and to elucidate small molecule targets and modes of action more effectively. These new technologies have the potential to expand the chemical diversity of antibiotic candidates, as well as the breadth of targets. We illustrate how the latest tools of genomics and chemical biology are being integrated to better understand pathogen vulnerabilities and antibiotic mechanisms in order to inform a new era of antibiotic discovery.
Collapse
Affiliation(s)
- Thulasi Warrier
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Keith P Romano
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anne E Clatworthy
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Mauran S, Perera NT, Perera IC. MxyR of Mycobacterium tuberculosis Responds to Xylan; an Unusual Ligand for a MarR Family Transcriptional Regulator. Mol Biol 2021. [DOI: 10.1134/s0026893321050162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Hu H, Hu C, Peng J, Ghosh AK, Khan A, Sun D, Luyten W. Bioassay-Guided Interpretation of Antimicrobial Compounds in Kumu, a TCM Preparation From Picrasma quassioides' Stem via UHPLC-Orbitrap-Ion Trap Mass Spectrometry Combined With Fragmentation and Retention Time Calculation. Front Pharmacol 2021; 12:761751. [PMID: 34776978 PMCID: PMC8581800 DOI: 10.3389/fphar.2021.761751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
The stem of Picrasma quassioides (PQ) was recorded as a prominent traditional Chinese medicine, Kumu, which was effective for microbial infection, inflammation, fever, and dysentery, etc. At present, Kumu is widely used in China to develop different medicines, even as injection (Kumu zhusheye), for combating infections. However, the chemical basis of its antimicrobial activity has still not been elucidated. To examine the active chemicals, its stem was extracted to perform bioassay-guided purification against Staphylococcus aureus and Escherichia coli. In this study, two types of columns (normal and reverse-phase) were used for speedy bioassay-guided isolation from Kumu, and the active peaks were collected and identified via an UHPLC-Orbitrap-Ion Trap Mass Spectrometer, combined with MS Fragmenter and ChromGenius. For identification, the COCONUT Database (largest database of natural products) and a manually built PQ database were used, in combination with prediction and calculation of mass fragmentation and retention time to better infer their structures, especially for isomers. Moreover, three standards were analyzed under different conditions for developing and validating the MS method. A total of 25 active compounds were identified, including 24 alkaloids and 1 triterpenoid against S. aureus, whereas only β-carboline-1-carboxylic acid and picrasidine S were active against E. coli. Here, the good antimicrobial activity of 18 chemicals was reported for the first time. Furthermore, the spectrum of three abundant β-carbolines was assessed via their IC50 and MBC against various human pathogens. All of them exhibited strong antimicrobial activities with good potential to be developed as antibiotics. This study clearly showed the antimicrobial chemical basis of Kumu, and the results demonstrated that HRMS coupled with MS Fragmenter and ChromGenius was a powerful tool for compound analysis, which can be used for other complex samples. Beta-carbolines reported here are important lead compounds in antibiotic discovery.
Collapse
Affiliation(s)
- Haibo Hu
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium.,National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Postharvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Jinnian Peng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Alokesh Kumar Ghosh
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| | - Ajmal Khan
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| | - Dan Sun
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium.,College of Life Sciences, NanKai University, Tianjin, China
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Jian Z, Zeng L, Xu T, Sun S, Yan S, Yang L, Huang Y, Jia J, Dou T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J Basic Microbiol 2021; 61:1049-1070. [PMID: 34651331 DOI: 10.1002/jobm.202100201] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
The production and use of antibiotics are becoming increasingly common worldwide, and the problem of antibiotic resistance is increasing alarmingly. Drug-resistant infections threaten human life and health and impose a heavy burden on the global economy. The origin and molecular basis of bacterial resistance is the presence of antibiotic resistance genes (ARGs). Investigations on ARGs mostly focus on the environments in which antibiotics are frequently used, such as hospitals and farms. This literature review summarizes the current knowledge of the occurrence of antibiotic-resistant bacteria in nonclinical environments, such as air, aircraft wastewater, migratory bird feces, and sea areas in-depth, which have rarely been involved in previous studies. Furthermore, the mechanism of action of plasmid and phage during horizontal gene transfer was analyzed, and the transmission mechanism of ARGs was summarized. This review highlights the new mechanisms that enhance antibiotic resistance and the evolutionary background of multidrug resistance; in addition, some promising points for controlling or reducing the occurrence and spread of antimicrobial resistance are also proposed.
Collapse
Affiliation(s)
- Zonghui Jian
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Li Zeng
- The Chenggong Department, Kunming Medical University Affiliated Stomatological Hospital, Kunming, Yunnan, China
| | - Taojie Xu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuai Sun
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shixiong Yan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lan Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junjing Jia
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tengfei Dou
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
18
|
Sartor P, Denkhaus L, Gerhardt S, Einsle O, Fetzner S. Structural basis of O-methylation of (2-heptyl-)1-hydroxyquinolin-4(1H)-one and related compounds by the heterocyclic toxin methyltransferase Rv0560c of Mycobacterium tuberculosis. J Struct Biol 2021; 213:107794. [PMID: 34506908 DOI: 10.1016/j.jsb.2021.107794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
The S-adenosyl-L-methionine-dependent methyltransferase Rv0560c of Mycobacterium tuberculosis belongs to an orthologous group of heterocyclic toxin methyltransferases (Htm) which likely contribute to resistance of mycobacteria towards antimicrobial natural compounds as well as drugs. HtmM.t. catalyzes the methylation of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4(1H)-one (also known as 2-heptyl-4-hydroxyquinoline N-oxide), a potent inhibitor of respiratory electron transfer, its 1-hydroxyquinolin-4(1H)-one core (QNO), structurally related (iso)quinolones, and some mycobactericidal compounds. In this study, crystal structures of HtmM.t. in complex with S-adenosyl-L-homocysteine (SAH) and the methyl-accepting substrates QNO or 4-hydroxyisoquinoline-1(2H)-one, or the methylated product 1-methoxyquinolin-4(1H)-one, were determined at < 1.9 Å resolution. The monomeric protein exhibits the typical Rossmann fold topology and conserved residues of class I methyltransferases. Its SAH binding pocket is connected via a short tunnel to a large solvent-accessible cavity, which accommodates the methyl-accepting substrate. Residues W44, F168, and F208 in connection with F212 form a hydrophobic clamp around the heteroaromatic ring of the methyl-accepting substrate and likely play a major role in substrate positioning. Structural and biochemical data suggest that H139 and T136 are key active site residues, with H139 acting as general base that activates the methyl-accepting hydroxy group. Our structural data may contribute to the design of Htm inhibitors or of antimycobacterial drugs unamenable for methylation.
Collapse
Affiliation(s)
- Pascal Sartor
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
| | - Lukas Denkhaus
- Institute for Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Stefan Gerhardt
- Institute for Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Oliver Einsle
- Institute for Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Susanne Fetzner
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
19
|
Fatima S, Kumari A, Agarwal M, Pahuja I, Yadav V, Dwivedi VP, Bhaskar A. Epigenetic code during mycobacterial infections: therapeutic implications for tuberculosis. FEBS J 2021; 289:4172-4191. [PMID: 34453865 DOI: 10.1111/febs.16170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Abstract
Epigenetics involves changing the gene function without any change in the sequence of the genes. In the case of tuberculosis (TB) infections, the bacilli, Mycobacterium tuberculosis (M.tb), uses epigenetics as a tool to protect itself from the host immune system. TB is a deadly disease-causing maximum death per year due to a single infectious agent. In the case of TB, there is an urgent need for novel host-directed therapies which can effectively target the survival and long-term persistence of the bacteria without developing drug resistance in the bacterial strains while also reducing the duration and toxicity associated with the mainstream anti-TB drugs. Recent studies have suggested that TB infection has a significant effect on the host epigenome thereby manipulating the host immune response in the favor of the pathogen. M.tb alters the activation status of key genes involved in the immune response against TB to promote its survival and subvert the antibacterial strategies of the host. These changes are reversible and can be exploited to design very efficient host-directed therapies to fight against TB. This review has been written with the purpose of discussing the role of epigenetic changes in TB pathogenesis and the therapeutic approaches involving epigenetics, which can be utilized for targeting the pathogen.
Collapse
Affiliation(s)
- Samreen Fatima
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anjna Kumari
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Meetu Agarwal
- Department of Biosciences, Jamia Hamdard University, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendragarh, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
20
|
Dechow SJ, Coulson GB, Wilson MW, Larsen SD, Abramovitch RB. AC2P20 selectively kills Mycobacterium tuberculosis at acidic pH by depleting free thiols. RSC Adv 2021; 11:20089-20100. [PMID: 34168865 PMCID: PMC8176622 DOI: 10.1039/d1ra03181c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) senses and adapts to host immune cues as part of its pathogenesis. One environmental cue sensed by Mtb is the acidic pH of its host niche in the macrophage phagosome. Disrupting the ability of Mtb to sense and adapt to acidic pH has the potential to reduce survival of Mtb in macrophages. Previously, a high throughput screen of a ∼220 000 compound small molecule library was conducted to discover chemical probes that inhibit Mtb growth at acidic pH. The screen discovered chemical probes that kill Mtb at pH 5.7 but are inactive at pH 7.0. In this study, AC2P20 was prioritized for continued study to test the hypothesis that it was targeting Mtb pathways associated with pH-driven adaptation. RNAseq transcriptional profiling studies showed AC2P20 modulates expression of genes associated with redox homeostasis. Gene enrichment analysis revealed that the AC2P20 transcriptional profile had significant overlap with a previously characterized pH-selective inhibitor, AC2P36. Like AC2P36, we show that AC2P20 kills Mtb by selectively depleting free thiols at acidic pH. Mass spectrometry studies show the formation of a disulfide bond between AC2P20 and reduced glutathione, supporting a mechanism where AC2P20 is able to deplete intracellular thiols and dysregulate redox homeostasis. The observation of two independent molecules targeting free thiols to kill Mtb at acidic pH further supports that Mtb has restricted redox homeostasis and sensitivity to thiol-oxidative stress at acidic pH.
Collapse
Affiliation(s)
- Shelby J Dechow
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing MI 48824 USA +1 517 353-8957 +1 517 884-5416
| | - Garry B Coulson
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing MI 48824 USA +1 517 353-8957 +1 517 884-5416
| | - Michael W Wilson
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan Ann Arbor MI 48109 USA
| | - Scott D Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan Ann Arbor MI 48109 USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing MI 48824 USA +1 517 353-8957 +1 517 884-5416
| |
Collapse
|
21
|
Filsinger GT, Wannier TM, Pedersen FB, Lutz ID, Zhang J, Stork DA, Debnath A, Gozzi K, Kuchwara H, Volf V, Wang S, Rios X, Gregg CJ, Lajoie MJ, Shipman SL, Aach J, Laub MT, Church GM. Characterizing the portability of phage-encoded homologous recombination proteins. Nat Chem Biol 2021; 17:394-402. [PMID: 33462496 PMCID: PMC7990699 DOI: 10.1038/s41589-020-00710-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 01/29/2023]
Abstract
Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded single-stranded DNA annealing proteins (SSAPs) improve HR 1,000-fold above endogenous levels. However, they are not broadly functional. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus and Caulobacter crescentus, we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host's single-stranded DNA-binding protein (SSB) and are portable between species only if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with SSBs can significantly improve genome editing efficiency, in some species enabling SSAP functionality even without host compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes that are inaccessible through sequential nucleotide conversions.
Collapse
Affiliation(s)
- Gabriel T. Filsinger
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Correspondence to: ,
| | - Timothy M. Wannier
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix B. Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Isaac D. Lutz
- Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Julie Zhang
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Devon A. Stork
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Anik Debnath
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Tenza Inc., Cambridge, MA
| | - Kevin Gozzi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Helene Kuchwara
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Verena Volf
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Harvard University John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| | - Stan Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Xavier Rios
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Marc J. Lajoie
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth L. Shipman
- Gladstone Institutes, San Francisco, CA,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - John Aach
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael T. Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Correspondence to: ,
| |
Collapse
|
22
|
Ali S, Ehtram A, Arora N, Manjunath P, Roy D, Ehtesham NZ, Hasnain SE. The M. tuberculosis Rv1523 Methyltransferase Promotes Drug Resistance Through Methylation-Mediated Cell Wall Remodeling and Modulates Macrophages Immune Responses. Front Cell Infect Microbiol 2021; 11:622487. [PMID: 33777836 PMCID: PMC7994892 DOI: 10.3389/fcimb.2021.622487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The acquisition of antibiotics resistance is a major clinical challenge limiting the effective prevention and treatment of the deadliest human infectious disease tuberculosis. The molecular mechanisms by which initially Mycobacterium tuberculosis (M.tb) develop drug resistance remain poorly understood. In this study, we report the novel role of M.tb Rv1523 MTase in the methylation of mycobacterial cell envelope lipids and possible mechanism of its contribution in the virulence and drug resistance. Initial interactome analyses predicted association of Rv1523 with proteins related to fatty acid biosynthetic pathways. This promoted us to investigate methylation activity of Rv1523 using cell wall fatty acids or lipids as a substrate. Rv1523 catalyzed the transfer of methyl group from SAM to the cell wall components of mycobacterium. To investigate further the in vivo methylating role of Rv1523, we generated a recombinant Mycobacterium smegmatis strain that expressed the Rv1523 gene. The M. smegmatis strain expressing Rv1523 exhibited altered cell wall lipid composition, leading to an increased survival under surface stress, acidic condition and resistance to antibiotics. Macrophages infected with recombinant M. smegmatis induced necrotic cell death and modulated the host immune responses. In summary, these findings reveal a hitherto unknown role of Rv1523 encoded MTase in cell wall remodeling and modulation of immune responses. Functional gain of mycolic acid Rv1523 methyltransferase induced virulence and resistance to antibiotics in M. smegmatis. Thus, mycolic acid methyltransferase may serve as an excellent target for the discovery and development of novel anti-TB agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Aquib Ehtram
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Naresh Arora
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - P Manjunath
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Deodutta Roy
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
23
|
Chauhan A, Kumar M, Kumar A, Kanchan K. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life Sci 2021; 274:119301. [PMID: 33675895 DOI: 10.1016/j.lfs.2021.119301] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Tuberculosis is one of the deadliest infectious diseases existing in the world since ancient times and still possesses serious threat across the globe. Each year the number of cases increases due to high drug resistance shown by Mycobacterium tuberculosis (Mtb). Available antimycobacterial drugs have been classified as First line, Second line and Third line antibiotics depending on the time of their discoveries and their effectiveness in the treatment. These antibiotics have a broad range of targets ranging from cell wall to metabolic processes and their non-judicious and uncontrolled usage in the treatment for years has created a significant problem called multi-drug resistant (MDR) tuberculosis. In this review, we have summarized the mechanism of action of all the classified antibiotics currently in use along with the resistance mechanisms acquired by Mtb. We have focused on the new drug candidates/repurposed drugs, and drug in combinations, which are in clinical trials for either treating the MDR tuberculosis more effectively or involved in reducing the time required for the chemotherapy of drug sensitive TB. This information is not discussed very adequately on a single platform. Additionally, we have discussed the recent technologies that are being used to discover novel resistance mechanisms acquired by Mtb and for exploring novel drugs. The story of intrinsic resistance mechanisms and evolution in Mtb is far from complete. Therefore, we have also discussed intrinsic resistance mechanisms of Mtb and their evolution with time, emphasizing the hope for the development of novel antimycobacterial drugs for effective therapy of tuberculosis.
Collapse
Affiliation(s)
- Aditi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India
| | - Manoj Kumar
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Awanish Kumar
- Department of Bio Technology, National Institute of Technology, Raipur, India
| | - Kajal Kanchan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
24
|
Mendes V, Green SR, Evans JC, Hess J, Blaszczyk M, Spry C, Bryant O, Cory-Wright J, Chan DSH, Torres PHM, Wang Z, Nahiyaan N, O’Neill S, Damerow S, Post J, Bayliss T, Lynch SL, Coyne AG, Ray PC, Abell C, Rhee KY, Boshoff HIM, Barry CE, Mizrahi V, Wyatt PG, Blundell TL. Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Nat Commun 2021; 12:143. [PMID: 33420031 PMCID: PMC7794376 DOI: 10.1038/s41467-020-20224-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/18/2020] [Indexed: 02/02/2023] Open
Abstract
Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.
Collapse
Affiliation(s)
- Vitor Mendes
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Simon R. Green
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Joanna C. Evans
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Jeannine Hess
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Michal Blaszczyk
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Christina Spry
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Owain Bryant
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - James Cory-Wright
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Daniel S-H. Chan
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Pedro H. M. Torres
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Zhe Wang
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Navid Nahiyaan
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Sandra O’Neill
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Sebastian Damerow
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - John Post
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Tracy Bayliss
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Sasha L. Lynch
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Anthony G. Coyne
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Peter C. Ray
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Chris Abell
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Kyu Y. Rhee
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Helena I. M. Boshoff
- grid.419681.30000 0001 2164 9667Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Clifton E. Barry
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa ,grid.419681.30000 0001 2164 9667Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Valerie Mizrahi
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Paul G. Wyatt
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Tom L. Blundell
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| |
Collapse
|
25
|
Abstract
Enzymes fuel the biochemical activities of all cells. Their substrates and products thus represent a potential window into the physiologic state of a cell. Metabolomics focuses on the global, or systems-level, study of small molecules in a given biological system and has thus provided an experimental tool with which to study cellular physiology, including the biochemistry within pathogenic microorganisms. While metabolomic studies of Mycobacterium tuberculosis are still in their infancy, recent studies have begun to deliver unique insights into the composition, organization, activity, and regulation of the bacterium's physiologic network not accessible by other approaches. Here, we outline practical methods for the culture, collection, and analysis of metabolomic samples from M. tuberculosis that emphasize minimally perturbing sample handling, broad and native metabolite recovery, and sensitive, biologically agnostic metabolite detection.
Collapse
Affiliation(s)
- Kyle A Planck
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Kyu Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Székely R, Rengifo-Gonzalez M, Singh V, Riabova O, Benjak A, Piton J, Cimino M, Kornobis E, Mizrahi V, Johnsson K, Manina G, Makarov V, Cole ST. 6,11-Dioxobenzo[ f]pyrido[1,2- a]indoles Kill Mycobacterium tuberculosis by Targeting Iron-Sulfur Protein Rv0338c (IspQ), A Putative Redox Sensor. ACS Infect Dis 2020; 6:3015-3025. [PMID: 32930569 DOI: 10.1021/acsinfecdis.0c00531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Screening of a diversity-oriented compound library led to the identification of two 6,11-dioxobenzo[f]pyrido[1,2-a]indoles (DBPI) that displayed low micromolar bactericidal activity against the Erdman strain of Mycobacterium tuberculosis in vitro. The activity of these hit compounds was limited to tubercle bacilli, including the nonreplicating form, and to Mycobacterium marinum. On hit expansion and investigation of the structure activity relationship, selected modifications to the dioxo moiety of the DBPI scaffold were either neutral or led to reduction or abolition of antimycobacterial activity. To find the target, DBPI-resistant mutants of M. tuberculosis Erdman were raised and characterized first microbiologically and then by whole genome sequencing. Four different mutations, all affecting highly conserved residues, were uncovered in the essential gene rv0338c (ispQ) that encodes a membrane-bound protein, named IspQ, with 2Fe-2S and 4Fe-4S centers and putative iron-sulfur-binding reductase activity. With the help of a structural model, two of the mutations were localized close to the 2Fe-2S domain in IspQ and another in transmembrane segment 3. The mutant genes were recessive to the wild type in complementation experiments and further confirmation of the hit-target relationship was obtained using a conditional knockdown mutant of rv0338c in M. tuberculosis H37Rv. More mechanistic insight was obtained from transcriptome analysis, following exposure of M. tuberculosis to two different DBPI; this revealed strong upregulation of the redox-sensitive SigK regulon and genes induced by oxidative and thiol-stress. The findings of this investigation pharmacologically validate a novel target in tubercle bacilli and open a new vista for tuberculosis drug discovery.
Collapse
Affiliation(s)
- Rita Székely
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Monica Rengifo-Gonzalez
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Vinayak Singh
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town 7701, South Africa
| | - Olga Riabova
- FRC Fundamentals of Biotechnology, Russian Academy of Science, 119071 Moscow, Russian Federation
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jérémie Piton
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Mena Cimino
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| | - Etienne Kornobis
- Biomics, C2RT, Institut Pasteur, 75015 Paris, France
- Hub Bioinformatique et Biostatistique, USR 3756 CNRS, Institut Pasteur, 75015 Paris, France
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town 7701, South Africa
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Giulia Manina
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| | - Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, 119071 Moscow, Russian Federation
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
27
|
Sartor P, Bock J, Hennecke U, Thierbach S, Fetzner S. Modification of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4(1H)-one and other secondary metabolites by methyltransferases from mycobacteria. FEBS J 2020; 288:2360-2376. [PMID: 33064871 DOI: 10.1111/febs.15595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, one of the most prevalent species in infections of the cystic fibrosis lung, produces a range of secondary metabolites, among them the respiratory toxin 2-heptyl-1-hydroxyquinolin-4(1H)-one (2-heptyl-4-hydroxyquinoline N-oxide, HQNO). Cultures of the emerging cystic fibrosis pathogen Mycobacteroides abscessus detoxify HQNO by methylating the N-hydroxy moiety. In this study, the class I methyltransferase MAB_2834c and its orthologue from Mycobacterium tuberculosis, Rv0560c, were identified as HQNO O-methyltransferases. The P. aeruginosa exoproducts 4-hydroxyquinolin-2(1H)-one (DHQ), 2-heptylquinolin-4(1H)-one (HHQ), and 2-heptyl-3-hydroxyquinolin-4(1H)-one (the 'Pseudomonas quinolone signal', PQS), some structurally related (iso)quinolones, and the flavonol quercetin were also methylated; however, HQNO was by far the preferred substrate. Both enzymes converted a benzimidazole[1,2-a]pyridine-4-carbonitrile-based compound, representing the scaffold of antimycobacterial substances, to an N-methylated derivative. We suggest that these promiscuous methyltransferases, newly termed as heterocyclic toxin methyltransferases (Htm), are involved in cellular response to chemical stress and possibly contribute to resistance of mycobacteria toward antimicrobial natural compounds as well as drugs. Thus, synthetic antimycobacterial agents may be designed to be unamenable to methyl transfer. ENZYMES: S-adenosyl-l-methionine:2-heptyl-1-hydroxyquinolin-4(1H)-one O-methyl-transferase, EC 2.1.1.
Collapse
Affiliation(s)
- Pascal Sartor
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Germany
| | - Jonathan Bock
- Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussels, Belgium
| | - Ulrich Hennecke
- Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussels, Belgium
| | - Sven Thierbach
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Germany
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Germany
| |
Collapse
|
28
|
Mishra R, Kohli S, Malhotra N, Bandyopadhyay P, Mehta M, Munshi M, Adiga V, Ahuja VK, Shandil RK, Rajmani RS, Seshasayee ASN, Singh A. Targeting redox heterogeneity to counteract drug tolerance in replicating Mycobacterium tuberculosis. Sci Transl Med 2020; 11:11/518/eaaw6635. [PMID: 31723039 DOI: 10.1126/scitranslmed.aaw6635] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/26/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022]
Abstract
The capacity of Mycobacterium tuberculosis (Mtb) to tolerate multiple antibiotics represents a major problem in tuberculosis (TB) management. Heterogeneity in Mtb populations is one of the factors that drives antibiotic tolerance during infection. However, the mechanisms underpinning this variation in bacterial population remain poorly understood. Here, we show that phagosomal acidification alters the redox physiology of Mtb to generate a population of replicating bacteria that display drug tolerance during infection. RNA sequencing of this redox-altered population revealed the involvement of iron-sulfur (Fe-S) cluster biogenesis, hydrogen sulfide (H2S) gas, and drug efflux pumps in antibiotic tolerance. The fraction of the pH- and redox-dependent tolerant population increased when Mtb infected macrophages with actively replicating HIV-1, suggesting that redox heterogeneity could contribute to high rates of TB therapy failure during HIV-TB coinfection. Pharmacological inhibition of phagosomal acidification by the antimalarial drug chloroquine (CQ) eradicated drug-tolerant Mtb, ameliorated lung pathology, and reduced postchemotherapeutic relapse in in vivo models. The pharmacological profile of CQ (C max and AUClast) exhibited no major drug-drug interaction when coadministered with first line anti-TB drugs in mice. Our data establish a link between phagosomal pH, redox metabolism, and drug tolerance in replicating Mtb and suggest repositioning of CQ to shorten TB therapy and achieve a relapse-free cure.
Collapse
Affiliation(s)
- Richa Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Sakshi Kohli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Nitish Malhotra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Parijat Bandyopadhyay
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Mansi Mehta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - MohamedHusen Munshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | | | - Radha K Shandil
- Foundation for Neglected Disease Research, Bangalore 560065, India
| | - Raju S Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
29
|
Asaad M, Abo-kadoum M, NZUNGIZE L, UAE M, NZAOU SA, Xie J. Methylation in Mycobacterium-host interaction and implications for novel control measures. INFECTION GENETICS AND EVOLUTION 2020; 83:104350. [DOI: 10.1016/j.meegid.2020.104350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
|
30
|
Nie W, Wang S, He R, Xu Q, Wang P, Wu Y, Tian F, Yuan J, Zhu B, Chen G. A-to-I RNA editing in bacteria increases pathogenicity and tolerance to oxidative stress. PLoS Pathog 2020; 16:e1008740. [PMID: 32822429 PMCID: PMC7467310 DOI: 10.1371/journal.ppat.1008740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/02/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes; however, many features remain largely unexplored in prokaryotes. This study focuses on a serine-to-proline recoding event (S128P) that originated in the mRNA of fliC, which encodes a flagellar filament protein; the editing event was observed in RNA-seq samples exposed to oxidative stress. Using Sanger sequencing, we show that the S128P editing event is induced by H2O2. To investigate the in vivo interaction between RNAs and TadA, which is the principal enzyme for A-to-I editing, genome-wide RNA immunoprecipitation–coupled high-throughput sequencing (iRIP-Seq) analysis was performed using HA-tagged TadA from Xanthomonas oryzae pv. oryzicola. We found that TadA can bind to the mRNA of fliC and the binding motif is identical to that previously reported by Bar-Yaacov and colleagues. This editing event increased motility and enhanced tolerance to oxidative stress due to changes in flagellar filament structure, which was modelled in 3D and measured by TEM. The change in filament structure due to the S128P mutant increased biofilm formation, which was measured by the 3D laser scanning confocal microscopy. RNA-seq revealed that a gene cluster that contributes to siderophore biosynthesis and Fe3+ uptake was upregulated in S128P compared with WT. Based on intracellular levels of reactive oxygen species and an oxidative stress survival assay, we found that this gene cluster can contribute to the reduction of the Fenton reaction and increases biofilm formation and bacterial virulence. This oxidative stress response was also confirmed in Pseudomonas putida. Overall, our work demonstrates that A-to-I RNA editing plays a role in bacterial pathogenicity and adaptation to oxidative stress. Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes that has only been recently documented in bacteria. In this study, we use multiple ‘omic’ approaches to show that A-to-I RNA editing can occur in fliC, a flagellar filament protein. We show that TadA, which encodes adenosine deaminase, can directly bind to mRNA of target genes through recognition of a GACG motif. This editing event changes a single amino acid residue from serine to proline in FliC, resulting in a structural change in the flagellar filament. This posttranscriptional editing event contributes to virulence and increases tolerance to oxidative stress by enhancing biofilm formation. Our results provide insight into a new mechanism that bacterial pathogens use to adapt to oxidative stress, which can also increase virulence.
Collapse
Affiliation(s)
- Wenhan Nie
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, and SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| | - Gongyou Chen
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| |
Collapse
|
31
|
Smith TC, Pullen KM, Olson MC, McNellis ME, Richardson I, Hu S, Larkins-Ford J, Wang X, Freundlich JS, Ando DM, Aldridge BB. Morphological profiling of tubercle bacilli identifies drug pathways of action. Proc Natl Acad Sci U S A 2020; 117:18744-18753. [PMID: 32680963 PMCID: PMC7414088 DOI: 10.1073/pnas.2002738117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Morphological profiling is a method to classify target pathways of antibacterials based on how bacteria respond to treatment through changes to cellular shape and spatial organization. Here we utilized the cell-to-cell variation in morphological features of Mycobacterium tuberculosis bacilli to develop a rapid profiling platform called Morphological Evaluation and Understanding of Stress (MorphEUS). MorphEUS classified 94% of tested drugs correctly into broad categories according to modes of action previously identified in the literature. In the other 6%, MorphEUS pointed to key off-target activities. We observed cell wall damage induced by bedaquiline and moxifloxacin through secondary effects downstream from their main target pathways. We implemented MorphEUS to correctly classify three compounds in a blinded study and identified an off-target effect for one compound that was not readily apparent in previous studies. We anticipate that the ability of MorphEUS to rapidly identify pathways of drug action and the proximal cause of cellular damage in tubercle bacilli will make it applicable to other pathogens and cell types where morphological responses are subtle and heterogeneous.
Collapse
Affiliation(s)
- Trever C Smith
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA 02111
| | - Krista M Pullen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michaela C Olson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Morgan E McNellis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Ian Richardson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Roxbury Latin School, West Roxbury, MA 02132
| | - Sophia Hu
- Department of Bioinformatics and Computational Biology, University of Maryland, Baltimore County, Baltimore, MD 21250
| | - Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
- Tufts University School of Graduate Biomedical Sciences, Boston, MA 02111
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ 07103
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ 07103
- Division of Infectious Disease, Department of Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103
- Ruy V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103
| | - D Michael Ando
- Applied Science Team, Google Research, Mountain View, CA 94043
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111;
- Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA 02111
- Tufts University School of Graduate Biomedical Sciences, Boston, MA 02111
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155
| |
Collapse
|
32
|
Balabon O, Pitta E, Rogacki MK, Meiler E, Casanueva R, Guijarro L, Huss S, Lopez-Roman EM, Santos-Villarejo Á, Augustyns K, Ballell L, Aguirre DB, Bates RH, Cunningham F, Cacho M, Van der Veken P. Optimization of Hydantoins as Potent Antimycobacterial Decaprenylphosphoryl-β-d-Ribose Oxidase (DprE1) Inhibitors. J Med Chem 2020; 63:5367-5386. [DOI: 10.1021/acs.jmedchem.0c00107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olga Balabon
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, 2610 Wilrijk, Belgium
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Eleni Pitta
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, 2610 Wilrijk, Belgium
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Maciej K. Rogacki
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, 2610 Wilrijk, Belgium
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Eugenia Meiler
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Ruth Casanueva
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Laura Guijarro
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Sophie Huss
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Eva Maria Lopez-Roman
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | | | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, 2610 Wilrijk, Belgium
| | - Lluis Ballell
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - David Barros Aguirre
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Robert H. Bates
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Fraser Cunningham
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Monica Cacho
- Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universitieitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
33
|
Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072278] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Eighty years after the introduction of the first antituberculosis (TB) drug, the treatment of drug-susceptible TB remains very cumbersome, requiring the use of four drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) for two months followed by four months on isoniazid and rifampicin. Two of the drugs used in this “short”-course, six-month chemotherapy, isoniazid and ethambutol, target the mycobacterial cell wall. Disruption of the cell wall structure can enhance the entry of other TB drugs, resulting in a more potent chemotherapy. More importantly, inhibition of cell wall components can lead to mycobacterial cell death. The complexity of the mycobacterial cell wall offers numerous opportunities to develop drugs to eradicate Mycobacterium tuberculosis, the causative agent of TB. In the past 20 years, researchers from industrial and academic laboratories have tested new molecules to find the best candidates that will change the face of TB treatment: drugs that will shorten TB treatment and be efficacious against active and latent, as well as drug-resistant TB. Two of these new TB drugs block components of the mycobacterial cell wall and have reached phase 3 clinical trial. This article reviews TB drugs targeting the mycobacterial cell wall in use clinically and those in clinical development.
Collapse
|
34
|
Tarashi S, Badi SA, Moshiri A, Ebrahimzadeh N, Fateh A, Vaziri F, Aazami H, Siadat SD, Fuso A. The inter-talk between Mycobacterium tuberculosis and the epigenetic mechanisms. Epigenomics 2020; 12:455-469. [PMID: 32267165 DOI: 10.2217/epi-2019-0187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
Epigenetics regulate gene function without any alteration in the DNA sequence. The epigenetics represent one of the most important regulators in different cellular processes and have initially been developed in microorganisms as a protective strategy. The evaluation of the epigenetic mechanisms is also important in achieving an efficient control strategy in tuberculosis (TB). TB is one of the most significant epidemiological concerns in human history. Despite several in vivo and in vitro studies that have evaluated different epigenetic modifications in TB, many aspects of the association between epigenetics and TB are not fully understood. The current paper is aimed at reviewing our knowledge on histone modifications and DNA methylation modifications, as well as miRNAs regulation in TB.
Collapse
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laboratory of Molecular Medicine, IRCCS Institute Giannina Gaslini, Genova, Italy
| | - Nayereh Ebrahimzadeh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Aazami
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Endocrinologyand Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| |
Collapse
|
35
|
Tung QN, Busche T, Van Loi V, Kalinowski J, Antelmann H. The redox-sensing MarR-type repressor HypS controls hypochlorite and antimicrobial resistance in Mycobacterium smegmatis. Free Radic Biol Med 2020; 147:252-261. [PMID: 31887453 DOI: 10.1016/j.freeradbiomed.2019.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
MarR-family transcription factors often control antioxidant enzymes, multidrug efflux pumps or virulence factors in bacterial pathogens and confer resistance towards oxidative stress and antibiotics. In this study, we have characterized the function and redox-regulatory mechanism of the MarR-type regulator HypS in Mycobacterium smegmatis. RNA-seq transcriptomics and qRT-PCR analyses of the hypS mutant revealed that hypS is autoregulated and represses transcription of the co-transcribed hypO gene which encodes a multidrug efflux pump. DNA binding activity of HypS to the 8-5-8 bp inverted repeat sequence upstream of the hypSO operon was inhibited under NaOCl stress. However, the HypSC58S mutant protein was not impaired in DNA-binding under NaOCl stress in vitro, indicating an important role of Cys58 in redox sensing of NaOCl stress. HypS was shown to be inactivated by Cys58-Cys58' intersubunit disulfide formation under HOCl stress, resulting in derepression of hypO transcription. Phenotype results revealed that the HypS regulon confers resistance towards HOCl, rifampicin and erythromycin stress. In conclusion, HypS was identified as a novel redox-sensitive repressor that contributes to mycobacterial resistance towards HOCl stress and antibiotics.
Collapse
Affiliation(s)
- Quach Ngoc Tung
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Tobias Busche
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany; Center for Biotechnology (CeBiTec), Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany.
| |
Collapse
|
36
|
Li H, Chen T, Yu L, Guo H, Chen L, Chen Y, Chen M, Zhao J, Yan H, Zhou L, Wang W. Genome‐wide DNA methylation and transcriptome and proteome changes in
Mycobacterium tuberculosis
with para‐aminosalicylic acid resistance. Chem Biol Drug Des 2019; 95:104-112. [PMID: 31562690 DOI: 10.1111/cbdd.13625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Hai‐cheng Li
- Reference Laboratory Centre for Tuberculosis Control of Guangdong Province Guangzhou China
| | - Tao Chen
- Reference Laboratory Centre for Tuberculosis Control of Guangdong Province Guangzhou China
| | - Li Yu
- Reference Laboratory Centre for Tuberculosis Control of Guangdong Province Guangzhou China
| | - Hui‐xin Guo
- Reference Laboratory Centre for Tuberculosis Control of Guangdong Province Guangzhou China
| | - Liang Chen
- Centre for Tuberculosis Control of Guangdong Province Guangzhou China
| | - Yu‐hui Chen
- Outpatient Office Centre for Tuberculosis Control of Guangdong Province Guangzhou China
| | - Mu Chen
- Department of Respiration The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Jiao Zhao
- Medical College of Jinan University Guangzhou China
| | | | - Lin Zhou
- Centre for Tuberculosis Control of Guangdong Province Guangzhou China
| | - Wei Wang
- The Forth People's Hospital of Foshan Foshan China
| |
Collapse
|
37
|
Han X, Chen C, Yan Q, Jia L, Taj A, Ma Y. Action of Dicumarol on Glucosamine-1-Phosphate Acetyltransferase of GlmU and Mycobacterium tuberculosis. Front Microbiol 2019; 10:1799. [PMID: 31481936 PMCID: PMC6710349 DOI: 10.3389/fmicb.2019.01799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis is one of most pathogenic microorganisms in the world. Previously, the bifunctional enzyme GlmU with glucosamine-1-phosphate acetyltransferase activity and N-acetylglucosamine-1-phosphate uridyltransferase activity has been suggested as a potential drug target; therefore, discovering compounds targeting GlmU acetyltransferase is necessary. The natural products were tested for inhibition of GlmU acetyltransferase activity. We found that dicumarol exhibited inhibitory effects on GlmU acetyltransferase, with a concentration achieving a 50% inhibition (IC50) value of 4.608 μg/ml (13.7 μM). The inhibition kinetics indicated that dicumarol uncompetitively inhibited acetyl CoA and showed mixed-type inhibition for glucosamine-1-phosphate (GlcN-1-P). The activity of dicumarol against M. tuberculosis H37Ra was evaluated with a minimum inhibitory concentration (MIC) value of 6.25 μg/ml (18.55 μM) in the Alamar blue assay. Dicumarol also exhibited inhibitory effects on several clinically sensitive M. tuberculosis strains and drug-resistant strains, with a range of MIC value of 6.25 to >100 μg/ml. Dicumarol increased the sensitivity of anti-tuberculosis drugs (isoniazid and rifampicin) when dicumarol was present at a low concentration. The transcriptome and proteome data of M. tuberculosis H37Ra treated by dicumarol showed that the affected genes were associated with cell wall synthesis, DNA damage and repair, metabolic processes, and signal transduction. These results provided the mechanism of dicumarol inhibition against GlmU acetyltransferase and M. tuberculosis and also suggested that dicumarol is a potential candidate for TB treatment.
Collapse
Affiliation(s)
- Xiuyan Han
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Changming Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Comparative metabolomics shows the metabolic profiles fluctuate in multi-drug resistant Escherichia coli strains. J Proteomics 2019; 207:103468. [PMID: 31374362 DOI: 10.1016/j.jprot.2019.103468] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 07/28/2019] [Indexed: 12/22/2022]
Abstract
In this study, two susceptible strains and two multi-drug resistant clinical Escherichia coli strains were obtained by Kirby-Bauer method, and then a GC-MS-based metabolomics method was used to compare the differential expression of metabolites between two drug sensitive (CK1 and CK2) and two multidrug-resistant (MDR1 and MDR2) clinical strains of E. coli. We characterized a total of 273 metabolites, including 77 commonly altered metabolites, between MDR vs. antibiotic sensitive strains. Interestingly, the PCA score plot clearly discriminated drug sensitive and MDR strains. The following bioinformatics analysis showed that biosynthesis of amino acids, biosynthesis of phenylpropanoids and purine metabolism were commonly enriched in MDR strains. Moreover, microbial metabolism in diverse environments, carbon metabolism,and pyrimidine metabolism pathways were more likely to be enriched MDR1 strain, while ABC transporters, and cysteine and methionine metabolism pathways were enriched in MDR2 strains. The enzyme activities in several involved metabolic pathways were further measured and metabolite candidates were validated by GC-MS-SIM method. These results indicated that antibiotic resistance affects the metabolite profiles of bacteria. In general, our study provides evidence on the study and prediction of MDR characteristics and mechanisms in bacteria at the metabolite level. BIOLOGICAL SIGNIFICANCE: Overuse and abuse of antibiotics has led to the emergence of antibiotic-resistant strains of bacteria; however, relatively little is known about their resistance mechanisms. In this study, metabolomics method was used to compare the differential expression of metabolites between sensitive and multidrug-resistant clinical strains of E. coli. Results show that the PCA score plot clearly discriminated sensitive and MDR strains, indicating that they had different metabolic profiles. Further, bioinformatics analysis showed that biosynthesis of amino acids, biosynthesis of phenylpropanoids and purine metabolism may be related to resistance. Finally, the enzyme activities in several involved metabolic pathways were further measured and metabolite candidates were validated by GC-MS-SIM method. In general, our study provides evidence on the study and prediction of MDR characteristics and mechanisms in bacteria at the metabolite level.
Collapse
|
39
|
Chen C, Han X, Yan Q, Wang C, Jia L, Taj A, Zhao L, Ma Y. The Inhibitory Effect of GlmU Acetyltransferase Inhibitor TPSA on Mycobacterium tuberculosis May Be Affected Due to Its Methylation by Methyltransferase Rv0560c. Front Cell Infect Microbiol 2019; 9:251. [PMID: 31380295 PMCID: PMC6652808 DOI: 10.3389/fcimb.2019.00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis bifunctional enzyme GlmU is a novel target for anti-TB drugs and is involved in glycosyl donor UDP-N-acetylglucosamine biosynthesis. Here, we found that TPSA (2-[5-(2-{[4-(2-thienyl)-2-pyrimidinyl]sulfanyl}acetyl)-2-thienyl]acetic acid) was a novel inhibitor for GlmU acetyltransferase activity (IC50: 5.3 μM). The interaction sites of GlmU and TPSA by molecular docking were confirmed by site-directed mutagenesis. TPSA showed an inhibitory effect on Mtb H37Ra growth and intracellular H37Ra in macrophage cells (MIC: 66.5 μM). To investigate why TPSA at a higher concentration (66.5 μM) was able to inhibit H37Ra growth, proteome and transcriptome of H37Ra treated with TPSA were analyzed. The expression of two methyltransferases MRA_0565 (Rv0558) and MRA_0567 (Rv0560c) were markedly increased. TPSA was pre-incubated with purified Rv0558 and Rv0560c in the presence of S-adenosylmethionine (methyl donor) respectively, resulting in its decreased inhibitory effect of GlmU on acetyltransferase activity. The inhibition of TPSA on growth of H37Ra with overexpressed Rv0558 and Rv0560c was reduced. These implied that methyltransferases could modify TPSA. The methylation of TPSA catalyzed by Rv0560c was subsequently confirmed by LC-MS. Therefore, TPSA as a GlmU acetyltransferase activity inhibitor may offer a structural basis for new anti-tuberculosis drugs. TPSA needs to be modified further by some groups to prevent its methylation by methyltransferases.
Collapse
Affiliation(s)
- Changming Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiuyan Han
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lizhe Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
40
|
Zhou L, He ZG, Li W. AraR, an L-Arabinose-Responding Transcription Factor, Negatively Regulates Resistance of Mycobacterium smegmatis to Isoniazid. BIOCHEMISTRY (MOSCOW) 2019; 84:540-552. [PMID: 31234768 DOI: 10.1134/s0006297919050080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
L-Arabinose is an important component of mycobacterial cell wall. L-Arabinose is involved in the synthesis of arabinogalactan, lipoarabinomannan, and other sugar compounds, which suggests that it can modulate cell wall permeability and drug resistance. However, whether L-arabinose affects mycobacterial antibiotic resistance and the underlying regulatory mechanism remains unclear. In this study, we characterized a new transcription factor of Mycobacterium smegmatis, AraR, that responds to L-arabinose and regulates mycobacterial sensitivity to isoniazid (INH). AraR specifically recognizes two conserved 15-bp motifs within the upstream regulatory region of the arabinose (araR) operon. AraR functions as a transcriptional repressor that negatively regulates araR expression. In contrast to the effect of AraR, overexpression of the araR operon contributes to the mycobacterial INH resistance. L-arabinose acts as an effector and derepresses transcriptional inhibition by AraR. The araR-deficient strain is more resistant to INH than the wild-type strain, whereas the araR-overexpressing strain is more sensitive to INH. Addition of L-arabinose to the medium can significantly increase the resistance to INH of the wild-type strain, but not of the araR knockout strain. Therefore, we identified a new L-arabinose-responding transcription factor and revealed its effect on the bacterial antibiotic resistance. These findings can provide new insights in the regulatory mechanisms mediated by sugar molecules and their relationship with drug resistance in mycobacteria.
Collapse
Affiliation(s)
- L Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Z-G He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - W Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| |
Collapse
|
41
|
Pi R, Liu Q, Jiang Q, Gao Q. Characterization of linezolid-resistance-associated mutations in Mycobacterium tuberculosis through WGS. J Antimicrob Chemother 2019; 74:1795-1798. [DOI: 10.1093/jac/dkz150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
Objectives
Linezolid is becoming an important antibiotic for treating MDR/XDR TB, but the mutations conferring resistance to linezolid remain inadequately characterized. Herein, we investigated the linezolid-resistance-associated mutations on a whole-genome scale through parallel selections of resistant isolates in vitro.
Methods
Ten parallel Mycobacterium tuberculosis H37Rv cultures were subjected to spontaneous mutant selection on 7H11 agar plates containing 2.5 mg/L linezolid. The linezolid resistance of resulting colonies was confirmed by growth on a second linezolid plate. WGS was then performed to identify mutations associated with linezolid resistance.
Results
Of 181 colonies appearing on the initial linezolid plates, 154 were confirmed to be linezolid resistant. WGS showed that 88.3% (136/154) of these isolates had a T460C mutation in rplC, resulting in a C154R substitution. The other 18 isolates harboured a single mutation in the rrl gene, with G2814T and G2270T mutations accounting for 7.8% (12/154) and 3.9% (6/154), respectively.
Conclusions
No mutations in novel genes were associated with linezolid resistance in a whole-genome investigation of 154 linezolid-resistant isolates selected in vitro. These results emphasize that rrl and rplC genes should be the major targets for molecular detection of linezolid resistance.
Collapse
Affiliation(s)
- Rui Pi
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Qingyun Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Qi Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
42
|
Sahu PK, Chauhan S, Tomar RS. The Crg1 N-Terminus Is Essential for Methyltransferase Activity and Cantharidin Resistance in Saccharomyces cerevisiae. Biochemistry 2019; 58:1799-1809. [PMID: 30830767 DOI: 10.1021/acs.biochem.8b01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crg1 is an S-adenosylmethionine (SAM)-dependent methyltransferase required for cantharidin resistance in yeast. Crg1 has a well-characterized methyltransferase domain that inactivates cantharidin by methylation. However, the remaining part of the Crg1 protein is yet to be functionally characterized. In this study, we identified an essential role of the N-terminus of Crg1 in methyltransferase activity and cantharidin resistance. Yeast cells lacking 41 residues of the N-terminus of Crg1 ( crg1ΔN) showed hypersensitivity to cantharidin as same as the null mutant, crg1. The mass spectrometry-based biochemical enzyme assay revealed a loss of methyltransferase activity in Crg1ΔN, which justifies the loss of cantharidin resistance, as well. The subcellular distribution of Crg1ΔN-daGFP showed cytoplasmic aggregates, whereas wild-type Crg1-daGFP was distributed normally in the cytoplasm. Interestingly, the Crg1-methyltransferase domain point mutants (D44A, D67A, and E105A/D108A) also showed the same cytoplasmic aggregates as Crg1ΔN-daGFP. In silico prediction of the tertiary structures of these mutants indicated an altered protein conformation. Altogether, these observations suggest that the N-terminal truncation, as well as the point mutations in the methyltransferase domain, alters the native folding of Crg1 methyltransferase, resulting in a loss of enzyme activity. Furthermore, the crg1ΔN mutant showed the same phenotypes as the crg1 null mutant in the presence of cantharidin, i.e., lethal cell growth, PE auxotrophy, temperature sensitivity, endoplasmic reticulum stress, GPI anchor missorting, and cell wall damage. Overall, this study identifies an essential role of the N-terminus of Crg1 in methyltransferase activity and cantharidin resistance.
Collapse
Affiliation(s)
- Pushpendra Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences , Indian Institute of Science Education and Research Bhopal , Bhopal 462066 , Madhya Pradesh , India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences , Indian Institute of Science Education and Research Bhopal , Bhopal 462066 , Madhya Pradesh , India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences , Indian Institute of Science Education and Research Bhopal , Bhopal 462066 , Madhya Pradesh , India
| |
Collapse
|
43
|
Mayoka G, Njoroge M, Okombo J, Gibhard L, Sanches-Vaz M, Fontinha D, Birkholtz LM, Reader J, van der Watt M, Coetzer TL, Lauterbach S, Churchyard A, Bezuidenhout B, Egan TJ, Yeates C, Wittlin S, Prudêncio M, Chibale K. Structure–Activity Relationship Studies and Plasmodium Life Cycle Profiling Identifies Pan-Active N-Aryl-3-trifluoromethyl Pyrido[1,2-a]benzimidazoles Which Are Efficacious in an in Vivo Mouse Model of Malaria. J Med Chem 2018; 62:1022-1035. [DOI: 10.1021/acs.jmedchem.8b01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Godfrey Mayoka
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Theresa L. Coetzer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Sonja Lauterbach
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Alisje Churchyard
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Belinda Bezuidenhout
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Clive Yeates
- Inpharma
Consultancy, 6 Dudley Hill Close, Welwyn, Hertfordshire AL60QQ, U.K
| | - Sergio Wittlin
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council, Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
44
|
Kashyap A, Singh PK, Silakari O. Mechanistic investigation of resistance via drug-inactivating enzymes in Mycobacterium tuberculosis. Drug Metab Rev 2018; 50:448-465. [PMID: 30343607 DOI: 10.1080/03602532.2018.1533966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Tuberculosis (TB) is a serious major health concern that has existed from millennia. According to annual WHO report 2016, it is considered as world's ninth highest killer disease by single infectious agent, ranking above HIV/AIDS. To worsen the scenario the development of multi-drug resistant tuberculosis (MDR-TB) and extremely drug-resistant tuberculosis (XDR-TB) have significantly reduced the success rate of TB treatment. Several efforts are being made to handle pharmacodynamic resistance (MDR and XDR-TB) involving designing of new inhibitors, targeting mutated target or by multi-targeting agents. However, the issue of pharmacokinetic resistance in TB is not being addressed appropriately till date. Pharmacokinetic mode of resistance involves an intrinsic mechanism of bacterial drug resistance via expression of various enzymes and efflux pumps that are responsible for the loss of activity of the therapeutic agents. Mycobacterium tuberculosis is also intrinsically resistant to various approved agents via pharmacokinetic mechanism of resistance. Several bacterial enzymes are encoded that either degrade or modifies the drugs and renders them ineffective. Targeting such inactivating bacterial enzymes provides a novel approach to make the current therapy effective and combat the problem of resistance. This review provides an insight into different bacterial enzymes which are responsible for pharmacokinetic drug resistance in TB. The structure attributes and mechanism of catalysis employed by these enzymes to inactivate drug have also been discussed which may provide basis for developing novel therapeutic agents for resistant TB.
Collapse
Affiliation(s)
- Aanchal Kashyap
- a Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , India
| | - Pankaj Kumar Singh
- a Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , India
| | - Om Silakari
- a Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , India
| |
Collapse
|
45
|
Oh S, Park Y, Engelhart CA, Wallach JB, Schnappinger D, Arora K, Manikkam M, Gac B, Wang H, Murgolo N, Olsen DB, Goodwin M, Sutphin M, Weiner DM, Via LE, Boshoff HIM, Barry CE. Discovery and Structure-Activity-Relationship Study of N-Alkyl-5-hydroxypyrimidinone Carboxamides as Novel Antitubercular Agents Targeting Decaprenylphosphoryl-β-d-ribose 2'-Oxidase. J Med Chem 2018; 61:9952-9965. [PMID: 30350998 PMCID: PMC6257622 DOI: 10.1021/acs.jmedchem.8b00883] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Magnesium plays an important role
in infection with Mycobacterium
tuberculosis (Mtb) as a signal of the extracellular
environment, as a cofactor for many enzymes, and as a structural element
in important macromolecules. Raltegravir, an antiretroviral drug that
inhibits HIV-1 integrase is known to derive its potency from selective
sequestration of active-site magnesium ions in addition to binding
to a hydrophobic pocket. In order to determine if essential Mtb-related phosphoryl transfers could be disrupted in a
similar manner, a directed screen of known molecules with integrase
inhibitor-like pharmacophores (N-alkyl-5-hydroxypyrimidinone
carboxamides) was performed. Initial hits afforded compounds with
low-micromolar potency against Mtb, acceptable cytotoxicity
and PK characteristics, and robust SAR. Elucidation of the target
of these compounds revealed that they lacked magnesium dependence
and instead disappointingly inhibited a known promiscuous target in Mtb, decaprenylphosphoryl-β-d-ribose 2′-oxidase
(DprE1, Rv3790).
Collapse
Affiliation(s)
- Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Yumi Park
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Curtis A Engelhart
- Department of Microbiology and Immunology , Weill Cornell Medical College , New York , New York 10021 , United States
| | - Joshua B Wallach
- Department of Microbiology and Immunology , Weill Cornell Medical College , New York , New York 10021 , United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology , Weill Cornell Medical College , New York , New York 10021 , United States
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Michelle Manikkam
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Brian Gac
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Hongwu Wang
- Discovery Research , Merck & Company, Inc. , 770 Sumneytown Pike , West Point , Pennsylvania 19486 , United States
| | - Nicholas Murgolo
- Discovery Research , Merck & Company, Inc. , 770 Sumneytown Pike , West Point , Pennsylvania 19486 , United States
| | - David B Olsen
- Discovery Research , Merck & Company, Inc. , 770 Sumneytown Pike , West Point , Pennsylvania 19486 , United States
| | - Michael Goodwin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Michelle Sutphin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States.,Institute for Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town 7935 , South Africa
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States.,Institute for Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town 7935 , South Africa
| |
Collapse
|
46
|
Genetics and roadblocks of drug resistant tuberculosis. INFECTION GENETICS AND EVOLUTION 2018; 72:113-130. [PMID: 30261266 DOI: 10.1016/j.meegid.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
Abstract
Considering the extensive evolutionary history of Mycobacterium tuberculosis, anti-Tuberculosis (TB) drug therapy exerts a recent selective pressure. However, in a microorganism devoid of horizontal gene transfer and with a strictly clonal populational structure such as M. tuberculosis the usual, but not sole, path to overcome drug susceptibility is through de novo mutations on a relatively strict set of genes. The possible allelic diversity that can be associated with drug resistance through several mechanisms such as target alteration or target overexpression, will dictate how these genes can become associated with drug resistance. The success demonstrated by this pathogenic microbe in this latter process and its ability to spread is currently one of the major obstacles to an effective TB elimination. This article reviews the action mechanism of the more important anti-TB drugs, including bedaquiline and delamanid, along with new findings on specific resistance mechanisms. With the development, validation and endorsement of new in vitro molecular tests for drug resistance, knowledge on these resistance mechanisms and microevolutionary dynamics leading to the emergence and fixation of drug resistance mutations within the host is highly important. Additionally, the fitness toll imposed by resistance development is also herein discussed together with known compensatory mechanisms. By elucidating the possible mechanisms that enable one strain to reacquire the original fitness levels, it will be theoretically possible to make more informed decisions and develop novel strategies that can force M. tuberculosis microevolutionary trajectory down through a path of decreasing fitness levels.
Collapse
|
47
|
Tanner L, Denti P, Wiesner L, Warner DF. Drug permeation and metabolism in Mycobacterium tuberculosis: Prioritising local exposure as essential criterion in new TB drug development. IUBMB Life 2018; 70:926-937. [PMID: 29934964 PMCID: PMC6129860 DOI: 10.1002/iub.1866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Anti-tuberculosis (TB) drugs possess diverse abilities to penetrate the different host tissues and cell types in which infecting Mycobacterium tuberculosis bacilli are located during active disease. This is important since there is increasing evidence that the respective "lesion-penetrating" properties of the front-line TB drugs appear to correlate well with their specific activity in standard combination therapy. In turn, these observations suggest that rational efforts to discover novel treatment-shortening drugs and drug combinations should incorporate knowledge about the comparative abilities of both existing and experimental anti-TB agents to access bacilli in defined physiological states at different sites of infection, as well as avoid elimination by efflux or inactivation by host or bacterial metabolism. However, while there is a fundamental requirement to understand the mode of action and pharmacological properties of any current or experimental anti-TB agent within the context of the obligate human host, this is complex and, until recently, has been severely limited by the available methodologies and models. Here, we discuss advances in analytical models and technologies which have enabled investigations of drug metabolism and pharmacokinetics (DMPK) for new TB drug development. In particular, we consider the potential to shift the focus of traditional pharmacokinetic-pharmacodynamic analyses away from plasma to a more specific "site of action" drug exposure as an essential criterion for drug development and the design of dosing strategies. Moreover, in summarising approaches to determine DMPK data for the "unit of infection" comprising host macrophage and intracellular bacillus, we evaluate the potential benefits of including these analyses at an early stage in the preclinical drug development algorithm. © 2018 IUBMB Life, 70(9):926-937, 2018.
Collapse
Affiliation(s)
- Lloyd Tanner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Paolo Denti
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Lubbe Wiesner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Digby F. Warner
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| |
Collapse
|
48
|
Argemi X, Matelska D, Ginalski K, Riegel P, Hansmann Y, Bloom J, Pestel-Caron M, Dahyot S, Lebeurre J, Prévost G. Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer. BMC Genomics 2018; 19:621. [PMID: 30126366 PMCID: PMC6102843 DOI: 10.1186/s12864-018-4978-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
Background Coagulase negative staphylococci (CoNS) are commensal bacteria on human skin. Staphylococcus lugdunensis is a unique CoNS which produces various virulence factors and may, like S. aureus, cause severe infections, particularly in hospital settings. Unlike other staphylococci, it remains highly susceptible to antimicrobials, and genome-based phylogenetic studies have evidenced a highly conserved genome that distinguishes it from all other staphylococci. Results We demonstrate that S. lugdunensis possesses a closed pan-genome with a very limited number of new genes, in contrast to other staphylococci that have an open pan-genome. Whole-genome nucleotide and amino acid identity levels are also higher than in other staphylococci. We identified numerous genetic barriers to horizontal gene transfer that might explain this result. The S. lugdunensis genome has multiple operons encoding for restriction-modification, CRISPR/Cas and toxin/antitoxin systems. We also identified a new PIN-like domain-associated protein that might belong to a larger operon, comprising a metalloprotease, that could function as a new toxin/antitoxin or detoxification system. Conclusion We show that S. lugdunensis has a unique genome profile within staphylococci, with a closed pan-genome and several systems to prevent horizontal gene transfer. Its virulence in clinical settings does not rely on its ability to acquire and exchange antibiotic resistance genes or other virulence factors as shown for other staphylococci. Electronic supplementary material The online version of this article (10.1186/s12864-018-4978-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xavier Argemi
- Service des Maladies Infectieuses et Tropicales, Hôpitaux Universitaires, Nouvel Hôpital Civil, 1 Place de l'Hôpital, 67000, Strasbourg, France. .,Université de Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA 7290, Virulence Bactérienne Précoce, F-67000, Strasbourg, France.
| | - Dorota Matelska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Philippe Riegel
- Université de Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA 7290, Virulence Bactérienne Précoce, F-67000, Strasbourg, France
| | - Yves Hansmann
- Service des Maladies Infectieuses et Tropicales, Hôpitaux Universitaires, Nouvel Hôpital Civil, 1 Place de l'Hôpital, 67000, Strasbourg, France.,Université de Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA 7290, Virulence Bactérienne Précoce, F-67000, Strasbourg, France
| | - Jochen Bloom
- Bioinformatics & Systems Biology, Justus-Liebig-University Gießen, 35392, Gießen, Germany
| | - Martine Pestel-Caron
- Normandie Univ, UNIROUEN, GRAM EA2656, Rouen University Hospital, F-76000, Rouen, France
| | - Sandrine Dahyot
- Normandie Univ, UNIROUEN, GRAM EA2656, Rouen University Hospital, F-76000, Rouen, France
| | - Jérémie Lebeurre
- Normandie Univ, UNIROUEN, GRAM EA2656, Rouen University Hospital, F-76000, Rouen, France
| | - Gilles Prévost
- Université de Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA 7290, Virulence Bactérienne Précoce, F-67000, Strasbourg, France
| |
Collapse
|
49
|
Bockman MR, Engelhart CA, Dawadi S, Larson P, Tiwari D, Ferguson DM, Schnappinger D, Aldrich CC. Avoiding Antibiotic Inactivation in Mycobacterium tuberculosis by Rv3406 through Strategic Nucleoside Modification. ACS Infect Dis 2018; 4:1102-1113. [PMID: 29663798 DOI: 10.1021/acsinfecdis.8b00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
5'-[ N-(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine (Bio-AMS, 1) possesses selective activity against Mycobacterium tuberculosis ( Mtb) and arrests fatty acid and lipid biosynthesis through inhibition of the Mycobacterium tuberculosis biotin protein ligase ( MtBPL). Mtb develops spontaneous resistance to 1 with a frequency of at least 1 × 10-7 by overexpression of Rv3406, a type II sulfatase that enzymatically inactivates 1. In an effort to circumvent this resistance mechanism, we describe herein strategic modification of the nucleoside at the 5'-position to prevent enzymatic inactivation. The new analogues retained subnanomolar potency to MtBPL ( KD = 0.66-0.97 nM), and 5' R- C-methyl derivative 6 exhibited identical antimycobacterial activity toward: Mtb H37Rv, MtBPL overexpression, and an isogenic Rv3406 overexpression strain (minimum inhibitory concentration, MIC = 1.56 μM). Moreover, 6 was not metabolized by recombinant Rv3406 and resistant mutants to 6 could not be isolated (frequency of resistance <1.4 × 10-10) demonstrating it successfully overcame Rv3406-mediated resistance.
Collapse
Affiliation(s)
- Matthew R. Bockman
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Curtis A. Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Peter Larson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Divya Tiwari
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - David M. Ferguson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
50
|
Chikhale RV, Barmade MA, Murumkar PR, Yadav MR. Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis. J Med Chem 2018; 61:8563-8593. [PMID: 29851474 DOI: 10.1021/acs.jmedchem.8b00281] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1), a vital enzyme for cell wall synthesis, plays a crucial role in the formation of lipoarabinomannan and arabinogalactan. It was first reported as a druggable target on the basis of inhibitors discovered in high throughput screening of a drug library. Since then, inhibitors with different types of chemical scaffolds have been reported for their activity against this enzyme. Formation of a covalent or noncovalent bond by the interacting ligand with the enzyme causes loss of its catalytic activity which ultimately leads to the death of the mycobacterium. This Perspective describes various DprE1 inhibitors as anti-TB agents reported to date.
Collapse
Affiliation(s)
- Rupesh V Chikhale
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India.,School of Health Sciences, Division of Pharmacy and Optometry , University of Manchester , Manchester M13 9PL , U.K
| | - Mahesh A Barmade
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India
| |
Collapse
|