1
|
Louaguenouni Y, Wang Q, Baticle T, Cailleau C, Lamy E, Mougin J, Chapron D, Grassin-Delyle S, Vergnaud J, Tsapis N, Fattal E, Fay F. Robust micelles formulation to improve systemic corticosteroid therapy in sepsis in multiple healthcare systems. J Control Release 2025; 381:113635. [PMID: 40118115 DOI: 10.1016/j.jconrel.2025.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Sepsis is a life-threatening condition resulting from an imbalanced immune response to an infection that causes over 10 million deaths annually, particularly in low and middle-income countries. Current clinical management of sepsis relies on infection control, homeostasis restoration, and systemic corticosteroid therapy. Unfortunately, while beneficial, corticosteroid regimens, including dexamethasone, can lead to adverse effects such as neurological and metabolic complications, limiting their use. In this work, we decided to develop a scalable production method using only approved and cost-effective materials. We also conceived our formulation to be freeze-drying friendly to allow its use within various healthcare systems. Following those concepts, we designed DSPE-PEG(2000)-based micelles to encapsulate dexamethasone, and improve its in vivo efficacy by extending blood circulation time and targeting innate blood immune cells. First, the physicochemical properties, stability, in vitro release kinetics, and efficacy of dexamethasone-loaded micelles were comprehensively measured to demonstrate the platform's robustness. The therapeutic in vivo efficacy of dexamethasone-loaded micelles and their ability to increase animal survival was exhibited in two murine sepsis models, an endotoxemia model, and the cecal ligation and puncture model. Various biodistribution and ex vivo fluorescence imaging assays revealed that using micelles led to an improved blood circulation time and a preferential accumulation within immune cells that could explain the enhanced efficacy of dexamethasone-loaded micelles compared to the soluble form of the drug used clinically. Altogether, our results indicate that this robust micellar delivery system can potentially improve the anti-inflammatory therapy of dexamethasone, offering a safer and more effective alternative to conventional corticosteroid regimens in sepsis.
Collapse
Affiliation(s)
- Younes Louaguenouni
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Qinglin Wang
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Thomas Baticle
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Catherine Cailleau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Elodie Lamy
- Département de Biotechnologie de la Santé, Université Paris-Saclay, UVSQ, INSERM U1173, Infection et inflammation, 78180 Montigny le Bretonneux, France
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - David Chapron
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Stanislas Grassin-Delyle
- Département de Biotechnologie de la Santé, Université Paris-Saclay, UVSQ, INSERM U1173, Infection et inflammation, 78180 Montigny le Bretonneux, France
| | - Juliette Vergnaud
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| | - François Fay
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
2
|
Lohia GK, Riquelme SA. Influence of cell bioenergetics on host-pathogen interaction in the lung. Front Immunol 2025; 16:1549293. [PMID: 40248701 PMCID: PMC12003392 DOI: 10.3389/fimmu.2025.1549293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Pulmonary diseases, arising from infections caused by bacteria, fungi, and viruses, or stemming from underlying genetic factors are one of the leading causes of mortality in humans, accounting for millions of deaths every year. At the onset of pulmonary diseases, crucial roles are played by phagocytic immune cells, particularly tissue-resident macrophages, in regulating the immune response at the mucosal barrier. Recent strides have illuminated the pivotal role of host bioenergetics modulated by metabolites derived from both pathogens and hosts in influencing the pathophysiology of major organs. Their influence extends to processes such as the infiltration of immune cells, activation of macrophages, and the polarization phenomenon. Furthermore, host-derived metabolites, such as itaconate, contribute to the promotion of anti-inflammatory responses, thereby preventing immunopathology and facilitating the preservation of mucosal niches to thrive for the long-term. This review explores recent advancements in the field of immunometabolism, with a particular emphasis on the intricacies of disease progression in pulmonary infections caused by bacteria such as P. aeruginosa, M. tuberculosis and S. aureus and fungi like C. albicans.
Collapse
|
3
|
Zhang Y, Liu D, Wang Y, Sun Q, Mei D, Wang X, Su Y, Liu S, Cui C, Zhang S. High-Density Lipoprotein Biomimetic Inorganic-Organic Composite Nanosystem for Atherosclerosis Therapy. Polymers (Basel) 2025; 17:625. [PMID: 40076117 PMCID: PMC11902788 DOI: 10.3390/polym17050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Atherosclerosis (AS) is an important causative agent of cardiovascular diseases, and the occurrence and development of AS is accompanied by oxidative stress, so antioxidant therapy has become one of the strategies for the treatment of AS. This study aimed to design and construct an apolipoprotein ApoA1-modified inorganic-organic composite nanosystem for AS therapy, in which ApoA1 was modified onto carboxylated CeO2/Mn3O4 by covalent bonding, resulting in an inorganic-organic nanocomplex with a structure similar to that of high-density lipoprotein. The nanocomplex could effectively deliver the antioxidant nanoparticles to the AS plaque through the specific recognition between ApoA1 and the macrophage at the AS lesion site. For one thing, the nanocomplex could alleviate the oxidative stress environment of the AS site through the highly efficient antioxidant effect of CeO2/Mn3O4, which played a therapeutic role in the treatment of AS. For another, it could effectively eliminate the formed lipid plaques and maximally alleviate and treat AS by utilizing the cholesterol efflux effect of ApoA1.
Collapse
Affiliation(s)
- Yunpeng Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (D.L.); (Y.W.); (Q.S.); (S.L.)
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; (D.M.); (X.W.); (Y.S.)
| | - Danni Liu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (D.L.); (Y.W.); (Q.S.); (S.L.)
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; (D.M.); (X.W.); (Y.S.)
| | - Yaoqi Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (D.L.); (Y.W.); (Q.S.); (S.L.)
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; (D.M.); (X.W.); (Y.S.)
| | - Qi Sun
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (D.L.); (Y.W.); (Q.S.); (S.L.)
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; (D.M.); (X.W.); (Y.S.)
| | - Dong Mei
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; (D.M.); (X.W.); (Y.S.)
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Xiaoling Wang
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; (D.M.); (X.W.); (Y.S.)
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Yan Su
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; (D.M.); (X.W.); (Y.S.)
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Siyu Liu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (D.L.); (Y.W.); (Q.S.); (S.L.)
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; (D.M.); (X.W.); (Y.S.)
| | - Chunying Cui
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (D.L.); (Y.W.); (Q.S.); (S.L.)
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; (D.M.); (X.W.); (Y.S.)
| | - Shuang Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (D.L.); (Y.W.); (Q.S.); (S.L.)
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; (D.M.); (X.W.); (Y.S.)
| |
Collapse
|
4
|
Wang X, Mu D, Liang J, Xin R, Zhang Y, Liu R, Yao M, Zhang B. Emerging nanoprobes for the features visualization of vulnerable atherosclerotic plaques. SMART MEDICINE 2024; 3:e20240033. [PMID: 39776593 PMCID: PMC11669784 DOI: 10.1002/smmd.20240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular disease. In particular, the unpredictable rupture of vulnerable atherosclerotic plaques (VASPs) can cause serious cardiovascular events such as myocardial infarction, stroke, and even sudden death. Therefore, early evaluation of the vulnerability of atherosclerotic plaques is of great importance. However, clinical imaging techniques are only marginally useful in the presence of severe anatomical structural changes, making it difficult to evaluate plaque vulnerability at an early stage. With the development of molecular imaging and nanotechnology, specific nanoprobes constructed for the pathological features of VASPs have attracted much attention for their ability to visualize VASPs early and noninvasively at the cellular and molecular levels. Here, we outline the pathological features of VASPs, analyze the superiority and limitations of current clinical imaging techniques, introduce the rational design principles of nanoprobes, and systematically summarize the application of nanoprobes to visualize the features of VASPs at the cellular and molecular levels. In addition, we discussed the prospects and urgent challenges in this field, and we believe it will provide new ideas for the early and accurate diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Wang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dan Mu
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jing Liang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Ruijing Xin
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yukun Zhang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Renyuan Liu
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Mei Yao
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Bing Zhang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Medical Imaging CenterAffiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
- Department of RadiologyDrum Tower HospitalClinical College of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
- Institute of Brain ScienceNanjing UniversityNanjingChina
| |
Collapse
|
5
|
Wang JH, Pan GR, Jiang L. A bibliometric analysis of immunotherapy for atherosclerosis: trends and hotspots prediction. Front Immunol 2024; 15:1493250. [PMID: 39628489 PMCID: PMC11611808 DOI: 10.3389/fimmu.2024.1493250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction An increasing number of studies have demonstrated that immunotherapy may play a significant role in treating Atherosclerosis and has emerged as a promising therapy in this field. The aim of this study is to provide a comprehensive perspective through bibliometric analysis and investigate the existing hotspots and frontiers. Methods This study searched records from Web of Science, PubMed, and Scopus from January 1, 1999, to May 27, 2023. By using bibliometric software CiteSpace (6.3.R1) and VOSviewer (1.6.19), co-occurrence analysis was used to count the frequency of co-occurrence of certain elements (e.g., countries, regions, institutions, etc.), cluster analysis was used to classify keywords, and burst analysis was used to identify research trends and hotspots. Results The results showed that the number of annual publications has grown in a fluctuating manner; the USA, China, and the Netherlands have the highest numbers of publications, and the top three institutions are located in the Netherlands, Sweden, and the USA. In addition, Nilsson J published the highest number of papers; Ridker PM and his article "Anti-inflammatory Therapy with Canakinumab for Atherosclerotic Disease" have played prominent roles. The top four Journals with the highest numbers of publications are "Arteriosclerosis Thrombosis and Vascular Biology", "Frontiers in Cardiovascular Medicine", "Circulation" and "Vaccine". In addition, keyword analysis indicates that inflammation, nanoparticles, adverse events associated with immune checkpoint inhibitors, T cells and tumor necrosis factor will be future research hotspots. Discussion This study provides a comprehensive bibliometric analysis of immunotherapy in atherosclerosis, offering insights that advance scientific understanding. It not only assists researchers in grasping the current hotspots in this field but also reveals potential directions for future investigation. Moreover, future studies can optimize immunotherapy strategies based on hotspot predictions to decelerate the progression of atherosclerosis.
Collapse
Affiliation(s)
- Jing-Hui Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang University Queen Mary School, Nanchang, Jiangxi, China
| | - Guan-Rui Pan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang University Queen Mary School, Nanchang, Jiangxi, China
| | - Long Jiang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Hou N, Zhou H, Li J, Xiong X, Deng H, Xiong S. Macrophage polarization and metabolic reprogramming in abdominal aortic aneurysm. Immun Inflamm Dis 2024; 12:e1268. [PMID: 39530309 PMCID: PMC11555488 DOI: 10.1002/iid3.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a macrovascular disease with high morbidity and mortality in the elderly. The limitation of the current management is that most patients can only be followed up until the AAA diameter increases to a threshold, and surgical intervention is recommended. The development of preventive and curative drugs for AAA is urgently needed. Macrophage-mediated immune inflammation is one of the key pathological links in the occurrence and development of AAA. AIMS This review article aims to evaluate the impact of immunometabolism on macrophage biology and its role in AAA. METHODS We analyze publications focusing on the polarization and metabolic reprogramming in macrophages as well as their potential impact on AAA, and summarize the potential interventions that are currently available to regulate these processes. RESULTS The phenotypic and functional changes in macrophages are accompanied by significant alterations in metabolic pathways. The interaction between macrophage polarization and metabolic pathways significantly influences the progression of AAA. CONCLUSION Macrophage polarization is a manifestation of the gross dichotomy of macrophage function into pro-inflammatory killing and tissue repair, that is, classically activated M1 macrophages and alternatively activated M2 macrophages. Macrophage functions are closely linked to metabolic changes, and the emerging field of immunometabolism is providing unique insights into the role of macrophages in AAA. It is essential to further investigate the precise metabolic changes and their functional consequences in AAA-associated macrophages.
Collapse
Affiliation(s)
- Ningxin Hou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongmin Zhou
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jun Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hongping Deng
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Sizheng Xiong
- Department of Vascular SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
7
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
8
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
9
|
Elsaygh J, Zaher A, Parikh MA, Frishman WH, Peterson SJ. Nanotechnology: The Future for Diagnostic and Therapeutic Intervention in Cardiovascular Diseases is Here. Cardiol Rev 2024:00045415-990000000-00281. [PMID: 38814069 DOI: 10.1097/crd.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
With advances in technology and medicine over the last 3 decades, cardiovascular medicine has evolved tremendously. Nanotechnology provides a promising future in personalized precision medicine. In this review, we delve into the current and prospective applications of nanotechnology and nanoparticles in cardiology. Nanotechnology has allowed for point-of-care testing such as high-sensitivity troponins, as well as more precise cardiac imaging. This review is focused on 3 diseases within cardiology: coronary artery disease, heart failure, and valvular heart disease. The use of nanoparticles in coronary stents has shown success in preventing in-stent thrombosis, as well as using nanosized drug delivery medications to prevent neointimal proliferation in a way that spares systemic toxicity. In addition, by using nanoparticles as drug delivery systems, nanotechnology can be utilized in the delivery of goal-directed medical therapy in heart failure patients. It has also been shown to improve cell therapy in this patient population by helping in cell retention of grafts. Finally, the use of nanoparticles in the manufacturing of bioprosthetic valves provides a promising future for the longevity and success of cardiac valve repair and replacement.
Collapse
Affiliation(s)
- Jude Elsaygh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Anas Zaher
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Manish A Parikh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Stephen J Peterson
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
10
|
Tripathi S, Rani K, Raj VS, Ambasta RK. Drug repurposing: A multi targetted approach to treat cardiac disease from existing classical drugs to modern drug discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:151-192. [PMID: 38942536 DOI: 10.1016/bs.pmbts.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) are characterized by abnormalities in the heart, blood vessels, and blood flow. CVDs comprise a diverse set of health issues. There are several types of CVDs like stroke, endothelial dysfunction, thrombosis, atherosclerosis, plaque instability and heart failure. Identification of a new drug for heart disease takes longer duration and its safety efficacy test takes even longer duration of research and approval. This chapter explores drug repurposing, nano-therapy, and plant-based treatments for managing CVDs from existing drugs which saves time and safety issues with testing new drugs. Existing drugs like statins, ACE inhibitor, warfarin, beta blockers, aspirin and metformin have been found to be useful in treating cardiac disease. For better drug delivery, nano therapy is opening new avenues for cardiac research by targeting interleukin (IL), TNF and other proteins by proteome interactome analysis. Nanoparticles enable precise delivery to atherosclerotic plaques, inflammation areas, and damaged cardiac tissues. Advancements in nano therapeutic agents, such as drug-eluting stents and drug-loaded nanoparticles are transforming CVDs management. Plant-based treatments, containing phytochemicals from Botanical sources, have potential cardiovascular benefits. These phytochemicals can mitigate risk factors associated with CVDs. The integration of these strategies opens new avenues for personalized, effective, and minimally invasive cardiovascular care. Altogether, traditional drugs, phytochemicals along with nanoparticles can revolutionize the future cardiac health care by identifying their signaling pathway, mechanism and interactome analysis.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Kusum Rani
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| | - Rashmi K Ambasta
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| |
Collapse
|
11
|
Ullah A, Ullah M, Lim SI. Recent advancements in nanotechnology based drug delivery for the management of cardiovascular disease. Curr Probl Cardiol 2024; 49:102396. [PMID: 38266693 DOI: 10.1016/j.cpcardiol.2024.102396] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Cardiovascular diseases (CVDs) constitute a predominant cause of both global mortality and morbidity. To address the challenges in the early diagnosis and management of CVDs, there is growing interest in the field of nanotechnology and nanomaterials to develop innovative diagnostic and therapeutic approaches. This review focuses on the recent advancements in nanotechnology-based diagnostic techniques, including cardiac immunoassays (CIA), cardiac circulating biomarkers, cardiac exosomal biomarkers, and molecular Imaging (MOI). Moreover, the article delves into the exciting developments in nanoparticles (NPs), biomimetic NPs, nanofibers, nanogels, and nanopatchs for cardiovascular applications. And discuss how these nanoscale technologies can improve the precision, sensitivity, and speed of CVD diagnosis and management. While highlighting their vast potential, we also address the limitations and challenges that must be overcome to harness these innovations successfully. Furthermore, this review focuses on the emerging opportunities for personalized and effective cardiovascular care through the integration of nanotechnology, ultimately aiming to reduce the global burden of CVDs.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Engineering Bldg#1, Rm1108, Busan 48513, Republic of Korea.
| |
Collapse
|
12
|
Gawne PJ, Ferreira M, Papaluca M, Grimm J, Decuzzi P. New Opportunities and Old Challenges in the Clinical translation of Nanotheranostics. NATURE REVIEWS. MATERIALS 2023; 8:783-798. [PMID: 39022623 PMCID: PMC11251001 DOI: 10.1038/s41578-023-00581-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/20/2024]
Abstract
Nanoparticle-based systems imbued with both diagnostic and therapeutic functions, known as nanotheranostics, have enabled remarkable progress in guiding focal therapy, inducing active responses to endogenous and exogenous biophysical stimuli, and stratifying patients for optimal treatment. However, although in recent years more nanotechnological platforms and techniques have been implemented in the clinic, several important challenges remain that are specific to nanotheranostics. In this Review, we first discuss some of the many ways of 'constructing' nanotheranostics, focusing on the different imaging modalities and therapeutic strategies. We then outline nanotheranostics that are currently used in humans at different stages of clinical development, identifying specific advantages and opportunities. Finally, we define critical steps along the winding road of preclinical and clinical development and suggest actions to overcome technical, manufacturing, regulatory and economical challenges for the safe and effective clinical translation of nanotheranostics.
Collapse
Affiliation(s)
- Peter J. Gawne
- UCL Cancer Institute, University College London, London, UK
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary, University of London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Miguel Ferreira
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Marisa Papaluca
- School of Public Health, Imperial College of London, South Kensington CampusLondon, UK
| | - Jan Grimm
- Molecular Pharmacology Program and Department of Radiology, Memorial Sloan-Kettering Cancer, Center, New York, NY, USA
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via, Morego 30, 16163, Genoa, IT
| |
Collapse
|
13
|
Tao Y, Lan X, Zhang Y, Fu C, Liu L, Cao F, Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharm Sin B 2023; 13:4442-4460. [PMID: 37969739 PMCID: PMC10638499 DOI: 10.1016/j.apsb.2022.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) is a leading cause of the life-threatening cardiovascular disease (CVD), creating an urgent need for efficient, biocompatible therapeutics for diagnosis and treatment. Biomimetic nanomedicines (bNMs) are moving closer to fulfilling this need, pushing back the frontier of nano-based drug delivery systems design. This review seeks to outline how these nanomedicines (NMs) might work to diagnose and treat atherosclerosis, to trace the trajectory of their development to date and in the coming years, and to provide a foundation for further discussion about atherosclerotic theranostics.
Collapse
Affiliation(s)
- Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chenxing Fu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lu Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Biomedical Engineering & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
14
|
Giambelluca M, Markova E, Louet C, Steinkjer B, Sundset R, Škalko-Basnet N, Hak S. Liposomes - Human phagocytes interplay in whole blood: effect of liposome design. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102712. [PMID: 37838100 DOI: 10.1016/j.nano.2023.102712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
Nanomedicine holds immense potential for therapeutic manipulation of phagocytic immune cells. However, in vitro studies often fail to accurately translate to the complex in vivo environment. To address this gap, we employed an ex vivo human whole-blood assay to evaluate liposome interactions with immune cells. We systematically varied liposome size, PEG-surface densities and sphingomyelin and ganglioside content. We observed differential uptake patterns of the assessed liposomes by neutrophils and monocytes, emphasizing the importance of liposome design. Interestingly, our results aligned closely with published in vivo observations in mice and patients. Moreover, liposome exposure induced changes in cytokine release and cellular responses, highlighting the potential modulation of immune system. Our study highlights the utility of human whole-blood models in assessing nanoparticle-immune cell interactions and provides insights into liposome design for modulating immune responses.
Collapse
Affiliation(s)
- Miriam Giambelluca
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Elena Markova
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Claire Louet
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørg Steinkjer
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rune Sundset
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway; PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sjoerd Hak
- Department of Biotechnology and Nanomedicine, SINTEF Industry and Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
15
|
Wang R, Zhang X, Feng K, Zeng W, Wu J, Sun D, Lu Z, Feng H, Di L. Nanotechnologies meeting natural sources: Engineered lipoproteins for precise brain disease theranostics. Asian J Pharm Sci 2023; 18:100857. [PMID: 37953874 PMCID: PMC10637878 DOI: 10.1016/j.ajps.2023.100857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 11/14/2023] Open
Abstract
Biological nanotechnologies have provided considerable opportunities in the management of malignancies with delicate design and negligible toxicity, from preventive and diagnostic to therapeutic fields. Lipoproteins, because of their inherent blood-brain barrier permeability and lesion-homing capability, have been identified as promising strategies for high-performance theranostics of brain diseases. However, the application of natural lipoproteins remains limited owing to insufficient accumulation and complex purification processes, which can be critical for individual therapeutics and clinical translation. To address these issues, lipoprotein-inspired nano drug-delivery systems (nano-DDSs), which have been learned from nature, have been fabricated to achieve synergistic drug delivery involving site-specific accumulation and tractable preparation with versatile physicochemical functions. In this review, the barriers in brain disease treatment, advantages of state-of-the-art lipoprotein-inspired nano-DDSs, and bio-interactions of such nano-DDSs are highlighted. Furthermore, the characteristics and advanced applications of natural lipoproteins and tailor-made lipoprotein-inspired nano-DDSs are summarized. Specifically, the key designs and current applications of lipoprotein-inspired nano-DDSs in the field of brain disease therapy are intensively discussed. Finally, the current challenges and future perspectives in the field of lipoprotein-inspired nano-DDSs combined with other vehicles, such as exosomes, cell membranes, and bacteria, are discussed.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Xinru Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Kuanhan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Wei Zeng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jie Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Danni Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Ziyi Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Hao Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| |
Collapse
|
16
|
Pérez-Velasco DL, Morales-Avila E, Ocampo-García B, Torres-García E, Izquierdo G, Jiménez-Mancilla N, Oros-Pantoja R, Díaz-Sánchez LE, Aranda-Lara L, Isaac-Olivé K. Biokinetics, radiopharmacokinetics and estimation of the absorbed dose in healthy organs due to Technetium-99m transported in the core and on the surface of reconstituted high-density lipoprotein nanoparticles. Nucl Med Biol 2023; 122-123:108363. [PMID: 37419070 DOI: 10.1016/j.nucmedbio.2023.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
The development of rHDL-radionuclide theragnostic systems requires evaluation of the absorbed doses that would be produced in healthy tissues and organs at risk. Technetium-99m is the most widely used radionuclide for diagnostic imaging, therefore, the design of theragnostic reconstituted high density-lipoprotein (rHDL) nanosystems labeled with Technetium-99m offers multiple possibilities. OBJECTIVE To determine the biokinetics, radiopharmacokinetics and estimate the absorbed doses induced in healthy organs by Technetium-99m transported in the core and on the surface of rHDL. METHODS Biokinetic and radiopharmacokinetic models of rHDL/[99mTc]Tc-HYNIC-DA (Technetium-99m in the core) and [99mTc]Tc-HYNIC-rHDL (Technetium-99m on the surface) were calculated from their ex vivo biodistribution in healthy mice. Absorbed doses were estimated by the MIRD formalism using OLINDA/EXM and LMFIT softwares. RESULTS rHDL/[99mTc]Tc-HYNIC-DA and [99mTc]Tc-HYNIC-rHDL show instantaneous absorption in kidney, lung, heart and pancreas, with slower absorption in spleen. rHDL/[99mTc]Tc-HYNIC-DA is absorbed more slowly in the intestine, while [99mTc]Tc-HYNIC-rHDL is absorbed more slowly in the liver. The main target organ for rHDL/[99mTc]Tc-HYNIC-DA, which is hydrophobic in nature, is the liver, whereas the kidney is for the more hydrophilic [99mTc]Tc-HYNIC-rHDL. Assuming that 925 MBq (25 mCi) of Technetium-99m, carried in the core or on the surface of rHDL, are administered, the maximum tolerated doses for the organs of greatest accumulation are not exceeded. CONCLUSION Theragnostic systems based on 99mTc-labeled rHDL are safe from the dosimetric point of view. The dose estimates obtained can be used to adjust the 99mTc-activity to be administered in future clinical trials.
Collapse
Affiliation(s)
- Diana L Pérez-Velasco
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Enrique Morales-Avila
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Mexico
| | - Germán Izquierdo
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca 50200, Estado de México, Mexico
| | - Nallely Jiménez-Mancilla
- Laboratorio Nacional de Investigación y Desarrollo de Radiofármacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico
| | - Rigoberto Oros-Pantoja
- Laboratorio de investigación en fisiología y endocrinología, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico
| | - Luis E Díaz-Sánchez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca 50200, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico.
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico.
| |
Collapse
|
17
|
Zhang F, Xu Z, Jolly KJ. Myeloid cell-mediated drug delivery: from nanomedicine to cell therapy. Adv Drug Deliv Rev 2023; 197:114827. [PMID: 37068659 DOI: 10.1016/j.addr.2023.114827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
In the presence of tissue inflammation, injury, or cancer, myeloid cells are recruited to disease regions through a multi-step process involving myelopoiesis, chemotaxis, cell migration, and diapedesis. As an emerging drug delivery approach, cell-mediated drug delivery takes advantage of the cell recruitment process to enhance the active transport of therapeutic cargo to disease regions. In the past few decades, a variety of nano-engineering methods have emerged to enhance interactions of nanoparticles with cells of interest, which can be adapted for cell-mediated drug delivery. Moreover, the drug delivery field can benefit from the recent clinical success of cell-based therapies, which created cell-engineering methods to engineer circulating leukocytes as 'living drug delivery vehicles' to target diseased tissues. In this review, we first provide an overview of myeloid cell recruitment and discuss how various factors within this process may affect cell-mediated delivery. In the second part of this review article, we summarize the status quo of nano-engineering and cell-engineering approaches and discuss how these engineering approaches can be adapted for cell-mediated delivery. Finally, we discuss future directions of this field, pointing out key challenges in the clinical translation of cell-mediated drug delivery.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, USA; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Zijing Xu
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Yin D, Li M, Xiang P. Mapping research performance and hotspots on nanoparticles in cardiovascular diseases. Medicine (Baltimore) 2023; 102:e33520. [PMID: 37058013 PMCID: PMC10101270 DOI: 10.1097/md.0000000000033520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
Nanoparticles have broad prospects and profound academic significance in cardiovascular diseases. This study aimed to comprehensively summarize the global scientific achievements of nanoparticles in cardiovascular diseases research. Articles on the application of nanoparticles in cardiovascular diseases published from 2002 to 2021 were retrieved from the science citation index expanded of the Web of Science Core Collection, and knowledge maps were generated by Cite Space, VOS viewer, and Hist Cite for further bibliometric analysis. A total of 4321 records were retrieved, and only reviews and articles were retained with a total of 4258 studies. The number of publications on nanoparticles in the cardiovascular field has steadily increased from 2002 to 2021. China and the US contribute the most to this field, producing nearly all the most influential authors and institutions in the top 10 list. The Chinese Academy of Medical Sciences and Harvard University have obtained many high-quality research results. Targeted drug delivery via nanoparticles, myocardial infarction and atherosclerosis are research hotspots. This is the first time to analyze the application of nanoparticles in the cardiovascular field by using multiple bibliometric software. This study provides evidence for researchers to understand the hotspots and directions in this area.
Collapse
Affiliation(s)
- Dan Yin
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mi Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ping Xiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
19
|
Smith BR, Edelman ER. Nanomedicines for cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:351-367. [PMID: 39195953 DOI: 10.1038/s44161-023-00232-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/25/2023] [Indexed: 08/29/2024]
Abstract
The leading cause of death in the world, cardiovascular disease (CVD), remains a formidable condition for researchers, clinicians and patients alike. CVD comprises a broad collection of diseases spanning the heart, the vasculature and the blood that runs through and interconnects them. Limitations in CVD therapeutic and diagnostic landscapes have generated excitement for advances in nanomedicine, a field focused on improving patient outcomes through transformative therapies, imaging agents and ex vivo diagnostics. CVD nanomedicines are fundamentally shaped by their intended clinical application, including (1) cardiac or heart-related biomaterials, which can be functionally (for example, mechanically, immunologically, electrically) improved by incorporating nanomaterials; (2) the vasculature, involving systemically injected nanotherapeutics and imaging nanodiagnostics, nano-enabled biomaterials or tissue-nanoengineered solutions; and (3) improving the sensitivity and/or specificity of ex vivo diagnostic devices for patient samples. While immunotherapy has developed into a key pillar of oncology in the past dozen years, CVD immunotherapy and immunoimaging are recently emergent and likely to factor substantially in CVD management in the coming decade. The nanomaterials in CVD-related clinical trials and many promising preclinical strategies indicate that nanomedicine is on the cusp of greatly impacting patients with CVD. Here we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD nanomedicine.
Collapse
Affiliation(s)
- Bryan Ronain Smith
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnol 2023; 14:15. [PMID: 36865684 PMCID: PMC9968708 DOI: 10.1186/s12645-023-00165-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
In the last three decades, radiopharmaceuticals have proven their effectiveness for cancer diagnosis and therapy. In parallel, the advances in nanotechnology have fueled a plethora of applications in biology and medicine. A convergence of these disciplines has emerged more recently with the advent of nanotechnology-aided radiopharmaceuticals. Capitalizing on the unique physical and functional properties of nanoparticles, radiolabeled nanomaterials or nano-radiopharmaceuticals have the potential to enhance imaging and therapy of human diseases. This article provides an overview of various radionuclides used in diagnostic, therapeutic, and theranostic applications, radionuclide production through different techniques, conventional radionuclide delivery systems, and advancements in the delivery systems for nanomaterials. The review also provides insights into fundamental concepts necessary to improve currently available radionuclide agents and formulate new nano-radiopharmaceuticals.
Collapse
Affiliation(s)
- Muskan Goel
- Amity School of Applied Sciences, Amity University, Gurugram, Haryana 122413 India
| | - Yuri Mackeyev
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
| |
Collapse
|
21
|
Yang TM, Miao M, Yu WQ, Wang X, Xia FJ, Li YJ, Guo SD. Targeting macrophages in atherosclerosis using nanocarriers loaded with liver X receptor agonists: A narrow review. Front Mol Biosci 2023; 10:1147699. [PMID: 36936982 PMCID: PMC10018149 DOI: 10.3389/fmolb.2023.1147699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Macrophages are involved in the whole process of atherosclerosis, which is characterized by accumulation of lipid and inflammation. Presently, clinically used lipid-lowering drugs cannot completely retard the progress of atherosclerosis. Liver X receptor (LXR) plays a key role in regulation of lipid metabolism and inflammation. Accumulating evidence have demonstrated that synthetic LXR agonists can significantly retard the development of atherosclerosis. However, these agonists induce sever hypertriglyceridemia and liver steatosis. These side effects have greatly limited their potential application for therapy of atherosclerosis. The rapid development of drug delivery system makes it possible to delivery interested drugs to special organs or cells using nanocarriers. Macrophages express various receptors which can recognize and ingest specially modified nanocarriers loaded with LXR agonists. In the past decades, a great progress has been made in this field. These macrophage-targeted nanocarriers loaded with LXR agonists are found to decrease atherosclerosis by reducing cholesterol accumulation and inflammatory reactions. Of important, these nanocarriers can alleviate side effects of LXR agonists. In this article, we briefly review the roles of macrophages in atherosclerosis, mechanisms of action of LXR agonists, and focus on the advances of macrophage-targeted nanocarriers loaded with LXR agonists. This work may promote the potential clinical application of these nanocarriers.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan-Jie Li
- *Correspondence: Yan-Jie Li, ; Shou-Dong Guo,
| | | |
Collapse
|
22
|
Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater 2022; 10:rbac103. [PMID: 36683743 PMCID: PMC9845526 DOI: 10.1093/rb/rbac103] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and a leading cause of death worldwide. Macrophages play an important role in inflammatory responses, cell-cell communications, plaque growth and plaque rupture in atherosclerotic lesions. Here, we review the sources, functions and complex phenotypes of macrophages in the progression of atherosclerosis, and discuss the recent approaches in modulating macrophage phenotype and autophagy for atherosclerosis treatment. We then focus on the drug delivery strategies that target macrophages or use macrophage membrane-coated particles to deliver therapeutics to the lesion sites. These biomaterial-based approaches that target, modulate or engineer macrophages have broad applications for disease therapies and tissue regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Crystal Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chunli Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
23
|
Bentivoglio V, Varani M, Lauri C, Ranieri D, Signore A. Methods for Radiolabelling Nanoparticles: PET Use (Part 2). Biomolecules 2022; 12:1517. [PMID: 36291726 PMCID: PMC9599877 DOI: 10.3390/biom12101517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/27/2023] Open
Abstract
The use of radiolabelled nanoparticles (NPs) is a promising nuclear medicine tool for diagnostic and therapeutic purposes. Thanks to the heterogeneity of their material (organic or inorganic) and their unique physical and chemical characteristics, they are highly versatile for their use in several medical applications. In particular, they have shown interesting results as radiolabelled probes for positron emission tomography (PET) imaging. The high variability of NP types and the possibility to use several isotopes in the radiolabelling process implies different radiolabelling methods that have been applied over the previous years. In this review, we compare and summarize the different methods for NP radiolabelling with the most frequently used PET isotopes.
Collapse
Affiliation(s)
- Valeria Bentivoglio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| |
Collapse
|
24
|
Li X, Wu M, Li J, Guo Q, Zhao Y, Zhang X. Advanced targeted nanomedicines for vulnerable atherosclerosis plaque imaging and their potential clinical implications. Front Pharmacol 2022; 13:906512. [PMID: 36313319 PMCID: PMC9606597 DOI: 10.3389/fphar.2022.906512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis plaques caused by cerebrovascular and coronary artery disease have been the leading cause of death and morbidity worldwide. Precise assessment of the degree of atherosclerotic plaque is critical for predicting the risk of atherosclerosis plaques and monitoring postinterventional outcomes. However, traditional imaging techniques to predict cardiocerebrovascular events mainly depend on quantifying the percentage reduction in luminal diameter, which would immensely underestimate non-stenotic high-risk plaque. Identifying the degree of atherosclerosis plaques still remains highly limited. vNanomedicine-based imaging techniques present unique advantages over conventional techniques due to the superior properties intrinsic to nanoscope, which possess enormous potential for characterization and detection of the features of atherosclerosis plaque vulnerability. Here, we review recent advancements in the development of targeted nanomedicine-based approaches and their applications to atherosclerosis plaque imaging and risk stratification. Finally, the challenges and opportunities regarding the future development and clinical translation of the targeted nanomedicine in related fields are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuening Zhang
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin, China
| |
Collapse
|
25
|
Scavenger receptor-targeted plaque delivery of microRNA-coated nanoparticles for alleviating atherosclerosis. Proc Natl Acad Sci U S A 2022; 119:e2201443119. [PMID: 36122215 PMCID: PMC9522431 DOI: 10.1073/pnas.2201443119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis treatments by gene regulation are garnering attention, yet delivery of gene cargoes to atherosclerotic plaques remains inefficient. Here, we demonstrate that assembly of therapeutic oligonucleotides into a three-dimensional spherical nucleic acid nanostructure improves their systemic delivery to the plaque and the treatment of atherosclerosis. This noncationic nanoparticle contains a shell of microRNA-146a oligonucleotides, which regulate the NF-κB pathway, for achieving transfection-free cellular entry. Upon an intravenous injection into apolipoprotein E knockout mice fed with a high-cholesterol diet, this nanoparticle naturally targets class A scavenger receptor on plaque macrophages and endothelial cells, contributing to elevated delivery to the plaques (∼1.2% of the injected dose). Repeated injections of the nanoparticle modulate genes related to immune response and vascular inflammation, leading to reduced and stabilized plaques but without inducing severe toxicity. Our nanoparticle offers a safe and effective treatment of atherosclerosis and reveals the promise of nucleic acid nanotechnology for cardiovascular disease.
Collapse
|
26
|
Synthesis and Characterization of Fucoidan-Chitosan Nanoparticles Targeting P-Selectin for Effective Atherosclerosis Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8006642. [PMID: 36120595 PMCID: PMC9481351 DOI: 10.1155/2022/8006642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is the key pathogenesis of cardiovascular diseases; oxidative stress, which is induced by the generated excess reactive oxygen species (ROS), has been a crucial mechanism underlying this pathology. Nanoparticles (NPs) represent a novel strategy for the development of potential therapies against atherosclerosis, and multifunctional NPs possessing antioxidative capacities hold promise for amelioration of vascular injury caused by ROS and for evading off-target effects; materials that are currently used for NP synthesis often serve as vehicles that do not possess intrinsic biological activities; however, they may affect the surrounding healthy environment due to decomposition of products. Herein, we used nontoxic fucoidan, a sulfated polysaccharide derived from a marine organism, to develop chitosan–fucoidan nanoparticles (CFNs). Then, by binding to P-selectin, an inflammatory adhesion exhibited molecule expression on the endothelial cells and activated platelets, blocking leukocyte recruitment and rolling on platelets and endothelium. CFNs exhibit antioxidant and anti-inflammatory properties. Nevertheless, by now, the application of CFNs for the target delivery regarding therapeutics specific to atherosclerotic plaques is not well investigated. The produced CFNs were physicochemically characterized using transmission electron microscopy (TEM), together with Fourier transform infrared spectroscopy (FTIR). Evaluations of the in vitro antioxidant as well as anti-inflammatory activities exhibited by CFNs were based on the measurement of their ROS scavenging abilities and investigating inflammatory mediator levels. The in vivo pharmacokinetics and binding efficiency of the CFNs to atherosclerotic plaques were also evaluated. The therapeutic effects indicated that CFNs effectively suppressed local oxidative stress and inflammation by targeting P-selectin in atheromatous plaques and thereby preventing the progression of atherosclerosis.
Collapse
|
27
|
Zhang S, Liu Y, Cao Y, Zhang S, Sun J, Wang Y, Song S, Zhang H. Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110660. [PMID: 35238081 DOI: 10.1002/adma.202110660] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Atherosclerosis is considered one of the primary causes of cardiovascular diseases (CVDs). Unpredictable rupture of the vulnerable atherosclerotic plaques triggers adverse cardiovascular events such as acute myocardial syndrome and even sudden cardiac death. Therefore, assessing the vulnerability of atherosclerotic plaques and early intervention are of significance in reducing CVD mortality. Nanomedicine possesses tremendous advantages in achieving the integration of the diagnosis and therapy of atherosclerotic plaques because of its magnetic, optical, thermal, and catalytic properties. Based on the pathological characteristics of vulnerable plaques, stimuli-responsive nanoplatforms and surface-functionalized nanoagents are designed and have drawn great attention for accomplishing the precise imaging and treatment of vulnerable atherosclerotic plaques due to their superior properties, such as high bioavailability, lesion-targeting specificity, on-demand cargo release, and low off-target damage. Here, the characteristics of vulnerable plaques are generalized, and some targeted strategies for boosting the accuracy of plaque vulnerability evaluation by imaging and the efficacy of plaque stabilization therapy (including antioxidant therapy, macrophage depletion therapy, regulation of lipid metabolism therapy, anti-inflammation therapy, etc.) are systematically summarized. In addition, existing challenges and prospects in this field are discussed, and it is believed to provide new thinking for the diagnosis and treatment of CVDs in the near future.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Ximin Street, Changchun, Jilin, 130021, China
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
28
|
Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol 2022; 19:228-249. [PMID: 34759324 PMCID: PMC8580169 DOI: 10.1038/s41569-021-00629-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology could improve our understanding of the pathophysiology of atherosclerosis and contribute to the development of novel diagnostic and therapeutic strategies to further reduce the risk of cardiovascular disease. Macrophages have key roles in atherosclerosis progression and, therefore, macrophage-associated pathological processes are important targets for both diagnostic imaging and novel therapies for atherosclerosis. In this Review, we highlight efforts in the past two decades to develop imaging techniques and to therapeutically manipulate macrophages in atherosclerotic plaques with the use of rationally designed nanoparticles. We review the latest progress in nanoparticle-based imaging modalities that can specifically target macrophages. Using novel molecular imaging technology, these modalities enable the identification of advanced atherosclerotic plaques and the assessment of the therapeutic efficacy of medical interventions. Additionally, we provide novel perspectives on how macrophage-targeting nanoparticles can deliver a broad range of therapeutic payloads to atherosclerotic lesions. These nanoparticles can suppress pro-atherogenic macrophage processes, leading to improved resolution of inflammation and stabilization of plaques. Finally, we propose future opportunities for novel diagnostic and therapeutic strategies and provide solutions to challenges in this area for the purpose of accelerating the clinical translation of nanomedicine for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Wei Chen
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innovation (N Y) 2022; 3:100214. [PMID: 35243468 PMCID: PMC8866095 DOI: 10.1016/j.xinn.2022.100214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases have become the major killers in today's world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zheyan Fang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Steffens S, Nahrendorf M, Madonna R. Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. Eur Heart J 2021; 43:1533-1541. [PMID: 34897403 DOI: 10.1093/eurheartj/ehab842] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing use of single-cell immune profiling and advanced microscopic imaging technologies has deepened our understanding of the cardiac immune system, confirming that the heart contains a broad repertoire of innate and adaptive immune cells. Leucocytes found in the healthy heart participate in essential functions to preserve cardiac homeostasis, not only by defending against pathogens but also by maintaining normal organ function. In pathophysiological conditions, cardiac inflammation is implicated in healing responses after ischaemic or non-ischaemic cardiac injury. The aim of this review is to provide a concise overview of novel methodological advancements to the non-expert readership and summarize novel findings on immune cell heterogeneity and functions in cardiac disease with a focus on myocardial infarction as a prototypic example. In addition, we will briefly discuss how biological sex modulate the cardiac immune response. Finally, we will highlight emerging concepts for novel therapeutic applications, such as targeting immunometabolism and nanomedicine.
Collapse
Affiliation(s)
- Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 9, Munich 80336, Germany.,Munich Heart Alliance, DZHK Partner Site, Munich, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, 8.228 Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rosalinda Madonna
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Pathology, Cardiology Division, University of Pisa, c/o Ospedale di Cisanello Via Paradisa, 2, 56124 Pisa, Italy
| |
Collapse
|
31
|
Miller HA, Schake MA, Bony BA, Curtis ET, Gee CC, McCue IS, Ripperda TJ, Chatzizisis YS, Kievit FM, Pedrigi RM. Smooth muscle cells affect differential nanoparticle accumulation in disturbed blood flow-induced murine atherosclerosis. PLoS One 2021; 16:e0260606. [PMID: 34882722 PMCID: PMC8659666 DOI: 10.1371/journal.pone.0260606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that leads to the formation of plaques in the inner lining of arteries. Plaques form over a range of phenotypes, the most severe of which is vulnerable to rupture and causes most of the clinically significant events. In this study, we evaluated the efficacy of nanoparticles (NPs) to differentiate between two plaque phenotypes based on accumulation kinetics in a mouse model of atherosclerosis. This model uses a perivascular cuff to induce two regions of disturbed wall shear stress (WSS) on the inner lining of the instrumented artery, low (upstream) and multidirectional (downstream), which, in turn, cause the development of an unstable and stable plaque phenotype, respectively. To evaluate the influence of each WSS condition, in addition to the final plaque phenotype, in determining NP uptake, mice were injected with NPs at intermediate and fully developed stages of plaque growth. The kinetics of artery wall uptake were assessed in vivo using dynamic contrast-enhanced magnetic resonance imaging. At the intermediate stage, there was no difference in NP uptake between the two WSS conditions, although both were different from the control arteries. At the fully-developed stage, however, NP uptake was reduced in plaques induced by low WSS, but not multidirectional WSS. Histological evaluation of plaques induced by low WSS revealed a significant inverse correlation between the presence of smooth muscle cells and NP accumulation, particularly at the plaque-lumen interface, which did not exist with other constituents (lipid and collagen) and was not present in plaques induced by multidirectional WSS. These findings demonstrate that NP accumulation can be used to differentiate between unstable and stable murine atherosclerosis, but accumulation kinetics are not directly influenced by the WSS condition. This tool could be used as a diagnostic to evaluate the efficacy of experimental therapeutics for atherosclerosis.
Collapse
Affiliation(s)
- Hunter A. Miller
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Morgan A. Schake
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Badrul Alam Bony
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Evan T. Curtis
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Connor C. Gee
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Ian S. McCue
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Thomas J. Ripperda
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
| | - Yiannis S. Chatzizisis
- Cardiovascular Division, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Forrest M. Kievit
- Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
- * E-mail: (RMP); (FMK)
| | - Ryan M. Pedrigi
- Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
- * E-mail: (RMP); (FMK)
| |
Collapse
|
32
|
Hossaini Nasr S, Huang X. Nanotechnology for Targeted Therapy of Atherosclerosis. Front Pharmacol 2021; 12:755569. [PMID: 34867370 PMCID: PMC8633109 DOI: 10.3389/fphar.2021.755569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is the major cause of heart attack and stroke that are the leading causes of death in the world. Nanomedicine is a powerful tool that can be engineered to target atherosclerotic plaques for therapeutic and diagnosis purposes. In this review, advances in designing nanoparticles with therapeutic effects on atherosclerotic plaques known as atheroprotective nanomedicine have been summarized to stimulate further development and future translation.
Collapse
Affiliation(s)
- Seyedmehdi Hossaini Nasr
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
33
|
Teunissen AJP, Burnett ME, Prévot G, Klein ED, Bivona D, Mulder WJM. Embracing nanomaterials' interactions with the innate immune system. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1719. [PMID: 33847441 PMCID: PMC8511354 DOI: 10.1002/wnan.1719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy has firmly established itself as a compelling avenue for treating disease. Although many clinically approved immunotherapeutics engage the adaptive immune system, therapeutically targeting the innate immune system remains much less explored. Nanomedicine offers a compelling opportunity for innate immune system engagement, as many nanomaterials inherently interact with myeloid cells (e.g., monocytes, macrophages, neutrophils, and dendritic cells) or can be functionalized to target their cell-surface receptors. Here, we provide a perspective on exploiting nanomaterials for innate immune system regulation. We focus on specific nanomaterial design parameters, including size, form, rigidity, charge, and surface decoration. Furthermore, we examine the potential of high-throughput screening and machine learning, while also providing recommendations for advancing the field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marianne E. Burnett
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geoffrey Prévot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma D. Klein
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Bivona
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Willem J. M. Mulder
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
34
|
Krekorian M, Sandker GGW, Cortenbach KRG, Tagit O, van Riessen NK, Raavé R, Srinivas M, Figdor CG, Heskamp S, Aarntzen EHJG. Characterization of Intrinsically Radiolabeled Poly(lactic- co-glycolic acid) Nanoparticles for ex Vivo Autologous Cell Labeling and in Vivo Tracking. Bioconjug Chem 2021; 32:1802-1811. [PMID: 34161070 PMCID: PMC8377710 DOI: 10.1021/acs.bioconjchem.1c00271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2021] [Indexed: 02/04/2023]
Abstract
With the advent of novel immunotherapies, interest in ex vivo autologous cell labeling for in vivo cell tracking has revived. However, current clinically available labeling strategies have several drawbacks, such as release of radiolabel over time and cytotoxicity. Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are clinically used biodegradable carriers of contrast agents, with high loading capacity for multimodal imaging agents. Here we show the development of PLGA-based NPs for ex vivo cell labeling and in vivo cell tracking with SPECT. We used primary amine-modified PLGA polymers (PLGA-NH2) to construct NPs similar to unmodified PLGA NPs. PLGA-NH2 NPs were efficiently radiolabeled without chelator and retained the radionuclide for 2 weeks. Monocyte-derived dendritic cells labeled with [111In]In-PLGA-NH2 showed higher specific activity than those labeled with [111In]In-oxine, with no negative effect on cell viability. SPECT/CT imaging showed that radiolabeled THP-1 cells accumulated at the Staphylococcus aureus infection site in mice. In conclusion, PLGA-NH2 NPs are able to retain 111In, independent of chelator presence. Furthermore, [111In]In-PLGA-NH2 allows cell labeling with high specific activity and no loss of activity over prolonged time intervals. Finally, in vivo tracking of ex vivo labeled THP-1 cells was demonstrated in an infection model using SPECT/CT imaging.
Collapse
Affiliation(s)
- Massis Krekorian
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Department
of Medical Imaging, Radboud Institute for
Molecular Life Sciences, Radboud university Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gerwin G. W. Sandker
- Department
of Medical Imaging, Radboud Institute for
Molecular Life Sciences, Radboud university Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Kimberley R. G. Cortenbach
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Oya Tagit
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - N. Koen van Riessen
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Cenya
Imaging BV, Tweede Kostverlorenkade
11H, 1052 RK Amsterdam, The Netherlands
| | - René Raavé
- Department
of Medical Imaging, Radboud Institute for
Molecular Life Sciences, Radboud university Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Mangala Srinivas
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Cenya
Imaging BV, Tweede Kostverlorenkade
11H, 1052 RK Amsterdam, The Netherlands
| | - Carl G. Figdor
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department
of Medical Imaging, Radboud Institute for
Molecular Life Sciences, Radboud university Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Erik H. J. G. Aarntzen
- Department
of Medical Imaging, Radboud Institute for
Molecular Life Sciences, Radboud university Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
35
|
Bernal A, Calcagno C, Mulder WJM, Pérez-Medina C. Imaging-guided nanomedicine development. Curr Opin Chem Biol 2021; 63:78-85. [PMID: 33735814 PMCID: PMC8384634 DOI: 10.1016/j.cbpa.2021.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Nanomedicine research is an active field that produces thousands of studies every year. However, translation of nanotherapeutics to the clinic has yet to catch up with such a vast output. In recent years, the need to better understand nanomedicines' in vivo behavior has been identified as one of the major challenges for efficient clinical translation. In this context, noninvasive imaging offers attractive solutions to provide valuable information about nanomedicine biodistribution, pharmacokinetics, stability, or therapeutic efficacy. Here, we review the latest imaging approaches used in the development of therapeutic nanomedicines, discuss why these strategies bring added value along the translational pipeline, and give a perspective on future advances in the field.
Collapse
Affiliation(s)
- Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Chemical Biology, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Carlos Pérez-Medina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
36
|
Zhuo C, Zhang J, Lee JH, Jiao J, Cheng D, Liu L, Kim HW, Tao Y, Li M. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct Target Ther 2021; 6:238. [PMID: 34148061 PMCID: PMC8214627 DOI: 10.1038/s41392-021-00645-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/09/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) gene editing technology, as a revolutionary breakthrough in genetic engineering, offers a promising platform to improve the treatment of various genetic and infectious diseases because of its simple design and powerful ability to edit different loci simultaneously. However, failure to conduct precise gene editing in specific tissues or cells within a certain time may result in undesirable consequences, such as serious off-target effects, representing a critical challenge for the clinical translation of the technology. Recently, some emerging strategies using genetic regulation, chemical and physical strategies to regulate the activity of CRISPR/Cas9 have shown promising results in the improvement of spatiotemporal controllability. Herein, in this review, we first summarize the latest progress of these advanced strategies involving cell-specific promoters, small-molecule activation and inhibition, bioresponsive delivery carriers, and optical/thermal/ultrasonic/magnetic activation. Next, we highlight the advantages and disadvantages of various strategies and discuss their obstacles and limitations in clinical translation. Finally, we propose viewpoints on directions that can be explored to further improve the spatiotemporal operability of CRISPR/Cas9.
Collapse
Grants
- the Guangdong Province Science and Technology Innovation Special Fund (International Scientific Cooperation, 2018A050506035), the National Natural Science Foundation of China (51903256).
- the National Key Research and Development Program of China (2016YFE0117100), the National Natural Science Foundation of China (21875289 and U1501243), the Guangdong-Hong Kong Joint Innovation Project (2016A050503026), the Major Project on the Integration of Industry, Education and Research of Guangzhou City (201704030123), the Science and Technology Program of Guangzhou (201704020016), the Guangdong Innovative and Entrepreneurial Research Team Program (2013S086)
- National Research Foundation, Republic of Korea (2015K1A1A2032163, 2018K1A4A3A01064257, 2018R1A2B3003446)
- the National Key Research and Development Program of China (2019YFA0111300, 2016YFE0117100), the National Natural Science Foundation of China (21907113), the Guangdong Provincial Pearl River Talents Program (2019QN01Y131), the Thousand Talents Plan.
Collapse
Affiliation(s)
- Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Ju Jiao
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Li Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.
| |
Collapse
|
37
|
Schrijver DP, Dreu A, Hofstraat SRJ, Kluza E, Zwolsman R, Deckers J, Anbergen T, Bruin K, Trines MM, Nugraha EG, Ummels F, Röring RJ, Beldman TJ, Teunissen AJP, Fayad ZA, Meel R, Mulder WJM. Nanoengineering Apolipoprotein A1‐Based Immunotherapeutics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David P. Schrijver
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Anne Dreu
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Stijn R. J. Hofstraat
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Robby Zwolsman
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Jeroen Deckers
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Tom Anbergen
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Koen Bruin
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Mirre M. Trines
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Eveline G. Nugraha
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Floor Ummels
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Rutger J. Röring
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| | - Thijs J. Beldman
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| | - Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York NY 10029‐6574 USA
| | - Zahi A. Fayad
- Biomedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York NY 10029‐6574 USA
| | - Roy Meel
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Willem J. M. Mulder
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| |
Collapse
|
38
|
Teunissen AJ, van Leent MM, Prevot G, Brechbühl EE, Pérez-Medina C, Duivenvoorden R, Fayad ZA, Mulder WJ. Targeting Trained Innate Immunity With Nanobiologics to Treat Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2021; 41:1839-1850. [PMID: 33882685 PMCID: PMC8159873 DOI: 10.1161/atvbaha.120.315448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Abraham J.P. Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Mandy M.T. van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Geoffrey Prevot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Eliane E.S. Brechbühl
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Institute of Materials, School of Engineering (STI), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carlos Pérez-Medina
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Raphaël Duivenvoorden
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Zahi A. Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Willem J.M. Mulder
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
39
|
B Uribe K, Benito-Vicente A, Martin C, Blanco-Vaca F, Rotllan N. (r)HDL in theranostics: how do we apply HDL's biology for precision medicine in atherosclerosis management? Biomater Sci 2021; 9:3185-3208. [PMID: 33949389 DOI: 10.1039/d0bm01838d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-density lipoproteins (HDL) are key players in cholesterol metabolism homeostasis since they are responsible for transporting excess cholesterol from peripheral tissues to the liver. Imbalance in this process, due to either excessive accumulation or impaired clearance, results in net cholesterol accumulation and increases the risk of cardiovascular disease (CVD). Therefore, significant effort has been focused on the development of therapeutic tools capable of either directly or indirectly enhancing HDL-guided reverse cholesterol transport (RCT). More recently, in light of the emergence of precision nanomedicine, there has been renewed research interest in attempting to take advantage of the development of advanced recombinant HDL (rHDL) for both therapeutic and diagnostic purposes. In this review, we provide an update on the different approaches that have been developed using rHDL, focusing on the rHDL production methodology and rHDL applications in theranostics. We also compile a series of examples highlighting potential future perspectives in the field.
Collapse
Affiliation(s)
- Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
| | - Asier Benito-Vicente
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Francisco Blanco-Vaca
- Servei de Bioquímica, Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain. and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain and Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Spain and Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
| | - Noemi Rotllan
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain and Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
| |
Collapse
|
40
|
van Leent MMT, Meerwaldt AE, Berchouchi A, Toner YC, Burnett ME, Klein ED, Verschuur AVD, Nauta SA, Munitz J, Prévot G, van Leeuwen EM, Ordikhani F, Mourits VP, Calcagno C, Robson PM, Soultanidis G, Reiner T, Joosten RRM, Friedrich H, Madsen JC, Kluza E, van der Meel R, Joosten LAB, Netea MG, Ochando J, Fayad ZA, Pérez-Medina C, Mulder WJM, Teunissen AJP. A modular approach toward producing nanotherapeutics targeting the innate immune system. SCIENCE ADVANCES 2021; 7:eabe7853. [PMID: 33674313 PMCID: PMC7935355 DOI: 10.1126/sciadv.abe7853] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/21/2021] [Indexed: 05/07/2023]
Abstract
Immunotherapies controlling the adaptive immune system are firmly established, but regulating the innate immune system remains much less explored. The intrinsic interactions between nanoparticles and phagocytic myeloid cells make these materials especially suited for engaging the innate immune system. However, developing nanotherapeutics is an elaborate process. Here, we demonstrate a modular approach that facilitates efficiently incorporating a broad variety of drugs in a nanobiologic platform. Using a microfluidic formulation strategy, we produced apolipoprotein A1-based nanobiologics with favorable innate immune system-engaging properties as evaluated by in vivo screening. Subsequently, rapamycin and three small-molecule inhibitors were derivatized with lipophilic promoieties, ensuring their seamless incorporation and efficient retention in nanobiologics. A short regimen of intravenously administered rapamycin-loaded nanobiologics (mTORi-NBs) significantly prolonged allograft survival in a heart transplantation mouse model. Last, we studied mTORi-NB biodistribution in nonhuman primates by PET/MR imaging and evaluated its safety, paving the way for clinical translation.
Collapse
Affiliation(s)
- Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Anu E Meerwaldt
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht/Utrecht University, Utrecht, Netherlands
| | - Alexandre Berchouchi
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yohana C Toner
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marianne E Burnett
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma D Klein
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Vera D Verschuur
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheqouia A Nauta
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jazz Munitz
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geoffrey Prévot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther M van Leeuwen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farideh Ordikhani
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vera P Mourits
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Claudia Calcagno
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip M Robson
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Soultanidis
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rick R M Joosten
- Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
| | - Heiner Friedrich
- Center of Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Joren C Madsen
- Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ewelina Kluza
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Roy van der Meel
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Willem J M Mulder
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
41
|
Sofias AM, Combes F, Koschmieder S, Storm G, Lammers T. A paradigm shift in cancer nanomedicine: from traditional tumor targeting to leveraging the immune system. Drug Discov Today 2021; 26:1482-1489. [PMID: 33617793 DOI: 10.1016/j.drudis.2021.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Twenty-five years after the approval of the first anticancer nanodrug, we have to start re(de)fining tumor-targeted drug delivery alongside advances in immuno-oncology. Given that cancer is characterized by an immunological imbalance that goes beyond the primary tumor, we should focus on targeting, engaging, and modulating cancer-associated immune cells in the tumor microenvironment (TME), circulation, and immune cell-enriched tissues. When designed and applied rationally, nanomedicines will assist in restoring the immunological equilibrium at the whole-body level, which holds potential not only for cancer therapy, but also for the treatment of a range of other disorders.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steffen Koschmieder
- Department of Medicine (Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Gert Storm
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
42
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
43
|
Yuan W, Yu B, Yu M, Kuai R, Morin EE, Wang H, Hu D, Zhang J, Moon JJ, Chen YE, Guo Y, Schwendeman A. Synthetic high-density lipoproteins delivering liver X receptor agonist prevent atherogenesis by enhancing reverse cholesterol transport. J Control Release 2021; 329:361-371. [PMID: 33188828 DOI: 10.1016/j.jconrel.2020.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/22/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
Liver X nuclear receptor (LXR) agonists are promising anti-atherosclerotic agents that increase the expression of cholesterol transporters on atheroma macrophages leading to increased efflux of cholesterol to endogenous high-density lipoprotein (HDL) acceptors. HDL subsequently delivers effluxed cholesterol to the liver by the process of reverse cholesterol transport, resulting in reduction of atherosclerotic plaques. However, LXR agonists administration triggers undesirable liver steatosis and hypertriglyceridemia due to increased fatty acid and sterol synthesis. LXR-induced liver toxicity, poor drug aqueous solubility and low levels of endogenous HDL acceptors in target patient populations limit the clinical translation of LXR agonists. Here, we propose a dual-antiatherogenic strategy for administration of the LXR agonist, T0901317 (T1317), by encapsulating in synthetic HDL (sHDL) nanoparticles. sHDL had been clinically proven to serve as cholesterol acceptors, resulting in plaque reduction in atherosclerosis patients. In addition, the hydrophobic core and endogenous atheroma-targeting ability of sHDL allow for encapsulation of water-insoluble drugs and their subsequent delivery to atheroma. Several compositions of sHDL were tested to optimize both T1317 encapsulation efficiency and ability of T1317-sHDL to efflux cholesterol. Optimized T1317-sHDL exhibited more efficient cholesterol efflux from macrophages and enhanced atheroma-targeting relative to free drug. Most importantly, in an apolipoprotein E deficient (ApoE-/-) atherosclerosis progression murine model, T1317-sHDL showed superior inhibition of atherogenesis and reduced hypertriglyceridemia side effects in comparison to the free drug and blank sHDL. The T1317-sHDL pharmacological efficacy was observed at doses lower than those previously described for LXR agents, which may have additional safety benefits. In addition, the established clinical manufacturing, safety and efficacy of blank sHDL nanoparticles used in this study could facilitate future clinical translation of LXR-loaded sHDLs.
Collapse
Affiliation(s)
- Wenmin Yuan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Bilian Yu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cardiovascular medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Emily E Morin
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Huilun Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Die Hu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
44
|
Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov 2021; 20:589-610. [PMID: 33976384 PMCID: PMC8112476 DOI: 10.1038/s41573-021-00198-1] [Citation(s) in RCA: 590] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 02/03/2023]
Abstract
Atherosclerosis, a dominant and growing cause of death and disability worldwide, involves inflammation from its inception to the emergence of complications. Targeting inflammatory pathways could therefore provide a promising new avenue to prevent and treat atherosclerosis. Indeed, clinical studies have now demonstrated unequivocally that modulation of inflammation can forestall the clinical complications of atherosclerosis. This progress pinpoints the need for preclinical investigations to refine strategies for combatting inflammation in the human disease. In this Review, we consider a gamut of attractive possibilities for modifying inflammation in atherosclerosis, including targeting pivotal inflammatory pathways such as the inflammasomes, inhibiting cytokines, manipulating adaptive immunity and promoting pro-resolution mechanisms. Along with lifestyle measures, pharmacological interventions to mute inflammation could complement traditional targets, such as lipids and hypertension, to make new inroads into the management of atherosclerotic risk.
Collapse
|
45
|
Xu CF, Chen GJ, Luo YL, Zhang Y, Zhao G, Lu ZD, Czarna A, Gu Z, Wang J. Rational designs of in vivo CRISPR-Cas delivery systems. Adv Drug Deliv Rev 2021; 168:3-29. [PMID: 31759123 DOI: 10.1016/j.addr.2019.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/09/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
The CRISPR-Cas system initiated a revolution in genome editing when it was, for the first time, demonstrated success in the mammalian cells. Today, scientists are able to readily edit genomes, regulate gene transcription, engineer posttranscriptional events, and image nucleic acids using CRISPR-Cas-based tools. However, to efficiently transport CRISPR-Cas into target tissues/cells remains challenging due to many extra- and intra-cellular barriers, therefore largely limiting the applications of CRISPR-based therapeutics in vivo. In this review, we summarize the features of plasmid-, RNA- and ribonucleoprotein (RNP)-based CRISPR-Cas therapeutics. Then, we survey the current in vivo delivery systems. We specify the requirements for efficient in vivo delivery in clinical settings, and highlight both efficiency and safety for different CRISPR-Cas tools.
Collapse
|
46
|
Martelli A, Citi V, Calderone V. Recent efforts in drug discovery on vascular inflammation and consequent atherosclerosis. Expert Opin Drug Discov 2020; 16:411-427. [PMID: 33256484 DOI: 10.1080/17460441.2021.1850688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Preservation of vascular endothelium integrity and maintenance of its full functionality are fundamental aspects in order to avoid both cardiovascular and non-cardiovascular diseases.Areas covered: Although a massive endothelial disruption is a rare condition, caused by acute and uncontrolled inflammatory responses (e.g. the cytokine storm induced by SARS-CoV-2 infection), more frequently the vascular tree is the first target of slowly progressive inflammatory processes which affect the integrity of endothelium and its 'barrier' function, supporting the onset of atherosclerotic plaque and spreading inflammation. This endothelial dysfunction leads to decrease NO biosynthesis, impaired regulation of vascular tone, and increased platelet aggregation. Such chronic subclinic inflammation leads to macrophage infiltration in atherosclerotic lesions. Therefore, many efforts should be addressed to find useful approaches to preserve vascular endothelium from inflammation. In this review, the authors have evaluated the most recent strategies to counteract this pathological condition.Expert opinion: The therapeutic and nutraceutical approaches represent useful tools to treat or prevent different phases of vascular inflammation. In particular, the pharmacological approach should be used in advanced phases characterized by clinical signs of vascular disease, whilst the nutraceutical approach may represent a promising preventive strategy to preserve the integrity of the endothelial tissue.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, Pisa, Italy
| | | | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
47
|
Pedersbæk D, Simonsen JB. A systematic review of the biodistribution of biomimetic high-density lipoproteins in mice. J Control Release 2020; 328:792-804. [PMID: 32971201 DOI: 10.1016/j.jconrel.2020.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
For the past two decades, biomimetic high-density lipoproteins (b-HDL) have been used for various drug delivery applications. The b-HDL mimic the endogenous HDL, and therefore possess many attractive features for drug delivery, including high biocompatibility, biodegradability, and ability to transport and deliver their cargo (e.g. drugs and/or imaging agents) to specific cells and tissues that are recognized by HDL. The b-HDL designs reported in the literature often differ in size, shape, composition, and type of incorporated cargo. However, there exists only limited insight into how the b-HDL design dictates their biodistribution. To fill this gap, we conducted a comprehensive systematic literature search of biodistribution studies using various designs of apolipoprotein A-I (apoA-I)-based b-HDL (i.e. b-HDL with apoA-I, apoA-I mutants, or apoA-I mimicking peptides). We carefully screened 679 papers (search hits) for b-HDL biodistribution studies in mice, and ended up with 24 relevant biodistribution profiles that we compared according to b-HDL design. We show similarities between b-HDL biodistribution studies irrespectively of the b-HDL design, whereas the biodistribution of the b-HDL components (lipids and scaffold) differ significantly. The b-HDL lipids primarily accumulate in liver, while the b-HDL scaffold primarily accumulates in the kidney. Furthermore, both b-HDL lipids and scaffold accumulate well in the tumor tissue in tumor-bearing mice. Finally, we present essential considerations and strategies for b-HDL labeling, and discuss how the b-HDL biodistribution can be tuned through particle design and administration route. Our meta-analysis and discussions provide a detailed overview of the fate of b-HDL in mice that is highly relevant when applying b-HDL for drug delivery or in vivo imaging applications.
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark
| | - Jens B Simonsen
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
48
|
Biancacci I, Sun Q, Möckel D, Gremse F, Rosenhain S, Kiessling F, Bartneck M, Hu Q, Thewissen M, Storm G, Hennink WE, Shi Y, Rijcken CJ, Lammers T, Sofias AM. Optical imaging of the whole-body to cellular biodistribution of clinical-stage PEG-b-pHPMA-based core-crosslinked polymeric micelles. J Control Release 2020; 328:805-816. [DOI: 10.1016/j.jconrel.2020.09.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/31/2022]
|
49
|
Priem B, van Leent MMT, Teunissen AJP, Sofias AM, Mourits VP, Willemsen L, Klein ED, Oosterwijk RS, Meerwaldt AE, Munitz J, Prévot G, Vera Verschuur A, Nauta SA, van Leeuwen EM, Fisher EL, de Jong KAM, Zhao Y, Toner YC, Soultanidis G, Calcagno C, Bomans PHH, Friedrich H, Sommerdijk N, Reiner T, Duivenvoorden R, Zupančič E, Di Martino JS, Kluza E, Rashidian M, Ploegh HL, Dijkhuizen RM, Hak S, Pérez-Medina C, Bravo-Cordero JJ, de Winther MPJ, Joosten LAB, van Elsas A, Fayad ZA, Rialdi A, Torre D, Guccione E, Ochando J, Netea MG, Griffioen AW, Mulder WJM. Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition. Cell 2020; 183:786-801.e19. [PMID: 33125893 PMCID: PMC8074872 DOI: 10.1016/j.cell.2020.09.059] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.
Collapse
Affiliation(s)
- Bram Priem
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, Amsterdam, the Netherlands; Department of Medical Oncology (NA Angiogenesis Laboratory), Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, Amsterdam, the Netherlands
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros Marios Sofias
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lisa Willemsen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, Amsterdam, the Netherlands
| | - Emma D Klein
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roderick S Oosterwijk
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anu E Meerwaldt
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jazz Munitz
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geoffrey Prévot
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Vera Verschuur
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheqouia A Nauta
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther M van Leeuwen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth L Fisher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen A M de Jong
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiming Zhao
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yohana C Toner
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgios Soultanidis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul H H Bomans
- Department of Chemical Engineering and Chemistry, Center for Multiscale Electron Microscopy and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Center for Multiscale Electron Microscopy and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Nico Sommerdijk
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Raphaël Duivenvoorden
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eva Zupančič
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Ewelina Kluza
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Hidde L Ploegh
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Sjoerd Hak
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Carlos Pérez-Medina
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Rialdi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Torre
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania; Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Arjan W Griffioen
- Department of Medical Oncology (NA Angiogenesis Laboratory), Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
50
|
Feng R, Yu F, Xu J, Hu X. Knowledge gaps in immune response and immunotherapy involving nanomaterials: Databases and artificial intelligence for material design. Biomaterials 2020; 266:120469. [PMID: 33120200 DOI: 10.1016/j.biomaterials.2020.120469] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Exploring the interactions between the immune system and nanomaterials (NMs) is critical for designing effective and safe NMs, but large knowledge gaps remain to be filled prior to clinical applications (e.g., immunotherapy). The lack of databases on interactions between the immune system and NMs affects the discovery of new NMs for immunotherapy. Complement activation and inhibition by NMs have been widely studied, but the general rules remain unclear. Biomimetic nanocoating to promote the clearance of NMs by the immune system is an alternative strategy for the immune response mediation of the biological corona. Immune response predictions based on NM properties can facilitate the design of NMs for immunotherapy, and artificial intelligences deserve much attention in the field. This review addresses the knowledge gaps regarding immune response and immunotherapy in relation to NMs, effective immunotherapy and material design without adverse immune responses.
Collapse
Affiliation(s)
- Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jing Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|