1
|
Lovitch SB, Esparza TJ, Schweitzer G, Herzog J, Unanue ER. Activation of Type B T Cells after Protein Immunization Reveals Novel Pathways of In Vivo Presentation of Peptides. THE JOURNAL OF IMMUNOLOGY 2006; 178:122-33. [PMID: 17182547 DOI: 10.4049/jimmunol.178.1.122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type B T cells recognize a peptide-MHC conformer generated in recycling endosomes and eliminated by H2-DM in late endosomes; as a result, they recognize exogenous peptide, but fail to respond to the identical epitope generated from the native protein. To investigate the behavior of these cells in vivo, we generated mice transgenic for a type B TCR recognizing the 48-62 epitope of hen egg white lysozyme (HEL) presented by I-A(k). Type B T cells responded only to peptide ex vivo, but responded in vivo to immunization with either protein or peptide in the presence of Freund's adjuvant or LPS. Presentation of the type B conformer was MyD88-independent, evident within 24 h after HEL immunization, and restricted to the CD11b/c(+) APC subset. Immunization with listeriolysin O, a potent inducer of cell death, also primed type B T cells in vivo, and transfer of HEL-bearing allogeneic dendritic cells activated type B T cells. We conclude that a number of conditions in vivo, some of which induce inflammation and cell death, lead to peptide presentation through mechanisms distinct from the classical pathways involving H-2DM molecules.
Collapse
Affiliation(s)
- Scott B Lovitch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
2
|
Carreño LJ, González PA, Kalergis AM. Modulation of T cell function by TCR/pMHC binding kinetics. Immunobiology 2006; 211:47-64. [PMID: 16446170 DOI: 10.1016/j.imbio.2005.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 09/05/2005] [Indexed: 01/19/2023]
Abstract
The interaction between the T cell receptor (TCR) and the peptide-MHC complex (pMHC) at the interface between the T cell and the antigen presenting cell (APC) is the main event controlling the specificity of antigen recognition by T cells. It is thought that TCR/pMHC binding kinetics are critical for the selection of the T cell repertoire in the thymus, as well as the activation of mature T cells in the periphery. One of the binding parameters that conditions T cell activation by pMHC ligands is the half-life of the TCR/pMHC interaction. This kinetic parameter is highly significant for the regulation of T cell activation and therefore determines the capacity of T cells to respond against pathogen- and tumor-derived antigens, avoiding self-reactivity. Several studies support the notion that T cells are activated only by TCR/pMHC interactions that are above a threshold of half-life. pMHC complexes that bind TCRs with half-lives below that threshold behave as null or antagonistic ligands. However, since prolonged half-lives can also impair T cell activation, there seems to be a ceiling for the TCR/pMHC half life that leads to efficient activation of T cells. According to these observations, efficient T cell activation would require an optimal half-life of TCR/pMHC interaction. These kinetic restrictions for T cell activation are important to generate a protective adaptive immune response minimizing cross-reactivity against self-constituents. The nature of the TCR/pMHC interaction defines in the thymus whether a thymocyte develops into a mature T cell or is eliminated by apoptosis. In addition, the kinetics of TCR/pMHC binding can determine the type of response shown by mature T cells in the periphery. Although several studies have focused on the modulation of T cell function by the affinity of the TCR/pMHC interaction, the binding kinetics rules governing T cell activation remain poorly understood. Here we review recent data and propose a new model for the regulation of T cell function by TCR/pMHC binding kinetics.
Collapse
Affiliation(s)
- Leandro J Carreño
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda #340, Santiago, Chile
| | | | | |
Collapse
|
3
|
Nowak I, Pajtasz-Piasecka E, Chmielowski B, Ignatowicz L, Kuśnierczyk P. The specific T-cell response to antigenic peptides is influenced by bystander peptides. Cell Mol Biol Lett 2006; 11:70-9. [PMID: 16847750 PMCID: PMC6275589 DOI: 10.2478/s11658-006-0007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 12/15/2005] [Indexed: 11/20/2022] Open
Abstract
T lymphocytes recognize antigens in the form of peptides presented by major histocompatibility complex (MHC) molecules on the cell surface. Only a small proportion of MHC class I and class II molecules are loaded with foreign antigenic peptides; the vast majority are loaded with thousands of different self peptides. It was suggested that MHC molecules presenting self peptides may serve either to decrease (antagonistic effect) or increase (synergistic effect) the T cell response to a specific antigen. Here, we present our finding that transfected mouse fibroblasts presenting a single antigenic peptide covalently bound to a class II MHC molecule stimulated specific mouse T cell hybridoma cells to an interleukin-2 response less efficiently than fibroblasts presenting a similar amount of antigenic peptide in the presence of class II molecules loaded with heterogenous bystander peptides.
Collapse
Affiliation(s)
- Izabela Nowak
- Laboratory of Immunogenetics, Department of Clinical Immunology, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Elżbieta Pajtasz-Piasecka
- Laboratory of Experimental Antitumor Therapy, Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Bartosz Chmielowski
- Center of Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia USA
| | - Leszek Ignatowicz
- Center of Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia USA
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics, Department of Clinical Immunology, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
- Jan Długosz Paedagogical University, Cz77ęstochowa, Poland
| |
Collapse
|
4
|
Abstract
The relative plasticity of peptide binding to class II major histocompatibility complex (MHC) molecules permits formation of multiple conformational isomers by the same peptide and MHC molecule; such conformers are specifically recognized by distinct subsets of T cells. Here, we review current knowledge and recent advances in our understanding of peptide-class II MHC conformational isomerism and the mechanisms that generate distinct MHC-peptide conformers. We focus on our studies of two T-cell subsets, type A and B, which recognize distinct conformers of the dominant epitope of hen egg white lysozyme presented by I-A(k). These conformers form via different pathways and in distinct intracellular vesicles: the type A conformer forms in late endosomes upon processing of native protein, while the more flexible type B conformer forms in early endosomes and at the cell surface. In this process, H2-DM acts as a conformational editor, eliminating the type B conformer in late endosomes. Type B T cells constitute a significant component of the naïve T-cell repertoire; furthermore, self-reactive type B T cells escape negative selection and are present in abundance in the periphery. Ongoing studies should elucidate the role of type B T cells in immunity to pathogens and in autoimmune pathology.
Collapse
Affiliation(s)
- Scott B Lovitch
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
5
|
Li QJ, Dinner AR, Qi S, Irvine DJ, Huppa JB, Davis MM, Chakraborty AK. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat Immunol 2004; 5:791-9. [PMID: 15247914 DOI: 10.1038/ni1095] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 06/18/2004] [Indexed: 11/09/2022]
Abstract
How T cells respond with extraordinary sensitivity to minute amounts of agonist peptide and major histocompatibility complex (pMHC) molecules on the surface of antigen-presenting cells bearing large numbers of endogenous pMHC molecules is not understood. Here we present evidence that CD4 affects the responsiveness of T helper cells by controlling spatial localization of the tyrosine kinase Lck in the synapse. This finding, as well as further in silico and in vitro experiments, led us to develop a molecular model in which endogenous and agonist pMHC molecules act cooperatively to amplify T cell receptor signaling. At the same time, activation due to endogenous pMHC molecules alone is inhibited. A key feature is that the binding of agonist pMHC molecules to the T cell receptor results in CD4-mediated spatial localization of Lck, which in turn enables endogenous pMHC molecules to trigger many T cell receptors. We also discuss broader implications for T cell biology, including thymic selection, diversity of the repertoire of self pMHC molecules and serial triggering.
Collapse
Affiliation(s)
- Qi-Jing Li
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Pu Z, Lovitch SB, Bikoff EK, Unanue ER. T Cells Distinguish MHC-Peptide Complexes Formed in Separate Vesicles and Edited by H2-DM. Immunity 2004; 20:467-76. [PMID: 15084275 DOI: 10.1016/s1074-7613(04)00073-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/04/2004] [Accepted: 03/01/2004] [Indexed: 11/24/2022]
Abstract
The peptide spanning residues 48-61 of hen egg white lysozyme (HEL) presented by I-A(k) gives rise to two T cell populations, referred to as type A and B, that distinguish the complex generated intracellularly upon processing of HEL from that formed with exogenous peptide. Here, we ascribe this difference to recognition of distinct conformers of the complex and show that formation of the two complexes results from antigen processing in different intracellular compartments and is dependent upon H2-DM. While the type A complex preferentially formed in a lysosome-like late vesicle, the type B complex failed to form in this compartment; this distinction was abolished in antigen-presenting cells lacking DM. Experiments in vitro indicated that H2-DM acts directly on the complex to eliminate the type B conformation. We conclude that different antigen-processing pathways generate distinct MHC-peptide conformers, priming T cells with distinct specificity that may play unique roles in immunity.
Collapse
Affiliation(s)
- Zheng Pu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
7
|
Viret C, He X, Janeway CA. Altered positive selection due to corecognition of floppy peptide/MHC II conformers supports an integrative model of thymic selection. Proc Natl Acad Sci U S A 2003; 100:5354-9. [PMID: 12700352 PMCID: PMC154349 DOI: 10.1073/pnas.0831129100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thymocytes bearing the E alpha 52-68/I-A(b) complex-specific 1H3.1 alpha beta T cell antigen receptor are positively selected in Ab-Ep [Ab-Ep transgenic, invariant chain (Ii)(-/-), I-A beta(b-/-)] mice, where I-A(b) molecules present only E alpha 52-68. Although Ii reintroduction led to deletion, I-A beta(b) reintroduction disrupted positive selection. T cell antigen receptor transgenic Ab-Ep I-A beta(b+) mice had a large thymus with an increased absolute number of CD4(+)CD8(+) cells and no overt signs of deletion. Unlike Ab-Ep Ii(+) antigen-presenting cells, Ab-Ep I-A beta(b+) antigen-presenting cells did not activate 1H3.1 T cells. However, their capacity to present E alpha 52-68 was intact. Thus, positive selection of 1H3.1 thymocytes on the tight compact E alpha 52-68/I-A(b) complex is neutralized by the corecognition of loose compact self-peptide/I-A(b) conformers that do not interfere with the cognate activation of mature 1H3.1 T cells. The data support the notion that the integration of distinct signals generated by the simultaneous recognition of multiple self-peptide/MHC complexes directs intrathymic selection of T cells.
Collapse
Affiliation(s)
- Christophe Viret
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
8
|
Lovitch SB, Walters JJ, Gross ML, Unanue ER. APCs present A beta(k)-derived peptides that are autoantigenic to type B T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4155-60. [PMID: 12682247 DOI: 10.4049/jimmunol.170.8.4155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type B T cells recognize peptide provided exogenously but are ignorant of the same epitope derived from intracellular processing. In this study, we demonstrate the existence of type B T cells to an abundant autologous peptide derived from processing of the I-A(k) beta-chain. T cell hybridomas raised against this peptide fail to recognize syngeneic APC despite abundant presentation of the naturally processed epitope but react in a dose-dependent manner to exogenous peptide. Moreover, these hybridomas respond to Abeta(k) peptide extracted from the surface of I-A(k)-expressing APC. This peptide was isolated from B cell lines where it was found in high abundance; it was also present in lines lacking HLA-DM, but in considerably lower amounts. Therefore, type B T cells exist in the naive repertoire to abundant autologous peptides. We discuss the implications of these findings to the potential biological role of type B T cells in immune responses and autoimmune pathology.
Collapse
Affiliation(s)
- Scott B Lovitch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
9
|
Viret C, Janeway CA. Self-specific MHC class II-restricted CD4-CD8- T cells that escape deletion and lack regulatory activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:201-9. [PMID: 12496401 DOI: 10.4049/jimmunol.170.1.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the presence of the I-Ealpha protein, transgenic (Tg) mice expressing the 1H3.1 alphabeta TCR that is specific for the Ealpha52-68:I-A(b) complex display drastic intrathymic deletion. Although peripheral T cells from these mice remained unresponsive to the Ealpha52-68:I-A(b) complex, they contained a subpopulation able to specifically react to this complex in the presence of exogenous IL-2, indicating that some 1H3.1 alphabeta TCR Tg T cells have escaped clonal deletion and efficiently populated the periphery. IL-2-dependent, Ealpha52-68:I-A(b) complex-responsive T cells were CD4-CD8- and expressed the 1H3.1 alphabeta TCR. Such T cells could develop intrathymically, did not show sign of regulatory/suppressor activity, displayed a typical naive phenotype, and seemed to persist in vivo over time. CD4-CD8- TCR Tg T cells were also detected when the surface density of the deleting ligand was increased on MHC class II+ cells. In addition, the development of CD4-CD8- 1H3.1 alphabeta TCR Tg T cells could be supported by I-A(b) molecules. These observations indicate that CD4 surface expression neither specifies, nor is required for, the thymic export of mature thymocytes expressing a MHC class II-restricted alphabeta TCR. The data also show that, although the avidity of the interaction involved in intrathymic deletion is significantly lower than that involved in mature T cell activation, its range can be large enough to be influenced by the presence or absence of coreceptors. Finally, the margin created by the absence of CD4 coreceptor was substantial because it could accommodate various amounts of the deleting ligand on thymic stromal cells.
Collapse
Affiliation(s)
- Christophe Viret
- Section of Immunobiology, Yale University School of Medicine and Howard Hughes Medical Institute, New Haven, CT 06520-8011, USA
| | | |
Collapse
|
10
|
Dao T, Blander JM, Sant'Angelo DB. Recognition of a specific self-peptide: self-MHC class II complex is critical for positive selection of thymocytes expressing the D10 TCR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:48-54. [PMID: 12496382 DOI: 10.4049/jimmunol.170.1.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the specificity of positive and negative selection by using transgenic mice carrying a variant of the D10 TCR. We demonstrate that a point mutation at position 51 within the CDR2alpha segment significantly reduces the avidity of this TCR for its cognate ligand, but does not impact recognition of nonself MHC class II molecules. Although structural studies have suggested that this TCR site interacts with the MHC class II beta-chain, the avidity of this TCR for its ligand and the function of the T cell can be reconstituted by a point mutation in the bound antigenic peptide. These data demonstrate that the bound peptide can indirectly alter TCR interactions by influencing MHC structure. Remarkably, reducing the avidity of this TCR for a specific antigenic peptide-MHC ligand has a dramatic impact on thymic selection. Positive selection of thymocytes expressing this TCR is nearly completely blocked, whereas negative selection on allogenic MHC class II molecules remains intact. Therefore, the recognition of self that promotes positive selection of the D10 TCR is highly peptide-specific.
Collapse
MESH Headings
- Alleles
- Animals
- Arginine/genetics
- Autoantigens/metabolism
- Cell Differentiation/immunology
- Cell Line
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/physiology
- Conalbumin/metabolism
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Glycine/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Leucine/genetics
- Lymphocyte Count
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Peptides/immunology
- Peptides/metabolism
- Point Mutation
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Serine/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transgenes/immunology
Collapse
Affiliation(s)
- Tao Dao
- Laboratory of T Cell Immunobiology, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
11
|
Abstract
In this essay, I make four points about the operation of the immune system. First, thanks to the innate immune system's regulation of the main costimulatory molecules CD80 and CD86, the immune system rarely mistakes a pathogen for a self-antigen. Second, the adaptive immune system consisting of T lymphocytes and B lymphocytes can mistake self for non-self because adaptive immunity is selected in single somatic cells. Third, the adaptive immune system of T lymphocytes and B lymphocytes is always referential to self, as it is selected on self-ligands; it persists in the periphery on self-ligands; and at least for T cells, it is dependent on self-ligands to be able to mount a response. Fourth, it is becoming clear that regulatory or suppressor T cells are our main defense against autoimmunity, as my first boss, Richard Gershon, had predicted. These cells recognize antigen as do all T cells, but they secrete the immunoregulatory cytokines IL-10 and TGF beta.
Collapse
Affiliation(s)
- Charles A Janeway
- Section of Immunobiology, Yale University School of Medicine and Howard Hughes Medical Institute, 310 Cedar Street, New Haven, Connecticut 06520-8011, USA.
| |
Collapse
|
12
|
Catchpole B, Ward FJ, Hamblin AS, Staines NA. Autoreactivity in collagen-induced arthritis of rats: a potential role for T cell responses to self MHC peptides. J Autoimmun 2002; 18:271-80. [PMID: 12144808 DOI: 10.1006/jaut.2002.0585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collagen-induced arthritis (CIA) is a chronic inflammatory arthropathy of rats which follows immunization with bovine type II collagen (bCII). T cell lines generated from arthritic rats have been shown to be self-reactive and proliferate in an autologous MLR, which is MHC-dependent. However, the peptides which drive this autoreactive response remain to be elucidated. T cell lines, generated initially to bCII, were cultured with synthetic peptides representing potential autoreactive self epitopes. C1q-c(50-64) peptide, which demonstrates sequence homology to the bCII(184-198) peptide, failed to stimulate T cell proliferation suggesting that the autologous MLR was not due to antigen cross-reactivity with this self peptide. In contrast, several peptides from the amino-terminal region of the RT1D(u) MHC class II molecule stimulated proliferative responses. These results suggest that immunization with bCII leads to activation of a population of autoreactive T cells which respond in an autologous MLR, and that this response could be due, in part, to T cell reactivity to self MHC peptides.
Collapse
Affiliation(s)
- Brian Catchpole
- Department of Pathology and Infectious Diseases, Royal Veterinary College, University of London, London, UK.
| | | | | | | |
Collapse
|
13
|
Wang R, Wang-Zhu Y, Grey H. Interactions between double positive thymocytes and high affinity ligands presented by cortical epithelial cells generate double negative thymocytes with T cell regulatory activity. Proc Natl Acad Sci U S A 2002; 99:2181-6. [PMID: 11842216 PMCID: PMC122339 DOI: 10.1073/pnas.042692799] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies on thymocyte differentiation by using reaggregate cultures (RC) of double positive T cell receptor (TCR) transgenic thymocytes and the thymic epithelial cell line ANV indicated that low concentrations of high affinity ligands for the TCR were efficient inducers of thymocyte maturation to CD4 single positive (SP) functional cells. In this study, it is demonstrated that, when high concentrations of high affinity ligands are used in this RC system, double positive (DP) cells down-modulate expression of both coreceptors and that, as a result, large numbers of double negative (DN) cells are generated. These DN cells proliferated modestly in response to stimulation by antigen, and this response was considerably augmented by the addition of IL-2 to the cultures. Notably, these antigen-stimulated DN cells produced large amounts of IL-10. When the DN cells generated in RC were cocultured with naive TCR transgenic T cells in the presence of antigen, they suppressed the proliferative response of the naive T cells. Thus, high affinity ligands, when presented to DP thymocytes by cortical thymic epithelial cells in reaggregate cultures, rather than causing deletion of the immature thymocytes, induce their differentiation into immunoregulatory DN cells, suggesting a distinct mechanism by which self tolerance may be maintained.
Collapse
Affiliation(s)
- Rongfang Wang
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | | | |
Collapse
|