1
|
Wan F, Qian C, Liu X, Zhong Y, Peng W, Zhang L, Zhan X, Huang Y, Zhang C, Wang J, Si Y, Liu Y. Sculponeatin A induces mitochondrial dysfunction in non-small cell lung cancer through WWP2-mediated degradation of mitochondrial STAT3. Br J Pharmacol 2025; 182:2662-2681. [PMID: 39993792 DOI: 10.1111/bph.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND PURPOSE The phosphorylation of signal transducer and activator of transcription 3 (STAT3) monomer at S727 promotes its mitochondrial localisation and regulates mitochondrial function, thus exerting a protective effect on tumour cells. However, no inhibitor drugs targeting mitochondrial STAT3 (mitoSTAT3) or S727-STAT3 phosphorylation have been identified. Here, we report a novel diterpenoid extracted from Isodon sculponeatus, sculponeatin A (sptA), induces mitochondrial dysfunction in non-small cell lung cancer (NSCLC) by targeting mitoSTAT3 degradation. EXPERIMENTAL APPROACH xCELLigence real-time cell analysis assay and high-content analysis were performed to measure cytotoxicity. Mitochondrial function was assessed by transmission electron microscopy, mitochondrial permeability transition pore opening and Seahorse cellular flux assays. The effects of sptA on the upstream signalling pathway of mitochondrial dysfunction were measured by Western blot, gene alterations and other approaches. Immunofluorescence and live cell imaging were performed to visualise the expression and position of mitoSTAT3. Nude mice and zebrafish were modelled with subcutaneous xenografts. Pharmacokinetics of sptA were examined in rats. Drug toxicity was evaluated in zebrafish. KEY RESULTS sptA inhibited mitochondrial respiration in NSCLC cells. sptA induced mitochondrial dysfunction by promoting the degradation of mitoSTAT3. sptA promoted WW domain containing E3 ubiquitin protein ligase 2 (WWP2)-mediated ubiquitination and degradation of mitoSTAT3 through direct binding. sptA inhibited tumour growth in vivo. Evaluation of drug toxicity in zebrafish showed that overdose of sptA may cause heart damage. CONCLUSIONS AND IMPLICATIONS These findings suggest that pharmacological targeting the degradation of mitoSTAT3 by sptA may provide therapeutic benefits against NSCLC.
Collapse
Affiliation(s)
- Fang Wan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Chen Qian
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Yifan Zhong
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Wenkang Peng
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xiangrong Zhan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Yongtong Huang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengyu Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiu Wang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Choudhary D, Nasiruddin Khan MD, Khan Z, Mehan S, Gupta GD, Narula AS, Samant R. Navigating the complexities of neuronal signaling and targets in neurological disorders: From pathology to therapeutics. Eur J Pharmacol 2025; 995:177417. [PMID: 40010482 DOI: 10.1016/j.ejphar.2025.177417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Neurological disorders arising from structural and functional disruptions in the nervous system present major global health challenges. This review examines the intricacies of various cellular signaling pathways, including Nrf2/Keap1/HO-1, SIRT-1, JAK/STAT3/mTOR, and BACE-1/gamma-secretase/MAPT, which play pivotal roles in neuronal health and pathology. The Nrf2-Keap1 pathway, a key antioxidant response mechanism, mitigates oxidative stress, while SIRT-1 contributes to mitochondrial integrity and inflammation control. Dysregulation of these pathways has been identified in neurodegenerative and neuropsychiatric disorders, including Alzheimer's and Parkinson's diseases, characterized by inflammation, protein aggregation, and mitochondrial dysfunction. Additionally, the JAK/STAT3 signaling pathway emphasizes the connection between cytokine responses and neuroinflammation, further compounding disease progression. This review explores the crosstalk among these signaling networks, elucidating how their disruption leads to neuronal decline. It also addresses the dual roles of these pathways, presenting challenges in targeting them for therapeutic purposes. Despite the potential benefits of activating neuroprotective pathways, excessive stimulation may cause deleterious effects, including tumorigenesis. Future research should focus on designing multi-targeted therapies that enhance the effectiveness and safety of treatments, considering individual variabilities and the obstacles posed by the blood-brain barrier to drug delivery. Understanding these complex signaling interactions is crucial for developing innovative and effective neuroprotective strategies that could significantly improve the management of neurological disorders.
Collapse
Affiliation(s)
- Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - M D Nasiruddin Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| | | |
Collapse
|
3
|
Cheng H, Chen L, Huang C. Advances of signal transducer and activator of transcription 3 inhibitors in acute myeloid leukemia (Review). Oncol Lett 2025; 29:134. [PMID: 39822941 PMCID: PMC11737296 DOI: 10.3892/ol.2025.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a crucial transcription factor, exerts a notable influence by hyperactivating or acquiring functional mutations in the occurrence and progression of cancers. Hyperactive STAT3 is also implicated in a range of hematopoietic malignancies, especially acute myeloid leukemia (AML). The function of STAT3 is associated with the phosphorylated parallel dimer structure, enabling them to stimulate the transcription of specific genes. AML is a highly heterogeneous hematological malignancy, which is challenging in terms of therapy. The current efficacy of chemotherapy and targeted therapy remains suboptimal. Targeted inhibition of STAT3 has the potential to enhance the efficacy of AML treatment, thereby possibly improving the prognosis of individuals suffering from AML. The present review summarizes the development of inhibitors against STAT3 and discusses their applicability as AML therapeutics, which could inspire new possibilities for enhancing AML treatment strategies.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Hematology, First Affiliated Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Li Chen
- Department of Hematology, First Affiliated Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Chongmei Huang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
4
|
Berkley K, Zalejski J, Sharma A. Targeting STAT3 for Cancer Therapy: Focusing on Y705, S727, or Dual Inhibition? Cancers (Basel) 2025; 17:755. [PMID: 40075607 PMCID: PMC11898704 DOI: 10.3390/cancers17050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor that is strongly implicated in various cancers. In its canonical signaling pathway, Janus kinases (JAKs) phosphorylate STAT3 at the Y705 residue in response to cytokines or growth factors, with pY705 serving as a key marker of STAT3 oncogenic activity. Elevated pY705 levels correlate with poor prognosis, and numerous small-molecule inhibitors have been developed to block this phosphorylation site. More recently, phosphorylation at the S727 residue (pS727) has emerged as a critical contributor to STAT3-mediated oncogenesis, particularly due to its role in mitochondrial translocation. Evidence suggests that pS727 may even surpass pY705 in driving oncogenic activity. These findings prompt an important question: Which residue should be prioritized for effective STAT3 inhibition in cancer therapy? METHODS This review compiles and critically analyzes the current literature on STAT3 inhibitors targeting pY705 and/or pS727, evaluating their therapeutic efficacy in vitro, in vivo, and in clinical trials. We assess the unique effects of targeting each residue on downstream signaling, toxicity, and clinical outcomes. RESULTS Our analysis indicates that inhibitors targeting both pY705 and pS727 achieve the greatest therapeutic effectiveness. However, pS727 targeting is associated with higher toxicity risks. CONCLUSIONS Comprehensive evaluation of STAT3 inhibitors underscores the importance of targeting pY705 for maximum therapeutic benefit. The analysis also shows that co-targeting pS727 may increase overall efficacy. However, pS727 inhibition should be approached with lower affinity to minimize toxicity and enhance the clinical feasibility of dual-targeting strategies.
Collapse
Affiliation(s)
| | | | - Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA; (K.B.); (J.Z.)
| |
Collapse
|
5
|
Cai W, Jiang B, Yin Y, Ma L, Li T, Chen J. Identification of STAT3 phosphorylation inhibitors using generative deep learning, virtual screening, molecular dynamics simulations, and biological evaluation for non-small cell lung cancer therapy. Mol Divers 2024:10.1007/s11030-024-11067-5. [PMID: 39715975 DOI: 10.1007/s11030-024-11067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024]
Abstract
The development of phosphorylation-suppressing inhibitors targeting Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising therapeutic strategy for non-small cell lung cancer (NSCLC). In this study, a generative model was developed using transfer learning and virtual screening, leveraging a comprehensive dataset of STAT3 inhibitors to explore the chemical space for novel candidates. This approach yielded a chemically diverse library of compounds, which were prioritized through molecular docking and molecular dynamics (MD) simulations. Among the identified candidates, the HG110 molecule demonstrated potent suppression of STAT3 phosphorylation at Tyr705 and inhibited its nuclear translocation in IL6-stimulated H441 cells. Rigorous MD simulations further confirmed the stability and interaction profiles of top candidates within the STAT3 binding site. Notably, HG106 and HG110 exhibited superior binding affinities and stable conformations, with favorable interactions involving key residues in the STAT3 binding pocket, outperforming known inhibitors. These findings underscore the potential of generative deep learning to expedite the discovery of selective STAT3 inhibitors, providing a compelling pathway for advancing NSCLC therapies.
Collapse
Affiliation(s)
- Weiji Cai
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Road, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Beier Jiang
- Navy Medical Research Institute, Naval Medical University, Shanghai, 200433, China
| | - Yichen Yin
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Road, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Lei Ma
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Road, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Tao Li
- Department of Oncology, General Hospital of the Ningxia Medical University, Yinchuan, 750004, China.
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Road, Yinchuan, 750004, Ningxia, China.
- Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
6
|
Shi D, Tao J, Man S, Zhang N, Ma L, Guo L, Huang L, Gao W. Structure, function, signaling pathways and clinical therapeutics: The translational potential of STAT3 as a target for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189207. [PMID: 39500413 DOI: 10.1016/j.bbcan.2024.189207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024]
Abstract
Cancer remains one of the most difficult human diseases to overcome because of its complexity and diversity. Signal transducers and transcriptional activators 3 (STAT3) protein has been found to be overexpressed in a wide range of cancer types. Hyperactivation of STAT3 is particularly associated with low survival in cancer patients. This review summarizes the specific molecular mechanisms of STAT3 in cancer development. STAT3 is activated by extracellular signals in the cytoplasm, interacts with different enzymes in the nucleus, mitochondria or endoplasmic reticulum, and subsequently participates in cancer development. The phosphorylated STAT3 at tyrosine 705 site (YP-STAT3) enters the nucleus and regulates a number of tumor-related biological processes such as angiogenesis, migration invasion, cell proliferation and cancer cell stemness. In contrast, the phosphorylated STAT3 at serine 727 site (SP-STAT3) is found on the mitochondria, affects electron respiration transport chain activity and thereby prevents tumor cell apoptosis. SP-STAT3 also appears on the mitochondria-associated endoplasmic reticulum membrane, influences the flow of Ca2+, and affects tumor progression. In addition, we summarize the direct and indirect inhibitors of STAT3 which are currently undergoing clinical studies. Some of them such as TTI101 and BBI608 have been approved by the FDA for the treatment of certain cancers. All in all, STAT3 plays an important role in cancer progression and becomes a potential target for cancer treatment.
Collapse
Affiliation(s)
- Dandan Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiejing Tao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ning Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
7
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
8
|
Pan H, Zhao Z, Zhu Y, Gao Y, Ruan H, Huang Y, Chi P, Huang S. Combining proteomics and Phosphoproteomics to investigate radiation-induced rectal fibrosis in rats and the effects of pSTAT3 inhibitor S3I-201 on human intestinal fibroblasts. J Proteomics 2024; 308:105287. [PMID: 39173903 DOI: 10.1016/j.jprot.2024.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE To investigate the regulatory mechanisms of radiation-induced rectal fibrosis (RIRF) and assess the therapeutic potential of S3I-201. METHODS Sprague-Dawley rats were divided into control and radiation groups, with the latter exposed to 20 Gray pelvic X-rays. After 10 weeks, rectal tissues were analyzed using tandem mass tag (TMT) proteomics and phosphoproteomics. Pathway enrichment was performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, with secondary annotation using Cluego. Representative proteins and their phosphorylated counterparts were validated through immunoblotting in another cohort. STAT3 levels in rectal tissues from irradiated and non-irradiated colorectal cancer patients were examined, and the effects of S3I-201 on human rectal fibroblasts were evaluated. RESULTS The radiation group showed significant inflammatory responses and collagen deposition in the rat rectal walls. Enrichment analysis revealed that radiation-induced proteins and phosphoproteins were primarily involved in extracellular matrix-receptor interaction and the MAPK signaling pathway. Immunoblotting indicated increased expression of p-CAMKII, p-MRACKS, p-Cfl1, p-Myl9, and p-STAT3 in the radiation group compared to the control, while p-AKT1 expression decreased. Elevated phosphorylation of STAT3 was observed in submucosal fibroblasts of the post-radiation human rectum. S3I-201 specifically inhibited STAT3 phosphorylation and suppressed activation of human rectal fibroblasts, also inhibiting the pro-fibrotic effects of the classical TGF-β/Smad/CTGF pathway. CONCLUSION By integrating phosphoproteomics and proteomics, this study elucidated the protein regulatory network of RIRF and identified the potential therapeutic targets, including phosphoproteins such as STAT3 in managing RIRF. SIGNIFICANCE In our research, we employed TMT labeling alongside LC-MS/MS techniques to comprehensively explore the proteomic and phosphoproteomic landscapes in rat models of radiation-induced intestinal fibrosis (RIRF). Our analysis revealed the function and pathways of proteins and phosphorylated proteins triggered by radiation, as well as those with protective roles. We mapped a network of interactions among these proteins and validated key protein expression levels using quantitative methods. Furthermore, we investigated STAT3 as a potential therapeutic target, assessing the efficacy of the inhibitor S3I-201 in laboratory settings, and highlighting its potential for RIRF treatment. Overall, our findings provide groundbreaking insights into the mechanisms underlying RIRF, paving the way for the development of future antifibrotic therapies.
Collapse
Affiliation(s)
- Hongfeng Pan
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zeyi Zhao
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanchang Zhu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yihuang Gao
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haoyang Ruan
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ying Huang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Shenghui Huang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
9
|
Gu K, May HA, Kang MH. Targeting Molecular Signaling Pathways and Cytokine Responses to Modulate c-MYC in Acute Myeloid Leukemia. Front Biosci (Schol Ed) 2024; 16:15. [PMID: 39344393 DOI: 10.31083/j.fbs1603015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Overexpression of the MYC oncogene, encoding c-MYC protein, contributes to the pathogenesis and drug resistance of acute myeloid leukemia (AML) and many other hematopoietic malignancies. Although standard chemotherapy has predominated in AML therapy over the past five decades, the clinical outcomes and patient response to treatment remain suboptimal. Deeper insight into the molecular basis of this disease should facilitate the development of novel therapeutics targeting specific molecules and pathways that are dysregulated in AML, including fms-like tyrosine kinase 3 (FLT3) gene mutation and cluster of differentiation 33 (CD33) protein expression. Elevated expression of c-MYC is one of the molecular features of AML that determines the clinical prognosis in patients. Increased expression of c-MYC is also one of the cytogenetic characteristics of drug resistance in AML. However, direct targeting of c-MYC has been challenging due to its lack of binding sites for small molecules. In this review, we focused on the mechanisms involving the bromodomain and extra-terminal (BET) and cyclin-dependent kinase 9 (CDK9) proteins, phosphoinositide-Akt-mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase-signal transduction and activation of transcription (JAK/STAT) pathways, as well as various inflammatory cytokines, as an indirect means of regulating MYC overexpression in AML. Furthermore, we highlight Food and Drug Administration (FDA)-approved drugs for AML, and the results of preclinical and clinical studies on novel agents that have been or are currently being tested for efficacy and tolerability in AML therapy. Overall, this review summarizes our current knowledge of the molecular processes that promote leukemogenesis, as well as the various agents that intervene in specific pathways and directly or indirectly modulate c-MYC to disrupt AML pathogenesis and drug resistance.
Collapse
Affiliation(s)
- Kyle Gu
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Harry A May
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
10
|
Man S, Cui Y, Shi D, Lv P, Ma L, Gao W. Formosanin C inhibits pulmonary metastasis by targeting stearyl CoA desaturase-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155689. [PMID: 38728921 DOI: 10.1016/j.phymed.2024.155689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Cisplatin (DDP) as the first-line drug has been used in cancer therapy. However, side effects and drug resistance are the challenges of DDP. Disordered lipid metabolism is related to DDP resistance. STUDY DESIGN In this study, formosanin C (FC) as the main compound of Rhizoma Paridis saponins (RPS) inhibits pulmonary metastasis by targeting stearyl CoA desaturase-1. METHODS AND RESULTS RPS prolonged the survival period of mice, reduced pulmonary metastases and alleviated colon toxicity caused by DDP. FC as the main compound of RPS enhanced the anti-tumor and anti-metastatic effects of DDP. FC decreased the mRNA level of SCD1 and the content of lipid droplets (LDs) in lung cancer cells. Molecular dynamics and isothermal titration calorimetry verified the binding stability and spontaneously between FC and SCD1. SiSCD1 reduced the content of LDs in cell lines and increased mitochondria (mtROS), which was consistent with the results of FC treatment. The combination group decreased DNA repair associated protein as well as DDP resistance markers such as ERCC1 and 53bp1, and increased DNA damage marker like γH2AX, which indirectly confirmed the occurrence of mtROS. In addition, FC combination with DDP also affected epithelial-mesenchymal transition-related protein like VIM and CDH1 in vivo experiments, and thereby inhibited pulmonary metastasis. CONCLUSION Our research indicated that the FC as the main compound of RPS targeted the CY2 domain of SCD1, inhibited lipid metabolism in mice, and thereby suppressed cancer metastases. This provided support for use of FC to treat cancer based on lipid metabolism pathway.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yingfang Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Dandan Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Panpan Lv
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
11
|
Zhang G, Hou S, Li S, Wang Y, Cui W. Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review). Int J Oncol 2024; 64:48. [PMID: 38488027 PMCID: PMC11000535 DOI: 10.3892/ijo.2024.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Sen Hou
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Shuyue Li
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yequan Wang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
12
|
Uslu C, Kapan E, Lyakhovich A. Cancer resistance and metastasis are maintained through oxidative phosphorylation. Cancer Lett 2024; 587:216705. [PMID: 38373691 DOI: 10.1016/j.canlet.2024.216705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Malignant tumors have increased energy requirements due to growth, differentiation or response to stress. A significant number of studies in recent years have described upregulation of mitochondrial genes responsible for oxidative phosphorylation (OXPHOS) in some tumors. Although OXPHOS is replaced by glycolysis in some tumors (Warburg effect), both processes can occur simultaneously during the evolution of the same malignancies. In particular, chemoresistant and/or cancer stem cells appear to find a way to activate OXPHOS and metastasize. In this paper, we discuss recent work showing upregulation of OXPHOS in chemoresistant tumors and cell models. In addition, we show an inverse correlation of OXPHOS gene expression with the survival time of cancer patients after chemotherapy and discuss combination therapies for resistant tumors.
Collapse
Affiliation(s)
- Cemile Uslu
- Sabanci University, Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Turkey
| | - Eda Kapan
- Sabanci University, Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Turkey
| | - Alex Lyakhovich
- Sabanci University, Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Turkey.
| |
Collapse
|
13
|
Lu J, Yan X, Lai W, Jiang LH, Shen LQ, Wu AQ, Zhao C. Design, synthesis, and biological evaluation of naphthoylamide derivatives as inhibitors of STAT3 phosphorylation. Arch Pharm (Weinheim) 2024; 357:e2300526. [PMID: 38294206 DOI: 10.1002/ardp.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/01/2024]
Abstract
The phosphorylation of STAT3 plays a critical physiological role in the proliferation of rectal cancer. Hence, inhibiting STAT3 phosphorylation is an effective anticancer approach. In this work, we designed a novel 5-R'-1-naphthylmethylamide scaffold as a small molecule inhibitor of STAT3 phosphorylation. The results showed that 3D and 4D have exceptional inhibitory ability against three different colorectal cancer (CRC) cell lines, and can induce apoptosis of CRC cells by inhibiting STAT3 phosphorylation, while having no killing effect on normal human cells. 3D and 4D can inhibit STAT3 phosphorylation in a time- and concentration-dependent manner, and also inhibit the nuclear translocation of interleukin (IL)-6-induced STAT3. In the in vivo tumor model research, 4D significantly reduced the tumor volume of mice and had no drug toxicity on other organ tissues. Furthermore, molecular docking studies revealed that 3D and 4D had greater binding free energy when interacting with the STAT3 SH2 structural domain, and could establish H-π interaction modes. Dynamic simulation studies indicated that both compounds were able to bind tightly to STAT3.
Collapse
Affiliation(s)
- JiaHao Lu
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Nanning, China
| | - XiuYang Yan
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Nanning, China
| | - WuJi Lai
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Nanning, China
| | - Li-He Jiang
- Medical College, Guangxi University, Nanning, China
| | - Li-Qun Shen
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Nanning, China
| | - Ai-Qun Wu
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Nanning, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Cancer and Anticancer Drug Research Center, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Cheng H, Wang S, Huang A, Ma J, Gao D, Li M, Chen H, Guo K. HSF1 is involved in immunotherapeutic response through regulating APOJ/STAT3-mediated PD-L1 expression in hepatocellular carcinoma. Cancer Biol Ther 2023; 24:1-9. [PMID: 36482717 PMCID: PMC9746510 DOI: 10.1080/15384047.2022.2156242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular cancer (HCC) is a serious illness with high prevalence and mortality throughout the whole world. For advanced HCC, immunotherapy is somewhat impactful and encouraging. Nevertheless, a substantial proportion of patients with advanced HCC are still unable to achieve a durable response, owing to heterogeneity from clonal variability and differential expression of the PD-1/PD-L1 axis. Recently, heat shock factor 1 (HSF1) is recognized as an important component of tumor immunotherapeutic response as well as related to PD-L1 expression in cancer. However, the mechanism of HSF1 regulating PD-L1 in cancer, especially in HCC, is still not fully clear. In this study, we observed the significantly positive correlation between HSF1 expression and PD-L1 expression in HCC samples; meanwhile combination expressions of HSF1 and PD-L1 served as the signature for predicting prognosis of patients with HCC. Mechanistically, HSF1 upregulated PD-L1 expression by inducing APOJ expression and activating STAT3 signaling pathway in HCC. In addition, we explored further the potential values of targeting the HSF1-APOJ-STAT3 axis against CD8+ T cells-mediated cancer cells cytotoxicity. These findings unveiled the important involvement of HSF1 in regulating PD-L1 expression in HCC as well as provided a novel invention component for improving the clinical response rate and efficacy of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Hongxia Cheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Aidan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
- Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Guangxi, China
| | - Jing Ma
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Miaomiao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Sun C, Chu A, Song R, Liu S, Chai T, Wang X, Liu Z. PARP inhibitors combined with radiotherapy: are we ready? Front Pharmacol 2023; 14:1234973. [PMID: 37954854 PMCID: PMC10637512 DOI: 10.3389/fphar.2023.1234973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
PARP was an enzyme found in the nucleus of eukaryotic cells that played a crucial role in repairing damaged DNA. Recently, PARP inhibitors have demonstrated great potential in cancer treatment. Thus, the FDA has approved several small-molecule PARP inhibitors for cancer maintenance therapy. The combination of PARP inhibitors and radiotherapy relies on synthetic lethality, taking advantage of the flaws in DNA repair pathways to target cancer cells specifically. Studies conducted prior to clinical trials have suggested that the combination of PARP inhibitors and radiotherapy can enhance the sensitivity of cancer cells to radiation, intensify DNA damage, and trigger cell death. Combining radiotherapy with PARP inhibitors in clinical trials has enhanced the response rate and progression-free survival of diverse cancer patients. The theoretical foundation of PARP inhibitors combined with radiotherapy is explained in detail in this article, and the latest advances in preclinical and clinical research on these inhibitors for tumor radiotherapy are summarized. The problems in the current field are recognized in our research and potential therapeutic applications for tumors are suggested. Nevertheless, certain obstacles need to be tackled when implementing PARP inhibitors and radiotherapies in clinical settings. Factors to consider when using the combination therapy are the most suitable schedule and amount of medication, identifying advantageous candidates, and the probable adverse effects linked with the combination. The combination of radiotherapy and PARP inhibitors can greatly enhance the effectiveness of cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongwen Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Cai L, Wang Y, Chen H, Tan Y, Yang T, Zhang S, Guo Z, Wang X. Platinum(IV) Complexes as Inhibitors of STAT3 and Regulators of the Tumor Microenvironment To Control Breast Cancer. J Med Chem 2023; 66:11351-11364. [PMID: 37578941 DOI: 10.1021/acs.jmedchem.3c00836] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Interplay between breast cancer (BC) cells and the tumor microenvironment (TME) influences the outcome of cancer treatment. Aberrant activation of signal transducer and activator of transcription 3 (STAT3) promotes the interaction and causes immunosuppression and drug resistance. Platinum(IV) complexes SPP and DPP bearing pterostilbene-derived axial ligand(s) were synthesized to inhibit the JAK2-STAT3 pathway in BC cells and regulate the TME. These complexes exerted remarkable antiproliferative activity against the triple-negative BC cells, suppressed the expression of phosphorylated STAT3 and STAT3-related cyclooxygenase-2 and IL-6, and activated caspase-3 and cleaved poly ADP-ribose polymerase, preventing the repair of DNA lesions and inducing apoptosis. Furthermore, DPP promoted the maturation and antigen presentation of dendritic cells, repressed the proliferation and differentiation of myeloid-derived suppressor cells and regulatory T cells, and facilitated the expansion of T cells. As a consequence, DPP showed excellent anticancer activity against BC with almost no general toxicity in vivo as a potential chemoimmunotherapeutic agent.
Collapse
Affiliation(s)
- Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yehong Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
17
|
Li Q, Wang X, Song Q, Yang S, Wu X, Yang D, Marié IJ, Qin H, Zheng M, Nasri U, Kong X, Wang B, Lizhar E, Cassady K, Tompkins J, Levy D, Martin PJ, Zhang X, Zeng D. Donor T cell STAT3 deficiency enables tissue PD-L1-dependent prevention of graft-versus-host disease while preserving graft-versus-leukemia activity. J Clin Invest 2023; 133:e165723. [PMID: 37526084 PMCID: PMC10378157 DOI: 10.1172/jci165723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/02/2023] [Indexed: 08/02/2023] Open
Abstract
STAT3 deficiency (STAT3-/-) in donor T cells prevents graft-versus-host disease (GVHD), but the impact on graft-versus-leukemia (GVL) activity and mechanisms of GVHD prevention remains unclear. Here, using murine models of GVHD, we show that STAT3-/- donor T cells induced only mild reversible acute GVHD while preserving GVL effects against nonsusceptible acute lymphoblastic leukemia (ALL) cells in a donor T cell dose-dependent manner. GVHD prevention depended on programmed death ligand 1/programmed cell death protein 1 (PD-L1/PD-1) signaling. In GVHD target tissues, STAT3 deficiency amplified PD-L1/PD-1 inhibition of glutathione (GSH)/Myc pathways that regulate metabolic reprogramming in activated T cells, with decreased glycolytic and mitochondrial ATP production and increased mitochondrial ROS production and dysfunction, leading to tissue-specific deletion of host-reactive T cells and prevention of GVHD. Mitochondrial STAT3 deficiency alone did not reduce GSH expression or prevent GVHD. In lymphoid tissues, the lack of host-tissue PD-L1 interaction with PD-1 reduced the inhibition of the GSH/Myc pathway despite reduced GSH production caused by STAT3 deficiency and allowed donor T cell functions that mediate GVL activity. Therefore, STAT3 deficiency in donor T cells augments PD-1 signaling-mediated inhibition of GSH/Myc pathways and augments dysfunction of T cells in GVHD target tissues while sparing T cells in lymphoid tissues, leading to prevention of GVHD while preserving GVL effects.
Collapse
Affiliation(s)
- Qinjian Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Dongyun Yang
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Isabelle J Marié
- Department of Pathology, NYU Grossman School of Medicine, New York, USA
| | - Hanjun Qin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Moqian Zheng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiaohui Kong
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Bixin Wang
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
| | - Elizabeth Lizhar
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Kaniel Cassady
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Josh Tompkins
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - David Levy
- Department of Pathology, NYU Grossman School of Medicine, New York, USA
| | - Paul J Martin
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
18
|
Wang Y, Zhou W, Chen J, Chen J, Deng P, Chen H, Sun Y, Yu Z, Pang D, Liu L, Wang P, Hong JH, Teh BT, Huang H, Li W, Yi Z, Lim ST, Chen Y, Ong CK, Liu M, Tan J. Preclinical characterization of WB737, a potent and selective STAT3 inhibitor, in natural killer/T-cell lymphoma. MedComm (Beijing) 2023; 4:e284. [PMID: 37334274 PMCID: PMC10274570 DOI: 10.1002/mco2.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 06/20/2023] Open
Abstract
Natural killer/T-cell lymphoma (NKTL) is an uncommon malignancy with poor prognosis and limited therapeutic options. Activating mutations of signal transducer and activator of transcription 3 (STAT3) are frequently found in patients with NKTL, suggesting that targeted inhibition of STAT3 is a potential therapeutic option for this disease. Here, we have developed a small molecule drug WB737 as a novel and potent STAT3 inhibitor that directly binds to the STAT3-Src homology 2 domain with high affinity. In addition, the binding affinity of WB737 to STAT3 is 250-fold higher than STAT1 and STAT2. Interestingly, WB737 is more selective for NKTL with STAT3-activating mutations in terms of growth inhibition and apoptotic induction when compared with Stattic. Mechanistically, WB737 inhibits both canonical and noncanonical STAT3 signaling via suppression of STAT3 phosphorylation at Tyr705 and Ser727, respectively, thereby inhibiting the expression of c-Myc and mitochondria-related genes. Moreover, WB737 inhibited STAT3 more potently than Stattic, resulting in a significant antitumor effect with undetectable toxicity, followed by almost complete tumor regression in an NKTL xenograft model harboring a STAT3-activating mutation. Taken together, these findings provide preclinical proof-of-concept for WB737 as a novel therapeutic strategy for the treatment of NKTL patients with STAT3-activating mutations.
Collapse
Affiliation(s)
- Yali Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wenbo Zhou
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
- Shanghai Yuyao Biotech Co., Ltd.ShanghaiChina
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Jinghong Chen
- Department of Medical OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Peng Deng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
- Shanghai Yuyao Biotech Co., Ltd.ShanghaiChina
| | - Yichen Sun
- Department of Laboratory MedicineGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Zhaoliang Yu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Diwen Pang
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSchool of MedicineSouth China University of Technology, GuangzhouChina
| | - Lizhen Liu
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSchool of MedicineSouth China University of Technology, GuangzhouChina
| | - Peili Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Jing Han Hong
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore
- Laboratory of Cancer EpigenomeDivision of Medical SciencesNational Cancer Centre SingaporeSingapore
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wenyu Li
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSchool of MedicineSouth China University of Technology, GuangzhouChina
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Soon Thye Lim
- Director's Office, National Cancer Centre SingaporeSingapore
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Choon Kiat Ong
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore
- Division of Cellular and Molecular ResearchNational Cancer Centre SingaporeSingapore
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
- Shanghai Yuyao Biotech Co., Ltd.ShanghaiChina
| | - Jing Tan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
- Laboratory of Cancer EpigenomeDivision of Medical SciencesNational Cancer Centre SingaporeSingapore
| |
Collapse
|
19
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Rašková M, Lacina L, Kejík Z, Venhauerová A, Skaličková M, Kolář M, Jakubek M, Rosel D, Smetana K, Brábek J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells 2022; 11:3698. [PMID: 36429126 PMCID: PMC9688109 DOI: 10.3390/cells11223698] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Interleukin 6 (IL-6) belongs to a broad class of cytokines involved in the regulation of various homeostatic and pathological processes. These activities range from regulating embryonic development, wound healing and ageing, inflammation, and immunity, including COVID-19. In this review, we summarise the role of IL-6 signalling pathways in cancer biology, with particular emphasis on cancer cell invasiveness and metastasis formation. Targeting principal components of IL-6 signalling (e.g., IL-6Rs, gp130, STAT3, NF-κB) is an intensively studied approach in preclinical cancer research. It is of significant translational potential; numerous studies strongly imply the remarkable potential of IL-6 signalling inhibitors, especially in metastasis suppression.
Collapse
Affiliation(s)
- Magdalena Rašková
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Lukáš Lacina
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Zdeněk Kejík
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Markéta Skaličková
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Milan Jakubek
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
21
|
He P, Bian A, Miao Y, Jin W, Chen H, He J, Li L, Sun Y, Ye J, Yi Z, Zhou W, Chen Y. Discovery of a Highly Potent and Orally Bioavailable STAT3 Dual Phosphorylation Inhibitor for Pancreatic Cancer Treatment. J Med Chem 2022; 65:15487-15511. [DOI: 10.1021/acs.jmedchem.2c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Aiwu Bian
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China
| | - Ying Miao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wangrui Jin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China
| | - Jia He
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liting Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Sun
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiangnan Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenbo Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Yuyao Biotech Co., Ltd., Shanghai 200241, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
22
|
Cusenza VY, Bonora E, Amodio N, Frazzi R. Spartin: At the crossroad between ubiquitination and metabolism in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188813. [PMID: 36195276 DOI: 10.1016/j.bbcan.2022.188813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 12/01/2022]
Abstract
SPART is a gene coding for a multifunctional protein called spartin, localized in various organelles of human cells. Mutations in the coding region are responsible for a hereditary form of spastic paraplegia called Troyer syndrome while the epigenetic silencing has been demonstrated for some types of tumors. The main functions of this gene are associated to endosomic trafficking and receptor degradation, microtubule interaction, cytokinesis, fatty acids and oxidative metabolism. Spartin has been shown to be a target regulated by STAT3 and localizes also at the level of the mitochondrial outer membrane, where it forms part of a complex maintaining the integrity of the membrane potential. The most recent evidences report a downregulation of spartin in tumor tissues when compared to adjacent normal samples. This intriguing evidence supports further research aimed at clarifying the role of this protein in cancer development and metabolism.
Collapse
Affiliation(s)
- Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elena Bonora
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
23
|
Yang J, Wang L, Guan X, Qin JJ. Inhibiting STAT3 signaling pathway by natural products for cancer prevention and therapy: In vitro and in vivo activity and mechanisms of action. Pharmacol Res 2022; 182:106357. [PMID: 35868477 DOI: 10.1016/j.phrs.2022.106357] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in signal transmission from the plasma membrane to the nucleus, regulating the expression of genes involved in essential cell functions and controlling the processes of cell cycle progression and apoptosis. Thus, STAT3 has been elucidated as a promising target for developing anticancer drugs. Many natural products have been reported to inhibit the STAT3 signaling pathway during the past two decades and have exhibited significant anticancer activities in vitro and in vivo. However, there is no FDA-approved STAT3 inhibitor yet. The major mechanisms of these natural product inhibitors of the STAT3 signaling pathway include targeting the upstream regulators of STAT3, directly binding to the STAT3 SH2 domain and inhibiting its activation, inhibiting STAT3 phosphorylation and/or dimerization, and others. In the present review, we have systematically discussed the development of these natural product inhibitors of STAT3 signaling pathway as well as their in vitro and in vivo anticancer activity and mechanisms of action. Outlooks and perspectives on the associated challenges are provided as well.
Collapse
Affiliation(s)
- Jing Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lingling Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
24
|
Wang H, Man Q, Huo F, Gao X, Lin H, Li S, Wang J, Su F, Cai, L, Shi Y, Liu, B, Bu L. STAT3 pathway in cancers: Past, present, and future. MedComm (Beijing) 2022; 3:e124. [PMID: 35356799 PMCID: PMC8942302 DOI: 10.1002/mco2.124] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Han‐Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Qi‐Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fang‐Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Su‐Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fu‐Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lulu Cai,
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySchool of MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bing Liu,
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lin‐Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
25
|
Yu D, Qi S, Guan X, Yu W, Yu X, Cai M, Li Q, Wang W, Zhang W, Qin JJ. Inhibition of STAT3 Signaling Pathway by Terphenyllin Suppresses Growth and Metastasis of Gastric Cancer. Front Pharmacol 2022; 13:870367. [PMID: 35401187 PMCID: PMC8993145 DOI: 10.3389/fphar.2022.870367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is a common type of malignant tumor with a relatively poor prognosis and presents a serious threat to global health. Signal Transducer and Activator of Transcription-3 (STAT3) has been strongly implicated in many cancers, and its constitutive activation promotes growth, angiogenesis, inflammation, and immune evasion. Therefore, considerable efforts have been put into developing effective and safe STAT3 inhibitors. In this study, we performed a virtual screening by molecular docking and found that terphenyllin, a marine-derived natural product, directly interacted with STAT3. We further found that terphenyllin inhibited the phosphorylation and activation of STAT3 and decreased the protein levels of STAT3-dependent target genes, including c-Myc and Cyclin D1. Subsequently, we demonstrated that terphenyllin exerted its potent anticancer efficacy against gastric cancer in vitro and in vivo. Terphenyllin concentration-dependently inhibited growth, proliferation, and colony formation and induced cell cycle arrest and apoptosis of gastric cancer cells in vitro. Moreover, terphenyllin treatment suppressed the tumor growth and metastasis in a gastric cancer orthotopic mouse model without notable toxicity in vivo. Taken together, our results indicated that terphenyllin exerts its anticancer activity by inhibiting the STAT3 signaling pathway and may serve as a potent STAT3 inhibitor for gastric cancer treatment.
Collapse
Affiliation(s)
- Dehua Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Simin Qi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wenkai Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xuefei Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Maohua Cai
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qinglin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Weidong Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
26
|
Wang Y, Yang C, Sims MM, Sacher JR, Raje M, Deokar H, Yue P, Turkson J, Buolamwini JK, Pfeffer LM. SS-4 is a highly selective small molecule inhibitor of STAT3 tyrosine phosphorylation that potently inhibits GBM tumorigenesis in vitro and in vivo. Cancer Lett 2022; 533:215614. [PMID: 35245627 DOI: 10.1016/j.canlet.2022.215614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is a highly aggressive cancer with a dismal prognosis. Constitutively active STAT3 has a causal role in GBM progression and is associated with poor patient survival. We rationally designed a novel small molecule, SS-4, by computational modeling to specifically interact with STAT3. SS-4 strongly and selectively inhibited STAT3 tyrosine (Y)-705 phosphorylation in MT330 and LN229 GBM cells and inhibited their proliferation and induced apoptosis with an IC50 of ∼100 nM. The antiproliferative and apoptotic actions of SS-4 were Y-705 phosphorylation dependent, as evidenced by its lack of effects on STAT3 knockout (STAT3KO) cells or STAT3KO cells that overexpressed a phospho-Y705 deficient (STAT3Y705F) mutant, and the recovery of effects when wild-type STAT3 or a phospho-serine (S)727 deficient mutant was expressed in STAT3KO cells. SS-4 increased the expression of tumor suppressive genes, while decreasing the expression of tumor promoting genes. Importantly, SS-4 markedly reduced the growth of GBM intracranial tumor xenografts. These data together identify SS-4 as a potent STAT3 inhibitor that selectively blocks Y705-phosphorylation, induces apoptosis, and inhibits growth of human GBM models in vitro and in vivo.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Pathology and Laboratory Medicine (College of Medicine), And the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Chuanhe Yang
- Department of Pathology and Laboratory Medicine (College of Medicine), And the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Michelle M Sims
- Department of Pathology and Laboratory Medicine (College of Medicine), And the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Joshua R Sacher
- Cyclica, Inc. 207 Queens Quay West, Suite 420, Toronto, Ontario, M5J 1A7, Canada
| | - Mithun Raje
- Pharmaceutical Sciences Department (College of Pharmacy), Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064-3095, USA
| | - Hemantkumar Deokar
- Pharmaceutical Sciences Department (College of Pharmacy), Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064-3095, USA
| | - Peibin Yue
- Department of Medicine, Division of Medical Oncology, And Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - James Turkson
- Department of Medicine, Division of Medical Oncology, And Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - John K Buolamwini
- Pharmaceutical Sciences Department (College of Pharmacy), Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064-3095, USA.
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine (College of Medicine), And the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
27
|
Li R, Li X, Zhao J, Meng F, Yao C, Bao E, Sun N, Chen X, Cheng W, Hua H, Li X, Wang B, Wang H, Pan X, You H, Yang J, Ikezoe T. Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation. Am J Cancer Res 2022; 12:976-998. [PMID: 34976224 PMCID: PMC8692896 DOI: 10.7150/thno.63751] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023] Open
Abstract
Rationale: We found that a subset of signal transducer and activator of transcription 3 (STAT3) translocated into mitochondria in phagocytes, including macrophages isolated from individuals with sepsis. However, the role of mitochondrial STAT3 in macrophages remains unclear. Method: To investigate the function of mitochondrial STAT3 in vivo, we generated inducible mitochondrial STAT3 knock-in mice. A cytokine array analysis, a CBA analysis, flow cytometry, immunofluorescence staining and quantification and metabolic analyses in vivo were subsequently performed in an LPS-induced sepsis model. Single-cell RNA sequencing, a microarray analysis, metabolic assays, mass spectrometry and ChIP assays were utilized to gain insight into the mechanisms of mitochondrial STAT3 in metabolic reprogramming in LPS-induced sepsis. Results: We found that mitochondrial STAT3 induced NF-κB nuclear localization and exacerbated LPS-induced sepsis in parallel with a metabolic switch from mainly using glucose to an increased reliance on fatty acid oxidation (FAO). Moreover, mitochondrial STAT3 abrogated carnitine palmitoyl transferase 1a (CPT1a) ubiquitination and degradation in LPS-treated macrophages. Meanwhile, an interaction between CPT1a and ubiquitin-specific peptidase 50 (USP50) was observed. In contrast, knocking down USP50 decreased CPT1a expression and FAO mediated by mitochondrial STAT3. The ChIP assays revealed that NF-κB bound the USP50 promoter. Curcumin alleviated LPS-mediated sepsis by suppressing the activities of mitochondrial STAT3 and NF-κB. Conclusion: Our findings reveal that mitochondrial STAT3 could trigger FAO by inducing CPT1a stabilization mediated by USP50 in macrophages, at least partially.
Collapse
|
28
|
Tweardy DJ. DRUGGING "UNDRUGGABLE" DISEASE-CAUSING PROTEINS: FOCUS ON SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION (STAT) 3. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2022; 132:61-76. [PMID: 36196170 PMCID: PMC9480546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Signal transducer and activator of transcription (STAT) 3 has been assigned to the group of "undruggable" disease-causing proteins, despite its containing a Src-homology (SH) 2 domain, a potential Achilles' heel that has eluded successful targeting by academic and pharmaceutical groups over the past 30 years. Based on mutational and modeling studies, our group developed a unique virtual ligand screening strategy targeting the STAT3 SH2 domain that was coupled to robust biochemical and cellular assays and structure-based medicinal chemistry and led to the identification of TTI-101. TTI-101 represents one of the most advanced, direct, small-molecule inhibitors of an SH2 domain-containing, disease-causing protein in clinical development. TTI-101 is currently being evaluated in a Phase 1 study to determine safety and tolerability in addition to pharmacodynamic effects and efficacy in patients with advanced solid tumors.
Collapse
|
29
|
Dong H, Feng Y, Yang Y, Hu Y, Jia Y, Yang S, Zhao N, Zhao R. A Novel Function of Mitochondrial Phosphoenolpyruvate Carboxykinase as a Regulator of Inflammatory Response in Kupffer Cells. Front Cell Dev Biol 2022; 9:726931. [PMID: 34970539 PMCID: PMC8712867 DOI: 10.3389/fcell.2021.726931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023] Open
Abstract
Background: There has been a recent appreciation that some metabolic enzymes can profoundly influence the nature of the immune response produced in macrophages. However, the role of mitochondrial phosphoenolpyruvate carboxykinase (PCK2) in immune response remains unknown. This study aims to investigate the role of PCK2 in lipopolysaccharides (LPS)-induced activation in Kupffer cells. Methods: Inflammatory cytokines were determined by real-time quantitative reverse transcription-polymerase chain action (qRT-PCR) and flow cytometric analysis using a cytometric bead array. Western blotting and immunofluorescence staining were used to determine PCK2 expression and subcellular distribution under confocal laser microscopy. qRT-PCR, flow cytometry, and high-performance liquid chromatography (HPLC) were used to determine mitochondrial function. Pharmacological inhibition, knockdown, and overexpression of PCK2 were used to confirm its function. Co-immunoprecipitation (Co-IP) was performed to determine MAPK/NF-κB phosphorylation. Results: Inflammatory response was significantly increased in LPS-treated mice and Kupffer cells. During the inflammatory process, the protein level of PCK2 was significantly upregulated in Kupffer cells. Interestingly, the localization of PCK2 was mainly in cytosol rather than mitochondria after LPS stimulation. Gain-of-function and loss-of-function analyses found that PCK2 overexpression significantly upregulated the levels of inflammation markers, whereas PCK2 knockdown or inhibition significantly mitigated LPS-induced inflammatory response in Kupffer cells. Furthermore, PCK2 promoted protein phosphorylation of NF-κB and AKT/MAPK, the major signaling pathways, controlling inflammatory cascade activation. Conclusion: We identified a novel function of PCK2 in mediating LPS-induced inflammation and provided mechanistic insights into the regulation of inflammatory response in Kupffer cells. Therefore, PCK2 may serve as a novel therapeutic target for the regulation of Kupffer cells-mediated inflammatory responses.
Collapse
Affiliation(s)
- Haibo Dong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Shu Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Mitochondrial Plasticity Promotes Resistance to Sorafenib and Vulnerability to STAT3 Inhibition in Human Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13236029. [PMID: 34885140 PMCID: PMC8657239 DOI: 10.3390/cancers13236029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Enhanced expression of mitochondrial ribosomal proteins and marked reprogramming of the mitochondrial network are associated with sorafenib resistance in human cell lines and hepatocarcinoma patients, providing novel actionable targets for increasing therapeutic efficacy. Abstract The multi-kinase inhibitor sorafenib is a primary treatment modality for advanced-stage hepatocellular carcinoma (HCC). However, the therapeutic benefits are short-lived due to innate and acquired resistance. Here, we examined how HCC cells respond to sorafenib and adapt to continuous and prolonged exposure to the drug. Sorafenib-adapted HCC cells show a profound reprogramming of mitochondria function and marked activation of genes required for mitochondrial protein translation and biogenesis. Mitochondrial ribosomal proteins and components of translation and import machinery are increased in sorafenib-resistant cells and sorafenib-refractory HCC patients show similar alterations. Sorafenib-adapted cells also exhibited increased serine 727 phosphorylated (pSer727) STAT3, the prevalent form in mitochondria, suggesting that STAT3 might be an actionable target to counteract resistance. Consistently, a small-molecule STAT3 inhibitor reduces pSer727, reverts mitochondrial alterations, and enhances the response to sorafenib in resistant cells. These results sustain the importance of mitochondria plasticity in response to sorafenib and identify a clinically actionable strategy for improving the treatment efficacy in HCC patients.
Collapse
|
31
|
Zhuo J, Lu D, Lin Z, Yang X, Yang M, Wang J, Tao Y, Wen X, Li H, Lian Z, Cen B, Dong S, Wei X, Xie H, Zheng S, Shen Y, Xu X. The distinct responsiveness of cytokeratin 19-positive hepatocellular carcinoma to regorafenib. Cell Death Dis 2021; 12:1084. [PMID: 34785656 PMCID: PMC8595883 DOI: 10.1038/s41419-021-04320-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
Cytokeratin 19-positive (CK19+) hepatocellular carcinoma (HCC) is an aggressive subtype characterized by early recurrence and chemotherapy tolerance. However, there is no specific therapeutic option for CK19+ HCC. The correlation between tumor recurrence and expression status of CK19 were studied in 206 patients undergoing liver transplantation for HCC. CK19-/+ HCC cells were isolated to screen effective antitumor drugs. The therapeutic effects of regorafenib were evaluated in patient-derived xenograft (PDX) models from 10 HCC patients. The mechanism of regorafenib on CK19+ HCC was investigated. CK19 positiveness indicated aggressiveness of tumor and higher recurrence risk of HCC after liver transplantation. The isolated CK19+ HCC cells had more aggressive behaviors than CK19- cells. Regorafenib preferentially increased the growth inhibition and apoptosis of CK19+ cells in vitro, whereas sorafenib, apatinib, and 5-fluorouracil did not. In PDX models from CK19-/+ HCC patients, the tumor control rate of regorafenib achieved 80% for CK19+ HCCs, whereas 0% for CK19- HCCs. RNA-sequencing revealed that CK19+ cells had elevated expression of mitochondrial ribosomal proteins, which are essential for mitochondrial function. Further experiments confirmed that regorafenib attenuated the mitochondrial respiratory capacity in CK19+ cells. However, the mitochondrial respiration in CK19- cells were faint and hardly repressed by regorafenib. The mitochondrial respiration was regulated by the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which was inhibited by regorafenib in CK19+ cells. Hence, CK19 could be a potential marker of the therapeutic benefit of regorafenib, which facilitates the individualized therapy for HCC. STAT3/mitochondria axis determines the distinct response of CK19+ cells to regorafenib treatment.
Collapse
Affiliation(s)
- Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaoye Tao
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Wen
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Li
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxing Lian
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beini Cen
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyi Dong
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Center for Integrated Oncology and Precision Medicine, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, China.
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, China.
| |
Collapse
|
32
|
Foo BJA, Eu JQ, Hirpara JL, Pervaiz S. Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1341604. [PMID: 34777681 PMCID: PMC8580634 DOI: 10.1155/2021/1341604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are the main powerhouse of the cell, generating ATP through the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS), which drives myriad cellular processes. In addition to their role in maintaining bioenergetic homeostasis, changes in mitochondrial metabolism, permeability, and morphology are critical in cell fate decisions and determination. Notably, mitochondrial respiration coupled with the passage of electrons through the electron transport chain (ETC) set up a potential source of reactive oxygen species (ROS). While low to moderate increase in intracellular ROS serves as secondary messenger, an overwhelming increase as a result of either increased production and/or deficient antioxidant defenses is detrimental to biomolecules, cells, and tissues. Since ROS and mitochondria both regulate cell fate, attention has been drawn to their involvement in the various processes of carcinogenesis. To that end, the link between a prooxidant milieu and cell survival and proliferation as well as a switch to mitochondrial OXPHOS associated with recalcitrant cancers provide testimony for the remarkable metabolic plasticity as an important hallmark of cancers. In this review, the regulation of cell redox status by mitochondrial metabolism and its implications for cancer cell fate will be discussed followed by the significance of mitochondria-targeted therapies for cancer.
Collapse
Affiliation(s)
- Brittney Joy-Anne Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jie Qing Eu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Cancer Science Institute, NUS, Singapore, Singapore
| | | | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- NUS Medicine Healthy Longevity Program, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, NUS, Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Faculté de Médicine, Université de Paris, Paris, France
| |
Collapse
|
33
|
Laurini E, Marson D, Aulic S, Fermeglia A, Pricl S. Molecular rationale for SARS-CoV-2 spike circulating mutations able to escape bamlanivimab and etesevimab monoclonal antibodies. Sci Rep 2021; 11:20274. [PMID: 34642465 PMCID: PMC8511038 DOI: 10.1038/s41598-021-99827-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
The purpose of this work is to provide an in silico molecular rationale of the role eventually played by currently circulating mutations in the receptor binding domain of the SARS-CoV-2 spike protein (S-RBDCoV‑2) in evading the immune surveillance effects elicited by the two Eli Lilly LY-CoV555/bamlanivimab and LY-CoV016/etesevimab monoclonal antibodies. The main findings from this study show that, compared to the wild-type SARS-CoV-2 spike protein, mutations E484A/G/K/Q/R/V, Q493K/L/R, S494A/P/R, L452R and F490S are predicted to be markedly resistant to neutralization by LY-CoV555, while mutations K417E/N/T, D420A/G/N, N460I/K/S/T, T415P, and Y489C/S are predicted to confer LY-CoV016 escaping advantage to the viral protein. A challenge of our global in silico results against relevant experimental data resulted in an overall 90% agreement. Thus, the results presented provide a molecular-based rationale for all relative experimental findings, constitute a fast and reliable tool for identifying and prioritizing all present and newly reported circulating spike SARS-CoV-2 variants with respect to antibody neutralization, and yield substantial structural information for the development of next-generation vaccines and monoclonal antibodies more resilient to viral evolution.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy.
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136, Lodz, Poland.
| |
Collapse
|
34
|
Kasembeli MM, Singhmar P, Ma J, Edralin J, Tang Y, Adams C, Heijnen CJ, Kavelaars A, Tweardy DJ. TTI-101: A competitive inhibitor of STAT3 that spares oxidative phosphorylation and reverses mechanical allodynia in mouse models of neuropathic pain. Biochem Pharmacol 2021; 192:114688. [PMID: 34274354 PMCID: PMC8478865 DOI: 10.1016/j.bcp.2021.114688] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 01/06/2023]
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 emerged rapidly as a high-value target for treatment of cancer. However, small-molecule STAT3 inhibitors have been slow to enter the clinic due, in part, to serious adverse events (SAE), including lactic acidosis and peripheral neuropathy, which have been attributed to inhibition of STAT3's mitochondrial function. Our group developed TTI-101, a competitive inhibitor of STAT3 that targets the receptor pY705-peptide binding site within the Src homology 2 (SH2) domain to block its recruitment and activation. TTI-101 has shown target engagement, no toxicity, and evidence of clinical benefit in a Phase I study in patients with solid tumors. Here we report that TTI-101 did not affect mitochondrial function, nor did it cause STAT3 aggregation, chemically modify STAT3 or cause neuropathic pain. Instead, TTI-101 unexpectedly suppressed neuropathic pain induced by chemotherapy or in a spared nerve injury model. Thus, in addition to its direct anti-tumor effect, TTI-101 may be of benefit when administered to cancer patients at risk of developing chemotherapy-induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Moses M Kasembeli
- The Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Pooja Singhmar
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Jiacheng Ma
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Jules Edralin
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Yongfu Tang
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Clydell Adams
- The Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Cobi J Heijnen
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Annemieke Kavelaars
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - David J Tweardy
- The Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States.
| |
Collapse
|
35
|
IL-6 enhances CD4 cell motility by sustaining mitochondrial Ca 2+ through the noncanonical STAT3 pathway. Proc Natl Acad Sci U S A 2021; 118:2103444118. [PMID: 34507993 DOI: 10.1073/pnas.2103444118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+ Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.
Collapse
|
36
|
Pace JA, Bronstein R, Guo Y, Yang Y, Estrada CC, Gujarati N, Salant DJ, Haley J, Bialkowska AB, Yang VW, He JC, Mallipattu SK. Podocyte-specific KLF4 is required to maintain parietal epithelial cell quiescence in the kidney. SCIENCE ADVANCES 2021; 7:eabg6600. [PMID: 34516901 PMCID: PMC8442927 DOI: 10.1126/sciadv.abg6600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/13/2021] [Indexed: 06/06/2023]
Abstract
Podocyte loss triggering aberrant activation and proliferation of parietal epithelial cells (PECs) is a central pathogenic event in proliferative glomerulopathies. Podocyte-specific Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, is essential for maintaining podocyte homeostasis and PEC quiescence. Using mice with podocyte-specific knockdown of Klf4, we conducted glomerular RNA-sequencing, tandem mass spectrometry, and single-nucleus RNA-sequencing to identify cell-specific transcriptional changes that trigger PEC activation due to podocyte loss. Integration with in silico chromatin immunoprecipitation identified key ligand-receptor interactions, such as fibronectin 1 (FN1)–αVβ6, between podocytes and PECs dependent on KLF4 and downstream signal transducer and activator of transcription 3 (STAT3) signaling. Knockdown of Itgb6 in PECs attenuated PEC activation. Additionally, podocyte-specific induction of human KLF4 or pharmacological inhibition of downstream STAT3 activation reduced FN1 and integrin β 6 (ITGB6) expression and mitigated podocyte loss and PEC activation in mice. Targeting podocyte-PEC crosstalk might be a critical therapeutic strategy in proliferative glomerulopathies.
Collapse
Affiliation(s)
- Jesse A. Pace
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Robert Bronstein
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yiqing Guo
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yaqi Yang
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Chelsea C. Estrada
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Nehaben Gujarati
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - David J. Salant
- Division of Nephrology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - John Haley
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Agnieszka B. Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Vincent W. Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - John C. He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandeep K. Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Renal Section, Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
37
|
Moser B, Edtmayer S, Witalisz-Siepracka A, Stoiber D. The Ups and Downs of STAT Inhibition in Acute Myeloid Leukemia. Biomedicines 2021; 9:1051. [PMID: 34440253 PMCID: PMC8392322 DOI: 10.3390/biomedicines9081051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aberrant Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling is implicated in the pathogenesis of acute myeloid leukemia (AML), a highly heterogeneous hematopoietic malignancy. The management of AML is complex and despite impressive efforts into better understanding its underlying molecular mechanisms, survival rates in the elderly have not shown a substantial improvement over the past decades. This is particularly due to the heterogeneity of AML and the need for personalized approaches. Due to the crucial role of the deregulated JAK-STAT signaling in AML, selective targeting of the JAK-STAT pathway, particularly constitutively activated STAT3 and STAT5 and their associated upstream JAKs, is of great interest. This strategy has shown promising results in vitro and in vivo with several compounds having reached clinical trials. Here, we summarize recent FDA approvals and current potential clinically relevant inhibitors for AML patients targeting JAK and STAT proteins. This review underlines the need for detailed cytogenetic analysis and additional assessment of JAK-STAT pathway activation. It highlights the ongoing development of new JAK-STAT inhibitors with better disease specificity, which opens up new avenues for improved disease management.
Collapse
Affiliation(s)
| | | | | | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (B.M.); (S.E.); (A.W.-S.)
| |
Collapse
|
38
|
Diallo M, Herrera F. The role of understudied post-translational modifications for the behavior and function of Signal Transducer and Activator of Transcription 3. FEBS J 2021; 289:6235-6255. [PMID: 34235865 DOI: 10.1111/febs.16116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
The Signal Transducer and Activator of Transcription (STAT) family of transcription factors is involved in inflammation, immunity, development, cancer, and response to injury, among other biological phenomena. Canonical STAT signaling is often represented as a 3-step pathway involving the sequential activation of a membrane receptor, an intermediate kinase, and a STAT transcription factor. The rate-limiting phosphorylation at a highly conserved C-terminal tyrosine residue determines the nuclear translocation and transcriptional activity of STATs. This apparent simplicity is actually misleading and can hardly explain the pleiotropic nature of STATs, the existence of various noncanonical STAT pathways, or the key role of the N-terminal domain in STAT functions. More than 80 post-translational modifications (PTMs) have been identified for STAT3, but their functions remain barely understood. Here, we provide a brief but comprehensive overview of these underexplored PTMs and their role on STAT3 canonical and noncanonical functions. A less tyrosine-centric point of view may be required to advance our understanding of STAT signaling.
Collapse
Affiliation(s)
- Mickael Diallo
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Federico Herrera
- Faculdade de Ciências da Universidade de Lisboa, Cell Structure and Dynamics Laboratory, BioISI - Instituto de Biosistemas e Ciências integrativas, Lisbon, Portugal.,MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
39
|
Abstract
Background: STAT3 is a pro-oncogenic transcription factor. Pyrimethamine (PYM) is a STAT3 inhibitor that suppresses the proliferation of some cancer cells through downregulation of STAT3 target proteins. Methodology & Results: We have used structure-based tools to design novel PYM-based compounds. Intracellular target validation studies revealed that representative compounds 11b-d and 15a downregulate STAT3 downstream proteins and inhibit STAT3 DNA binding domain (DBD). Relative to PYM, a cohort of these compounds are >100-fold more cytotoxic to cancer cells with constitutively active (high pSTAT3) and basal (low pSTAT3) STAT3 signaling, suggesting that STAT3 DBD inhibition is deleterious to the proliferation of cancer cells with low and high pSTAT3 levels. Conclusion: These are promising leads for further preclinical evaluation as therapeutic agents for STAT3-dependent cancers.
Collapse
|
40
|
Targeting Canonical and Non-Canonical STAT Signaling Pathways in Renal Diseases. Cells 2021; 10:cells10071610. [PMID: 34199002 PMCID: PMC8305338 DOI: 10.3390/cells10071610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) plays an essential role in the inflammatory reaction and immune response of numerous renal diseases. STATs can transmit the signals of cytokines, chemokines, and growth factors from the cell membrane to the nucleus. In the canonical STAT signaling pathways, upon binding with their cognate receptors, cytokines lead to a caspase of Janus kinases (JAKs) and STATs tyrosine phosphorylation and activation. Besides receptor-associated tyrosine kinases JAKs, receptors with intrinsic tyrosine kinase activities, G-protein coupled receptors, and non-receptor tyrosine kinases can also activate STATs through tyrosine phosphorylation or, alternatively, other post-translational modifications. Activated STATs translocate into the nucleus and mediate the transcription of specific genes, thus mediating the progression of various renal diseases. Non-canonical STAT pathways consist of preassembled receptor complexes, preformed STAT dimers, unphosphorylated STATs (U-STATs), and non-canonical functions including mitochondria modulation, microtubule regulation and heterochromatin stabilization. Most studies targeting STAT signaling pathways have focused on canonical pathways, but research extending into non-canonical STAT pathways would provide novel strategies for treating renal diseases. In this review, we will introduce both canonical and non-canonical STAT pathways and their roles in a variety of renal diseases.
Collapse
|
41
|
A Proteomic Atlas of Lineage and Cancer-Polarized Expression Modules in Myeloid Cells Modeling Immunosuppressive Tumor-Infiltrating Subsets. J Pers Med 2021; 11:jpm11060542. [PMID: 34208043 PMCID: PMC8230595 DOI: 10.3390/jpm11060542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Monocytic and granulocytic myeloid-derived suppressor cells together with tumor-infiltrating macrophages constitute the main tumor-infiltrating immunosuppressive myeloid populations. Due to the phenotypic resemblance to conventional myeloid cells, their identification and purification from within the tumors is technically difficult and makes their study a challenge. We differentiated myeloid cells modeling the three main tumor-infiltrating types together with uncommitted macrophages, using ex vivo differentiation methods resembling the tumor microenvironment. The phenotype and proteome of these cells was compared to identify linage-dependent relationships and cancer-specific interactome expression modules. The relationships between monocytic MDSCs and TAMs, monocytic MDSCs and granulocytic MDSCs, and hierarchical relationships of expression networks and transcription factors due to lineage and cancer polarization were mapped. Highly purified immunosuppressive myeloid cell populations that model tumor-infiltrating counterparts were systematically analyzed by quantitative proteomics. Full functional interactome maps have been generated to characterize at high resolution the relationships between the three main myeloid tumor-infiltrating cell types. Our data highlights the biological processes related to each cell type, and uncover novel shared and differential molecular targets. Moreover, the high numbers and fidelity of ex vivo-generated subsets to their natural tumor-shaped counterparts enable their use for validation of new treatments in high-throughput experiments.
Collapse
|
42
|
Novel STAT3 small-molecule inhibitors identified by structure-based virtual ligand screening incorporating SH2 domain flexibility. Pharmacol Res 2021; 169:105637. [PMID: 33932608 DOI: 10.1016/j.phrs.2021.105637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/05/2023]
Abstract
Efforts to develop STAT3 inhibitors have focused on its SH2 domain starting with short phosphotyrosylated peptides based on STAT3 binding motifs, e.g. pY905LPQTV within gp130. Despite binding to STAT3 with high affinity, issues regarding stability, bioavailability, and membrane permeability of these peptides, as well as peptidomimetics such as CJ-887, have limited their further clinical development and led to interest in small-molecule inhibitors. Some small molecule STAT3 inhibitors, identified using structure-based virtual ligand screening (SB-VLS); while having favorable drug-like properties, suffer from weak binding affinities, possibly due to the high flexibility of the target domain. We conducted molecular dynamic (MD) simulations of the SH2 domain in complex with CJ-887, and used an averaged structure from this MD trajectory as an "induced-active site" receptor model for SB-VLS of 110,000 compounds within the SPEC database. Screening was followed by re-docking and re-scoring of the top 30% of hits, selection for hit compounds that directly interact with pY + 0 binding pocket residues R609 and S613, and testing for STAT3 targeting in vitro, which identified two lead hits with good activity and favorable drug-like properties. Unlike most small-molecule STAT3 inhibitors previously identified, which contain negatively-charged moieties that mediate binding to the pY + 0 binding pocket, these compounds are uncharged and likely will serve as better candidates for anti-STAT3 drug development. IMPLICATIONS: SB-VLS, using an averaged structure from molecular dynamics (MD) simulations of STAT3 SH2 domain in a complex with CJ-887, a known peptidomimetic binder, identify two highly potent, neutral, low-molecular weight STAT3-inhibitors with favorable drug-like properties.
Collapse
|
43
|
Laurini E, Marson D, Aulic S, Fermeglia A, Pricl S. Computational Mutagenesis at the SARS-CoV-2 Spike Protein/Angiotensin-Converting Enzyme 2 Binding Interface: Comparison with Experimental Evidence. ACS NANO 2021; 15:6929-6948. [PMID: 33733740 PMCID: PMC8009103 DOI: 10.1021/acsnano.0c10833] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The coronavirus disease-2019 (COVID-19) pandemic, caused by the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), started in China during late 2019 and swiftly spread worldwide. Since COVID-19 emergence, many therapeutic regimens have been relentlessly explored, and although two vaccines have just received emergency use authorization by different governmental agencies, antiviral therapeutics based neutralizing antibodies and small-drug inhibitors can still be vital viable options to prevent and treat SARS-CoV-2 infections. The viral spike glycoprotein (S-protein) is the key molecular player that promotes human host cellular invasion via recognition of and binding to the angiotensin-converting enzyme 2 gene (ACE2). In this work, we report the results obtained by mutating in silico the 18 ACE2 residues and the 14 S-protein receptor binding domain (S-RBDCoV-2) residues that contribute to the receptor/viral protein binding interface. Specifically, each wild-type protein-protein interface residue was replaced by a hydrophobic (isoleucine), polar (serine and threonine), charged (aspartic acid/glutamic acid and lysine/arginine), and bulky (tryptophan) residue, respectively, in order to study the different effects exerted by nature, shape, and dimensions of the mutant amino acids on the structure and strength of the resulting binding interface. The computational results were next validated a posteriori against the corresponding experimental data, yielding an overall agreement of 92%. Interestingly, a non-negligible number of mis-sense variations were predicted to enhance ACE2/S-RBDCoV-2 binding, including the variants Q24T, T27D/K/W, D30E, H34S7T/K, E35D, Q42K, L79I/W, R357K, and R393K on ACE2 and L455D/W, F456K/W, Q493K, N501T, and Y505W on S-RBDCoV-2, respectively.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular
Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Domenico Marson
- Molecular
Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Suzana Aulic
- Molecular
Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Alice Fermeglia
- Molecular
Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular
Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
- . Phone: +39
040 558 3750
| |
Collapse
|
44
|
Santoni M, Miccini F, Cimadamore A, Piva F, Massari F, Cheng L, Lopez-Beltran A, Montironi R, Battelli N. An update on investigational therapies that target STAT3 for the treatment of cancer. Expert Opin Investig Drugs 2021; 30:245-251. [PMID: 33599169 DOI: 10.1080/13543784.2021.1891222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Signal transducer and activator of transcription 3 (STAT3) is involved in cancer initiation and resistance to chemo-radiation therapies and targeted agents. The role of STAT3 in inflammation and immunity together with its involvement in a variety of diseases including genitourinary, gastrointestinal, lung, ovarian and brain tumors makes STAT3 an ideal candidate for therapeutic strategies. AREAS COVERED The authors provided an overview on STAT3 inhibitors and examined the most recent results obtained by these agents in cancer patients. The authors discussed the results published since 2015 and the ongoing clinical trials on anti-STAT3 agents in cancer patients. The authors also provide our opinion on the future perspectives of this therapeutic approach in this context. The manuscript includes information from trial databases and scientific literature. EXPERT OPINION Future challenges include the development of non-peptide small-molecule inhibitors of STAT3 designed to directly inhibit STAT3 activity. In addition, inhibitors of STAT3/STAT3 nuclear translocation or DNA binding activity are also emerging as novel promising therapeutic approaches A better comprehension of the role of STAT3 in modulating immune response together with advances in understanding the mechanisms of STAT3-induced chemo and/or radio-resistance will also help the design of combined strategies in cancer patients.
Collapse
Affiliation(s)
- Matteo Santoni
- U.O.C Medical Oncology, Macerata Hospital, Macerata, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain.,Anatomic Pathology, Champalimaud Clinical Center, Lisbon, Portugal
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | |
Collapse
|
45
|
Campora M, Canale C, Gatta E, Tasso B, Laurini E, Relini A, Pricl S, Catto M, Tonelli M. Multitarget Biological Profiling of New Naphthoquinone and Anthraquinone-Based Derivatives for the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2021; 12:447-461. [PMID: 33428389 PMCID: PMC7880572 DOI: 10.1021/acschemneuro.0c00624] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
![]()
Two
series of naphthoquinone and anthraquinone derivatives decorated
with an aromatic/heteroaromatic chain have been synthesized and evaluated
as potential promiscuous agents capable of targeting different factors
playing a key role in Alzheimer’s disease (AD) pathogenesis.
On the basis of the in vitro biological profiling,
most of them exhibited a significant ability to inhibit amyloid aggregation,
PHF6 tau sequence aggregation, acetylcholinesterase (AChE), and monoamine
oxidase (MAO) B. In particular, naphthoquinone 2 resulted
as one of the best performing multitarget-directed ligand (MTDL) experiencing
a high potency profile in inhibiting β-amyloid (Aβ40) aggregation (IC50 = 3.2 μM), PHF6 tau
fragment (91% at 10 μM), AChE enzyme (IC50 = 9.2
μM) jointly with a remarkable inhibitory activity against MAO
B (IC50 = 7.7 nM). Molecular modeling studies explained
the structure–activity relationship (SAR) around the binding
modes of representative compound 2 in complex with hMAO
B and hAChE enzymes, revealing inhibitor/protein key contacts and
the likely molecular rationale for enzyme selectivity. Compound 2 was also demonstrated to be a strong inhibitor of Aβ42 aggregation, with potency comparable to quercetin. Accordingly,
atomic force microscopy (AFM) revealed that the most promising naphthoquinones 2 and 5 and anthraquinones 11 and 12 were able to impair Aβ42 fibrillation,
deconstructing the morphologies of its fibrillar aggregates. Moreover,
the same compounds exerted a moderate neuroprotective effect against
Aβ42 toxicity in primary cultures of cerebellar granule
cells. Therefore, our findings demonstrate that these molecules may
represent valuable chemotypes toward the development of promising
candidates for AD therapy.
Collapse
Affiliation(s)
- Marta Campora
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Elena Gatta
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Bruno Tasso
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Annalisa Relini
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Marco Catto
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| |
Collapse
|
46
|
Chen H, Bian A, Yang LF, Yin X, Wang J, Ti C, Miao Y, Peng S, Xu S, Liu M, Qiu WW, Yi Z. Targeting STAT3 by a small molecule suppresses pancreatic cancer progression. Oncogene 2021; 40:1440-1457. [PMID: 33420372 PMCID: PMC7906907 DOI: 10.1038/s41388-020-01626-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is lethal in over 90% of cases since it is resistant to current therapeutic strategies. The key role of STAT3 in promoting pancreatic cancer progression has been proven, but effective interventions that suppress STAT3 activities are limited. The development of novel anticancer agents that directly target STAT3 may have potential clinical benefits for pancreatic cancer treatment. Here, we report a new small-molecule inhibitor (N4) with potent antitumor bioactivity, which inhibits multiple oncogenic processes in pancreatic cancer. N4 blocked STAT3 and phospho-tyrosine (pTyr) peptide interactions in fluorescence polarization (FP) assay, specifically abolished phosphor-STAT3 (Tyr705), and suppressed expression of STAT3 downstream genes. The mechanism involved the direct binding of N4 to the STAT3 SH2 domain, thereby, the STAT3 dimerization, STAT3-EGFR, and STAT3-NF-κB cross-talk were efficiently inhibited. In animal models of pancreatic cancer, N4 was well tolerated, suppressed tumor growth and metastasis, and significantly prolonged survival of tumor-bearing mice. Our results offer a preclinical proof of concept for N4 as a candidate therapeutic compound for pancreatic cancer.
Collapse
Affiliation(s)
- Huang Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Aiwu Bian
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lian-Fang Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xuan Yin
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Chaowen Ti
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ying Miao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shihong Peng
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shifen Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
47
|
Proteins moonlighting in tumor metabolism and epigenetics. Front Med 2021; 15:383-403. [PMID: 33387254 DOI: 10.1007/s11684-020-0818-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Cancer development is a complicated process controlled by the interplay of multiple signaling pathways and restrained by oxygen and nutrient accessibility in the tumor microenvironment. High plasticity in using diverse nutrients to adapt to metabolic stress is one of the hallmarks of cancer cells. To respond to nutrient stress and to meet the requirements for rapid cell proliferation, cancer cells reprogram metabolic pathways to take up more glucose and coordinate the production of energy and intermediates for biosynthesis. Such actions involve gene expression and activity regulation by the moonlighting function of oncoproteins and metabolic enzymes. The signal - moonlighting protein - metabolism axis facilitates the adaptation of tumor cells under varying environment conditions and can be therapeutically targeted for cancer treatment.
Collapse
|
48
|
Prohibitin, STAT3 and SH2D4A physically and functionally interact in tumor cell mitochondria. Cell Death Dis 2020; 11:1023. [PMID: 33257655 PMCID: PMC7705682 DOI: 10.1038/s41419-020-03220-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Chromosome 8p is frequently deleted in various cancer entities and has been shown to correlate with poor patient survival. SH2D4A is located on chromosome 8p and prevents the nuclear translocation of the pro-tumorigenic transcription factor STAT3. Here, we investigated the interaction of SH2D4A and STAT3 to shed light on the non-canonical functions of STAT3 in cooperation with the tumor suppressor SH2D4A. Using an immunoprecipitation-mass spectrometry (IP-MS) approach, we identified the mitochondrial scaffold proteins prohibitin 1 (PHB1) and prohibitin 2 (PHB2) among other proteins to potentially bind to SH2D4A. Co-immunoprecipitation and proximity ligation assays confirmed direct interactions of STAT3, PHB1, and SH2D4A in situ and in vitro. In addition, cell fractionation and immunofluorescence staining revealed co-localization of these proteins with mitochondria. These interactions were selectively interrupted by the small molecule and PHB ligand FL3. Furthermore, FL3 led to a reduction of STAT3 protein levels, STAT3 transcriptional activity, and HIF1α protein stabilization upon dimethyloxalylglycine (DMOG) treatment. Besides, mitochondrial fusion and fission markers, L-OPA1, Mfn1, and FIS1, were dysregulated upon FL3 treatment. This dysregulated morphology was accompanied by significant reduction of mitochondrial respiration, thus, FL3 significantly diminished mitochondrial respirational capacity. In contrast, SH2D4A knockout increased mitochondrial respiration, whereas FL3 reversed the effect of SH2D4A knockout. The here described results indicate that the interaction of SH2D4A and PHB1 is involved in the mitochondrial function and integrity. The demonstrated interaction with STAT3, accompanied by its reduction of transcriptional activity, further suggests that SH2D4A is linking STAT3 to its mitochondrial functions, and inhibition of PHB-interaction may have therapeutic effects in tumor cells with STAT3 activation.
Collapse
|
49
|
Brambilla L, Lahiri T, Cammer M, Levy DE. STAT3 Inhibitor OPB-51602 Is Cytotoxic to Tumor Cells Through Inhibition of Complex I and ROS Induction. iScience 2020; 23:101822. [PMID: 33305182 PMCID: PMC7708861 DOI: 10.1016/j.isci.2020.101822] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/25/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
STAT3 is a transcription factor involved in several cellular activities including inflammation, proliferation, and survival, but it also plays a non-transcriptional role in modulating mitochondrial metabolism. Given its diverse functions in human cancers, it is an emerging therapeutic target. Here we show that OPB-51602, a small molecule inhibitor of STAT3, is highly toxic in a STAT3-dependent manner. Specifically, drug toxicity depends on mitochondrial STAT3 as tumor cells expressing only a mitochondrially restricted form of STAT3 are sensitive to the compound, whereas STAT3-null cells are protected. OPB-51602 inhibited complex I activity and led to increased ROS production, which in turn induced mitophagy, actin rearrangements, and cell death. Cells undergoing reduced oxidative phosphorylation or expressing NDI1 NADH dehydrogenase from Saccharomyces cerevisiae, which bypasses mammalian complex I, were resistant to OPB-51602 toxicity. These results show that targeting mitochondrial STAT3 function causes synthetic lethality through complex I inhibition that could be exploited for cancer chemotherapy. OPB-51602 is cytotoxic to human tumor cell lines in a STAT3-dependent manner Cytotoxicity depends on ROS induction and leads to mitophagy and actin remodeling OPB-51602 affects oxidative phosphorylation by inhibiting complex I via STAT3 Expression of a STAT3-independent form of complex I is cytoprotective
Collapse
Affiliation(s)
- Lara Brambilla
- Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, 550 1st Avenue MSB548A, New York, NY 10016, USA
| | - Tanaya Lahiri
- Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, 550 1st Avenue MSB548A, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, NYU Grossman School of Medicine, 55- 1st Avenue SK2, New York, NY 10016, USA
| | - David E Levy
- Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, 550 1st Avenue MSB548A, New York, NY 10016, USA
| |
Collapse
|
50
|
Targeting the JAK2/STAT3 Pathway-Can We Compare It to the Two Faces of the God Janus? Int J Mol Sci 2020; 21:ijms21218261. [PMID: 33158194 PMCID: PMC7663396 DOI: 10.3390/ijms21218261] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Muscle cachexia is one of the most critical unmet medical needs. Identifying the molecular background of cancer-induced muscle loss revealed a promising possibility of new therapeutic targets and new drug development. In this review, we will define the signal transducer and activator of transcription 3 (STAT3) protein's role in the tumor formation process and summarize the role of STAT3 in skeletal muscle cachexia. Finally, we will discuss a vast therapeutic potential for the STAT3-inhibiting single-agent treatment innovation that, as the desired outcome, could block tumor growth and generally prevent muscle cachexia.
Collapse
|