1
|
Greer EL, Lee SS, Prahlad V. Chromatin and epigenetics in aging biology. Genetics 2025; 230:iyaf055. [PMID: 40202900 DOI: 10.1093/genetics/iyaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
This book chapter will focus on modifications to chromatin itself, how chromatin modifications are regulated, and how these modifications are deciphered by the cell to impact aging. In this chapter, we will review how chromatin modifications change with age, examine how chromatin-modifying enzymes have been shown to regulate aging and healthspan, discuss how some of these epigenetic changes are triggered and how they can regulate the lifespan of the individual and its naïve descendants, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Lan X, Yang M, Wang J, Huang C, Wu A, Cui L, Guo Y, Zeng L, Guo X, Zhang Y, Xiang Y, Wang Q. Pore-Forming Protein LIN-24 Enhances Starvation Resilience in Caenorhabditis elegans by Modulating Lipid Metabolism and Mitochondrial Dynamics. Toxins (Basel) 2025; 17:72. [PMID: 39998089 PMCID: PMC11860826 DOI: 10.3390/toxins17020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
The ability to survive starvation is a critical evolutionary adaptation, yet the molecular mechanisms underlying this capability remain incompletely understood. Pore-forming proteins (PFPs) are typically associated with immune defense, where they disturb the membranes of target cells. However, the role of PFPs in non-immune functions, particularly in metabolic and structural adaptations to starvation, is less explored. Here, we investigate the aerolysin-like PFP LIN-24 in Caenorhabditis elegans and uncover its novel function in enhancing starvation resistance. We found that LIN-24 expression is upregulated during starvation, leading to increased expression of the lipase-encoding gene lipl-3. This upregulation accelerates the mobilization and degradation of lipid stores, thereby sustaining energy levels. Additionally, LIN-24 overexpression significantly preserves muscle integrity, as evidenced by the maintenance of muscle structure compared to wild-type worms. Furthermore, we demonstrate that LIN-24 induces the formation of donut-shaped mitochondria, a structural change likely aimed at reducing ATP production to conserve energy during prolonged nutrient deprivation. This mitochondrial remodeling depends on genes involved in mitochondrial dynamics, including mff-1, mff-2, drp-1, and clk-1. Collectively, these findings expand our understanding of PFPs, demonstrating their multifaceted role in stress resistance beyond immune defense. LIN-24's involvement in regulating metabolism, preserving muscle structure, and remodeling mitochondria highlights its crucial role in the adaptive response to starvation, offering novel insights into the evolution of stress resistance mechanisms and potential therapeutic targets for conditions related to muscle preservation and metabolic regulation.
Collapse
Affiliation(s)
- Xinqiang Lan
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Mengqi Yang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Jiali Wang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Chunping Huang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Andong Wu
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Leilei Cui
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Yingqi Guo
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China; (Y.G.); (L.Z.)
| | - Lin Zeng
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China; (Y.G.); (L.Z.)
| | - Xiaolong Guo
- School of Physical Education, Yunnan Normal University, Kunming 650500, China;
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650204, China;
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Qiquan Wang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| |
Collapse
|
3
|
Cheng E, Lu R, Gerhold AR. Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells. PLoS Genet 2024; 20:e1011351. [PMID: 39715269 PMCID: PMC11706408 DOI: 10.1371/journal.pgen.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C. elegans germline stem and progenitor cells (GSPCs) to ask how the signaling environment influences stem and progenitor cell mitosis in vivo. Through a candidate screen we identify a new role for the insulin/IGF receptor (IGFR), daf-2, during GSPC mitosis. Mitosis is delayed in daf-2/IGFR mutants, and these delays require canonical, DAF-2/IGFR to DAF-16/FoxO insulin signaling, here acting cell non-autonomously from the soma. Interestingly, mitotic delays in daf-2/IGFR mutants depend on the spindle assembly checkpoint but are not accompanied by a loss of mitotic fidelity. Correspondingly, we show that caloric restriction, which delays GSPC mitosis and compromises mitotic fidelity, does not act via the canonical insulin signaling pathway, and instead requires AMP-activated kinase (AMPK). Together this work demonstrates that GSPC mitosis is influenced by at least two genetically separable signaling pathways and highlights the importance of signaling networks for proper stem and progenitor cell mitosis in vivo.
Collapse
Affiliation(s)
- Eric Cheng
- Department of Biology, McGill University, Montréal, Canada
| | - Ran Lu
- Department of Biology, McGill University, Montréal, Canada
| | | |
Collapse
|
4
|
Wong C, Jurczak EM, Roy R. Neuronal exosomes transport an miRISC cargo to preserve stem cell integrity during energy stress. Cell Rep 2024; 43:114851. [PMID: 39392750 DOI: 10.1016/j.celrep.2024.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/19/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
During periods of nutrient scarcity, many animals undergo germline quiescence to preserve reproductive capacity, and neurons are often necessary for this adaptation. We show here that starvation causes the release of neuronal microRNA (miRNA)/Argonaute-loaded exosomes following AMP kinase-regulated trafficking changes within serotonergic neurons. This neuron-to-germline communication is independent of classical neurotransmission but instead relies on endosome-derived vesicles that carry a pro-quiescent small RNA cargo to modify germline gene expression. Using an miRNA activity sensor, we show that neuronally expressed miRNAs can extinguish the expression of germline mRNA targets in an exosome-dependent manner. Our findings demonstrate how an adaptive neuronal response can change gene expression at a distance by redirecting intracellular trafficking to release neuronal exosomes with specific miRNA cargoes capable of tracking to their appropriate destinations.
Collapse
Affiliation(s)
- Christopher Wong
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Elena M Jurczak
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
5
|
Li J, Zhang S, Li C, Zhang X, Shan Y, Zhang Z, Bo H, Zhang Y. Endurance exercise-induced histone methylation modification involved in skeletal muscle fiber type transition and mitochondrial biogenesis. Sci Rep 2024; 14:21154. [PMID: 39256490 PMCID: PMC11387812 DOI: 10.1038/s41598-024-72088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Skeletal muscle is a highly heterogeneous tissue, and its contractile proteins are composed of different isoforms, forming various types of muscle fiber, each of which has its own metabolic characteristics. It has been demonstrated that endurance exercise induces the transition of muscle fibers from fast-twitch to slow-twitch muscle fiber type. Herein, we discover a novel epigenetic mechanism for muscle contractile property tightly coupled to its metabolic capacity during muscle fiber type transition with exercise training. Our results show that an 8-week endurance exercise induces histone methylation remodeling of PGC-1α and myosin heavy chain (MHC) isoforms in the rat gastrocnemius muscle, accompanied by increased mitochondrial biogenesis and an elevated ratio of slow-twitch to fast-twitch fibers. Furthermore, to verify the roles of reactive oxygen species (ROS) and AMPK in exercise-regulated epigenetic modifications and muscle fiber type transitions, mouse C2C12 myotubes were used. It was shown that rotenone activates ROS/AMPK pathway and histone methylation enzymes, which then promote mitochondrial biogenesis and MHC slow isoform expression. Mitoquinone (MitoQ) partially blocking rotenone-treated model confirms the role of ROS in coupling mitochondrial biogenesis with muscle fiber type. In conclusion, endurance exercise couples mitochondrial biogenesis with MHC slow isoform by remodeling histone methylation, which in turn promotes the transition of fast-twitch to slow-twitch muscle fibers. The ROS/AMPK pathway may be involved in the regulation of histone methylation enzymes by endurance exercise.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Sheng Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
- Tianjin Hospital, Tianjin, 300299, China
| | - Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
- Department of sport science, Tianjin normal university, Tianjin, 300387, China
| | - Xiaoxia Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yuhui Shan
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
6
|
Vodičková A, Müller-Eigner A, Okoye CN, Bischer AP, Horn J, Koren SA, Selim NA, Wojtovich AP. Mitochondrial energy state controls AMPK-mediated foraging behavior in C. elegans. SCIENCE ADVANCES 2024; 10:eadm8815. [PMID: 38630817 PMCID: PMC11023558 DOI: 10.1126/sciadv.adm8815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Organisms surveil and respond to their environment using behaviors entrained by metabolic cues that reflect food availability. Mitochondria act as metabolic hubs and at the center of mitochondrial energy production is the protonmotive force (PMF), an electrochemical gradient generated by metabolite consumption. The PMF serves as a central integrator of mitochondrial status, but its role in governing metabolic signaling is poorly understood. We used optogenetics to dissipate the PMF in Caenorhabditis elegans tissues to test its role in food-related behaviors. Our data demonstrate that PMF reduction in the intestine is sufficient to initiate locomotor responses to acute food deprivation. This behavioral adaptation requires the cellular energy regulator AMP-activated protein kinase (AMPK) in neurons, not in the intestine, and relies on mitochondrial dynamics and axonal trafficking. Our results highlight a role for intestinal PMF as an internal metabolic cue, and we identify a bottom-up signaling axis through which changes in the PMF trigger AMPK activity in neurons to promote foraging behavior.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Annika Müller-Eigner
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Chidozie N. Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrew P. Bischer
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacob Horn
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nada Ahmed Selim
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrew P. Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
7
|
Abstract
Numerous examples of different phenotypic outcomes in response to varying environmental conditions have been described across phyla, from plants to mammals. Here, we examine the impact of the environment on different developmental traits, focusing in particular on one key environmental variable, nutrient availability. We present advances in our understanding of developmental plasticity in response to food variation using the nematode Caenorhabditis elegans, which provides a near-isogenic context while permitting lab-controlled environments and analysis of wild isolates. We discuss how this model has allowed investigators not only to describe developmental plasticity events at the organismal level but also to zoom in on the tissues involved in translating changes in the environment into a plastic response, as well as the underlying molecular pathways, and sometimes associated changes in behaviour. Lastly, we also discuss how early life starvation experiences can be logged to later impact adult physiological traits, and how such memory could be wired.
Collapse
Affiliation(s)
- Sophie Jarriault
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| | - Christelle Gally
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| |
Collapse
|
8
|
Li J, Zhang Z, Bo H, Zhang Y. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification. Free Radic Biol Med 2024; 213:409-425. [PMID: 38295887 DOI: 10.1016/j.freeradbiomed.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Skeletal muscle is a heterogeneous tissue composed of different types of muscle fibers, demonstrating substantial plasticity. Physiological or pathological stimuli can induce transitions in muscle fiber types. However, the precise regulatory mechanisms behind these transitions remains unclear. This paper reviews the classification and characteristics of muscle fibers, along with the classical mechanisms of muscle fiber type transitions. Additionally, the role of exercise-induced muscle fiber type transitions in disease intervention is reviewed. Epigenetic pathways mediate cellular adaptations and thus represent potential targets for regulating muscle fiber type transitions. This paper focuses on the mechanisms by which epigenetic modifications couple mitochondrial function and contraction characteristics. Reactive Oxygen Species (ROS) are critical signaling regulators for the health-promoting effects of exercise. Finally, we discuss the role of exercise-induced ROS in regulating epigenetic modifications and the transition of muscle fiber types.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
9
|
An HM, Dai YF, Zhu J, Liu W, Wang XP. MYST family histone acetyltransferases regulate reproductive diapause initiation. Int J Biol Macromol 2024; 256:128269. [PMID: 38029912 DOI: 10.1016/j.ijbiomac.2023.128269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Histone acetylation, a crucial epigenetic mechanism, has been suggested to play a role in diapause regulation, but this has not been confirmed through gene loss-of-function studies. In this work, we investigated the involvement of MYST family genes, which are key writers of histone acetylation, in initiating reproductive diapause using the cabbage beetle Colaphellus bowringi as a model. We identified C. bowringi orthologs of MYST, including Tip60, KAT6A, KAT7, and KAT8, from previous transcriptomes. Analyses of phylogenetic trees and protein domains indicated that these MYST proteins are structurally conserved across animal species. Expression of these MYST genes was found to be enriched in heads and ovaries of C. bowringi. Under reproductive photoperiod conditions, RNAi targeting MYST genes, especially KAT8, suppressed ovarian growth and yolk deposition, resembling the characteristics of diapausing ovaries. Additionally, KAT8 knockdown led to the upregulation of diapause-related genes, such as heat shock proteins and diapause protein 1, and the emergence of diapause-like guts. Moreover, KAT8 knockdown reduced the expression of a crucial enzyme involved in juvenile hormone (JH) biosynthesis, likely due to decreased H4K16ac levels. Consequently, our findings suggest that MYST family genes, specifically KAT8, influence the JH signal, thereby regulating the initiation of reproductive diapause.
Collapse
Affiliation(s)
- Hao-Min An
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Fei Dai
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Frézal L, Saglio M, Zhang G, Noble L, Richaud A, Félix MA. Genome-wide association and environmental suppression of the mortal germline phenotype of wild C. elegans. EMBO Rep 2023; 24:e58116. [PMID: 37983674 PMCID: PMC10702804 DOI: 10.15252/embr.202358116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The animal germline lineage needs to be maintained along generations. However, some Caenorhabditis elegans wild isolates display a mortal germline phenotype, leading to sterility after several generations at 25°C. Using a genome-wide association approach, we detect a significant peak on chromosome III around 5 Mb, confirmed by introgressions. Thus, a seemingly deleterious genotype is maintained at intermediate frequency in the species. Environmental rescue is a likely explanation, and indeed associated bacteria and microsporidia suppress the phenotype of wild isolates as well as mutants in small RNA inheritance (nrde-2) and histone modifications (set-2). Escherichia coli strains of the K-12 lineage suppress the phenotype compared to B strains. By shifting a wild strain from E. coli K-12 to E. coli B, we find that memory of the suppressing condition is maintained over several generations. Thus, the mortal germline phenotype of wild C. elegans is in part revealed by laboratory conditions and may represent variation in epigenetic inheritance and environmental interactions. This study also points to the importance of non-genetic memory in the face of environmental variation.
Collapse
Affiliation(s)
- Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie Saglio
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Gaotian Zhang
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Luke Noble
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Aurélien Richaud
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|
11
|
Liberman N, Rothi MH, Gerashchenko MV, Zorbas C, Boulias K, MacWhinnie FG, Ying AK, Flood Taylor A, Al Haddad J, Shibuya H, Roach L, Dong A, Dellacona S, Lafontaine DLJ, Gladyshev VN, Greer EL. 18S rRNA methyltransferases DIMT1 and BUD23 drive intergenerational hormesis. Mol Cell 2023; 83:3268-3282.e7. [PMID: 37689068 PMCID: PMC11990152 DOI: 10.1016/j.molcel.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 09/11/2023]
Abstract
Heritable non-genetic information can regulate a variety of complex phenotypes. However, what specific non-genetic cues are transmitted from parents to their descendants are poorly understood. Here, we perform metabolic methyl-labeling experiments to track the heritable transmission of methylation from ancestors to their descendants in the nematode Caenorhabditis elegans (C. elegans). We find heritable methylation in DNA, RNA, proteins, and lipids. We find that parental starvation elicits reduced fertility, increased heat stress resistance, and extended longevity in fed, naïve progeny. This intergenerational hormesis is accompanied by a heritable increase in N6'-dimethyl adenosine (m6,2A) on the 18S ribosomal RNA at adenosines 1735 and 1736. We identified DIMT-1/DIMT1 as the m6,2A and BUD-23/BUD23 as the m7G methyltransferases in C. elegans that are both required for intergenerational hormesis, while other rRNA methyltransferases are dispensable. This study labels and tracks heritable non-genetic material across generations and demonstrates the importance of rRNA methylation for regulating epigenetic inheritance.
Collapse
Affiliation(s)
- Noa Liberman
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - M Hafiz Rothi
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark Campus, 6041 Gosselies, Belgium
| | - Konstantinos Boulias
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Fiona G MacWhinnie
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Albert Kejun Ying
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anya Flood Taylor
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Joseph Al Haddad
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hiroki Shibuya
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Lara Roach
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anna Dong
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Scarlett Dellacona
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark Campus, 6041 Gosselies, Belgium
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
In Vivo Analysis of a Biomolecular Condensate in the Nervous System of C. elegans. Methods Mol Biol 2023; 2551:575-593. [PMID: 36310226 DOI: 10.1007/978-1-0716-2597-2_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a common biophysical event that facilitates the formation of non-membrane-bound cellular compartments, also termed biomolecular condensates. Since the first report of a biomolecular condensate in the germline of C. elegans, many regulatory hubs have been shown to have similar liquid-like features. With the wealth of molecules now being reported to possess liquid-like features, an impetus has been placed on reconciling LLPS with regulation of specific biological properties in vivo. Herein, we report a methodology used to study LLPS-associated features in C. elegans neurons, illustrated using the RNA granule protein TIAR-2. In axons, TIAR-2 forms liquid-like granules, which following injury are inhibitory to the regeneration process. Measuring the dynamics of TIAR-2 granules provides a tractable biological output to study LLPS function. In conjunction with other established methods to assess LLPS, the results from the protocol outlined provide comprehensive insight regarding this important biophysical property.
Collapse
|
13
|
Uma Naresh N, Kim S, Shpilka T, Yang Q, Du Y, Haynes CM. Mitochondrial genome recovery by ATFS-1 is essential for development after starvation. Cell Rep 2022; 41:111875. [PMID: 36577367 PMCID: PMC9922093 DOI: 10.1016/j.celrep.2022.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/09/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
Nutrient availability regulates the C. elegans life cycle as well as mitochondrial physiology. Food deprivation significantly reduces mitochondrial genome (mtDNA) numbers and leads to aging-related phenotypes. Here we show that the bZIP (basic leucine zipper) protein ATFS-1, a mediator of the mitochondrial unfolded protein response (UPRmt), is required to promote growth and establish a functional germline after prolonged starvation. We find that recovery of mtDNA copy numbers and development after starvation requires mitochondrion-localized ATFS-1 but not its nuclear transcription activity. We also find that the insulin-like receptor DAF-2 functions upstream of ATFS-1 to modulate mtDNA content. We show that reducing DAF-2 activity represses ATFS-1 nuclear function while causing an increase in mtDNA content, partly mediated by mitochondrion-localized ATFS-1. Our data indicate the importance of the UPRmt in recovering mitochondrial mass and suggest that atfs-1-dependent mtDNA replication precedes mitochondrial network expansion after starvation.
Collapse
Affiliation(s)
- Nandhitha Uma Naresh
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sookyung Kim
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tomer Shpilka
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Qiyuan Yang
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yunguang Du
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Cole M Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
14
|
Sun B, Sherrin M, Roy R. Unscheduled epigenetic modifications cause genome instability and sterility through aberrant R-loops following starvation. Nucleic Acids Res 2022; 51:84-98. [PMID: 36504323 PMCID: PMC9841415 DOI: 10.1093/nar/gkac1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
During starvation, organisms modify both gene expression and metabolism to adjust to the energy stress. We previously reported that Caenorhabditis elegans lacing AMP-activated protein kinase (AMPK) exhibit transgenerational reproductive defects associated with abnormally elevated trimethylated histone H3 at lysine 4 (H3K4me3) levels in the germ line following recovery from acute starvation. Here, we show that these H3K4me3 marks are significantly increased at promoters, driving aberrant transcription elongation resulting in the accumulation of R-loops in starved AMPK mutants. DNA-RNA immunoprecipitation followed by high-throughput sequencing (DRIP-seq) analysis demonstrated that a significant proportion of the genome was affected by R-loop formation. This was most pronounced in the promoter-transcription start site regions of genes, in which the chromatin was modified by H3K4me3. Like H3K4me3, the R-loops were also found to be heritable, likely contributing to the transgenerational reproductive defects typical of these mutants following starvation. Strikingly, AMPK mutant germ lines show considerably more RAD-51 (the RecA recombinase) foci at sites of R-loop formation, potentially sequestering them from their roles at meiotic breaks or at sites of induced DNA damage. Our study reveals a previously unforeseen role of AMPK in maintaining genome stability following starvation. The downstream effects of R-loops on DNA damage sensitivity and germline stem cell integrity may account for inappropriate epigenetic modification that occurs in numerous human disorders, including various cancers.
Collapse
Affiliation(s)
- Bing Sun
- To whom correspondence should be addressed.
| | - McLean Sherrin
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Richard Roy
- Correspondence may also be addressed to Richard Roy. Tel: +1 514 398 6437;
| |
Collapse
|
15
|
Webster AK, Chitrakar R, Taylor SM, Baugh LR. Alternative somatic and germline gene-regulatory strategies during starvation-induced developmental arrest. Cell Rep 2022; 41:111473. [PMID: 36223742 PMCID: PMC9608353 DOI: 10.1016/j.celrep.2022.111473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Nutrient availability governs growth and quiescence, and many animals arrest development when starved. Using C. elegans L1 arrest as a model, we show that gene expression changes deep into starvation. Surprisingly, relative expression of germline-enriched genes increases for days. We conditionally degrade the large subunit of RNA polymerase II using the auxin-inducible degron system and analyze absolute expression levels. We find that somatic transcription is required for survival, but the germline maintains transcriptional quiescence. Thousands of genes are continuously transcribed in the soma, though their absolute abundance declines, such that relative expression of germline transcripts increases given extreme transcript stability. Aberrantly activating transcription in starved germ cells compromises reproduction, demonstrating important physiological function of transcriptional quiescence. This work reveals alternative somatic and germline gene-regulatory strategies during starvation, with the soma maintaining a robust transcriptional response to support survival and the germline maintaining transcriptional quiescence to support future reproductive success. Webster et al. show that the transcriptional response to starvation is mounted early in larval somatic cells supporting survival but that it wanes over time. In contrast, they show that the germline remains transcriptionally quiescent deep into starvation, supporting reproductive potential, while maintaining its transcriptome via transcript stability.
Collapse
Affiliation(s)
- Amy K. Webster
- Department of Biology, Duke University, Durham, NC 27708, USA,Present address: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Seth M. Taylor
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA,Lead contact,Correspondence:
| |
Collapse
|
16
|
Geffroy B. Energy as the cornerstone of environmentally driven sex allocation. Trends Endocrinol Metab 2022; 33:670-679. [PMID: 35934660 DOI: 10.1016/j.tem.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
In recent years, observations of distinct organisms have linked the quality of the environment experienced by a given individual and the sex it will develop. In most described cases, facing relatively harsh conditions resulted in masculinization, while thriving in favorable conditions promoted the development of an ovary. This was shown indistinctively in some species presenting a genetic sex determination (GSD), which were able to sex-reverse, and in species with an environmental sex determination (ESD) system. However, this pattern strongly depends on evolutionary constrains and is detected only when females need more energy for reproduction. Here, I describe the mechanisms involved in this environmentally driven sex allocation (EDSA), which involves two main energy pathways, lipid and carbohydrate metabolism. These pathways act through various enzymes and are not necessarily independent of the previously known transducers of environmental signals in species with ESD: calcium-redox, epigenetic, and stress regulation pathways. Overall, there is evidence of a link between energy level and the sexual fate of individuals of various species, including reptiles, fish, amphibians, insects, and nematodes. As energy pathways are evolutionarily conserved, this knowledge opens new avenues to advance our understanding of the mechanisms that allow animals to adapt their sex according to the local environment.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, Univ Montpellier, Ifremer, IRD, CNRS, Montpellier, France.
| |
Collapse
|
17
|
Cai WF, Yan MM, Wang Z, Jiang MP, Yan B, Shen CY. Optimization of the extract from flower of Citrus aurantium L. var. amara Engl. and its inhibition of lipid accumulation. J Food Biochem 2022; 46:e14332. [PMID: 35894798 DOI: 10.1111/jfbc.14332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Flower of Citrus aurantium L. var. amara Engl. (CAVA) has been confirmed to have promising anti-obesity effects. However, the regulation of alkaloid extracts from flower of CAVA (Al) on lipid metabolism remain unknown. In this study, Al was optimized by ultrasound-assisted extraction using response surface methodology. The optimal conditions were ultrasonic time 72 min, ethanol concentration 78% and liquid/solid ratio 30 ml/g with the maximum alkaloid yield 5.66%. LC-MS assay indicated that the alkaloid compounds were enriched in Al after optimization. Nine alkaloid compounds were identified in Al by LC-MS assay and stachydrine, caffeine and cathine appeared as the major alkaloid compounds. Bioactivity assay showed that Al treatment significantly increased superoxide dismutase (SOD) activity, and reduced malonaldehyde (MDA) and reactive oxygen species (ROS) levels. Al administration also reversed oleic acid-induced hepatic steatosis in Hep G2 cells by inhibiting the expression of lipogenesis-signaling genes including fatty acid synthase (FAS), peroxisome proliferator-activated receptor subtype γ (PPARγ), uncoupling protein 2 (UCP2), and retinol binding protein (RBP4). However, OA-induced reduction of lipolysis-related gene carnitine palmitoyl transferase 1A (CPT1A) in Hep G2 cells was not improved by Al supplementation. Moreover, the increased SOD activity and decreased MDA and ROS contents were also observed in Caenorhabditis elegans by Al addition. Al intervention exhibited the ability to inhibit lipid accumulation in C. elegans by suppressing expression of lipid metabolism-related genes. These results suggested that the alkaloid extracts from the flower of CAVA showed great potential to regulate lipid metabolism. PRACTICAL APPLICATIONS: The extraction of alkaloid extracts from the flower of CAVA was optimized with a maximum yield of 5.66%. The regulatory effects and mechanisms of Al on lipid metabolism of Hep G2 cells and Caenorhabditis elegans were also investigated. More clinical studies are required to evaluate the potential of using alkaloids from the flower of CAVA as therapeutic agents against lipid metabolic disorders.
Collapse
Affiliation(s)
- Wei-Feng Cai
- Guangxi Academy of Sciences, Guangxi Mangrove Research Center, Guangxi Key Lab of Mangrove Conservation and Utilization, Beihai, People's Republic of China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Mao-Mao Yan
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zheng Wang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Meng-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Bing Yan
- Guangxi Academy of Sciences, Guangxi Mangrove Research Center, Guangxi Key Lab of Mangrove Conservation and Utilization, Beihai, People's Republic of China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Wan QL, Meng X, Wang C, Dai W, Luo Z, Yin Z, Ju Z, Fu X, Yang J, Ye Q, Zhang ZH, Zhou Q. Histone H3K4me3 modification is a transgenerational epigenetic signal for lipid metabolism in Caenorhabditis elegans. Nat Commun 2022; 13:768. [PMID: 35140229 PMCID: PMC8828817 DOI: 10.1038/s41467-022-28469-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2022] [Indexed: 11/09/2022] Open
Abstract
As a major risk factor to human health, obesity presents a massive burden to people and society. Interestingly, the obese status of parents can cause progeny's lipid accumulation through epigenetic inheritance in multiple species. To date, many questions remain as to how lipid accumulation leads to signals that are transmitted across generations. In this study, we establish a nematode model of C. elegans raised on a high-fat diet (HFD) that leads to measurable lipid accumulation, which can transmit the lipid accumulation signal to their multigenerational progeny. Using this model, we find that transcription factors DAF-16/FOXO and SBP-1/SREBP, nuclear receptors NHR-49 and NHR-80, and delta-9 desaturases (fat-5, fat-6, and fat-7) are required for transgenerational lipid accumulation. Additionally, histone H3K4 trimethylation (H3K4me3) marks lipid metabolism genes and increases their transcription response to multigenerational obesogenic effects. In summary, this study establishes an interaction between a network of lipid metabolic genes and chromatin modifications, which work together to achieve transgenerational epigenetic inheritance of obesogenic effects.
Collapse
Affiliation(s)
- Qin-Li Wan
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.,Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao Meng
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chongyang Wang
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Wenyu Dai
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenhuan Luo
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhinan Yin
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regeneration Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaodie Fu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jing Yang
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qunshan Ye
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhan-Hui Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China. .,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
19
|
Harney E, Paterson S, Collin H, Chan BH, Bennett D, Plaistow SJ. Pollution induces epigenetic effects that are stably transmitted across multiple generations. Evol Lett 2022; 6:118-135. [PMID: 35386832 PMCID: PMC8966472 DOI: 10.1002/evl3.273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
It has been hypothesized that the effects of pollutants on phenotypes can be passed to subsequent generations through epigenetic inheritance, affecting populations long after the removal of a pollutant. But there is still little evidence that pollutants can induce persistent epigenetic effects in animals. Here, we show that low doses of commonly used pollutants induce genome‐wide differences in cytosine methylation in the freshwater crustacean Daphnia pulex. Uniclonal populations were either continually exposed to pollutants or switched to clean water, and methylation was compared to control populations that did not experience pollutant exposure. Although some direct changes to methylation were only present in the continually exposed populations, others were present in both the continually exposed and switched to clean water treatments, suggesting that these modifications had persisted for 7 months (>15 generations). We also identified modifications that were only present in the populations that had switched to clean water, indicating a long‐term legacy of pollutant exposure distinct from the persistent effects. Pollutant‐induced differential methylation tended to occur at sites that were highly methylated in controls. Modifications that were observed in both continually and switched treatments were highly methylated in controls and showed reduced methylation in the treatments. On the other hand, modifications found just in the switched treatment tended to have lower levels of methylation in the controls and showed increase methylation in the switched treatment. In a second experiment, we confirmed that sublethal doses of the same pollutants generate effects on life histories for at least three generations following the removal of the pollutant. Our results demonstrate that even low doses of pollutants can induce transgenerational epigenetic effects that are stably transmitted over many generations. Persistent effects are likely to influence phenotypic development, which could contribute to the rapid adaptation, or extinction, of populations confronted by anthropogenic stressors.
Collapse
Affiliation(s)
- Ewan Harney
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
- Current address: Institute of Evolutionary Biology (CSIC‐UPF) CMIMA Building Barcelona 08003 Spain
| | - Steve Paterson
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Hélène Collin
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Brian H.K. Chan
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
- Current address: Faculty of Biology, Medicine and Health The University of Manchester Manchester M13 9PT United Kingdom
| | - Daimark Bennett
- Molecular and Physiology Cell Signalling, Institute of Systems, Molecular and Integrative Biology University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Stewart J. Plaistow
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| |
Collapse
|
20
|
Fry AL, Webster AK, Burnett J, Chitrakar R, Baugh LR, Hubbard EJA. DAF-18/PTEN inhibits germline zygotic gene activation during primordial germ cell quiescence. PLoS Genet 2021; 17:e1009650. [PMID: 34288923 PMCID: PMC8294487 DOI: 10.1371/journal.pgen.1009650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Quiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. The sole PTEN ortholog in Caenorhabditis elegans is daf-18. In a C. elegans loss-of-function mutant for daf-18, primordial germ cells (PGCs) divide inappropriately in L1 larvae hatched into starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence in L1 starvation. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in repression of germline zygotic gene activation, though not in germline fate specification. However, TOR is less important to germline zygotic gene expression, suggesting that in the absence of food, daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.
Collapse
Affiliation(s)
- Amanda L. Fry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Amy K. Webster
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Julia Burnett
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Rojin Chitrakar
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - L. Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - E. Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
21
|
Farquhar KS, Rasouli Koohi S, Charlebois DA. Does transcriptional heterogeneity facilitate the development of genetic drug resistance? Bioessays 2021; 43:e2100043. [PMID: 34160842 DOI: 10.1002/bies.202100043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Non-genetic forms of antimicrobial (drug) resistance can result from cell-to-cell variability that is not encoded in the genetic material. Data from recent studies also suggest that non-genetic mechanisms can facilitate the development of genetic drug resistance. We speculate on how the interplay between non-genetic and genetic mechanisms may affect microbial adaptation and evolution during drug treatment. We argue that cellular heterogeneity arising from fluctuations in gene expression, epigenetic modifications, as well as genetic changes contribute to drug resistance at different timescales, and that the interplay between these mechanisms enhance pathogen resistance. Accordingly, developing a better understanding of the role of non-genetic mechanisms in drug resistance and how they interact with genetic mechanisms will enhance our ability to combat antimicrobial resistance. Also see the video abstract here: https://youtu.be/aefGpdh-bgU.
Collapse
Affiliation(s)
| | - Samira Rasouli Koohi
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G-2E1, Canada
| | - Daniel A Charlebois
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G-2E1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Belew MD, Chien E, Wong M, Michael WM. A global chromatin compaction pathway that represses germline gene expression during starvation. J Cell Biol 2021; 220:212349. [PMID: 34128967 PMCID: PMC8210574 DOI: 10.1083/jcb.202009197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
While much is known about how transcription is controlled at individual genes, comparatively little is known about how cells regulate gene expression on a genome-wide level. Here, we identify a molecular pathway in the C. elegans germline that controls transcription globally in response to nutritional stress. We report that when embryos hatch into L1 larvae, they sense the nutritional status of their environment, and if food is unavailable, they repress gene expression via a global chromatin compaction (GCC) pathway. GCC is triggered by the energy-sensing kinase AMPK and is mediated by a novel mechanism that involves the topoisomerase II/condensin II axis acting upstream of heterochromatin assembly. When the GCC pathway is inactivated, then transcription persists during starvation. These results define a new mode of whole-genome control of transcription.
Collapse
Affiliation(s)
- Mezmur D Belew
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Emilie Chien
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Matthew Wong
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - W Matthew Michael
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
23
|
Robles P, Turner A, Zuco G, Adams S, Paganopolou P, Winton M, Hill B, Kache V, Bateson C, Pires-daSilva A. Parental energy-sensing pathways control intergenerational offspring sex determination in the nematode Auanema freiburgensis. BMC Biol 2021; 19:102. [PMID: 34001117 PMCID: PMC8130380 DOI: 10.1186/s12915-021-01032-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Environmental stimuli experienced by the parental generation influence the phenotype of subsequent generations (Demoinet et al., Proc Natl Acad Sci U S A 114:E2689-E2698, 2017; Burton et al., Nat Cell Biol 19:252-257, 2017; Agrawal et al., Nature 401:60-63, 1999). The effects of these stimuli on the parental generation may be passed through the germline, but the mechanisms at the basis of this non-Mendelian type of inheritance, their level of conservation, how they lead to adaptive vs non-adaptive, and intergenerational vs transgenerational inheritance are poorly understood. Here we show that modulation of nutrient-sensing pathways in the parental generation of the nematode Auanema freiburgensis regulates phenotypic plasticity of its offspring. RESULTS In response to con-specific pheromones indicative of stress, AMP-activated protein kinase (AMPK), mechanistic target of rapamycin complex 1 (mTORC1), and insulin signaling regulate stress resistance and sex determination across one generation, and these effects can be mimicked by pathway modulators. The effectors of these pathways are closely associated with the chromatin, and their regulation affects the chromatin acetylation status in the germline. CONCLUSION These results suggest that highly conserved metabolic sensors regulate phenotypic plasticity through regulation of subcellular localization of their effectors, leading to changes in chromatin acetylation and epigenetic status of the germline.
Collapse
Affiliation(s)
- Pedro Robles
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Anisa Turner
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Giusy Zuco
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Michael Winton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Beth Hill
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Vikas Kache
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Christine Bateson
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Andre Pires-daSilva
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
24
|
Houri-Zeevi L, Teichman G, Gingold H, Rechavi O. Stress resets ancestral heritable small RNA responses. eLife 2021; 10:e65797. [PMID: 33729152 PMCID: PMC8021399 DOI: 10.7554/elife.65797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Transgenerational inheritance of small RNAs challenges basic concepts of heredity. In Caenorhabditis elegans nematodes, small RNAs are transmitted across generations to establish a transgenerational memory trace of ancestral environments and distinguish self-genes from non-self-elements. Carryover of aberrant heritable small RNA responses was shown to be maladaptive and to lead to sterility. Here, we show that various types of stress (starvation, high temperatures, and high osmolarity) induce resetting of ancestral small RNA responses and a genome-wide reduction in heritable small RNA levels. We found that mutants that are defective in various stress pathways exhibit irregular RNAi inheritance dynamics even in the absence of stress. Moreover, we discovered that resetting of ancestral RNAi responses is specifically orchestrated by factors that function in the p38 MAPK pathway and the transcription factor SKN-1/Nrf2. Stress-dependent termination of small RNA inheritance could protect from run-on of environment-irrelevant heritable gene regulation.
Collapse
Affiliation(s)
- Leah Houri-Zeevi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Guy Teichman
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
25
|
Developmental plasticity and the response to nutrient stress in Caenorhabditis elegans. Dev Biol 2021; 475:265-276. [PMID: 33549550 DOI: 10.1016/j.ydbio.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 11/23/2022]
Abstract
Developmental plasticity refers the ability of an organism to adapt to various environmental stressors, one of which is nutritional stress. Caenorhabditis elegans require various nutrients to successfully progress through all the larval stages to become a reproductive adult. If nutritional criteria are not satisfied, development can slow or completely arrest. In poor growth conditions, the animal can enter various diapause stages, depending on its developmental progress. In C. elegans, there are three well-characterized diapauses: the L1 arrest, the dauer diapause, and adult reproductive diapause, each associated with drastic changes in metabolism and germline development. At the centre of these changes is AMP-activated protein kinase (AMPK). AMPK is a metabolic regulator that maintains energy homeostasis, particularly during times of nutrient stress. Without AMPK, metabolism is disrupted during dauer, leading to the rapid consumption of lipid stores as well as misregulation of metabolic enzymes, leading to reduced survival. During the L1 arrest and dauer diapause, AMPK is responsible for ensuring germline quiescence by modifying the germline chromatin landscape to maintain germ cell integrity until conditions improve. Similar to classic hormonal signalling, small RNAs also play a critical role in regulating development and behaviour in a cell non-autonomous fashion. Thus, during the challenges associated with developmental plasticity, AMPK summons an army of signalling pathways to work collectively to preserve reproductive fitness during these periods of unprecedented uncertainty.
Collapse
|
26
|
Wan QL, Meng X, Dai W, Luo Z, Wang C, Fu X, Yang J, Ye Q, Zhou Q. N 6-methyldeoxyadenine and histone methylation mediate transgenerational survival advantages induced by hormetic heat stress. SCIENCE ADVANCES 2021; 7:eabc3026. [PMID: 33523838 PMCID: PMC7775758 DOI: 10.1126/sciadv.abc3026] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/20/2020] [Indexed: 05/05/2023]
Abstract
Environmental stress can induce survival advantages that are passed down to multiple generations, representing an evolutionarily advantageous adaptation at the species level. Using the nematode worm Caenorhabditis elegans as a model, we found that heat shock experienced in either parent could increase the longevity of themselves and up to the fifth generation of descendants. Mechanistic analyses revealed that transcription factor DAF-16/FOXO, heat shock factor HSF-1, and nuclear receptor DAF-12/FXR functioned transgenerationally to implement the hormetic stress response. Histone H3K9me3 methyltransferases SET-25 and SET-32 and DNA N6-methyl methyltransferase DAMT-1 participated in transmitting high-temperature memory across generations. H3K9me3 and N6-methyladenine could mark heat stress response genes and promote their transcription in progeny to extend life span. We dissected the mechanisms responsible for implementing and transmitting environmental memories in descendants from heat-shocked parents and demonstrated that hormetic stress caused survival benefits could be transmitted to multiple generations through H3K9me3 and N6-mA modifications.
Collapse
Affiliation(s)
- Qin-Li Wan
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou, Guangdong 510632, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao Meng
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou, Guangdong 510632, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wenyu Dai
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou, Guangdong 510632, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhenhuan Luo
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou, Guangdong 510632, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chongyang Wang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou, Guangdong 510632, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaodie Fu
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou, Guangdong 510632, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jing Yang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou, Guangdong 510632, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qunshan Ye
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou, Guangdong 510632, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qinghua Zhou
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
27
|
Mata-Cabana A, Pérez-Nieto C, Olmedo M. Nutritional control of postembryonic development progression and arrest in Caenorhabditis elegans. ADVANCES IN GENETICS 2020; 107:33-87. [PMID: 33641748 DOI: 10.1016/bs.adgen.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developmental programs are under strict genetic control that favors robustness of the process. In order to guarantee the same outcome in different environmental situations, development is modulated by input pathways, which inform about external conditions. In the nematode Caenorhabditis elegans, the process of postembryonic development involves a series of stereotypic cell divisions, the progression of which is controlled by the nutritional status of the animal. C. elegans can arrest development at different larval stages, leading to cell arrest of the relevant divisions of the stage. This means that studying the nutritional control of development in C. elegans we can learn about the mechanisms controlling cell division in an in vivo model. In this work, we reviewed the current knowledge about the nutrient sensing pathways that control the progression or arrest of development in response to nutrient availability, with a special focus on the arrest at the L1 stage.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - Carmen Pérez-Nieto
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain.
| |
Collapse
|
28
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
29
|
Abstract
With a nervous system that has only a few hundred neurons, Caenorhabditis elegans was initially not regarded as a model for studies on learning. However, the collective effort of the C. elegans field in the past several decades has shown that the worm displays plasticity in its behavioral response to a wide range of sensory cues in the environment. As a bacteria-feeding worm, C. elegans is highly adaptive to the bacteria enriched in its habitat, especially those that are pathogenic and pose a threat to survival. It uses several common forms of behavioral plasticity that last for different amounts of time, including imprinting and adult-stage associative learning, to modulate its interactions with pathogenic bacteria. Probing the molecular, cellular and circuit mechanisms underlying these forms of experience-dependent plasticity has identified signaling pathways and regulatory insights that are conserved in more complex animals.
Collapse
Affiliation(s)
- He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
30
|
Johnson LM, Smith OJ, Hahn DA, Baer CF. Short-term heritable variation overwhelms 200 generations of mutational variance for metabolic traits in Caenorhabditis elegans. Evolution 2020; 74:2451-2464. [PMID: 32989734 DOI: 10.1111/evo.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/05/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Metabolic disorders have a large heritable component, and have increased markedly in human populations over the past few generations. Genome-wide association studies of metabolic traits typically find a substantial unexplained fraction of total heritability, suggesting an important role of spontaneous mutation. An alternative explanation is that epigenetic effects contribute significantly to the heritable variation. Here, we report a study designed to quantify the cumulative effects of spontaneous mutation on adenosine metabolism in the nematode Caenorhabditis elegans, including both the activity and concentration of two metabolic enzymes and the standing pools of their associated metabolites. The only prior studies on the effects of mutation on metabolic enzyme activity, in Drosophila melanogaster, found that total enzyme activity presents a mutational target similar to that of morphological and life-history traits. However, those studies were not designed to account for short-term heritable effects. We find that the short-term heritable variance for most traits is of similar magnitude as the variance among MA lines. This result suggests that the potential heritable effects of epigenetic variation in metabolic disease warrant additional scrutiny.
Collapse
Affiliation(s)
- Lindsay M Johnson
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Ology Bioservices, Inc., Alachua, Florida, 32615
| | - Olivia J Smith
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, 32611.,University of Florida Genetics Institute, Gainesville, Florida, 32611
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,University of Florida Genetics Institute, Gainesville, Florida, 32611
| |
Collapse
|
31
|
Qu Z, Ji S, Zheng S. Glucose and cholesterol induce abnormal cell divisions via DAF-12 and MPK-1 in C. elegans. Aging (Albany NY) 2020; 12:16255-16269. [PMID: 32857726 PMCID: PMC7485695 DOI: 10.18632/aging.103647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
People exposed to starvation have a high risk of developing cancer later in life, and prior studies have shown these individuals have high insulin and cholesterol levels and are sensitive to glucose. Using C. elegans as a model, we found that glucose and cholesterol can promote survival and cause starved L1 diapause worms to undergo abnormal neuronal cell divisions. Starvation has also been shown to promote long-term survival; however, we found that the functions of glucose and cholesterol in relation to these cell divisions are distinct from their effects on survival. We demonstrate that glucose functions in a DAF-16/FOXO-independent IIS pathway to activate the MAPK ontogenetic signaling to induce neuronal Q-cell divisions, and cholesterol works through DAF-12/steroidogenic pathways to promote these cell divisions. daf-12 and mpk-1/MAPK mutants suppress the function of glucose and cholesterol in these divisions, and a fully functioning dpMPK-1 requires the steroid hormone receptor DAF-12 for these divisions to occur. These afflictions also can be passed on to the immediate progeny. This work indicates a possible link between glucose and cholesterol in starved animals and an increased risk of cancer.
Collapse
Affiliation(s)
- Zhi Qu
- School of Nursing and Health, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| | - Shaoping Ji
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| | - Shanqing Zheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China.,Medical School, Henan University, Kaifeng 475004, Henan Province, China
| |
Collapse
|
32
|
Lee JH, An HK, Sohn MG, Kivela P, Oh S. 4,4'-Diaminodiphenyl Sulfone (DDS) as an Inflammasome Competitor. Int J Mol Sci 2020; 21:E5953. [PMID: 32824985 PMCID: PMC7503668 DOI: 10.3390/ijms21175953] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to examine the use of an inflammasome competitor as a preventative agent. Coronaviruses have zoonotic potential due to the adaptability of their S protein to bind receptors of other species, most notably demonstrated by SARS-CoV. The binding of SARS-CoV-2 to TLR (Toll-like receptor) causes the release of pro-IL-1β, which is cleaved by caspase-1, followed by the formation and activation of the inflammasome, which is a mediator of lung inflammation, fever, and fibrosis. The NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome is implicated in a variety of human diseases including Alzheimer's disease (AD), prion diseases, type 2 diabetes, and numerous infectious diseases. By examining the use of 4,4'-diaminodiphenyl sulfone (DDS) in the treatment of patients with Hansen's disease, also diagnosed as Alzheimer's disease, this study demonstrates the diverse mechanisms involved in the activation of inflammasomes. TLRs, due to genetic polymorphisms, can alter the immune response to a wide variety of microbial ligands, including viruses. In particular, TLR2Arg677Trp was reported to be exclusively present in Korean patients with lepromatous leprosy (LL). Previously, mutation of the intracellular domain of TLR2 has demonstrated its role in determining the susceptibility to LL, though LL was successfully treated using a combination of DDS with rifampicin and clofazimine. Of the three tested antibiotics, DDS was effective in the molecular regulation of NLRP3 inflammasome activators that are important in mild cognitive impairment (MCI), Parkinson's disease (PD), and AD. The specific targeting of NLRP3 itself or up-/downstream factors of the NLRP3 inflammasome by DDS may be responsible for its observed preventive effects, functioning as a competitor.
Collapse
Affiliation(s)
- Jong-hoon Lee
- Science and Research Center, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Ha Kyeu An
- Department of Neurology, Sorokdo National Hospital, Jeollanam-do 59562, Korea;
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul 17104, Korea;
| | - Paul Kivela
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul 03670, Korea
| |
Collapse
|
33
|
Wong C, Roy R. AMPK Regulates Developmental Plasticity through an Endogenous Small RNA Pathway in Caenorhabditis elegans. Int J Mol Sci 2020; 21:ijms21062238. [PMID: 32213851 PMCID: PMC7139869 DOI: 10.3390/ijms21062238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 01/19/2023] Open
Abstract
Caenorhabditis elegans larvae can undergo developmental arrest upon entry into the dauer stage in response to suboptimal growth conditions. Dauer larvae can exit this stage in replete conditions with no reproductive consequence. During this diapause stage, the metabolic regulator AMP-activated protein kinase (AMPK) ensures that the germ line becomes quiescent to maintain germ cell integrity. Animals that lack all AMPK signalling undergo germline hyperplasia upon entering dauer, while those that recover from this stage become sterile. Neuronal AMPK expression in otherwise AMPK-deficient animals is sufficient for germline quiescence and germ cell integrity and its effects are likely mediated through an endogenous small RNA pathway. Upon impairing small RNA biosynthesis, the post-dauer fertility is restored in AMPK mutants. These data suggest that AMPK may function in neurons to relay a message through small RNAs to the germ cells to alter their quiescence in the dauer stage, thus challenging the permeability of the Weismann barrier.
Collapse
|
34
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. Autophagy in aging and longevity. Hum Genet 2020; 139:277-290. [PMID: 31144030 PMCID: PMC6884674 DOI: 10.1007/s00439-019-02031-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of the process of autophagy and its role in health and diseases has grown remarkably in the last two decades. Early work established autophagy as a general bulk recycling process which involves the sequestration and transport of intracellular material to the lysosome for degradation. Currently, autophagy is viewed as a nexus of metabolic and proteostatic signalling that can determine key physiological decisions from cell fate to organismal lifespan. Here, we review the latest literature on the role of autophagy and lysosomes in stress response and longevity. We highlight the connections between autophagy and metabolic processes, the network associated with its regulation, and the links between autophagic dysfunction, neurodegenerative diseases, and aging.
Collapse
Affiliation(s)
- Shi Q Wong
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Anita V Kumar
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Joslyn Mills
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
35
|
Fan X, Hou T, Sun T, Zhu L, Zhang S, Tang K, Wang Z. Starvation stress affects the maternal development and larval fitness in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133897. [PMID: 31425978 DOI: 10.1016/j.scitotenv.2019.133897] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/15/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
The starvation is a common and severe stress for animal survival and development. In aquatic environment, many fish suffer starvation stress in different extent because of the natural migration or feed limitation. When subjected to starved conditions, organisms will employ various adaptive physiological, biochemical, and behavioral changes to regulate metabolism and maintain homeostasis. In the present study, adult female zebrafish were deprived of feed for 1 to 3 weeks to detect the starved effects on adults and larvae. The results showed that biological indexes, RNA/DNA ratios, and nutritional indexes significantly decreased in the female fish after starvation. The number of mature follicles reduced while the average spawning diameter of oocytes increased. For the larvae, the maternal starvation stress distinctly delayed embryonic hatching, decreased larval body length, disrupted larval swimming ability, and reduced survival rate at early-life stages. Furthermore, we found that DNA methylation might conduce to the downregulated mRNA expression of anti-Müllerian hormone and cytochrome P450 aromatase in retarded ovaries under starved conditions. Significant effects on autophagic transcription were shown in maternal ovary and larvae responded to starvation stress. Taken together, our study systematically revealed the reproductive impairments of starvation stress and would facilitate the investigation of environmental stress in teleost fish.
Collapse
Affiliation(s)
- Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianzi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kui Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
36
|
Beurton F, Stempor P, Caron M, Appert A, Dong Y, Chen RAJ, Cluet D, Couté Y, Herbette M, Huang N, Polveche H, Spichty M, Bedet C, Ahringer J, Palladino F. Physical and functional interaction between SET1/COMPASS complex component CFP-1 and a Sin3S HDAC complex in C. elegans. Nucleic Acids Res 2019; 47:11164-11180. [PMID: 31602465 PMCID: PMC6868398 DOI: 10.1093/nar/gkz880] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/13/2019] [Accepted: 10/07/2019] [Indexed: 12/23/2022] Open
Abstract
The CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Lys4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss vary, suggesting additional chromatin factors contribute to context dependent effects. Using a proteomics approach, we identified CFP1 associated proteins and an unexpected direct link between Caenorhabditis elegans CFP-1 and an Rpd3/Sin3 small (SIN3S) histone deacetylase complex. Supporting a functional connection, we find that mutants of COMPASS and SIN3 complex components genetically interact and have similar phenotypic defects including misregulation of common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3S HDAC complex at promoters.
Collapse
Affiliation(s)
- Flore Beurton
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Matthieu Caron
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Alex Appert
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ron A-j Chen
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - David Cluet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Yohann Couté
- Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Marion Herbette
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ni Huang
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Hélène Polveche
- INSERM UMR 861, I-STEM, 28, Rue Henri Desbruères, 91100 Corbeil-Essonnes, France
| | - Martin Spichty
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Cécile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| |
Collapse
|
37
|
Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics 2019; 213:1145-1188. [PMID: 31796552 PMCID: PMC6893382 DOI: 10.1534/genetics.119.300238] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York 10016
| | - Tim Schedl
- and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
38
|
Kadekar P, Roy R. AMPK regulates germline stem cell quiescence and integrity through an endogenous small RNA pathway. PLoS Biol 2019; 17:e3000309. [PMID: 31166944 PMCID: PMC6576793 DOI: 10.1371/journal.pbio.3000309] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/17/2019] [Accepted: 05/16/2019] [Indexed: 01/07/2023] Open
Abstract
During suboptimal growth conditions, Caenorhabditis elegans larvae undergo a global developmental arrest called "dauer." During this stage, the germline stem cells (GSCs) become quiescent in an AMP-activated Protein Kinase (AMPK)-dependent manner, and in the absence of AMPK, the GSCs overproliferate and lose their reproductive capacity, leading to sterility when mutant animals resume normal growth. These defects correlate with the altered abundance and distribution of a number of chromatin modifications, all of which can be corrected by disabling components of the endogenous small RNA pathway, suggesting that AMPK regulates germ cell integrity by targeting an RNA interference (RNAi)-like pathway during dauer. The expression of AMPK in somatic cells restores all the germline defects, potentially through the transmission of small RNAs. Our findings place AMPK at a pivotal position linking energy stress detected in the soma to a consequent endogenous small RNA-mediated adaptation in germline gene expression, thereby challenging the "permeability" of the Weismann barrier.
Collapse
Affiliation(s)
- Pratik Kadekar
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Lev I, Bril R, Liu Y, Ceré LI, Rechavi O. Inter-generational consequences for growing Caenorhabditis elegans in liquid. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180125. [PMID: 30966881 PMCID: PMC6460074 DOI: 10.1098/rstb.2018.0125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
In recent years, studies in Caenorhabditis elegans nematodes have shown that different stresses can generate multigenerational changes. Here, we show that worms that grow in liquid media, and also their plate-grown progeny, are different from worms whose ancestors were grown on plates. It has been suggested that C. elegans might encounter liquid environments in nature, although actual observations in the wild are few and far between. By contrast, in the laboratory, growing worms in liquid is commonplace, and often used as an alternative to growing worms on agar plates, to control the composition of the worms' diet, to starve (and synchronize) worms or to grow large populations for biochemical assays. We found that plate-grown descendants of M9 liquid medium-grown worms were longer than control worms, and the heritable effects were already apparent very early in development. We tested for the involvement of different known epigenetic inheritance mechanisms, but could not find a single mutant in which these inter-generational effects are cancelled. While we found that growing in liquid always leads to inter-generational changes in the worms' size, trans-generational effects were found to be variable, and in some cases, the effects were gone after one to two generations. These results demonstrate that standard cultivation conditions in early life can dramatically change the worms' physiology in adulthood, and can also affect the next generations. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roberta Bril
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yunan Liu
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lucila Inés Ceré
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| |
Collapse
|
40
|
Histone Methylation and Memory of Environmental Stress. Cells 2019; 8:cells8040339. [PMID: 30974922 PMCID: PMC6523599 DOI: 10.3390/cells8040339] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular adaptation to environmental stress relies on a wide range of tightly controlled regulatory mechanisms, including transcription. Changes in chromatin structure and organization accompany the transcriptional response to stress, and in some cases, can impart memory of stress exposure to subsequent generations through mechanisms of epigenetic inheritance. In the budding yeast Saccharomyces cerevisiae, histone post-translational modifications, and in particular histone methylation, have been shown to confer transcriptional memory of exposure to environmental stress conditions through mitotic divisions. Recent evidence from Caenorhabditis elegans also implicates histone methylation in transgenerational inheritance of stress responses, suggesting a more widely conserved role in epigenetic memory.
Collapse
|
41
|
Perez MF, Lehner B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat Cell Biol 2019; 21:143-151. [PMID: 30602724 DOI: 10.1038/s41556-018-0242-9] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Animals transmit not only DNA but also other molecules, such as RNA, proteins and metabolites, to their progeny via gametes. It is currently unclear to what extent these molecules convey information between generations and whether this information changes according to their physiological state and environment. Here, we review recent work on the molecular mechanisms by which 'epigenetic' information is transmitted between generations over different timescales, and the importance of this information for development and physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
42
|
Zheng S, Qu Z, Zanetti M, Lam B, Chin-Sang I. C. elegans PTEN and AMPK block neuroblast divisions by inhibiting a BMP-insulin-PP2A-MAPK pathway. Development 2018; 145:145/23/dev166876. [PMID: 30487179 DOI: 10.1242/dev.166876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
Caenorhabditis elegans that hatch in the absence of food stop their postembryonic development in a process called L1 arrest. Intriguingly, we find that the postembryonic Q neuroblasts divide and migrate during L1 arrest in mutants that have lost the energy sensor AMP-activated protein kinase (AMPK) or the insulin/IGF-1 signaling (IIS) negative regulator DAF-18/PTEN. We report that DBL-1/BMP works upstream of IIS to promote agonistic insulin-like peptides during L1 arrest. However, the abnormal Q cell divisions that occur during L1 arrest use a novel branch of the IIS pathway that is independent of the terminal transcription factor DAF-16/FOXO. Using genetic epistasis and drug interactions we show that AMPK functions downstream of, or in parallel with DAF-18/PTEN and IIS to inhibit PP2A function. Further, we show that PP2A regulates the abnormal Q cell divisions by activating the MPK-1/ERK signaling pathway via LIN-45/RAF, independently of LET-60/RAS. PP2A acts as a tumor suppressor in many oncogenic signaling cascades. Our work demonstrates a new role for PP2A that is needed to induce neuroblast divisions during starvation and is regulated by both insulin and AMPK.
Collapse
Affiliation(s)
- Shanqing Zheng
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Zhi Qu
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Michael Zanetti
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brandon Lam
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
43
|
Gongol B, Sari I, Bryant T, Rosete G, Marin T. AMPK: An Epigenetic Landscape Modulator. Int J Mol Sci 2018; 19:ijms19103238. [PMID: 30347687 PMCID: PMC6214086 DOI: 10.3390/ijms19103238] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022] Open
Abstract
Activated by AMP-dependent and -independent mechanisms, AMP-activated protein kinase (AMPK) plays a central role in the regulation of cellular bioenergetics and cellular survival. AMPK regulates a diverse set of signaling networks that converge to epigenetically mediate transcriptional events. Reversible histone and DNA modifications, such as acetylation and methylation, result in structural chromatin alterations that influence transcriptional machinery access to genomic regulatory elements. The orchestration of these epigenetic events differentiates physiological from pathophysiological phenotypes. AMPK phosphorylation of histones, DNA methyltransferases and histone post-translational modifiers establish AMPK as a key player in epigenetic regulation. This review focuses on the role of AMPK as a mediator of cellular survival through its regulation of chromatin remodeling and the implications this has for health and disease.
Collapse
Affiliation(s)
- Brendan Gongol
- Department of Medicine, University of California, San Diego, CA 92093, USA.
- Department of Cardiopulmonary Sciences, School of Allied Health Professions, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Indah Sari
- Department of Cardiopulmonary Sciences, School of Allied Health Professions, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Tiffany Bryant
- Department of Cardiopulmonary Sciences, School of Allied Health Professions, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Geraldine Rosete
- Department of Cardiopulmonary Sciences, School of Allied Health Professions, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Traci Marin
- Department of Medicine, University of California, San Diego, CA 92093, USA.
- Department of Health Sciences, Victor Valley College, Victorville, CA 92395, USA.
| |
Collapse
|
44
|
Abstract
Emerging evidence suggests that changes to cellular metabolism can regulate epigenetic modifications to alter gene expression. Recently in Nature, Wu et al. show that the metabolic regulator AMPK can phosphorylate and thus stabilize the epigenetic modifying enzyme TET2, defining a novel signaling link between metabolism and the epigenome.
Collapse
|
45
|
Frézal L, Demoinet E, Braendle C, Miska E, Félix MA. Natural Genetic Variation in a Multigenerational Phenotype in C. elegans. Curr Biol 2018; 28:2588-2596.e8. [PMID: 30078564 PMCID: PMC6984962 DOI: 10.1016/j.cub.2018.05.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
Although heredity mostly relies on the transmission of DNA sequence, additional molecular and cellular features are heritable across several generations. In the nematode Caenorhabditis elegans, insights into such unconventional inheritance result from two lines of work. First, the mortal germline (Mrt) phenotype was defined as a multigenerational phenotype whereby a selfing lineage becomes sterile after several generations, implying multigenerational memory [1, 2]. Second, certain RNAi effects are heritable over several generations in the absence of the initial trigger [3-5]. Both lines of work converged when the subset of Mrt mutants that are heat sensitive were found to closely correspond to mutants defective in the RNAi-inheritance machinery, including histone modifiers [6-9]. Here, we report the surprising finding that several C. elegans wild isolates display a heat-sensitive mortal germline phenotype in laboratory conditions: upon chronic exposure to higher temperatures, such as 25°C, lines reproducibly become sterile after several generations. This phenomenon is reversible, as it can be suppressed by temperature alternations at each generation, suggesting a non-genetic basis for the sterility. We tested whether natural variation in the temperature-induced Mrt phenotype was of genetic nature by building recombinant inbred lines between the isolates MY10 (Mrt) and JU1395 (non-Mrt). Using bulk segregant analysis, we detected two quantitative trait loci. After further recombinant mapping and genome editing, we identified the major causal locus as a polymorphism in the set-24 gene, encoding a SET- and SPK-domain protein. We conclude that C. elegans natural populations may harbor natural genetic variation in epigenetic inheritance phenomena.
Collapse
Affiliation(s)
- Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France; Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | | - Eric Miska
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK.
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France.
| |
Collapse
|
46
|
Denzel MS, Lapierre LR, Mack HID. Emerging topics in C. elegans aging research: Transcriptional regulation, stress response and epigenetics. Mech Ageing Dev 2018; 177:4-21. [PMID: 30134144 PMCID: PMC6696993 DOI: 10.1016/j.mad.2018.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Key discoveries in aging research have been made possible with the use of model organisms. Caenorhabditis elegans is a short-lived nematode that has become a well-established system to study aging. The practicality and powerful genetic manipulations associated with this metazoan have revolutionized our ability to understand how organisms age. 25 years after the publication of the discovery of the daf-2 gene as a genetic modifier of lifespan, C. elegans remains as relevant as ever in the quest to understand the process of aging. Nematode aging research has proven useful in identifying transcriptional regulators, small molecule signals, cellular mechanisms, epigenetic modifications associated with stress resistance and longevity, and lifespan-extending compounds. Here, we review recent discoveries and selected topics that have emerged in aging research using this incredible little worm.
Collapse
Affiliation(s)
- Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | | |
Collapse
|
47
|
Tang G, Guo J, Zhu Y, Huang Z, Liu T, Cai J, Yu L, Wang Z. Metformin inhibits ovarian cancer via decreasing H3K27 trimethylation. Int J Oncol 2018; 52:1899-1911. [PMID: 29620187 PMCID: PMC5919713 DOI: 10.3892/ijo.2018.4343] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades. Recently, used of metformin in the therapy of diverse human cancer types has received widespread attention, while the underlying mechanisms have been not fully elucidated. In the current study, 5-ethynyl-20-de-oxyuridine assay to detect cell proliferation, flow cytometry to detect apoptosis, scratch wound healing and Transwell migration assay to detect cell migration capacity. The current study reported that metformin inhibited cell proliferation and migration, and promoted apoptosis in ovarian cancer cells, particularly under normoglycemic conditions in vitro. Metformin treatment significantly promoted the phosphorylation of AMP-activated protein kinase (AMPK), and reduced histone H3 lysine 27 trimethylation (H3K27me3) and polycomb repressor complex 2 (PRC2) levels. Additionally, overexpression of EZH2 to increase H3K27me3 abrogated the effect of metformin on the cell proliferation, migration and apoptosis in SKOV3 and ES2 cells. Similar to metformin, another AMPK agonist, 2-deoxy-D-glucose, reduced the H3K27me3 level and PRC2 expression. In cells pretreated with Compound C, an AMPK inhibitor, metformin was not able to induce AMPK phosphorylation or reduce H3K27me3. Metformin-mediated AMPK activation and H3K27me3 inhibition were more robust in cells exposed to low glucose (5.5 mM) compared with those exposed to high glucose (25 mM). These findings implicate H3K27me3 repression mediated by AMPK phosphorylation in the antitumor effect of metformin in ovarian cancer, indicating that metformin alters epigenetic modifications by targeting PRC2 and supports the use of metformin in treatment of patients with epithelial ovarian cancer without diabetes.
Collapse
Affiliation(s)
- Guiju Tang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yapei Zhu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
48
|
Demoinet E, Roy R. Surviving Starvation: AMPK Protects Germ Cell Integrity by Targeting Multiple Epigenetic Effectors. Bioessays 2018; 40. [PMID: 29430674 DOI: 10.1002/bies.201700095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/18/2017] [Indexed: 12/12/2022]
Abstract
Acute starvation can have long-term consequences that are mediated through epigenetic change. Some of these changes are affected by the activity of AMP-activated protein kinase (AMPK), a master regulator of cellular energy homeostasis. In Caenorhabditis elegans, the absence of AMPK during a period of starvation in an early larval stage results in developmental defects following their recovery on food, while many of them become sterile. Moreover, the loss of AMPK during this quiescent period results in transgenerational phenotypes that can become progressively worse with each successive generation. Our recent data describe a chromatin-based mechanism of how AMPK mediates adjustment to acute starvation in the germ cells, however, the heritable aspect of this AMPK mutant phenotype remains unresolved. Here, we explore how AMPK might affect this process and speculate how the initial transcription that occurs in the germ cells may adversely affect subsequent germline gene expression and/or genomic integrity.
Collapse
Affiliation(s)
- Emilie Demoinet
- Department of Biology, McGill University, Montreal, Quebec, Canada, H3A 1B1.,Institute of Biology Valrose (iBV), CNRS, INSERM, Université Nice Sophia Antipolis, 06100, Nice, France
| | - Richard Roy
- Department of Biology, McGill University, Montreal, Quebec, Canada, H3A 1B1
| |
Collapse
|
49
|
Minkina O, Hunter CP. Intergenerational Transmission of Gene Regulatory Information in Caenorhabditis elegans. Trends Genet 2017; 34:54-64. [PMID: 29103876 DOI: 10.1016/j.tig.2017.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/12/2023]
Abstract
Epigenetic mechanisms can stably maintain gene expression states even after the initiating conditions have changed. Often epigenetic information is transmitted only to daughter cells, but evidence is emerging, in both vertebrate and invertebrate systems, for transgenerational epigenetic inheritance (TEI), the transmission of epigenetic gene regulatory information across generations. Each new description of TEI helps uncover the properties, molecular mechanisms and biological roles for TEI. The nematode Caenorhabditis elegans has been particularly instrumental in the effort to understand TEI, as multiple environmental and genetic triggers can initiate an epigenetic signal that can alter the expression of both transgenes and endogenous loci. Here, we review recent studies of TEI in C. elegans.
Collapse
Affiliation(s)
- Olga Minkina
- Department of Biology, New York University, New York, New York 10003, USA
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|