1
|
Gu C, Babujee L, Pattinson D, Chiba S, Jester P, Maemura T, Neumann G, Kawaoka Y. Development of broadly protective influenza B vaccines. NPJ Vaccines 2025; 10:2. [PMID: 39774170 PMCID: PMC11707085 DOI: 10.1038/s41541-024-01058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
Influenza B viruses pose a significant threat to global public health, leading to severe respiratory infections in humans and, in some cases, death. During the last 50 years, influenza B viruses of two antigenically distinct lineages (termed 'Victoria' and 'Yamagata') have circulated in humans, necessitating two different influenza B vaccine strains. In this study, we devised a novel vaccine strategy involving reciprocal amino acid substitutions at sites where Victoria- and Yamagata-lineage viruses differ, leading to the generation of 'hybrid' vaccine viruses with the potential to protect against both lineages. Based on antigenic characterization, we selected two candidates and assessed their protective efficacy in a ferret model. Notably, both recombinant HA proteins conferred enhanced protection against heterologous challenges compared to their respective wild-type antigens. These findings show the potential of our novel strategy to develop cross-lineage protective influenza B virus vaccines.
Collapse
Affiliation(s)
- Chunyang Gu
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lavanya Babujee
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David Pattinson
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Shiho Chiba
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Jester
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tadashi Maemura
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Meng B, Wang Q, Leng H, Ren C, Feng C, Guo W, Feng Y, Zhang Y. Evolutionary Events Promoted Polymerase Activity of H13N8 Avian Influenza Virus. Viruses 2024; 16:329. [PMID: 38543694 PMCID: PMC10975323 DOI: 10.3390/v16030329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
Wild birds are considered to be the natural reservoir hosts of avian influenza viruses (AIVs). Wild bird-origin AIVs may spill over into new hosts and overcome species barriers after evolutionary adaptation. H13N8 AIVs used to be considered primarily circulated in multispecies gulls but have recently been shown to possess cross-species infectivity. In this study, we analyzed the genetic changes that occurred in the process of the evolution of H13 AIVs. Phylogenetic analysis revealed that H13 AIVs underwent complex reassortment events. Based on the full genomic diversity, we divided H13 AIVs into 81 genotypes. Reassortment experiments indicated that basic polymerase 2 (PB2) and nucleoprotein (NP) genes of the H9N2 AIV significantly enhanced the polymerase activity of the H13N8 AIV. Using the replication-incompetent virus screening system, we identified two mutations, PB2-I76T and PB2-I559T, which could enhance the polymerase activity of the H13N8 AIV in mammalian cells. Notably, these mutations had been acquired by circulating H13N8 AIVs in 2015. These findings suggest that H13N8 AIVs are about to cross the host barrier. Occasional genetic reassortments with other AIVs and natural mutation events could promote this process. It is imperative to intensify monitoring efforts for H13N8 AIVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Liaoning Key Laboratory of Zoonosis, Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Rd., Shenyang 110866, China (C.R.)
| |
Collapse
|
3
|
Krammer F. The role of vaccines in the COVID-19 pandemic: what have we learned? Semin Immunopathol 2024; 45:451-468. [PMID: 37436465 PMCID: PMC11136744 DOI: 10.1007/s00281-023-00996-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged late in 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic that has so far claimed approximately 20 million lives. Vaccines were developed quickly, became available in the end of 2020, and had a tremendous impact on protection from SARS-CoV-2 mortality but with emerging variants the impact on morbidity was diminished. Here I review what we learned from COVID-19 from a vaccinologist's perspective.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Guan L, Ping J, Lopes TJS, Fan S, Presler R, Neumann G, Kawaoka Y. Development of an Enhanced High-Yield Influenza Vaccine Backbone in Embryonated Chicken Eggs. Vaccines (Basel) 2023; 11:1364. [PMID: 37631932 PMCID: PMC10459923 DOI: 10.3390/vaccines11081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Vaccination is an efficient approach to preventing influenza virus infections. Recently, we developed influenza A and B virus vaccine backbones that increased the yield of several vaccine viruses in Madin-Darby canine kidney (MDCK) and African green monkey kidney (Vero) cells. These vaccine backbones also increased viral replication in embryonated chicken eggs, which are the most frequently used platform for influenza vaccine manufacturing. In this study, to further increase the viral titers in embryonated chicken eggs, we introduced random mutations into the 'internal genes' (i.e., all influenza viral genes except those encoding the hemagglutinin and neuraminidase proteins) of the influenza A virus high-yield virus backbone we developed previously. The randomly mutated viruses were sequentially passaged in embryonated chicken eggs to select variants with increased replicative ability. We identified a candidate that conferred higher influenza virus growth than the high-yield parental virus backbone. Although the observed increases in virus growth may be considered small, they are highly relevant for vaccine manufacturers.
Collapse
Affiliation(s)
- Lizheng Guan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Jihui Ping
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Tiago J. S. Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Shufang Fan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Robert Presler
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53711, USA (T.J.S.L.); (R.P.)
- Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| |
Collapse
|
5
|
Xu M, Yang A, Xia J, Jiang J, Liu CF, Ye Z, Ma J, Yang S. Protein glycosylation in urine as a biomarker of diseases. Transl Res 2023; 253:95-107. [PMID: 35952983 DOI: 10.1016/j.trsl.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Human body fluids have become an indispensable resource for clinical research, diagnosis and prognosis. Urine is widely used to discover disease-specific glycoprotein biomarkers because of its recurrently non-invasive collection and disease-indicating properties. While urine is an unstable fluid in that its composition changes with ingested nutrients and further as it is excreted through micturition, urinary proteins are more stable and their abnormal glycosylation is associated with diseases. It is known that aberrant glycosylation can define tumor malignancy and indicate disease initiation and progression. However, a thorough and translational survey of urinary glycosylation in diseases has not been performed. In this article, we evaluate the clinical applications of urine, introduce methods for urine glycosylation analysis, and discuss urine glycoprotein biomarkers. We emphasize the importance of mining urinary glycoproteins and searching for disease-specific glycosylation in various diseases (including cancer, neurodegenerative diseases, diabetes, and viral infections). With advances in mass spectrometry-based glycomics/glycoproteomics/glycopeptidomics, characterization of disease-specific glycosylation will optimistically lead to the discovery of disease-related urinary biomarkers with better sensitivity and specificity in the near future.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Arthur Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jun Xia
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Junhong Jiang
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Aslam S, Rajendran M, Kriti D, Kurland A, Johnson J, van Bakel H, Krammer F, García-Sastre A, Ayllon J. Generation of a high yield vaccine backbone for influenza B virus in embryonated chicken eggs. NPJ Vaccines 2023; 8:12. [PMID: 36765053 PMCID: PMC9911942 DOI: 10.1038/s41541-023-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Influenza B virus (IBV) strains are one of the components of seasonal influenza vaccines in both trivalent and quadrivalent formulations. The vast majority of these vaccines are produced in embryonated chickens' eggs. While optimized backbones for vaccine production in eggs exist and are in use for influenza A viruses, no such backbones exist for IBVs, resulting in unpredictable production yields. To generate an optimal vaccine seed virus backbone, we have compiled a panel of 71 IBV strains from 1940 to present day, representing the known temporal and genetic variability of IBV circulating in humans. This panel contains strains from the B/Victoria/2/87-like lineage, B/Yamagata/16/88-like lineage and the ancestral lineage that preceded their split to provide a diverse set that would help to identify a suitable backbone which can be used in combination with hemagglutinin (HA) and neuraminidase (NA) glycoproteins from any IBV strain to be incorporated into the seasonal vaccine. We have characterized and ranked the growth profiles of the 71 IBV strains and the best performing strains were used for co-infection of eggs, followed by serial passaging to select for high-growth reassortant viruses. After serial passaging, we selected 10 clonal isolates based on their growth profiles assessed by hemagglutination and plaque-forming units. We then generated reverse genetics systems for the three clones that performed best in growth curves. The selected backbones were then used to generate different reassortant viruses with HA/NA combinations from high and low titer yielding wild type IBV. When the growth profiles of the recombinant reassortant viruses were tested, the low titer yielding HA/NA viruses with the selected backbones yielded higher titers similar to those from high titer yielding HA/NA combinations. The use of these IBV backbones with improved replication in eggs might increase yields for the influenza B virus components of seasonal influenza virus vaccines.
Collapse
Affiliation(s)
- Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Madhusudan Rajendran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Andrew Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Jeffrey Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Juan Ayllon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Health Sciences, University of Burgos, Burgos, Spain.
| |
Collapse
|
7
|
Rosu ME, Lexmond P, Bestebroer TM, Hauser BM, Smith DJ, Herfst S, Fouchier RAM. Substitutions near the HA receptor binding site explain the origin and major antigenic change of the B/Victoria and B/Yamagata lineages. Proc Natl Acad Sci U S A 2022; 119:e2211616119. [PMID: 36215486 PMCID: PMC9586307 DOI: 10.1073/pnas.2211616119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Influenza B virus primarily infects humans, causing seasonal epidemics globally. Two antigenic variants-Victoria-like and Yamagata-like-were detected in the 1980s, of which the molecular basis of emergence is still incompletely understood. Here, the antigenic properties of a unique collection of historical virus isolates, sampled from 1962 to 2000 and passaged exclusively in mammalian cells to preserve antigenic properties, were determined with the hemagglutination inhibition assay and an antigenic map was built to quantify and visualize the divergence of the lineages. The antigenic map revealed only three distinct antigenic clusters-Early, Victoria, and Yamagata-with relatively little antigenic diversity in each cluster until 2000. Viruses with Victoria-like antigenic properties emerged around 1972 and diversified subsequently into two genetic lineages. Viruses with Yamagata-like antigenic properties evolved from one lineage and became clearly antigenically distinct from the Victoria-like viruses around 1988. Recombinant mutant viruses were tested to show that insertions and deletions (indels), as observed frequently in influenza B virus hemagglutinin, had little effect on antigenic properties. In contrast, amino-acid substitutions at positions 148, 149, 150, and 203, adjacent to the hemagglutinin receptor binding site, determined the main antigenic differences between the Early, Victoria-like, and Yamagata-like viruses. Surprisingly, substitutions at two of the four positions reverted in recent viruses of the Victoria lineage, resulting in antigenic properties similar to viruses circulating ∼50 y earlier. These data shed light on the antigenic diversification of influenza viruses and suggest there may be limits to the antigenic evolution of influenza B virus.
Collapse
Affiliation(s)
- Miruna E. Rosu
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Blake M. Hauser
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam 3015 CE, The Netherlands
| |
Collapse
|
8
|
Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat Biotechnol 2022; 40:1370-1377. [PMID: 35788567 DOI: 10.1038/s41587-022-01381-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/01/2022] [Indexed: 12/19/2022]
Abstract
The usefulness of live attenuated virus vaccines has been limited by suboptimal immunogenicity, safety concerns or cumbersome manufacturing processes and techniques. Here we describe the generation of a live attenuated influenza A virus vaccine using proteolysis-targeting chimeric (PROTAC) technology to degrade viral proteins via the endogenous ubiquitin-proteasome system of host cells. We engineered the genome of influenza A viruses in stable cell lines engineered for virus production to introduce a conditionally removable proteasome-targeting domain, generating fully infective PROTAC viruses that were live attenuated by the host protein degradation machinery upon infection. In mouse and ferret models, PROTAC viruses were highly attenuated and able to elicit robust and broad humoral, mucosal and cellular immunity against homologous and heterologous virus challenges. PROTAC-mediated attenuation of viruses may be broadly applicable for generating live attenuated vaccines.
Collapse
|
9
|
Creanga A, Gillespie RA, Fisher BE, Andrews SF, Lederhofer J, Yap C, Hatch L, Stephens T, Tsybovsky Y, Crank MC, Ledgerwood JE, McDermott AB, Mascola JR, Graham BS, Kanekiyo M. A comprehensive influenza reporter virus panel for high-throughput deep profiling of neutralizing antibodies. Nat Commun 2021; 12:1722. [PMID: 33741916 PMCID: PMC7979723 DOI: 10.1038/s41467-021-21954-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) have been developed as potential countermeasures for seasonal and pandemic influenza. Deep characterization of these bnAbs and polyclonal sera provides pivotal understanding for influenza immunity and informs effective vaccine design. However, conventional virus neutralization assays require high-containment laboratories and are difficult to standardize and roboticize. Here, we build a panel of engineered influenza viruses carrying a reporter gene to replace an essential viral gene, and develop an assay using the panel for in-depth profiling of neutralizing antibodies. Replication of these viruses is restricted to cells expressing the missing viral gene, allowing it to be manipulated in a biosafety level 2 environment. We generate the neutralization profile of 24 bnAbs using a 55-virus panel encompassing the near-complete diversity of human H1N1 and H3N2, as well as pandemic subtype viruses. Our system offers in-depth profiling of influenza immunity, including the antibodies against the hemagglutinin stem, a major target of universal influenza vaccines.
Collapse
Affiliation(s)
- Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liam Hatch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S. Development and Effects of Influenza Antiviral Drugs. Molecules 2021; 26:molecules26040810. [PMID: 33557246 PMCID: PMC7913928 DOI: 10.3390/molecules26040810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
Collapse
|
11
|
Cardenas-Garcia S, Caceres CJ, Rajao D, Perez DR. Reverse genetics for influenza B viruses and recent advances in vaccine development. Curr Opin Virol 2020; 44:191-202. [PMID: 33254031 PMCID: PMC8693393 DOI: 10.1016/j.coviro.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Influenza B virus is a respiratory pathogen that affects more severely the pediatric and elderly populations. There are two lineages of influenza B virus that seem to have differential predilection for age groups. Both lineages can co-circulate during the influenza season however one is usually more prominent than the other depending on the season. There are no defined indicators to predict which lineage will dominate in any given season. In recent years, the addition of viruses from both lineages to the seasonal influenza vaccine formulation has improved vaccine protection, although quadrivalent vaccines are not available worldwide. Reverse genetics has facilitated advancements in the field of vaccine development against influenza B virus. Different strategies have been explored showing promising results that could potentially lead to the development broadly protective influenza B virus vaccines.
Collapse
Affiliation(s)
- Stivalis Cardenas-Garcia
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA.
| | - C Joaquin Caceres
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA
| | - Daniela Rajao
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA
| | - Daniel R Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA.
| |
Collapse
|
12
|
Jung HE, Lee HK. Host Protective Immune Responses against Influenza A Virus Infection. Viruses 2020; 12:v12050504. [PMID: 32375274 PMCID: PMC7291249 DOI: 10.3390/v12050504] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
Influenza viruses cause infectious respiratory disease characterized by fever, myalgia, and congestion, ranging in severity from mild to life-threating. Although enormous efforts have aimed to prevent and treat influenza infections, seasonal and pandemic influenza outbreaks remain a major public health concern. This is largely because influenza viruses rapidly undergo genetic mutations that restrict the long-lasting efficacy of vaccine-induced immune responses and therapeutic regimens. In this review, we discuss the virological features of influenza A viruses and provide an overview of current knowledge of the innate sensing of invading influenza viruses and the protective immune responses in the host.
Collapse
Affiliation(s)
- Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea
- Correspondence: (H.E.J.); (H.K.L.); Tel.: +82-42-350-4281 (H.K.L.)
| |
Collapse
|
13
|
He G, Yang P, Yan Q, Xiong C. Debate on the compositions of influenza B in northern hemisphere seasonal influenza vaccines. Antimicrob Resist Infect Control 2019; 8:164. [PMID: 31673353 PMCID: PMC6819444 DOI: 10.1186/s13756-019-0631-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/17/2019] [Indexed: 11/24/2022] Open
Abstract
Background Annual influenza vaccination is the most effective way to prevent influenza. Influenza vaccines have traditionally included the hemagglutinins (HA) and neuraminidases (NA) from the two A viruses (H1N1 and H3N2) and either B Yamagata or B Victoria. Mismatches between circulating isolates of influenza B and the vaccines are very common. Taking 2017/2018 winter in northern hemisphere as an example, this study was designed to find out the reasons for mismatch between the trivalent influenza vaccine (TIV) and most of the epidemic isolates at that time, and to discuss if there are some optimized programs for seasonal influenza vaccines. Methods HA and NA sequences of the seasonal isolates circulating from December 1, 2017 to February 28, 2018, and in the previously other 7 winters in northern hemisphere from Global Initiative on Sharing All Influenza Data (GISAID) and the influenza database of National Center for Biotechnology Information (NCBI). Phylogenetic trees and genetic distances were constructed or calculated by using MAFFT and MEGA 6.0 software. Results Influenza B composition in the TIV recommendation mismatched most of circulating viruses in 2017/2018 winter; the vaccine strain was from the B/Victoria lineage, while most of epidemic isolates were from the B/Yamagata lineage. The epidemic lineage of influenza B reached its peak a little late in the previous winter might be responsible for this mismatch. During 2010-2018, the mean genetic distances between epidemic isolates of influenza A (H1N1 and H3N2) and the vaccines were no higher than 0.02375 ± 0.00341 in both HA and NA. However, concerning influenza B virus, when forecasting done well, the mean genetic distances between epidemic isolates and the vaccines were no higher than 0.02368 ± 0.00272; otherwise, the distances could reach 0.13695 ± 0.00238. Conclusion When applying quadrivalent influenza vaccines (QIVs) for vaccination, the recommendations of compositions for influenza B could be altered and assessed once in 3 or 4 years; when economic burden was considered intensively and TIVs were utilized, the recommended compositions for influenza B could be announced in April or May, rather than in February or March as now.
Collapse
Affiliation(s)
- Guozhong He
- Institute of Health, Kunming Medical University, Kunming, 650031 China
| | - Pengfei Yang
- Huai’an Center for Disease Control and Prevention, Huai’an, 223005 China
| | - Qingli Yan
- Huai’an Center for Disease Control and Prevention, Huai’an, 223005 China
| | - Chenglong Xiong
- Department of Public Health Microbiology, School of Public Health, Fudan University, Shanghai, 200032 China
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032 China
| |
Collapse
|
14
|
Yamayoshi S, Kawaoka Y. Current and future influenza vaccines. Nat Med 2019; 25:212-220. [PMID: 30692696 DOI: 10.1038/s41591-018-0340-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/19/2018] [Indexed: 11/09/2022]
Abstract
Although antiviral drugs and vaccines have reduced the economic and healthcare burdens of influenza, influenza epidemics continue to take a toll. Over the past decade, research on influenza viruses has revealed a potential path to improvement. The clues have come from accumulated discoveries from basic and clinical studies. Now, virus surveillance allows researchers to monitor influenza virus epidemic trends and to accumulate virus sequences in public databases, which leads to better selection of candidate viruses for vaccines and early detection of drug-resistant viruses. Here we provide an overview of current vaccine options and describe efforts directed toward the development of next-generation vaccines. Finally, we propose a plan for the development of an optimal influenza vaccine.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan. .,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan. .,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Gun L, Haixian P, Yumiao R, Han T, Jingqi L, Liguang Z. Codon usage characteristics of PB2 gene in influenza A H7N9 virus from different host species. INFECTION GENETICS AND EVOLUTION 2018; 65:430-435. [PMID: 30179716 DOI: 10.1016/j.meegid.2018.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
The influenza A H7N9 virus is a highly contagious virus which can only infect poultry before early 2013. But after that time, it widely caused human infections in China and brought Southeast Asia great threaten in the public health area. The coding gene for polymerase basic protein 2 (PB2) in influenza A H7N9 virus encodes the PB2 protein, which is a part of the RNA polymerase. The enzyme lacks a correction function during its own replication process, so the mutation frequency of the influenza A H7N9 virus gene is high and the PB2 gene is also included. To investigate the codon usages characteristics of PB2 gene, gene sequences of 12 kinds of poultry are downloaded form the gene bank (NCBI) and their codon usage characteristics such as the effective number of codons (ENC), the evolutionary relationship of the sequences, the codon adaptation index (CAI), the correspondence analysis (COA), the relative synonymous codon usage (RSCU) and their PR2-bias are compared and studied. The value of these reults showed that there is a low codon usage bias in the PB2 gene. Then, the differences between the codon usages of PB2 gene from 12 kinds of poultry are compared and their potential applications are discussed. These results could lay a foundation for other further study on the evolution of H7N9.
Collapse
Affiliation(s)
- Li Gun
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China.
| | - Pan Haixian
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Ren Yumiao
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Tian Han
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Lu Jingqi
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| | - Zhang Liguang
- Department of Biomedical Engineering, School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, Shaanxi Province, China
| |
Collapse
|
16
|
Efforts to Improve the Seasonal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020019. [PMID: 29601497 PMCID: PMC6027170 DOI: 10.3390/vaccines6020019] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
Abstract
Influenza viruses infect approximately 20% of the global population annually, resulting in hundreds of thousands of deaths. While there are Food and Drug Administration (FDA) approved antiviral drugs for combating the disease, vaccination remains the best strategy for preventing infection. Due to the rapid mutation rate of influenza viruses, vaccine formulations need to be updated every year to provide adequate protection. In recent years, a great amount of effort has been focused on the development of a universal vaccine capable of eliciting broadly protective immunity. While universal influenza vaccines clearly have the best potential to provide long-lasting protection against influenza viruses, the timeline for their development, as well as the true universality of protection they afford, remains uncertain. In an attempt to reduce influenza disease burden while universal vaccines are developed and tested, many groups are working on a variety of strategies to improve the efficacy of the standard seasonal vaccine. This review will highlight the different techniques and technologies that have been, or are being, developed to improve the seasonal vaccination efforts against influenza viruses.
Collapse
|
17
|
White KM, Ayllon J, Mena I, Potenski A, Krammer F, García-Sastre A. Influenza B virus reverse genetic backbones with improved growth properties in the EB66® cell line as basis for vaccine seed virus generation. Vaccine 2018; 36:1146-1153. [PMID: 29395518 DOI: 10.1016/j.vaccine.2018.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Vaccination remains the best available prophylaxis to prevent influenza virus infections, yet current inadequacies in influenza virus vaccine manufacturing often lead to vaccine shortages at times when the vaccine is most needed, as it was the case during the last influenza virus pandemic. Novel influenza virus vaccine production systems will be crucial to improve public health and safety. Here we report the optimization of influenza B virus growth in the proprietary EB66® cell line, currently in use for human vaccine production. To this end, we collected, curated and sequenced 71 influenza B viruses selected for high diversity in date of isolation and lineage. This viral collection was tested for ability to enter and replicate within EB66® cells in a single cycle assay and appears to readily infect these cells. When the collection was tested for viral progeny production in a multi-cycle assay, we found a large variation from strain to strain. The strains with the top growth characteristics from the B/Victoria and B/Yamagata lineages were selected for vaccine backbone generation using a reverse genetics system. We then showed that these backbones maintain their desirable growth within EB66® cells when the HA and NA from poorly growing strains were substituted for the parental segments, indicating that the selected backbones are viable options for vaccine production in EB66®. Finally, we show that compounds previously reported to enhance influenza virus growth in cell culture also increase virus production in the EB66® cell line.
Collapse
Affiliation(s)
- Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Juan Ayllon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Anna Potenski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
18
|
Sautto GA, Kirchenbaum GA, Ross TM. Towards a universal influenza vaccine: different approaches for one goal. Virol J 2018; 15:17. [PMID: 29370862 PMCID: PMC5785881 DOI: 10.1186/s12985-017-0918-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infection is an ongoing health and economic burden causing epidemics with pandemic potential, affecting 5–30% of the global population annually, and is responsible for millions of hospitalizations and thousands of deaths each year. Annual influenza vaccination is the primary prophylactic countermeasure aimed at limiting influenza burden. However, the effectiveness of current influenza vaccines are limited because they only confer protective immunity when there is antigenic similarity between the selected vaccine strains and circulating influenza isolates. The major targets of the antibody response against influenza virus are the surface glycoprotein antigens hemagglutinin (HA) and neuraminidase (NA). Hypervariability of the amino acid sequences encoding HA and NA is largely responsible for epidemic and pandemic influenza outbreaks, and are the consequence of antigenic drift or shift, respectively. For this reason, if an antigenic mismatch exists between the current vaccine and circulating influenza isolates, vaccinated people may not be afforded complete protection. There is currently an unmet need to develop an effective “broadly-reactive” or “universal” influenza vaccine capable of conferring protection against both seasonal and newly emerging pre-pandemic strains. A number of novel influenza vaccine approaches are currently under evaluation. One approach is the elicitation of an immune response against the “Achille’s heel” of the virus, i.e. conserved viral proteins or protein regions shared amongst seasonal and pre-pandemic strains. Alternatively, other approaches aim toward eliciting a broader immune response capable of conferring protection against the diversity of currently circulating seasonal influenza strains. In this review, the most promising under-development universal vaccine approaches are discussed with an emphasis on those targeting the HA glycoprotein. In particular, their strengths and potential short-comings are discussed. Ultimately, the upcoming clinical evaluation of these universal vaccine approaches will be fundamental to determine their effectiveness against preventing influenza virus infection and/or reducing transmission and disease severity.
Collapse
Affiliation(s)
- Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Greg A Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA. .,Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|