1
|
Doolittle CJ, LaManna JA. Local Stabilising Density Effects in the Context of Ecological Disturbance and Community Assembly. Ecol Lett 2025; 28:e70118. [PMID: 40243233 DOI: 10.1111/ele.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
The maintenance of species diversity in ecological communities has many promising explanations, including certain types of local biotic interactions that generate differential effects on the performance of conspecific and heterospecific individuals. To date, most studies of these local biotic interactions have focused on relatively stable systems, such as mature forests or undisturbed grasslands. However, many ecosystems are far from a stable state, especially under accelerating global climate change. Here, we present a synthesis of local differences between conspecific and heterospecific interactions following disturbances-and how disturbances may alter the strength and scaling of these effects to population growth and species diversity. First, we clarify terminology and categorise disturbances based on their primary mode of impact on species interactions. Second, we leverage existing literature to develop a framework for understanding how disturbances may alter the strength and role of local biotic interactions in regenerating communities. Third, we use prominent examples of disturbance: drought, windthrow and wildfire, to highlight remaining gaps in knowledge. Finally, we discuss implications for future populations and communities in unstable states. We emphasise the need for empirical studies to further integrate disturbance and local conspecific density effects within broader ecological models of community assembly and functioning.
Collapse
Affiliation(s)
- Cole J Doolittle
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Joseph A LaManna
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Noël S, Fourcade Y, Roy V, Bonnet G, Dupont L. Population Dynamics of the Exotic Flatworm Obama nungara in an Invaded Garden. Ecol Evol 2025; 15:e70827. [PMID: 39830707 PMCID: PMC11739606 DOI: 10.1002/ece3.70827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Population dynamics and the way abundance fluctuates over time may be key determinants of the invasion success of an introduced species. Fine-scale temporal monitoring of invasive species is rarely carried out due to the difficulties in collecting data regularly and over a long period. Thanks to the collaboration of an amateur naturalist, a unique dataset on the abundance of the invasive land flatworm Obama nungara was obtained during a 4-year survey of a French private garden, where up to 1585 O. nungara were recorded in 1 month. Daily monitoring data revealed high population size fluctuations that may be explained by meteorological factors as well as intra- and inter-specific interactions. Bayesian modeling confirmed that O. nungara's abundance fluctuates depending on temperature, humidity, and precipitation. Population growth seems to be favored by mild winters and precipitation while it is disadvantaged by drought. These exogenous factors affect both directly this species, which is sensitive to desiccation, and indirectly since they are known to affect the populations of its prey (earthworms and terrestrial gastropods). We also suggested the important resilience of O. nungara population in this site, which was able to recover from a drastic demographic bottleneck due to a severe drought, as well to systematic removal by the owner of the site. These findings highlight the potentially high invasiveness of O. nungara and raise concerns about the major threat these invasive flatworms pose to the populations of their prey.
Collapse
Affiliation(s)
- Shanèze Noël
- Univ Paris‐Est Créteil, Sorbonne Université, Université Paris‐Cité, CNRS, IRD, INRAEInstitute of Ecology and Environmental Science, IEESCréteilFrance
| | - Yoan Fourcade
- Univ Paris‐Est Créteil, Sorbonne Université, Université Paris‐Cité, CNRS, IRD, INRAEInstitute of Ecology and Environmental Science, IEESCréteilFrance
| | - Virginie Roy
- Univ Paris‐Est Créteil, Sorbonne Université, Université Paris‐Cité, CNRS, IRD, INRAEInstitute of Ecology and Environmental Science, IEESCréteilFrance
| | | | - Lise Dupont
- Univ Paris‐Est Créteil, Sorbonne Université, Université Paris‐Cité, CNRS, IRD, INRAEInstitute of Ecology and Environmental Science, IEESCréteilFrance
| |
Collapse
|
3
|
Shaw AK, Bisesi AT, Wojan C, Kim D, Torstenson M, Naven Narayanan, Lutz P, Ales R, Shao C. Six personas to adopt when framing theoretical research questions in biology. Proc Biol Sci 2024; 291:20240803. [PMID: 39288809 PMCID: PMC11407860 DOI: 10.1098/rspb.2024.0803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Theory is a critical component of the biological research process, and complements observational and experimental approaches. However, most biologists receive little training on how to frame a theoretical question and, thus, how to evaluate when theory has successfully answered the research question. Here, we develop a guide with six verbal framings for theoretical models in biology. These correspond to different personas one might adopt as a theorist: 'Advocate', 'Explainer', 'Instigator', 'Mediator', 'Semantician' and 'Tinkerer'. These personas are drawn from combinations of two starting points (pattern or mechanism) and three foci (novelty, robustness or conflict). We illustrate each of these framings with examples of specific theoretical questions, by drawing on recent theoretical papers in the fields of ecology and evolutionary biology. We show how the same research topic can be approached from slightly different perspectives, using different framings. We show how clarifying a model's framing can debunk common misconceptions of theory: that simplifying assumptions are bad, more detail is always better, models show anything you want and modelling requires substantial maths knowledge. Finally, we provide a roadmap that researchers new to theoretical research can use to identify a framing to serve as a blueprint for their own theoretical research projects.
Collapse
Affiliation(s)
- Allison K Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Ave T Bisesi
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Chris Wojan
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Dongmin Kim
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Martha Torstenson
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Naven Narayanan
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
| | - Peter Lutz
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
- Department of Computer Science, University of Minnesota , Minneapolis, MN 55455, USA
| | - Ruby Ales
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
- Department of Mathematics, University of Minnesota , Minneapolis, MN 55455, USA
| | - Cynthia Shao
- Department of Ecology, Evolution and Behavior, University of Minnesota , St Paul, MN 55108, USA
- Department of Mathematics, University of Minnesota , Minneapolis, MN 55455, USA
- Department of Biochemistry, University of Minnesota , Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Zheng X, Babst F, Camarero JJ, Li X, Lu X, Gao S, Sigdel SR, Wang Y, Zhu H, Liang E. Density-dependent species interactions modulate alpine treeline shifts. Ecol Lett 2024; 27:e14403. [PMID: 38577961 DOI: 10.1111/ele.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.
Collapse
Affiliation(s)
- Xiangyu Zheng
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USA
| | | | - Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Lu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shan Gao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shalik Ram Sigdel
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yafeng Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Li B, Otto G. Spread and persistence for integro-difference equations with shifting habitat and strong Allee effect. J Math Biol 2024; 88:35. [PMID: 38427042 DOI: 10.1007/s00285-024-02048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/29/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024]
Abstract
We study an integro-difference equation model that describes the spatial dynamics of a species with a strong Allee effect in a shifting habitat. We examine the case of a shifting semi-infinite bad habitat connected to a semi-infinite good habitat. In this case we rigorously establish species persistence (non-persistence) if the habitat shift speed is less (greater) than the asymptotic spreading speed of the species in the good habitat. We also examine the case of a finite shifting patch of hospitable habitat, and find that the habitat shift speed must be less than the asymptotic spreading speed associated with the habitat and there is a critical patch size for species persistence. Spreading speeds and traveling waves are established to address species persistence. Our numerical simulations demonstrate the theoretical results and show the dependence of the critical patch size on the shift speed.
Collapse
Affiliation(s)
- Bingtuan Li
- Department of Mathematics, University of Louisville, Louisville, KY, 40292, USA.
| | - Garrett Otto
- Department of Mathematics, SUNY Cortland, Cortland, NY, 13045, USA
| |
Collapse
|
6
|
Lake TA, Briscoe Runquist RD, Flagel LE, Moeller DA. Chronosequence of invasion reveals minimal losses of population genomic diversity, niche expansion, and trait divergence in the polyploid, leafy spurge. Evol Appl 2023; 16:1680-1696. [PMID: 38020872 PMCID: PMC10660801 DOI: 10.1111/eva.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 08/25/2023] [Indexed: 12/01/2023] Open
Abstract
Rapid evolution may play an important role in the range expansion of invasive species and modify forecasts of invasion, which are the backbone of land management strategies. However, losses of genetic variation associated with colonization bottlenecks may constrain trait and niche divergence at leading range edges, thereby impacting management decisions that anticipate future range expansion. The spatial and temporal scales over which adaptation contributes to invasion dynamics remain unresolved. We leveraged detailed records of the ~130-year invasion history of the invasive polyploid plant, leafy spurge (Euphorbia virgata), across ~500 km in Minnesota, U.S.A. We examined the consequences of range expansion for population genomic diversity, niche breadth, and the evolution of germination behavior. Using genotyping-by-sequencing, we found some population structure in the range core, where introduction occurred, but panmixia among all other populations. Range expansion was accompanied by only modest losses in sequence diversity, with small, isolated populations at the leading edge harboring similar levels of diversity to those in the range core. The climatic niche expanded during most of the range expansion, and the niche of the range core was largely non-overlapping with the invasion front. Ecological niche models indicated that mean temperature of the warmest quarter was the strongest determinant of habitat suitability and that populations at the leading edge had the lowest habitat suitability. Guided by these findings, we tested for rapid evolution in germination behavior over the time course of range expansion using a common garden experiment and temperature manipulations. Germination behavior diverged from the early to late phases of the invasion, with populations from later phases having higher dormancy at lower temperatures. Our results suggest that trait evolution may have contributed to niche expansion during invasion and that distribution models, which inform future management planning, may underestimate invasion potential without accounting for evolution.
Collapse
Affiliation(s)
- Thomas A. Lake
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| | | | - Lex E. Flagel
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
- GencoveLong Island CityNew YorkUSA
| | - David A. Moeller
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
7
|
Gilbertson NM, Kot M. Block-pulse integrodifference equations. J Math Biol 2023; 87:57. [PMID: 37702828 PMCID: PMC10500018 DOI: 10.1007/s00285-023-01986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/17/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
We present a hybrid method for calculating the equilibrium population-distributions of integrodifference equations (IDEs) with strictly increasing growth, for populations that are confined to a finite habitat-patch. This method is based on approximating the growth function of the IDE with a piecewise-constant function, and we call the resulting model a block-pulse IDE. We explicitly write out analytic expressions for the iterates and equilibria of the block-pulse IDEs as sums of cumulative distribution functions. We characterize the dynamics of one-, two-, and three-step block-pulse IDEs, including formal stability analyses, and we explore the bifurcation structure of these models. These simple models display rich dynamics, with numerous fold bifurcations. We then use three-, five-, and ten-step block-pulse IDEs, with a numerical root finder, to approximate models with compensatory Beverton-Holt growth and depensatory, or Allee-effect, growth. Our method provides a good approximation for the equilibrium distributions for compensatory and depensatory growth and offers numerical and analytical advantages over the original growth models.
Collapse
Affiliation(s)
- Nora M Gilbertson
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA.
| | - Mark Kot
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Wave speed and critical patch size for integro-difference equations with a strong Allee effect. J Math Biol 2022; 85:59. [PMID: 36273068 DOI: 10.1007/s00285-022-01814-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 10/24/2022]
Abstract
Simplified conditions are given for the existence and positivity of wave speed for an integro-difference equation with a strong Allee effect and an unbounded habitat. The results are used to obtain the existence of a critical patch size for an equation with a bounded habitat. It is shown that if the wave speed is positive there exists a critical patch size such that for a habitat size above the critical patch size solutions can persist in space, and if the wave speed is negative solutions always approach zero. An analytical integral formula is developed to determine the critical patch size when the Laplace dispersal kernel is used, and this formula shows existence of multiple equilibrium solutions. Numerical simulations are provided to demonstrate connections among the wave speed, critical patch size, and Allee threshold.
Collapse
|
9
|
Otto G, Fagan WF, Li B. Nonspreading solutions and patch formation in an integro-difference model with a strong Allee effect and overcompensation. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
10
|
Vogt JT, Olatinwo R, Ulyshen MD, Lucardi RD, Saenz D, McKenney JL. An Overview of Triadica sebifera (Chinese Tallowtree) in the Southern United States, Emphasizing Pollinator Impacts and Classical Biological Control. SOUTHEAST NAT 2021. [DOI: 10.1656/058.020.0403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- James T. Vogt
- USDA Forest Service Southern Research Station, 320 E. Green Street, Athens, GA 30602
| | - Rabiu Olatinwo
- USDA Forest Service Southern Research Station, Alexandria Forestry Center, 2500 Shreveport Highway, Pineville, LA 71360
| | - Michael D. Ulyshen
- USDA Forest Service Southern Research Station, 320 E. Green Street, Athens, GA 30602
| | - Rima D. Lucardi
- USDA Forest Service Southern Research Station, 320 E. Green Street, Athens, GA 30602
| | - Daniel Saenz
- USDA Forest Service Southern Research Station, 506 Hayter Street, Nacogdoches, TX 75965
| | - Jessica L. McKenney
- Department of Entomology, Louisiana State University, Agricultural Center, Baton Rouge, LA 70803
| |
Collapse
|
11
|
Unrestricted gene flow between two subspecies of translocated brushtail possums (Trichosurus vulpecula) in Aotearoa New Zealand. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractTwo lineages of brushtail possums (Trichosurus vulpecula) were historically introduced to Aotearoa New Zealand, and these two subspecies have different phenotypic forms. Despite over 100 years of potential interbreeding, they appear to retain morphological differences, which may indicate reproductive isolation. We examined this using population samples from a confined landscape and scored each specimen for phenotype using a number of fur colour traits. This resulted in a bimodal trait distribution expected for segregated grey and black lineages. We also sought evidence for genetic partitioning based on spatial and temporal effects. Genetic structure and rates of genetic mixing were determined using seven neutral, species-specific nuclear microsatellite markers and mitochondrial DNA control region sequence. Genotype analyses indicated high levels of variation and mtDNA sequences formed two major haplogroups. Pairwise tests for population differentiation of these markers found no evidence of subdivision, indicating that these brushtail possums behave as a single randomly mating unit. Despite maintenance of two main colour phenotypes with relatively few intermediates, previous inference of assortative mating and anecdotes of distinct races, our data indicate that New Zealand brushtail possums can freely interbreed, and that in some locations they have formed completely mixed populations where neutral genetic markers are unrelated to phenotype. This has implications for effective pest management towards eradication.
Collapse
|
12
|
Schartel TE, Cooper ML, May A, Daugherty MP. Quantifying Planococcus ficus (Hemiptera: Pseudococcidae) Invasion in Northern California Vineyards to Inform Management Strategy. ENVIRONMENTAL ENTOMOLOGY 2021; 50:138-148. [PMID: 33284962 DOI: 10.1093/ee/nvaa141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 06/12/2023]
Abstract
The spread and impact of invasive species in exotic ranges can be mitigated by increased understanding of pest invasion dynamics. Here, we used geospatial analyses and habitat suitability modeling to characterize the invasion of an important vineyard pest, vine mealybug (Planococcus ficus Signoret, Hemiptera: Pseudococcidae), using nearly 15,000 trapping records from throughout Napa County, California, between 2012 and 2017. Spatial autocorrelation among P. ficus detections was strongest at distances of ~250 m and detectable at regional scales (up to 40 km), estimates of the rate and directionality of spread were highly idiosyncratic, and P. ficus detection hotspots were spatiotemporally dynamic. Generalized linear model, boosted regression tree, and random forest modeling methods performed well in predicting habitat suitability for P. ficus. The most important predictors of P. ficus occurrence were a positive effect of precipitation in the driest month, and negative effects of elevation and distance to nearest winery. Our results indicate that 250-m quarantine and treatment zones around P. ficus detections are likely sufficient to encompass most local establishment and spread, and that implementing localized regulatory procedures may limit inadvertent P. ficus spread via anthropogenic pathways. Finally, surveys of P. ficus presence at >300 vineyard sites validated that habitat suitability estimates were significantly and positively associated with P. ficus frequency of occurrence. Our findings indicate that habitat suitability predictions may offer a robust tool for identifying areas in the study region at risk to future P. ficus invasion and prioritizing locations for early detection and preventative management efforts.
Collapse
Affiliation(s)
- Tyler E Schartel
- Department of Entomology, University of California, Riverside, CA
| | | | - Aubrey May
- Cooperative Extension, University of California, Napa, CA
| | | |
Collapse
|
13
|
Pârvulescu L, Stoia DI, Miok K, Ion MC, Puha AE, Sterie M, Vereş M, Marcu I, Muntean MD, Aburel OM. Force and Boldness: Cumulative Assets of a Successful Crayfish Invader. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.581247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple causes can determine the disturbance of natural equilibrium in a population of a species, with a common one being the presence of invasive competitors. Invasives can drive native species to the resettlement of the trophic position, changing reproduction strategies or even daily normal behaviours. Here, we investigated the hypothesis that more effective anatomical features of an intruder (Faxonius limosus) come with increased boldness behaviour, contributing to their invasion success in competition against the native species (Pontastacus leptodactylus). We tested the boldness of specimens representing the two species by video-based assessment of crayfish individuals’ attempts to leave their settlement microenvironment. The experiment was followed by a series of measurements concerning chelae biometry, force and muscle energetics. The native species was less expressive in terms of boldness even if it had larger chelae and better muscular tissue performance. In contrast, because of better biomechanical construction of the chelae, the invasive species was capable of twice superior force achievements, which expectedly explained its bolder behaviour. These findings suggest that, in interspecific agonistic interactions, the behaviour strategy of the invasive crayfish species is based on sheer physical superiority, whereas the native crayfish relies on intimidation display.
Collapse
|
14
|
Density dependence and the spread of invasive big-headed ants (Pheidole megacephala) in an East African savanna. Oecologia 2021; 195:667-676. [PMID: 33506295 DOI: 10.1007/s00442-021-04859-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Supercolonial ants are among the largest cooperative units in nature, attaining extremely high densities. How these densities feed back into their population growth rates and how abundance and extrinsic factors interact to affect their population dynamics remain open questions. We studied how local worker abundance and extrinsic factors (rain, tree density) affect population growth rate and spread in the invasive big-headed ant, which is disrupting a keystone mutualism between acacia trees and native ants in parts of East Africa. We measured temporal changes in big-headed ant (BHA) abundance and rates of spread over 20 months along eight transects, extending from areas behind the front with high BHA abundances to areas at the invasion front with low BHA abundances. We used models that account for negative density dependence and incorporated extrinsic factors to determine what variables best explain variation in local population growth rates. Population growth rates declined with abundance, however, the strength of density dependence decreased with abundance. We suggest that weaker density dependence at higher ant abundances may be due to the beneficial effect of cooperative behavior that partially counteracts resource limitation. Rainfall and tree density had minor effects on ant population dynamics. BHA spread near 50 m/year, more than previous studies reported and comparable to rates of spread of other supercolonial ants. Although we did not detect declines in abundance in areas invaded a long time ago (> 10 years), continued monitoring of abundance at invaded sites may help to better understand the widespread collapse of many invasive ants.
Collapse
|
15
|
Huang CC, Wan JSH. A theorem for the invasion triangle and its applicability for invasion biology. ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2020.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Vander Linden M, Silva F. Dispersals as demographic processes: testing and describing the spread of the Neolithic in the Balkans. Philos Trans R Soc Lond B Biol Sci 2020; 376:20200231. [PMID: 33250036 DOI: 10.1098/rstb.2020.0231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although population history and dispersal are back at the forefront of the archaeological agenda, they are often studied in relative isolation. This contribution aims at combining both dimensions, as population dispersal is, by definition, a demographic process. Using a case study drawn from the Early Neolithic of South-Eastern Europe, we use radiocarbon dates to jointly investigate changes in speed and population size linked to the new food production economy and demonstrate that the spread of farming in this region corresponds to a density-dependent dispersal process. The implications of this characterization are evaluated in the discussion. This article is part of the theme issue 'Cross-disciplinary approaches to prehistoric demography'.
Collapse
Affiliation(s)
- Marc Vander Linden
- Institute for the Modelling of Socio-Environmental Transitions, Bournemouth University, Poole, BH12 5BB, UK
| | - Fabio Silva
- Institute for the Modelling of Socio-Environmental Transitions, Bournemouth University, Poole, BH12 5BB, UK
| |
Collapse
|
17
|
Cruzan MB, Hendrickson EC. Landscape Genetics of Plants: Challenges and Opportunities. PLANT COMMUNICATIONS 2020; 1:100100. [PMID: 33367263 PMCID: PMC7748010 DOI: 10.1016/j.xplc.2020.100100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Accepted: 07/17/2020] [Indexed: 05/06/2023]
Abstract
Dispersal is one of the most important but least understood processes in plant ecology and evolutionary biology. Dispersal of seeds maintains and establishes populations, and pollen and seed dispersal are responsible for gene flow within and among populations. Traditional views of dispersal and gene flow assume models that are governed solely by geographic distance and do not account for variation in dispersal vector behavior in response to heterogenous landscapes. Landscape genetics integrates population genetics with Geographic Information Systems (GIS) to evaluate the effects of landscape features on gene flow patterns (effective dispersal). Surprisingly, relatively few landscape genetic studies have been conducted on plants. Plants present advantages because their populations are stationary, allowing more reliable estimates of the effects of landscape features on effective dispersal rates. On the other hand, plant dispersal is intrinsically complex because it depends on the habitat preferences of the plant and its pollen and seed dispersal vectors. We discuss strategies to assess the separate contributions of pollen and seed movement to effective dispersal and to delineate the effects of plant habitat quality from those of landscape features that affect vector behavior. Preliminary analyses of seed dispersal for three species indicate that isolation by landscape resistance is a better predictor of the rates and patterns of dispersal than geographic distance. Rates of effective dispersal are lower in areas of high plant habitat quality, which may be due to the effects of the shape of the dispersal kernel or to movement behaviors of biotic vectors. Landscape genetic studies in plants have the potential to provide novel insights into the process of gene flow among populations and to improve our understanding of the behavior of biotic and abiotic dispersal vectors in response to heterogeneous landscapes.
Collapse
|
18
|
Hulme PE, Baker R, Freckleton R, Hails RS, Hartley M, Harwood J, Marion G, Smith GC, Williamson M. The Epidemiological Framework for Biological Invasions (EFBI): an interdisciplinary foundation for the assessment of biosecurity threats. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.52463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Emerging microparasite (e.g. viruses, bacteria, protozoa and fungi) epidemics and the introduction of non-native pests and weeds are major biosecurity threats worldwide. The likelihood of these threats is often estimated from probabilities of their entry, establishment, spread and ease of prevention. If ecosystems are considered equivalent to hosts, then compartment disease models should provide a useful framework for understanding the processes that underpin non-native species invasions. To enable greater cross-fertilisation between these two disciplines, the Epidemiological Framework for Biological Invasions (EFBI) is developed that classifies ecosystems in relation to their invasion status: Susceptible, Exposed, Infectious and Resistant. These states are linked by transitions relating to transmission, latency and recovery. This viewpoint differs markedly from the species-centric approaches often applied to non-native species. It allows generalisations from epidemiology, such as the force of infection, the basic reproductive ratio R0, super-spreaders, herd immunity, cordon sanitaire and ring vaccination, to be discussed in the novel context of non-native species and helps identify important gaps in the study of biological invasions. The EFBI approach highlights several limitations inherent in current approaches to the study of biological invasions including: (i) the variance in non-native abundance across ecosystems is rarely reported; (ii) field data rarely (if ever) distinguish source from sink ecosystems; (iii) estimates of the susceptibility of ecosystems to invasion seldom account for differences in exposure to non-native species; and (iv) assessments of ecosystem susceptibility often confuse the processes that underpin patterns of spread within -and between- ecosystems. Using the invasion of lakes as a model, the EFBI approach is shown to present a new biosecurity perspective that takes account of ecosystem status and complements demographic models to deliver clearer insights into the dynamics of biological invasions at the landscape scale. It will help to identify whether management of the susceptibility of ecosystems, of the number of vectors, or of the diversity of pathways (for movement between ecosystems) is the best way of limiting or reversing the population growth of a non-native species. The framework can be adapted to incorporate increasing levels of complexity and realism and to provide insights into how to monitor, map and manage biological invasions more effectively.
Collapse
|
19
|
Miller TEX, Angert AL, Brown CD, Lee-Yaw JA, Lewis M, Lutscher F, Marculis NG, Melbourne BA, Shaw AK, Szűcs M, Tabares O, Usui T, Weiss-Lehman C, Williams JL. Eco-evolutionary dynamics of range expansion. Ecology 2020; 101:e03139. [PMID: 32697876 DOI: 10.1002/ecy.3139] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023]
Abstract
Understanding the movement of species' ranges is a classic ecological problem that takes on urgency in this era of global change. Historically treated as a purely ecological process, range expansion is now understood to involve eco-evolutionary feedbacks due to spatial genetic structure that emerges as populations spread. We synthesize empirical and theoretical work on the eco-evolutionary dynamics of range expansion, with emphasis on bridging directional, deterministic processes that favor evolved increases in dispersal and demographic traits with stochastic processes that lead to the random fixation of alleles and traits. We develop a framework for understanding the joint influence of these processes in changing the mean and variance of expansion speed and its underlying traits. Our synthesis of recent laboratory experiments supports the consistent role of evolution in accelerating expansion speed on average, and highlights unexpected diversity in how evolution can influence variability in speed: results not well predicted by current theory. We discuss and evaluate support for three classes of modifiers of eco-evolutionary range dynamics (landscape context, trait genetics, and biotic interactions), identify emerging themes, and suggest new directions for future work in a field that stands to increase in relevance as populations move in response to global change.
Collapse
Affiliation(s)
- Tom E X Miller
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, 77005, USA
| | - Amy L Angert
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Carissa D Brown
- Department of Geography, Memorial University, 230 Elizabeth Avenue, St John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Julie A Lee-Yaw
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada.,Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada
| | - Mark Lewis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
| | - Frithjof Lutscher
- Department of Mathematics and Statistics, and Department of Biology, University of Ottawa, Ottawa, Ottawa, K1N 6N5, Canada
| | - Nathan G Marculis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.,Department of Environmental Science and Policy, University of California-Davis, Davis, California, 95616, USA
| | - Brett A Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Marianna Szűcs
- Department of Entomology, Michigan State University, 288 Farm Lane, East Lansing, Michigan, 48824, USA
| | - Olivia Tabares
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Takuji Usui
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Christopher Weiss-Lehman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Jennifer L Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| |
Collapse
|
20
|
Funk JL, Parker IM, Matzek V, Flory SL, Aschehoug ET, D’Antonio CM, Dawson W, Thomson DM, Valliere J. Keys to enhancing the value of invasion ecology research for management. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02267-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
|
22
|
Shaw AK. Causes and consequences of individual variation in animal movement. MOVEMENT ECOLOGY 2020; 8:12. [PMID: 32099656 PMCID: PMC7027015 DOI: 10.1186/s40462-020-0197-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/05/2020] [Indexed: 05/23/2023]
Abstract
Animal movement comes in a variety of 'types' including small foraging movements, larger one-way dispersive movements, seasonally-predictable round-trip migratory movements, and erratic nomadic movements. Although most individuals move at some point throughout their lives, movement patterns can vary widely across individuals within the same species: differing within an individual over time (intra-individual), among individuals in the same population (inter-individual), or among populations (inter-population). Yet, studies of movement (theoretical and empirical alike) more often focus on understanding 'typical' movement patterns than understanding variation in movement. Here, I synthesize current knowledge of movement variation (drawing parallels across species and movement types), describing the causes (what factors contribute to individual variation), patterns (what movement variation looks like), consequences (why variation matters), maintenance (why variation persists), implications (for management and conservation), and finally gaps (what pieces we are currently missing). By synthesizing across scales of variation, I span across work on plasticity, personality, and geographic variation. Individual movement can be driven by factors that act at the individual, population, community and ecosystem level and have ramifications at each of these levels. Generally the consequences of movement are less well understood than the causes, in part because the effects of movement variation are often nested, with variation manifesting at the population level, which in turn affects communities and ecosystems. Understanding both cause and consequence is particularly important for predicting when variation begets variation in a positive feedback loop, versus when a negative feedback causes variation to be dampened successively. Finally, maintaining standing variation in movement may be important for facilitating species' ability to respond to future environmental change.
Collapse
Affiliation(s)
- Allison K. Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108 USA
| |
Collapse
|
23
|
Williams JL, Hufbauer RA, Miller TE. How Evolution Modifies the Variability of Range Expansion. Trends Ecol Evol 2019; 34:903-913. [DOI: 10.1016/j.tree.2019.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
|
24
|
Nørgaard LS, Phillips BL, Hall MD. Infection in patchy populations: Contrasting pathogen invasion success and dispersal at varying times since host colonization. Evol Lett 2019; 3:555-566. [PMID: 31636946 PMCID: PMC6791296 DOI: 10.1002/evl3.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 07/01/2019] [Accepted: 09/03/2019] [Indexed: 12/02/2022] Open
Abstract
Repeated extinction and recolonization events generate a landscape of host populations that vary in their time since colonization. Within this dynamic landscape, pathogens that excel at invading recently colonized host populations are not necessarily those that perform best in host populations at or near their carrying capacity, potentially giving rise to divergent selection for pathogen traits that mediate the invasion process. Rarely, however, has this contention been empirically tested. Using Daphnia magna, we explored how differences in the colonization history of a host population influence the invasion success of different genotypes of the pathogen Pasteuria ramosa. By partitioning the pathogen invasion process into a series of individual steps, we show that each pathogen optimizes invasion differently when encountering host populations that vary in their time since colonization. All pathogen genotypes were more likely to establish successfully in recently colonized host populations, but the production of transmission spores was typically maximized in either the subsequent growth or stationary phase of host colonization. Integrating across the first three pathogen invasion steps (initial establishment, proliferation, and secondary infection) revealed that overall pathogen invasion success (and its variance) was, nonetheless, highest in recently colonized host populations. However, only pathogens that were slow to kill their host were able to maximize host‐facilitated dispersal. This suggests that only a subset of pathogen genotypes—the less virulent and more dispersive—are more likely to encounter newly colonized host populations at the front of a range expansion or in metapopulations with high extinction rates. Our results suggest a fundamental trade‐off for a pathogen between dispersal and virulence, and evidence for higher invasion success in younger host populations, a finding with clear implications for pathogen evolution in spatiotemporally dynamic settings.
Collapse
Affiliation(s)
- Louise S. Nørgaard
- School of Biological SciencesMonash UniversityClaytonMelbourne3800Australia
| | - Ben L. Phillips
- School of BioSciencesUniversity of MelbourneParkvilleVictoria3010Australia
| | - Matthew D. Hall
- School of Biological SciencesMonash UniversityClaytonMelbourne3800Australia
| |
Collapse
|
25
|
Castilla AR, Garrote PJ, Żywiec M, Calvo G, Suárez-Esteban A, Delibes M, Godoy JA, Picó FX, Fedriani JM. Genetic rescue by distant trees mitigates qualitative pollen limitation imposed by fine-scale spatial genetic structure. Mol Ecol 2019; 28:4363-4374. [PMID: 31495974 DOI: 10.1111/mec.15233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/26/2022]
Abstract
Restricted seed dispersal frequently leads to fine-scale spatial genetic structure (i.e., FSGS) within plant populations. Depending on its spatial extent and the mobility of pollinators, this inflated kinship at the immediate neighbourhood can critically impoverish pollen quality. Despite the common occurrence of positive FSGS within plant populations, our knowledge regarding the role of long-distance pollination preventing reproductive failure is still limited. Using microsatellite markers, we examined the existence of positive FSGS in two low-density populations of the tree Pyrus bourgaeana. We also designed controlled crosses among trees differing in their kinship to investigate the effects of increased local kinship on plant reproduction. We used six pollination treatments and fully monitored fruit production, fruit and seed weight, proportion of mature seeds per fruit, and seed germination. Our results revealed positive FSGS in both study populations and lower fruit initiation in flowers pollinated with pollen from highly-genetically related individuals within the neighbourhood, with this trend intensifying as the fruit development progressed. Besides, open-pollinated flowers exhibited lower performance compared to those pollinated by distant pollen donors, suggesting intense qualitative pollen limitation in natural populations. We found positive fine-scale spatial genetic structure is translated into impoverished pollen quality from nearby pollen donors which negatively impacts the reproductive success of trees in low-density populations. Under this scenario of intrapopulation genetic rescue by distant pollen donors, the relevance of highly-mobile pollinators for connecting spatially and genetically distant patches of trees may be crucial to safeguarding population recruitment.
Collapse
Affiliation(s)
- Antonio R Castilla
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Pedro J Garrote
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Magdalena Żywiec
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Gemma Calvo
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Alberto Suárez-Esteban
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Miguel Delibes
- Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - José A Godoy
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Jose M Fedriani
- Instituto Superior of Agronomy, Centre for Applied Ecology "Prof. Baeta Neves"/INBIO, University of Lisbon, Lisbon, Portugal.,Departamento de Biología de la Conservación, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.,Centro de Investigaciones sobre Desertificación CIDE, CSIC-UVEG-GV, Moncada, Spain
| |
Collapse
|
26
|
Wang CH, Matin S, George AB, Korolev KS. Pinned, locked, pushed, and pulled traveling waves in structured environments. Theor Popul Biol 2019; 127:102-119. [DOI: 10.1016/j.tpb.2019.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
|
27
|
Liu BR, Kot M. Accelerating invasions and the asymptotics of fat-tailed dispersal. J Theor Biol 2019; 471:22-41. [DOI: 10.1016/j.jtbi.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
|
28
|
Crone EE, Brown LM, Hodgson JA, Lutscher F, Schultz CB. Faster movement in nonhabitat matrix promotes range shifts in heterogeneous landscapes. Ecology 2019; 100:e02701. [PMID: 31087809 DOI: 10.1002/ecy.2701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/26/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023]
Abstract
Ecologists often assume that range expansion will be fastest in landscapes composed entirely of the highest-quality habitat. Theoretical models, however, show that range expansion depends on both habitat quality and habitat-specific movement rates. Using data from 78 species in 70 studies, we find that animals typically have faster movement through lower-quality environments (73% of published cases). Therefore, if we want to manage landscapes for range expansion, there is a trade-off between promoting movement with nonhostile matrix, and promoting population growth with high-quality habitat. We illustrate how this trade-off plays out with the use of an exemplar species, the Baltimore checkerspot butterfly. For this species, we calculate that the expected rate of range expansion is fastest in landscapes with ~15% high-quality habitat. Behavioral responses to nonhabitat matrix have often been documented in animal populations, but rarely included in empirical predictions of range expansion. Considering movement behavior could change land-planning priorities from focus on high-quality habitat only to integrating high- and low-quality land cover types, and evaluating the costs and benefits of different matrix land covers for range expansion.
Collapse
Affiliation(s)
- Elizabeth E Crone
- Department of Biology, Tufts University, Medford, Massachusetts, 02145, USA
| | - Leone M Brown
- Department of Biology, Tufts University, Medford, Massachusetts, 02145, USA
| | - Jenny A Hodgson
- Department of Evolution, Ecology and Behavior, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Frithjof Lutscher
- Department of Mathematics and Statistics, Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Cheryl B Schultz
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, USA
| |
Collapse
|
29
|
Zhao Z, Hui C, Plant RE, Su M, Carpenter T, Papadopoulos N, Li Z, Carey JR. Life table invasion models: spatial progression and species-specific partitioning. Ecology 2019; 100:e02682. [PMID: 31018019 DOI: 10.1002/ecy.2682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 01/04/2023]
Abstract
Biological invasions are increasingly being considered important spatial processes that drive global changes, threatening biodiversity, regional economies, and ecosystem functions. A unifying conceptual model of the invasion dynamics could serve as a useful tool for comparison and classification of invasion processes involving different species across large geographic ranges. By dividing these geographic ranges that are subject to invasions into discrete spatial units, we here conceptualize the invasion process as the transition from pristine to invaded spatial units. We use California cities as the spatial units and a long-term database of invasive tropical tephritids to characterize the invasion patterns. A new life-table method based on insect demography, including the progression model of invasion stage transition and the species-specific partitioning model of multispecies invasions, was developed to analyze the invasion patterns. The progression model allows us to estimate the probability and rate of transition for individual cities from pristine to infested stages and subsequently differentiate the first year of detection from detection recurrences. Importantly, we show that the interval of invasive tephritid recurrence in a city declines with increasing invasion stages of the city. The species-specific partitioning model revealed profound differences in invasion outcome depending on which tephritid species was first detected (and then locally eradicated) in the early stage of invasion. Taken together, we discuss how these two life-table invasion models can cast new light on existing invasion concepts; in particular, on formulating invasion dynamics as the state transition of cities and partitioning species-specific roles during multispecies invasions. These models provide a new set of tools for predicting the spatiotemporal progression of invasion and providing early warnings of recurrent invasions for efficient management.
Collapse
Affiliation(s)
- Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland, 7602, South Africa.,Mathematical and Physical Biosciences, African Institute for Mathematical Sciences, Muizenberg, 7945, South Africa
| | - Richard E Plant
- Departments of Plant Sciences and Biological and Agricultural Engineering, University of California, Davis, Davis, California, 95616, USA
| | - Min Su
- School of Mathematics, Hefei University of Technology, Hefei, 230009, China
| | - Tim Carpenter
- School of Veterinary Medicine, University of California, Davis, Davis, California, 95616, USA
| | - Nikos Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, School of Agricultural Sciences, University of Thessaly, Thessaly, 38446, Greece
| | - Zhihong Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - James R Carey
- Department of Entomology, University of California, Davis, California, 95616, USA.,Center for the Economic and Demography of Aging, University of California, Berkeley, California, 94720, USA
| |
Collapse
|
30
|
Briscoe Runquist RD, Lake T, Tiffin P, Moeller DA. Species distribution models throughout the invasion history of Palmer amaranth predict regions at risk of future invasion and reveal challenges with modeling rapidly shifting geographic ranges. Sci Rep 2019; 9:2426. [PMID: 30787301 PMCID: PMC6382853 DOI: 10.1038/s41598-018-38054-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/04/2018] [Indexed: 11/18/2022] Open
Abstract
Palmer amaranth (Amaranthus palmeri) is an annual plant native to the desert Southwest of the United States and Mexico and has become invasive and caused large economic losses across much of the United States. In order to examine the temporal and spatial dynamics of past invasion, and to predict future invasion, we developed a broad array of species distribution models (SDMs). In particular, we constructed sequential SDMs throughout the invasion history and asked how well those predicted future invasion (1970 to present). We showed that invasion occurred from a restricted set of environments in the native range to a diverse set in the invaded range. Spatial autocorrelation analyses indicated that rapid range expansion was facilitated by stochastic, long-distance dispersal events. Regardless of SDM approach, all SDMs built using datasets from early in the invasion (1970–2010) performed poorly and failed to predict most of the current invaded range. Together, these results suggest that climate is unlikely to have influenced early stages of range expansion. SDMs that incorporated data from the most recent sampling (2011–2017) performed considerably better, predicted high suitability in regions that have recently become invaded, and identified mean annual temperature as a key factor limiting northward range expansion. Under future climates, models predicted both further northward range expansion and significantly increased suitability across large portions of the U.S. Overall, our results indicate significant challenges for SDMs of invasive species far from climate equilibrium. However, our models based on recent data make more robust predictions for northward range expansion of A. palmeri with climate change.
Collapse
Affiliation(s)
- Ryan D Briscoe Runquist
- University of Minnesota, Department of Plant and Microbial Biology, 1479 Gortner Avenue, St. Paul, 55108, MN, USA.
| | - Thomas Lake
- University of Minnesota, Department of Plant and Microbial Biology, 1479 Gortner Avenue, St. Paul, 55108, MN, USA
| | - Peter Tiffin
- University of Minnesota, Department of Plant and Microbial Biology, 1479 Gortner Avenue, St. Paul, 55108, MN, USA
| | - David A Moeller
- University of Minnesota, Department of Plant and Microbial Biology, 1479 Gortner Avenue, St. Paul, 55108, MN, USA
| |
Collapse
|
31
|
Persistence and extinction of population in reaction–diffusion–advection model with strong Allee effect growth. J Math Biol 2019; 78:2093-2140. [DOI: 10.1007/s00285-019-01334-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 01/27/2019] [Indexed: 10/27/2022]
|
32
|
Morel-Journel T, Assa CR, Mailleret L, Vercken E. Its all about connections: hubs and invasion in habitat networks. Ecol Lett 2018; 22:313-321. [PMID: 30537096 DOI: 10.1111/ele.13192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022]
Abstract
During the early stages of invasion, the interaction between the features of the invaded landscape, notably its spatial structure, and the internal dynamics of an introduced population has a crucial impact on establishment and spread. By approximating introduction areas as networks of patches linked by dispersal, we characterised their spatial structure with specific metrics and tested their impact on two essential steps of the invasion process: establishment and spread. By combining simulations with experimental introductions of Trichogramma chilonis (Hymenoptera: Trichogrammatidae) in artificial laboratory microcosms, we demonstrated that spread was hindered by clusters and accelerated by hubs but was also affected by small-population mechanisms prevalent for invasions, such as Allee effects. Establishment was also affected by demographic mechanisms, in interaction with network metrics. These results highlight the importance of considering the demography of invaders as well as the structure of the invaded area to predict the outcome of invasions.
Collapse
Affiliation(s)
- Thibaut Morel-Journel
- Earth and Life Institute, Biodiversity Research Centre, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claire Rais Assa
- Université Côte d'Azur, INRA, CNRS, ISA, 06900, Sophia Antipolis, France
| | - Ludovic Mailleret
- Université Côte d'Azur, INRA, CNRS, ISA, 06900, Sophia Antipolis, France.,Université Côte d'Azur, Inria, INRA, CNRS, UPMC University, Paris 06, 06900, Sophia Antipolis, France
| | - Elodie Vercken
- Université Côte d'Azur, INRA, CNRS, ISA, 06900, Sophia Antipolis, France
| |
Collapse
|
33
|
Gokhale S, Conwill A, Ranjan T, Gore J. Migration alters oscillatory dynamics and promotes survival in connected bacterial populations. Nat Commun 2018; 9:5273. [PMID: 30531951 PMCID: PMC6288160 DOI: 10.1038/s41467-018-07703-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Migration influences population dynamics on networks, thereby playing a vital role in scenarios ranging from species extinction to epidemic propagation. While low migration rates prevent local populations from becoming extinct, high migration rates enhance the risk of global extinction by synchronizing the dynamics of connected populations. Here, we investigate this trade-off using two mutualistic strains of E. coli that exhibit population oscillations when co-cultured. In experiments, as well as in simulations using a mechanistic model, we observe that high migration rates lead to synchronization whereas intermediate migration rates perturb the oscillations and change their period. Further, our simulations predict, and experiments show, that connected populations subjected to more challenging antibiotic concentrations have the highest probability of survival at intermediate migration rates. Finally, we identify altered population dynamics, rather than recolonization, as the primary cause of extended survival.
Collapse
Affiliation(s)
- Shreyas Gokhale
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arolyn Conwill
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tanvi Ranjan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
34
|
Williams JL, Levine JM. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes. Ecology 2018; 99:876-884. [PMID: 29352466 DOI: 10.1002/ecy.2156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/25/2017] [Accepted: 12/13/2017] [Indexed: 11/07/2022]
Abstract
Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat.
Collapse
Affiliation(s)
- Jennifer L Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Jonathan M Levine
- Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, 8092, Switzerland
| |
Collapse
|