1
|
Xu Z, Liu Z, He X, Shu H, Wang X, Liu T, Chen L, Zhang W, Xu P, Liu Y. Investigation of the transcriptome and metabolome of the cerebral cortex and testes in Cntnap4-deficient mice. J Psychiatr Res 2025; 186:252-262. [PMID: 40262286 DOI: 10.1016/j.jpsychires.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Autism spectrum disorder (ASD) involves challenges in social interaction and communication and repetitive behaviours. CNTNAP4 is implicated in neuronal signalling, and its deficiency plays a role in ASD. Transcriptomic analyses revealed similar gene expression between the brain and in humans as well as in mice. However, the relationships between the brain and testicular gene expression profiles and metabolism in ASD remain unclear. In this study, the effects of Cntnap4 deletion on gene expression and metabolic profiles in the cerebral cortex and testes were investigated to better understand ASD pathogenesis. METHODS Cntnap4 knockout mice were used to explore transcriptomic and metabolomic alterations. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were employed to identify significantly altered pathways. RESULTS Cntnap4 deletion caused significant changes in both tissues. In the cerebral cortex, GO and KEGG analyses revealed differentially expressed genes (DEGs) related to mitochondrial energy production and synaptic signalling. Metabolomic analysis revealed altered levels of metabolites such as glutamic acid and glutamine. In the testes, 482 DEGs were linked to mitochondrial function and steroid biosynthesis. Additionally, commonly downregulated genes in both tissues highlighted disruptions in antioxidant activity and glutathione metabolism. CONCLUSIONS These findings suggest that Cntnap4 deletion impacts mitochondrial function, synaptic signalling, and metabolic processes, contributing to the ASD phenotype. By highlighting these mechanisms, this study provides insights into ASD pathogenesis and potential molecular targets for treatment and highlights the importance of the mitochondrial and synaptic pathways in the development of ASD associated with Cntnap4 deficiency.
Collapse
Affiliation(s)
- Zongtang Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhongrui Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaozheng He
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hui Shu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaobei Wang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Tianni Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lingyan Chen
- Department of Rehabilitation Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Yan Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
2
|
Quiñones-Labernik P, Blocklinger KL, Bruce MR, Ferri SL. Excess neonatal testosterone causes male-specific social and fear memory deficits in wild-type mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.18.562939. [PMID: 37905064 PMCID: PMC10614869 DOI: 10.1101/2023.10.18.562939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Neurodevelopmental disorders disproportionately affect males compared to females. The biological mechanisms of this male susceptibility or female protection have not been identified. There is evidence that fetal/neonatal gonadal hormones, which play a pivotal role in many aspects of development, may contribute. Here, we investigate the effects of excess testosterone during a critical period of sex-specific brain organization on social approach and fear learning behaviors in C57BL/6J wild-type mice. Male, but not female, mice treated with testosterone on the day of birth (PN0) exhibited decreased social approach as juveniles and decreased contextual fear memory as adults, compared to vehicle-treated controls. These deficits were not driven by anxiety-like behavior or changes in locomotion or body weight. Mice treated with the same dose of testosterone on postnatal day 18 (PN18), which is outside of the critical period of brain masculinization, did not demonstrate impairments compared to the vehicle group. These findings indicate that excess testosterone during a critical period of early development, but not shortly after, induces long-term deficits relevant to the male sex bias in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | | | - Sarah L Ferri
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Trim MJ, Wheeler RV, Franklin TB. Maternal immune activation accelerates pup reflex development and alters immune proteins in pup stomach contents and brain. Brain Res 2024; 1845:149198. [PMID: 39187055 DOI: 10.1016/j.brainres.2024.149198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Prenatal infection increases the risk for neurodevelopmental disorders including autism spectrum disorder and schizophrenia. To better understand this link, a number of maternal immune activation (MIA) rodent models have been studied. However, the majority of these studies focus on adult behavioural outcomes that mirror adult symptoms related to neurodevelopmental disorders. There is little research reporting the effects of MIA on early postnatal development and even fewer using outbred mouse strains. Here, we use a modified version of the Fox scale to assess the effects of two MIA models, a bacterial model (LPS) and a viral model (PolyIC), on overall mouse pup sensorimotor development in CD-1 mice. Surprisingly, both bacterial and viral MIA models resulted in early reflex development when compared with control pups. To better characterize potential factors related to these changes, we examined indicators of sickness/inflammation in the immune-activated dams and in their pups. Sickness behaviour in the dams resulting from immune activation was assessed using a telemetry implant that allowed for continuous recording of temperature and activity in dams exposed to bacterial or viral immune activation. Although MIA dams showed reduced activity on the day immediately following MIA compared to controls, there was no evidence of fever. All dams showed elevated cytokines/chemokines associated with parturition, but this resolved by day 10 post-parturition and was unaffected by previous immune activation. Although circulating cytokines/chemokines in the dams were similar across MIA treatments, there were differences in the amount of interleukin-12p70 and interleukin-13 present in milk taken from milk bands in MIA pups, and interleukin-4 was overall decreased in LPS pup brain. These findings demonstrate that bacterial and viral models of MIA can result in similar precocious development in mice but differing long-term effects on inflammatory markers in both the milk provided to the pups and in their brains.
Collapse
Affiliation(s)
- Michael J Trim
- Dalhousie University, Faculty of Science, Department of Psychology and Neuroscience, Halifax, NS, Canada
| | - Ryan V Wheeler
- Dalhousie University, Faculty of Science, Department of Psychology and Neuroscience, Halifax, NS, Canada
| | - Tamara B Franklin
- Dalhousie University, Faculty of Science, Department of Psychology and Neuroscience, Halifax, NS, Canada.
| |
Collapse
|
4
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Meng J, Pan P, Guo G, Chen A, Meng X, Liu H. Transient CSF1R inhibition ameliorates behavioral deficits in Cntnap2 knockout and valproic acid-exposed mouse models of autism. J Neuroinflammation 2024; 21:262. [PMID: 39425203 PMCID: PMC11487716 DOI: 10.1186/s12974-024-03259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Microglial abnormality and heterogeneity are observed in autism spectrum disorder (ASD) patients and animal models of ASD. Microglial depletion by colony stimulating factor 1-receptor (CSF1R) inhibition has been proved to improve autism-like behaviors in maternal immune activation mouse offspring. However, it is unclear whether CSF1R inhibition has extensive effectiveness and pharmacological heterogeneity in treating autism models caused by genetic and environmental risk factors. Here, we report pharmacological functions and cellular mechanisms of PLX5622, a small-molecule CSF1R inhibitor, in treating Cntnap2 knockout and valproic acid (VPA)-exposed autism model mice. For the Cntnap2 knockout mice, PLX5622 can improve their social ability and reciprocal social behavior, slow down their hyperactivity in open field and repetitive grooming behavior, and enhance their nesting ability. For the VPA model mice, PLX5622 can enhance their social ability and social novelty, and alleviate their anxiety behavior, repetitive and stereotyped autism-like behaviors such as grooming and marble burying. At the cellular level, PLX5622 restores the morphology and/or number of microglia in the somatosensory cortex, striatum, and hippocampal CA1 regions of the two models. Specially, PLX5622 corrects neurophysiological abnormalities in the striatum of the Cntnap2 knockout mice, and in the somatosensory cortex, striatum, and hippocampal CA1 regions of the VPA model mice. Incidentally, microglial dynamic changes in the VPA model mice are also reported. Our study demonstrates that microglial depletion and repopulation by transient CSF1R inhibition is effective, and however, has differential pharmacological functions and cellular mechanisms in rescuing behavioral deficits in the two autism models.
Collapse
Affiliation(s)
- Jiao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Pengming Pan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Gengshuo Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Anqi Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Heli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Autism Research Center, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
6
|
Lee S, Sbihi H, MacIsaac JL, Balshaw R, Ambalavanan A, Subbarao P, Mandhane PJ, Moraes TJ, Turvey SE, Duan Q, Brauer M, Brook JR, Kobor MS, Jones MJ. Persistent DNA Methylation Changes across the First Year of Life and Prenatal NO2 Exposure in a Canadian Prospective Birth Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47004. [PMID: 38573328 DOI: 10.1289/ehp13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Evidence suggests that prenatal air pollution exposure alters DNA methylation (DNAm), which could go on to affect long-term health. It remains unclear whether DNAm alterations present at birth persist through early life. Identifying persistent DNAm changes would provide greater insight into the molecular mechanisms contributing to the association of prenatal air pollution exposure with atopic diseases. OBJECTIVES This study investigated DNAm differences associated with prenatal nitrogen dioxide (NO 2 ) exposure (a surrogate measure of traffic-related air pollution) at birth and 1 y of age and examined their role in atopic disease. We focused on regions showing persistent DNAm differences from birth to 1 y of age and regions uniquely associated with postnatal NO 2 exposure. METHODS Microarrays measured DNAm at birth and at 1 y of age for an atopy-enriched subset of Canadian Health Infant Longitudinal Development (CHILD) study participants. Individual and regional DNAm differences associated with prenatal NO 2 (n = 128 ) were identified, and their persistence at age 1 y were investigated using linear mixed effects models (n = 124 ). Postnatal-specific DNAm differences (n = 125 ) were isolated, and their association with NO 2 in the first year of life was examined. Causal mediation investigated whether DNAm differences mediated associations between NO 2 and age 1 y atopy or wheeze. Analyses were repeated using biological sex-stratified data. RESULTS At birth (n = 128 ), 18 regions of DNAm were associated with NO 2 , with several annotated to HOX genes. Some of these regions were specifically identified in males (n = 73 ), but not females (n = 55 ). The effect of prenatal NO 2 across CpGs within altered regions persisted at 1 y of age. No significant mediation effects were identified. Sex-stratified analyses identified postnatal-specific DNAm alterations. DISCUSSION Regional cord blood DNAm differences associated with prenatal NO 2 persisted through at least the first year of life in CHILD participants. Some differences may represent sex-specific alterations, but replication in larger cohorts is needed. The early postnatal period remained a sensitive window to DNAm perturbations. https://doi.org/10.1289/EHP13034.
Collapse
Affiliation(s)
- Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Hind Sbihi
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Robert Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Padmaja Subbarao
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Piushkumar J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Medicine, USCI University, Kuala Lumpur, Malaysia
| | - Theo J Moraes
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Stuart E Turvey
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Hokanson KC, Hernández C, Deitzler GE, Gaston JE, David MM. Sex shapes gut-microbiota-brain communication and disease. Trends Microbiol 2024; 32:151-161. [PMID: 37813734 DOI: 10.1016/j.tim.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/11/2023]
Abstract
Research into the microbiota-gut-brain axis (MGBA) has entered a golden age, raising the hope that therapeutics acting on it may offer breakthroughs in the treatment of many illnesses. However, most of this work overlooks a fundamental, yet understudied, biological variable: sex. Sex differences exist at every level of the MGBA. Sex steroids shape the structure of the gut microbiota, and these microbes in turn regulate levels of bioactive sex steroids. These hormones and microbes act on gut sensory enteroendocrine cells, which modulate downstream activity in the enteric nervous system, vagus nerve, and brain. We examine recent advances in this field, and discuss the scientific and moral imperative to include females in biomedical research, using autism spectrum disorder (ASD) as an example.
Collapse
Affiliation(s)
- Kenton C Hokanson
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA; Department of Microbiology, Oregon State University, Corvallis, OR, USA.
| | | | - Grace E Deitzler
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Jenna E Gaston
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Maude M David
- Department of Microbiology, Oregon State University, Corvallis, OR, USA; Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
8
|
Carrier M, Hui CW, Watters V, Šimončičová E, Picard K, González Ibáñez F, Vernoux N, Droit A, Desjardins M, Tremblay MÈ. Behavioral as well as hippocampal transcriptomic and microglial responses differ across sexes in adult mouse offspring exposed to a dual genetic and environmental challenge. Brain Behav Immun 2024; 116:126-139. [PMID: 38016491 DOI: 10.1016/j.bbi.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/15/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
INTRODUCTION A wide range of positive, negative, and cognitive symptoms compose the clinical presentation of schizophrenia. Schizophrenia is a multifactorial disorder in which genetic and environmental risk factors interact for a full emergence of the disorder. Infectious challenges during pregnancy are a well-known environmental risk factor for schizophrenia. Also, genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia. Translational animal models recapitulating these complex gene-environment associations have a great potential to untangle schizophrenia neurobiology and propose new therapeutic strategies. METHODS Given that genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia, we compared the outcomes of a well-characterized model of maternal immune activation induced using the viral mimetic polyinosinic:polycytidylic acid (Poly I:C) in wild-type versus fractalkine receptor knockout mice. Possible behavioral and immune alterations were assessed in male and female offspring during adulthood. Considering the role of the hippocampus in schizophrenia, microglial analyses and bulk RNA sequencing were performed within this region to assess the neuroimmune dynamics at play. Males and females were examined separately. RESULTS Offspring exposed to the dual challenge paradigm exhibited symptoms relevant to schizophrenia and unpredictably to mood disorders. Males displayed social and cognitive deficits related to schizophrenia, while females mainly presented anxiety-like behaviors related to mood disorders. Hippocampal microglia in females exposed to the dual challenge were hypertrophic, indicative of an increased surveillance, whereas those in males showed on the other end of the spectrum blunted morphologies with a reduced phagocytosis. Hippocampal bulk-RNA sequencing further revealed a downregulation in females of genes related to GABAergic transmission, which represents one of the main proposed causes of mood disorders. CONCLUSIONS Building on previous results, we identified in the current study distinctive behavioral phenotypes in female mice exposed to a dual genetic and environmental challenge, thus proposing a new model of neurodevelopmentally-associated mood and affective symptoms. This paves the way to future sex-specific investigations into the susceptibility to developmental challenges using animal models based on genetic and immune vulnerability as presented here.
Collapse
Affiliation(s)
- Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada; Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Chin W Hui
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Valérie Watters
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Katherine Picard
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Fernando González Ibáñez
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Nathalie Vernoux
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Arnaud Droit
- Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada; Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada; Oncology Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
9
|
Cubello J, Marvin E, Conrad K, Merrill AK, George JV, Welle K, Jackson BP, Chalupa D, Oberdörster G, Sobolewski M, Cory-Slechta DA. The contributions of neonatal inhalation of copper to air pollution-induced neurodevelopmental outcomes in mice. Neurotoxicology 2024; 100:55-71. [PMID: 38081392 PMCID: PMC10842733 DOI: 10.1016/j.neuro.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Exposures to ambient ultrafine particle (UFP) air pollution (AP) during the early postnatal period in mice (equivalent to human third trimester brain development) produce male-biased changes in brain structure, including ventriculomegaly, reduced brain myelination, alterations in neurotransmitters and glial activation, as well as impulsive-like behavioral characteristics, all of which are also features characteristic of male-biased neurodevelopmental disorders (NDDs). The purpose of this study was to ascertain the extent to which inhaled Cu, a common contaminant of AP that is also dysregulated across multiple NDDs, might contribute to these phenotypes. For this purpose, C57BL/6J mice were exposed from postnatal days 4-7 and 10-13 for 4 hr/day to inhaled copper oxide (CuxOy) nanoparticles at an environmentally relevant concentration averaging 171.9 ng/m3. Changes in brain metal homeostasis and neurotransmitter levels were determined following termination of exposure (postnatal day 14), while behavioral changes were assessed in adulthood. CuxOy inhalation modified cortical metal homeostasis and produced male-biased disruption of striatal neurotransmitters, with marked increases in dopaminergic function, as well as excitatory/inhibitory imbalance and reductions in serotonergic function. Impulsive-like behaviors in a fixed ratio (FR) waiting-for-reward schedule and a fixed interval (FI) schedule of food reward occurred in both sexes, but more prominently in males, effects which could not be attributed to altered locomotor activity or short-term memory. Inhaled Cu as from AP exposures, at environmentally relevant levels experienced during development, may contribute to impaired brain function, as shown by its ability to disrupt brain metal homeostasis and striatal neurotransmission. In addition, its ability to evoke impulsive-like behavior, particularly in male offspring, may be related to striatal dopaminergic dysfunction that is known to mediate such behaviors. As such, regulation of air Cu levels may be protective of public health.
Collapse
Affiliation(s)
- Janine Cubello
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jithin V George
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kevin Welle
- Proteomics Core, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
10
|
刘 贤, 郭 程, 邹 明, 冯 芳, 梁 思, 陈 文, 武 丽. [Association between maternal gestational diabetes mellitus and the risk of autism spectrum disorder in offspring]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:818-823. [PMID: 37668029 PMCID: PMC10484079 DOI: 10.7499/j.issn.1008-8830.2301021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/26/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVES To explore the association between maternal gestational diabetes mellitus (GDM) exposure and the development of autism spectrum disorder (ASD) in offspring. METHODS A case-control study was conducted, recruiting 221 children with ASD and 400 healthy children as controls. Questionnaires and interviews were used to collect information on general characteristics of the children, socio-economic characteristics of the family, maternal pregnancy history, and maternal disease exposure during pregnancy. Multivariate logistic regression analysis was used to investigate the association between maternal GDM exposure and the development of ASD in offspring. The potential interaction between offspring gender and maternal GDM exposure on the development of ASD in offspring was explored. RESULTS The proportion of maternal GDM was significantly higher in the ASD group compared to the control group (16.3% vs 9.4%, P=0.014). After adjusting for variables such as gender, gestational age, mode of delivery, parity, and maternal education level, maternal GDM exposure was a risk factor for ASD in offspring (OR=2.18, 95%CI: 1.04-4.54, P=0.038). On the basis of adjusting the above variables, after further adjusting the variables including prenatal intake of multivitamins, folic acid intake in the first three months of pregnancy, and assisted reproduction the result trend did not change, but no statistical significance was observed (OR=1.94, 95%CI: 0.74-5.11, P=0.183). There was an interaction between maternal GDM exposure and offspring gender on the development of ASD in offspring (P<0.001). Gender stratified analysis showed that only in male offspring of mothers with GDM, the risk of ASD was significantly increased (OR=3.67, 95%CI: 1.16-11.65, P=0.027). CONCLUSIONS Maternal GDM exposure might increase the risk of ASD in offspring. There is an interaction between GDM exposure and offspring gender in the development of ASD in offspring.
Collapse
Affiliation(s)
- 贤 刘
- 广州医科大学附属妇女儿童医疗中心/广东省儿童健康与疾病临床医学研究中心出生队列, 广东广州510623
| | | | | | | | | | | | | |
Collapse
|
11
|
Dawson MS, Gordon-Fleet K, Yan L, Tardos V, He H, Mui K, Nawani S, Asgarian Z, Catani M, Fernandes C, Drescher U. Sexual dimorphism in the social behaviour of Cntnap2-null mice correlates with disrupted synaptic connectivity and increased microglial activity in the anterior cingulate cortex. Commun Biol 2023; 6:846. [PMID: 37582968 PMCID: PMC10427688 DOI: 10.1038/s42003-023-05215-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
A biological understanding of the apparent sex bias in autism is lacking. Here we have identified Cntnap2 KO mice as a model system to help better understand this dimorphism. Using this model, we observed social deficits in juvenile male KO mice only. These male-specific social deficits correlated with reduced spine densities of Layer 2/3 and Layer 5 pyramidal neurons in the Anterior Cingulate Cortex, a forebrain region prominently associated with the control of social behaviour. Furthermore, in male KO mice, microglia showed an increased activated morphology and phagocytosis of synaptic structures compared to WT mice, whereas no differences were seen in female KO and WT mice. Our data suggest that sexually dimorphic microglial activity may be involved in the aetiology of ASD, disrupting the development of neural circuits that control social behaviour by overpruning synapses at a developmentally critical period.
Collapse
Affiliation(s)
- Matt S Dawson
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kevin Gordon-Fleet
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Lingxin Yan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Vera Tardos
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Huanying He
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kwong Mui
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Smriti Nawani
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
| | - Zeinab Asgarian
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
- Molecular Therapeutics Lab, University College London, Research Department of Targeted Intervention, London, W1W 7TY, UK
| | - Marco Catani
- NatBrainLab, Departments of Neuroimaging Sciences and Forensic and Neurodevelopmental Sciences, IoPPN, King's College London, London, SE1 1UL, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK
| | - Uwe Drescher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK.
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
12
|
Zappala C, Barrios CD, Depino AM. Social deficits in mice prenatally exposed to valproic acid are intergenerationally inherited and rescued by social enrichment. Neurotoxicology 2023; 97:89-100. [PMID: 37207798 DOI: 10.1016/j.neuro.2023.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/06/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Intergenerational transmission of the effects of environmental factors on brain function and behavior can occur through epigenetic mechanisms. Valproic acid (VPA) is an anticonvulsant drug that, when administered during pregnancy, causes various birth defects. The mechanisms of action are largely unclear: VPA can reduce neuronal excitability, but it also inhibits the histone deacetylases, affecting gene expression. Here we evaluated whether the effects of valproic acid prenatal exposure on autism spectrum disorder (ASD)-related behavioral phenotypes can be transmitted to the second generation (F2) through the paternal or the maternal lineage. Indeed, we found that F2 males of the VPA pedigree show reduced sociability, which can be rescued by exposing the animals to social enrichment. Moreover, as is the case for F1 males, F2 VPA males show increased c-Fos expression in the piriform cortex. However, F3 males show normal sociability, indicating that VPA's effects on this behavior are not transgenerationally inherited. Female behavior is not affected by VPA exposure, and we found no evidence of maternal transmission of the consequences of this pharmacological treatment. Finally, all animals exposed to VPA and their descendants show reduced body weight, highlighting an intriguing effect of this compound on metabolism. We propose the VPA model of ASD as a valuable mouse model to study the role of epigenetic inheritance and its underlying mechanisms affecting behavior and neuronal function.
Collapse
Affiliation(s)
- Cecilia Zappala
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Claudio Dario Barrios
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Khramtsova EA, Wilson MA, Martin J, Winham SJ, He KY, Davis LK, Stranger BE. Quality control and analytic best practices for testing genetic models of sex differences in large populations. Cell 2023; 186:2044-2061. [PMID: 37172561 PMCID: PMC10266536 DOI: 10.1016/j.cell.2023.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/31/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Phenotypic sex-based differences exist for many complex traits. In other cases, phenotypes may be similar, but underlying biology may vary. Thus, sex-aware genetic analyses are becoming increasingly important for understanding the mechanisms driving these differences. To this end, we provide a guide outlining the current best practices for testing various models of sex-dependent genetic effects in complex traits and disease conditions, noting that this is an evolving field. Insights from sex-aware analyses will not only teach us about the biology of complex traits but also aid in achieving the goals of precision medicine and health equity for all.
Collapse
Affiliation(s)
- Ekaterina A Khramtsova
- Population Analytics and Insights, Data Science Analytics & Insights, Janssen R&D, Lower Gwynedd Township, PA, USA.
| | - Melissa A Wilson
- School of Life Sciences, Center for Evolution and Medicine, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85282, USA
| | - Joanna Martin
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Karen Y He
- Population Analytics and Insights, Data Science Analytics & Insights, Janssen R&D, Lower Gwynedd Township, PA, USA
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barbara E Stranger
- Center for Genetic Medicine, Department of Pharmacology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Edlow AG, Castro VM, Shook LL, Haneuse S, Kaimal AJ, Perlis RH. Sex-Specific Neurodevelopmental Outcomes Among Offspring of Mothers With SARS-CoV-2 Infection During Pregnancy. JAMA Netw Open 2023; 6:e234415. [PMID: 36951861 PMCID: PMC10037162 DOI: 10.1001/jamanetworkopen.2023.4415] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/02/2023] [Indexed: 03/24/2023] Open
Abstract
Importance Prior studies using large registries have suggested a modest increase in risk for neurodevelopmental diagnoses among children of mothers with immune activation during pregnancy, and such risk may be sex-specific. Objective To determine whether in utero exposure to SARS-CoV-2 is associated with sex-specific risk for neurodevelopmental disorders up to 18 months after birth, compared with unexposed offspring born during or prior to the COVID-19 pandemic period. Design, Setting, and Participants This retrospective cohort study included the live offspring of all mothers who delivered between January 1 and December 31, 2018 (born and followed up before the COVID-19 pandemic), between March 1 and December 31, 2019 (born before and followed up during the COVID-19 pandemic), and between March 1, 2020, and May 31, 2021 (born and followed up during the COVID-19 pandemic). Offspring were born at any of 8 hospitals across 2 health systems in Massachusetts. Exposures Polymerase chain reaction evidence of maternal SARS-CoV-2 infection during pregnancy. Main Outcomes and Measures Electronic health record documentation of International Statistical Classification of Diseases and Related Health Problems, Tenth Revision diagnostic codes corresponding to neurodevelopmental disorders. Results The COVID-19 pandemic cohort included 18 355 live births (9399 boys [51.2%]), including 883 (4.8%) with maternal SARS-CoV-2 positivity during pregnancy. The cohort included 1809 Asian individuals (9.9%), 1635 Black individuals (8.9%), 12 718 White individuals (69.3%), and 1714 individuals (9.3%) who were of other race (American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, more than 1 race); 2617 individuals (14.3%) were of Hispanic ethnicity. Mean maternal age was 33.0 (IQR, 30.0-36.0) years. In adjusted regression models accounting for race, ethnicity, insurance status, hospital type (academic center vs community), maternal age, and preterm status, maternal SARS-CoV-2 positivity was associated with a statistically significant elevation in risk for neurodevelopmental diagnoses at 12 months among male offspring (adjusted OR, 1.94 [95% CI 1.12-3.17]; P = .01) but not female offspring (adjusted OR, 0.89 [95% CI, 0.39-1.76]; P = .77). Similar effects were identified using matched analyses in lieu of regression. At 18 months, more modest effects were observed in male offspring (adjusted OR, 1.42 [95% CI, 0.92-2.11]; P = .10). Conclusions and Relevance In this cohort study of offspring with SARS-CoV-2 exposure in utero, such exposure was associated with greater magnitude of risk for neurodevelopmental diagnoses among male offspring at 12 months following birth. As with prior studies of maternal infection, substantially larger cohorts and longer follow-up will be required to reliably estimate or refute risk.
Collapse
Affiliation(s)
- Andrea G. Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Victor M. Castro
- Center for Quantitative Health, Massachusetts General Hospital, Boston
- Research Information Science and Computing, Mass General Brigham, Somerville, Massachusetts
| | - Lydia L. Shook
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Sebastien Haneuse
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Anjali J. Kaimal
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa
| | - Roy H. Perlis
- Center for Quantitative Health, Massachusetts General Hospital, Boston
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
15
|
Möhrle D, Yuen M, Zheng A, Haddad FL, Allman BL, Schmid S. Characterizing maternal isolation-induced ultrasonic vocalizations in a gene-environment interaction rat model for autism. GENES, BRAIN, AND BEHAVIOR 2023:e12841. [PMID: 36751016 DOI: 10.1111/gbb.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Deficits in social communication and language development belong to the earliest diagnostic criteria of autism spectrum disorders. Of the many risk factors for autism spectrum disorder, the contactin-associated protein-like 2 gene, CNTNAP2, is thought to be important for language development. The present study used a rat model to investigate the potential compounding effects of autism spectrum disorder risk gene mutation and environmental challenges, including breeding conditions or maternal immune activation during pregnancy, on early vocal communication in the offspring. Maternal isolation-induced ultrasonic vocalizations from Cntnap2 wildtype and knockout rats at selected postnatal days were analyzed for their acoustic, temporal and syntax characteristics. Cntnap2 knockout pups from heterozygous breeding showed normal numbers and largely similar temporal structures of ultrasonic vocalizations to wildtype controls, whereas both parameters were affected in homozygously bred knockouts. Homozygous breeding further exacerbated altered pitch and transitioning between call types found in Cntnap2 knockout pups from heterozygous breeding. In contrast, the effect of maternal immune activation on the offspring's vocal communication was confined to call type syntax, but left ultrasonic vocalization acoustic and temporal organization intact. Our results support the "double-hit hypothesis" of autism spectrum disorder risk gene-environment interactions and emphasize that complex features of vocal communication are a useful tool for identifying early autistic-like features in rodent models.
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Megan Yuen
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Alice Zheng
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Faraj L Haddad
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Wang HB, Zhou D, Luk SHC, In Cha H, Mac A, Chae R, Matynia A, Harrison B, Afshari S, Block GD, Ghiani CA, Colwell CS. Long wavelength light reduces the negative consequences of dim light at night. Neurobiol Dis 2023; 176:105944. [PMID: 36493974 PMCID: PMC10594349 DOI: 10.1016/j.nbd.2022.105944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Many patients with autism spectrum disorders (ASD) show disturbances in their sleep/wake cycles, and they may be particularly vulnerable to the impact of circadian disruptors. We have previously shown that a 2-weeks exposure to dim light at night (DLaN) disrupts diurnal rhythms, increases repetitive behaviors and reduces social interactions in contactin-associated protein-like 2 knock out (Cntnap2 KO) mice. The deleterious effects of DLaN may be mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin, which is maximally sensitive to blue light (480 nm). In this study, the usage of a light-emitting diode array enabled us to shift the spectral properties of the DLaN while keeping the intensity of the illumination at 10 lx. First, we confirmed that the short-wavelength enriched lighting produced strong acute suppression of locomotor activity (masking), robust light-induced phase shifts, and cFos expression in the suprachiasmatic nucleus in wild-type (WT) mice, while the long-wavelength enriched lighting evoked much weaker responses. Opn4DTA mice, lacking the melanopsin expressing ipRGCs, were resistant to DLaN effects. Importantly, shifting the DLaN stimulus to longer wavelengths mitigated the negative impact on the activity rhythms and 'autistic' behaviors (i.e. reciprocal social interactions, repetitive grooming) in the Cntnap2 KO as well as in WT mice. The short-, but not the long-wavelength enriched, DLaN triggered cFos expression in in the basolateral amygdala (BLA) as well as in the peri-habenula region raising that possibility that these cell populations may mediate the effects. Broadly, our findings are consistent with the recommendation that spectral properties of light at night should be considered to optimize health in neurotypical as well as vulnerable populations.
Collapse
Affiliation(s)
- Huei-Bin Wang
- Molecular, Cellular, Integrative Physiology Graduate Program, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - David Zhou
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Shu Hon Christopher Luk
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Hye In Cha
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Amanda Mac
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Rim Chae
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Anna Matynia
- Laboratory of Ocular Molecular and Cellular Biology and Genetics, Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, USA
| | | | | | - Gene D Block
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Cristina A Ghiani
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, USA; Intellectual and Developmental Disabilities Center, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA; Intellectual and Developmental Disabilities Center, David Geffen School of Medicine, University of California Los Angeles, USA.
| |
Collapse
|
17
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
18
|
Diamanti T, Prete R, Battista N, Corsetti A, De Jaco A. Exposure to Antibiotics and Neurodevelopmental Disorders: Could Probiotics Modulate the Gut-Brain Axis? Antibiotics (Basel) 2022; 11:1767. [PMID: 36551423 PMCID: PMC9774196 DOI: 10.3390/antibiotics11121767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
In order to develop properly, the brain requires the intricate interconnection of genetic factors and pre-and postnatal environmental events. The gut-brain axis has recently raised considerable interest for its involvement in regulating the development and functioning of the brain. Consequently, alterations in the gut microbiota composition, due to antibiotic administration, could favor the onset of neurodevelopmental disorders. Literature data suggest that the modulation of gut microbiota is often altered in individuals affected by neurodevelopmental disorders. It has been shown in animal studies that metabolites released by an imbalanced gut-brain axis, leads to alterations in brain function and deficits in social behavior. Here, we report the potential effects of antibiotic administration, before and after birth, in relation to the risk of developing neurodevelopmental disorders. We also review the potential role of probiotics in treating gastrointestinal disorders associated with gut dysbiosis after antibiotic administration, and their possible effect in ameliorating neurodevelopmental disorder symptoms.
Collapse
Affiliation(s)
- Tamara Diamanti
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberta Prete
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Natalia Battista
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
19
|
Edlow AG, Castro VM, Shook LL, Haneuse S, Kaimal AJ, Perlis RH. Sex-specific neurodevelopmental outcomes in offspring of mothers with SARS-CoV-2 in pregnancy: an electronic health records cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.18.22282448. [PMID: 36415457 PMCID: PMC9681056 DOI: 10.1101/2022.11.18.22282448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Importance Prior studies using large registries suggested a modest increase in risk for neurodevelopmental diagnoses among children of mothers with immune activation during pregnancy, and such risk may be sex-specific. Objective To determine whether in utero exposure to the novel coronavirus SARS-CoV-2 is associated with sex-specific risk for neurodevelopmental disorders up to 18 months after birth, compared to unexposed offspring born during or prior to the pandemic period. Design Retrospective cohort. Participants Live offspring of all mothers who delivered between March 2018 and May 2021 at any of eight hospitals across two health systems in Massachusetts. Exposure PCR evidence of maternal SARS-CoV-2 infection during pregnancy. Main Outcome and Measures Electronic health record documentation of ICD-10 diagnostic codes corresponding to neurodevelopmental disorders. Results The pandemic cohort included 18,323 live births, including 877 (4.8%) to individuals with SARS-CoV-2 positivity during pregnancy. The cohort included 1806 (9.9%) Asian individuals, 1634 (8.9%) Black individuals, 1711 (9.3%) individuals of another race, and 12,694 (69%) White individuals; 2614 (14%) were of Hispanic ethnicity. Mean maternal age was 33.0 years (IQR 30.0-36.0). In adjusted regression models accounting for race, ethnicity, insurance status, hospital type (academic center vs. community), maternal age, and preterm status, SARS-CoV-2 positivity was associated with statistically significant elevation in risk for neurodevelopmental diagnoses among male offspring (adjusted OR 1.99, 95% CI 1.19-3.34; p=0.009) but not female offspring (adjusted OR 0.90, 95% CI 0.43-1.88; p=0.8). Similar effects were identified using matched analyses in lieu of regression. Conclusion and Relevance SARS-CoV-2 exposure in utero was associated with greater magnitude of risk for neurodevelopmental diagnoses among male offspring in the 12 months following birth. As with prior studies of maternal infection, substantially larger cohorts and longer follow-up will be required to reliably estimate or refute risk. Trial Registration NA. Key Points Question: Are rates of neurodevelopmental disorder diagnoses greater among male or female children with COVID-19 exposure in utero compared to those with no such exposure?Findings: In a cohort of 18,323 infants delivered after February 2020, males but not females born to mothers with a positive SARS-CoV-2 PCR test during pregnancy were more likely to receive a neurodevelopmental diagnosis in the first 12 months after delivery, even after accounting for preterm delivery.Meaning: These findings suggest that male offspring exposed to COVID-19 in utero may be at increased risk for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Andrea G. Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Victor M. Castro
- Center for Quantitative Health and Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Research Information Science and Computing, Mass General Brigham, Somerville, MA
| | - Lydia L. Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Sebastien Haneuse
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Anjali J. Kaimal
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL
| | - Roy H. Perlis
- Center for Quantitative Health and Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Zhang W, Huang J, Gao F, You Q, Ding L, Gong J, Zhang M, Ma R, Zheng S, Sun X, Zhang Y. Lactobacillus reuteri normalizes altered fear memory in male Cntnap4 knockout mice. EBioMedicine 2022; 86:104323. [PMID: 36395738 PMCID: PMC9672961 DOI: 10.1016/j.ebiom.2022.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a common neurodevelopmental disease, characterized by deficits in social communication, restricted and repetitive behaviours, and impaired fear memory processing. Severe gastrointestinal dysfunction and altered gut microbiome have been reported in ASD patients and animal models. Contactin associated protein-like 4 (CNTNAP4) has been suggested to be a novel risk gene, though its role in ASD remains unelucidated. METHODS Cntnap4-/- mice were generated to explore its role in ASD-related behavioural abnormalities. Electrophysiological recording was employed to examine GABAergic transmission in the basolateral amygdala (BLA) and prefrontal cortex. RNA-sequencing was performed to assess underlying mechanisms. 16S rDNA analysis was performed to explore changes in faecal microbial composition. Male Cntnap4-/- mice were fed with Lactobacillus reuteri (L. reuteri) or faecal microbiota to evaluate the effects of microbiota supplementation on the impaired fear conditioning mediated by Cntnap4 deficiency. FINDINGS Male Cntnap4-/- mice manifested deficiency in social behaviours and tone-cue fear conditioning. Notably, reduced GABAergic transmission and GABA receptor expression were found in the BLA but not the prefrontal cortex. In addition, gut Lactobacillus were less abundant in male Cntnap4-/- mice, and L. reuteri treatment or faecal microbiota transplantation rescued abnormal tone-cued fear memory and improved local GABAergic transmission in the BLA of male Cntnap4-/- mice. INTERPRETATION Cntnap4 shapes GABAergic transmission of amygdala and fear conditioning, and microbial intervention represents a promising therapy in ASD intervention. FUNDING National Natural Science Foundation of China, Science and Technology Planning Project of Guangzhou, Guangzhou Medical University, and China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jie Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Feng Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Qianglong You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Junwei Gong
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Mengran Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Runfang Ma
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shaohui Zheng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiangdong Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunlong Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
21
|
The role of maternal immune activation in the immunological and neurological pathogenesis of autism. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Pastorek M, Drobná D, Celec P. Could neutrophil extracellular traps drive the development of autism? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Gao J, Zou J, Yang L, Zhao J, Wang L, Liu T, Fan X. Alteration of peripheral cortisol and autism spectrum disorder: A meta-analysis. Front Psychiatry 2022; 13:928188. [PMID: 35911217 PMCID: PMC9334910 DOI: 10.3389/fpsyt.2022.928188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cortisol is the main HPA axis hormone secreted by the adrenal cortex, and influences metabolism, cognition, and behavior. Recently, a plethora of studies have tried to confirm the correlation between peripheral cortisol and autism spectrum disorder (ASD). However, the results were controversial. We assessed the effects of peripheral cortisol on ASD in this study. The included studies were identified according to the inclusion and exclusion criteria. The pooled Hedges' g and its 95% confidence interval were selected to evaluate the association between peripheral cortisol and ASD. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also undertaken based on the obtained information. There were a total of twelve studies with 375 ASD patients and 335 controls included in our meta-analysis. Obvious heterogeneity across studies was found in the overall analysis. Peripheral cortisol levels were significantly elevated in ASD patients compared with controls in the absence of obvious heterogeneity. A single study did not influence the overall comparison results. Meta-regression analyses revealed that age and gender of the included subjects, sample size, and publication year did not moderate effects on the present results. These findings may provide us some targeted strategies to the diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| | | | | | | | | | | | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
24
|
Dougnon G, Matsui H. Modelling Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) Using Mice and Zebrafish. Int J Mol Sci 2022; 23:ijms23147550. [PMID: 35886894 PMCID: PMC9319972 DOI: 10.3390/ijms23147550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.
Collapse
|
25
|
Early Detection of Male-Predominant Phenotypes in the Pattern of Ultrasonic Vocalizations Emitted by Autism Spectrum Disorder Model (Crmp4-Knockout) Mice. Brain Sci 2022; 12:brainsci12050666. [PMID: 35625052 PMCID: PMC9139187 DOI: 10.3390/brainsci12050666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Male predominance is a known feature of autism spectrum disorder (ASD). Although ASD mouse models can be useful for elucidating mechanisms underlying abnormal behaviors relevant to human ASD, suitable models to analyze sex differences in ASD pathogenesis remain insufficient. Herein, we used collapsin response mediator protein 4 (Crmp4)-knockout (KO) mice exhibiting ASD-like phenotypes in a male-predominant manner and analyzed ultrasonic vocalizations (USVs) to detect potential differences between genotypes and sexes during the early postnatal period. We recorded isolation-induced USVs emitted from wild-type (WT) and Crmp4-KO littermates and compared the total number of USVs between genotypes and sexes. We classified USVs into 10 types based on internal pitch changes, lengths, and shapes and compared the number of USVs in each type by genotypes and sex. Male Crmp4-KO mice exhibited a reduction in the total number of USVs. Crmp4-KO decreased the number of USVs in 7 out of 10 USV types, and male KO mice exhibited a greater reduction than females in 3 of the 7 types. This study offers a suitable ASD animal model and tool for assessing sex-based communication deficits during the early postnatal period, both of which would be valuable for elucidating the underlying mechanism.
Collapse
|
26
|
Association of cumulative early medical factors with autism and autistic symptoms in a population-based twin sample. Transl Psychiatry 2022; 12:73. [PMID: 35194015 PMCID: PMC8863884 DOI: 10.1038/s41398-022-01833-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/03/2022] Open
Abstract
Although highly heritable, environment also contributes to the etiology of autism spectrum disorder (ASD), with several specific environmental factors previously suggested. A registry-linked population-based twin cohort of 15,701 pairs (586 individuals with an ASD diagnosis), was established within the Child and Adolescent Twin Study in Sweden. Participants were evaluated for autistic symptoms at age 9 using the Autism-Tics, ADHD and other Comorbidities parental interview. A series of binary cut-offs indicated whether participants scored over various ASD symptom percentiles. Three early medical factors previously associated with ASD, beyond familial confounding (low birth weight, congenital malformations and perinatal hypoxia), were summed up creating an individual cumulative exposure load. A series of unconditional logistic regressions between all individuals and conditional regressions within twin pairs were performed for each outcome and exposure level. Between all individuals increasing cumulative early exposure loads were associated with increasing risk of ASD diagnosis (OR 3.33 (95%CI 1.79-6.20) for three exposures) and autistic symptoms (ranging from OR 2.12 (1.57-2.86) for three exposures at the 55th symptom percentile cut-off to OR 3.39 (2.2-5.24) at the 95th). Within twin pairs, the association between three exposures and an ASD diagnosis remained similar, but not statistically significant (OR 2.39 (0.62-9.24)). Having a higher load of early cumulative exposure was consistently associated with autistic symptoms after adjusting for familial confounding and sex (OR 3.45 (1.66-7.15) to OR 7.36 (1.99-27.18)). This study gives support to the cumulative stress hypothesis of ASD, and the dimensional model regarding environmental exposures, after adjustment for familial confounding.
Collapse
|
27
|
Lu J, Wang Z, Liang Y, Yao P. Rethinking autism: the impact of maternal risk factors on autism development. Am J Transl Res 2022; 14:1136-1145. [PMID: 35273718 PMCID: PMC8902545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/15/2021] [Indexed: 06/14/2023]
Abstract
Autism spectrum disorders (ASD) are a group of lifelong neurodevelopmental disorders characterized by cognitive deficits and impaired social and communicative development that have been rising in prevalence in recent decades. These disorders may be accompanied by disabling health issues and often lead to a substantial economic burden. The causes and mechanisms of ASD have not yet been fully elucidated, although it has been reported that genetic background, epigenetic modification, and environmental risk factors all contribute to the development of ASD. Environmental factors, which include prenatal circumstances or events, all play a very important role in the early development of autism, yet the exact mechanism remains largely undetermined. In this review, we promote a 'rethinking' of autism as a neurodevelopmental disease that originates from early life development. We focus on the impact of the prenatal and maternal risk factors such as maternal diabetes, prenatal chemical exposure, and hormone imbalances during pregnancy on the risk for ASD development in children and offspring, identifying important pathological bases and prevention measures for future decades. Further research focused on understanding the role of the environmental factors in the etiology of ASD will drive forward innovation strategies towards intervention and the prevention of the maternal risk factors for autism.
Collapse
Affiliation(s)
- Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhen, Guangdong, China
- Faculty of Mental Health, Shenzhen UniversityShenzhen, Guangdong, China
| | - Zichen Wang
- Department of Biomedical Engineering, Southern University of Science and TechnologyShenzhen 518055, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhen, Guangdong, China
- Department of Biomedical Engineering, Southern University of Science and TechnologyShenzhen 518055, China
| | - Paul Yao
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhen, Guangdong, China
| |
Collapse
|
28
|
Xiao L, Wang M, Zhang W, Song Y, Zeng J, Li H, Yu H, Li L, Gao P, Yao P. Maternal diabetes-mediated RORA suppression contributes to gastrointestinal symptoms in autism-like mouse offspring. BMC Neurosci 2022; 23:8. [PMID: 35164690 PMCID: PMC8842926 DOI: 10.1186/s12868-022-00693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinoic acid-related orphan receptor alpha (RORA) has been reported to be suppressed in autistic patients and is associated with autism spectrum disorders (ASD), although the potential role and mechanism of RORA on gastrointestinal (GI) symptoms in ASD patients is still not reported. In this study, we aim to investigate the contribution of RORA to GI symptoms through a maternal diabetes-mediated autism-like mouse model. RESULTS Male offspring of diabetic dams were treated with either superoxide dismutase (SOD) mimetic MnTBAP or RORA agonist SR1078, or were crossbred with intestine epithelial cells (IEC)-specific RORA knockout (RORA-/-) mouse. Gene expression, oxidative stress and inflammation were measured in brain tissues, peripheral blood mononuclear cells (PBMC) and IEC, and GI symptoms were evaluated. Our results showed that SOD mimetic MnTBAP completely, while RORA agonist SR1078 partly, reversed maternal diabetes-mediated oxidative stress and inflammation in the brain, PBMC and IEC, as well as GI symptoms, including intestine permeability and altered gut microbiota compositions. IEC-specific RORA deficiency either mimicked or worsened maternal diabetes-mediated GI symptoms as well as oxidative stress and inflammation in IEC, while there was little effect on maternal diabetes-mediated autism-like behaviors. CONCLUSIONS We conclude that RORA suppression contributes to maternal diabetes-mediated GI symptoms in autism-like mouse offspring, this study provides a potential therapeutical target for maternal diabetes-mediated GI symptoms in offspring through RORA activation.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Min Wang
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Wanhua Zhang
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Yuan Song
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Jiaying Zeng
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Huilin Li
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China
| | - Hong Yu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China.
| | - Pingming Gao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China.
| | - Paul Yao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, 528000, People's Republic of China. .,Hainan Women and Children's Medical Center, Haikou, 570206, People's Republic of China.
| |
Collapse
|
29
|
Male sex bias in early and late onset neurodevelopmental disorders: shared aspects and differences in autism spectrum disorder, attention deficit/hyperactivity disorder, and schizophrenia. Neurosci Biobehav Rev 2022; 135:104577. [DOI: 10.1016/j.neubiorev.2022.104577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022]
|
30
|
Papale LA, Madrid A, Zhang Q, Chen K, Sak L, Keleş S, Alisch RS. Gene by environment interaction mouse model reveals a functional role for 5-hydroxymethylcytosine in neurodevelopmental disorders. Genome Res 2022; 32:266-279. [PMID: 34949667 PMCID: PMC8805724 DOI: 10.1101/gr.276137.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
Mouse knockouts of Cntnap2 show altered neurodevelopmental behavior, deficits in striatal GABAergic signaling, and a genome-wide disruption of an environmentally sensitive DNA methylation modification (5-hydroxymethylcytosine [5hmC]) in the orthologs of a significant number of genes implicated in human neurodevelopmental disorders. We tested adult Cntnap2 heterozygous mice (Cntnap2 +/-; lacking behavioral or neuropathological abnormalities) subjected to a prenatal stress and found that prenatally stressed Cntnap2 +/- female mice show repetitive behaviors and altered sociability, similar to the homozygote phenotype. Genomic profiling revealed disruptions in hippocampal and striatal 5hmC levels that are correlated to altered transcript levels of genes linked to these phenotypes (e.g., Reln, Dst, Trio, and Epha5). Chromatin immunoprecipitation coupled with high-throughput sequencing and hippocampal nuclear lysate pull-down data indicated that 5hmC abundance alters the binding of the transcription factor CLOCK near the promoters of these genes (e.g., Palld, Gigyf1, and Fry), providing a mechanistic role for 5hmC in gene regulation. Together, these data support gene-by-environment hypotheses for the origins of mental illness and provide a means to identify the elusive factors contributing to complex human diseases.
Collapse
Affiliation(s)
- Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Qi Zhang
- Department Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Kailei Chen
- Department of Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Lara Sak
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Sündüz Keleş
- Department of Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
| |
Collapse
|
31
|
Yu H, Niu Y, Jia G, Liang Y, Chen B, Sun R, Wang M, Huang S, Zeng J, Lu J, Li L, Guo X, Yao P. Maternal diabetes-mediated RORA suppression in mice contributes to autism-like offspring through inhibition of aromatase. Commun Biol 2022; 5:51. [PMID: 35027651 PMCID: PMC8758718 DOI: 10.1038/s42003-022-03005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/23/2021] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-related orphan receptor alpha (RORA) suppression is associated with autism spectrum disorder (ASD) development, although the mechanism remains unclear. In this study, we aim to investigate the potential effect and mechanisms of RORA suppression on autism-like behavior (ALB) through maternal diabetes-mediated mouse model. Our in vitro study in human neural progenitor cells shows that transient hyperglycemia induces persistent RORA suppression through oxidative stress-mediated epigenetic modifications and subsequent dissociation of octamer-binding transcription factor 3/4 from the RORA promoter, subsequently suppressing the expression of aromatase and superoxide dismutase 2. The in vivo mouse study shows that prenatal RORA deficiency in neuron-specific RORA null mice mimics maternal diabetes-mediated ALB; postnatal RORA expression in the amygdala ameliorates, while postnatal RORA knockdown mimics, maternal diabetes-mediated ALB in offspring. In addition, RORA mRNA levels in peripheral blood mononuclear cells decrease to 34.2% in ASD patients (n = 121) compared to the typically developing group (n = 118), and the related Receiver Operating Characteristic curve shows good sensitivity and specificity with a calculated 84.1% of Area Under the Curve for ASD diagnosis. We conclude that maternal diabetes contributes to ALB in offspring through suppression of RORA and aromatase, RORA expression in PBMC could be a potential marker for ASD screening. Hong Yu, Yanbin Niu, Guohua Jia et al. integrate in vitro, in vivo, and human experiments to examine a link between RORA expression on autism-like behavior. Their results suggest that maternal diabetes may contribute to autism-like behavior via RORA suppression.
Collapse
Affiliation(s)
- Hong Yu
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Yanbin Niu
- Teachers College, Columbia University, New York, NY, 10027, USA
| | - Guohua Jia
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, 518020, P. R. China
| | - Baolin Chen
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Ruoyu Sun
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Min Wang
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China
| | - Saijun Huang
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Jiaying Zeng
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Jianpin Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, 518020, P. R. China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China.
| | - Xiaoling Guo
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China.
| | - Paul Yao
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China. .,Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China.
| |
Collapse
|
32
|
Pham C, Symeonides C, O'Hely M, Sly PD, Knibbs LD, Thomson S, Vuillermin P, Saffery R, Ponsonby AL. Early life environmental factors associated with autism spectrum disorder symptoms in children at age 2 years: A birth cohort study. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:1864-1881. [PMID: 35012378 DOI: 10.1177/13623613211068223] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
LAY ABSTRACT Mounting evidence indicates the contribution of early life environmental factors in autism spectrum disorder. We aim to report the prospective associations between early life environmental factors and autism spectrum disorder symptoms in children at the age of 2 years in a population-derived birth cohort, the Barwon Infant Study. Autism spectrum disorder symptoms at the age of 2 years strongly predicted autism spectrum disorder diagnosis by the age of 4 years (area under curve = 0.93; 95% CI (0.82, 1.00)). After adjusting for child's sex and age at the time of behavioural assessment, markers of socioeconomic disadvantage, such as lower household income and lone parental status; maternal health factors, including younger maternal age, maternal pre-pregnancy body mass index, higher gestational weight gain and prenatal maternal stress; maternal lifestyle factors, such as prenatal alcohol and environmental air pollutant exposures, including particulate matter < 2.5 μm at birth, child secondhand tobacco smoke at 12 months, dampness/mould and home heating with oil, kerosene or diesel heaters at 2 years postnatal. Lower socioeconomic indexes for area, later birth order, higher maternal prenatal depression and maternal smoking frequency had a dose-response relationship with autism spectrum disorder symptoms. Future studies on environmental factors and autism spectrum disorder should consider the reasons for the socioeconomic disparity and the combined impact of multiple environmental factors through common mechanistic pathways.
Collapse
Affiliation(s)
- Cindy Pham
- Murdoch Children's Research Institute, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Parkville, Australia
- Deakin University, Geelong, Australia
| | - Peter D Sly
- The University of Queensland, South Brisbane, Australia
| | | | - Sarah Thomson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Parkville, Australia
- Deakin University, Geelong, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The University of Melboure, Parkville, Australia
| |
Collapse
|
33
|
Huang S, Zeng J, Sun R, Yu H, Zhang H, Su X, Yao P. Prenatal Progestin Exposure-Mediated Oxytocin Suppression Contributes to Social Deficits in Mouse Offspring. Front Endocrinol (Lausanne) 2022; 13:840398. [PMID: 35370982 PMCID: PMC8964973 DOI: 10.3389/fendo.2022.840398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies have shown that maternal hormone exposure is associated with autism spectrum disorders (ASD). The hormone oxytocin (OXT) is a central nervous neuropeptide that plays an important role in social behaviors as well as ASD etiology, although the detailed mechanism remains largely unknown. In this study, we aim to investigate the potential role and contribution of OXT to prenatal progestin exposure-mediated mouse offspring. Our in vitro study in the hypothalamic neurons that isolated from paraventricular nuclei area of mice showed that transient progestin exposure causes persistent epigenetic changes on the OXT promoter, resulting in dissociation of estrogen receptor β (ERβ) and retinoic acid-related orphan receptor α (RORA) from the OXT promoter with subsequent persistent OXT suppression. Our in vivo study showed that prenatal exposure of medroxyprogesterone acetate (MPA) triggers social deficits in mouse offspring; prenatal OXT deficiency in OXT knockdown mouse partly mimics, while postnatal ERβ expression or postnatal OXT peptide injection partly ameliorates, prenatal MPA exposure-mediated social deficits, which include impaired social interaction and social abilities. On the other hand, OXT had no effect on prenatal MPA exposure-mediated anxiety-like behaviors. We conclude that prenatal MPA exposure-mediated oxytocin suppression contributes to social deficits in mouse offspring.
Collapse
Affiliation(s)
- Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Jiaying Zeng
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Ruoyu Sun
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Hong Yu
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Haimou Zhang
- State Key Lab of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xi Su
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| | - Paul Yao
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| |
Collapse
|
34
|
Ayash TA, Vancolen SY, Segura M, Allard MJ, Sebire G. Protective Effects of Interleukin-1 Blockade on Group B Streptococcus-Induced Chorioamnionitis and Subsequent Neurobehavioral Impairments of the Offspring. Front Endocrinol (Lausanne) 2022; 13:833121. [PMID: 35846278 PMCID: PMC9283950 DOI: 10.3389/fendo.2022.833121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Group B Streptococcus (GBS) is one of the most common bacteria isolated in human chorioamnionitis. Placental infection due to GBS is a major risk factor for fetal organ injuries, preterm birth, perinatal morbidity and mortality, and life-long multiorgan morbidities. Preclinical and clinical studies have shown that GBS-induced infection drives polymorphonuclear (PMN) cell infiltration within the placenta, the hallmark of human chorioamnionitis. In preclinical and clinical studies, the upregulation of interleukin(IL)-1β in the placenta and maternal/fetal blood was associated with a high risk of neurodevelopmental impairments in the progeny. We hypothesized that targeted IL-1 blockade administered to the dam alleviates GBS-induced chorioamnionitis and the downstream fetal inflammatory response syndrome (FIRS). IL-1 receptor antagonist (IL-1Ra) improved the gestational weight gain of GBS-infected dams and did not worsen the infectious manifestations. IL-1Ra reduced the IL-1β titer in the maternal sera of GBS-infected dams. IL-1Ra decreased the levels of IL-1β, IL-6, chemokine (C-X-C motif) ligand 1 (CXCL1), and polymorphonuclear (PMN) infiltration in GBS-infected placenta. IL-1Ra treatment reduced the IL-1β titer in the fetal sera of GBS-exposed fetuses. IL-1 blockade also alleviated GBS-induced FIRS and subsequent neurobehavioral impairments of the offspring without worsening the outcome of GBS infection. Altogether, these results showed that IL-1 plays a key role in the physiopathology of live GBS-induced chorioamnionitis and consequent neurobehavioral impairments.
Collapse
Affiliation(s)
| | | | - Mariela Segura
- Faculty of Veterinary Medicine, Université de Montreal, St-Hyacinthe, QC, Canada
| | | | - Guillaume Sebire
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- *Correspondence: Guillaume Sebire,
| |
Collapse
|
35
|
Chen Y, Xu D, Xia X, Chen G, Xiao H, Chen L, Wang H. Sex difference in adrenal developmental toxicity induced by dexamethasone and its intrauterine programming mechanism. Pharmacol Res 2021; 174:105942. [PMID: 34656764 DOI: 10.1016/j.phrs.2021.105942] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/04/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Dexamethasone is widely used to treat preterm labor and related diseases. However, prenatal dexamethasone treatment (PDT) can cause multiorgan developmental toxicities in offspring. Our previous study found that the occurrence of fetal-originated diseases was associated with adrenal developmental programming alterations in offspring. Here, we investigated the effects of PDT on adrenal function in offspring and its intrauterine programming mechanism. A rat model of PDT was established to observe the alterations of adrenal steroidogenesis in offspring. Furthermore, we confirmed the sex differences of adrenal steroidogenesis and its molecular mechanism combined with in vivo and in vitro experiments. PDT caused a decrease in adrenal steroidogenic function in fetal rats, but it was decreased in males and increased in females after birth. Meanwhile, the adrenal H3K14ac level and expression of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) in PDT offspring were decreased in males and increased in females, suggesting that 11β-HSD2 might mediate sex differences in adrenal function. We further confirmed that dexamethasone inhibited the H3K14ac level and expression of 11β-HSD2 through the GR/SP1/p300 pathway. After bilateral testectomy or ovariectomy of adult PDT offspring rats, adrenal 11β-HSD2 expression and steroidogenic function were both reduced. Using rat primary fetal adrenal cells, the differential expression of AR and ERβ was proven to be involved in regulating the sex difference in 11β-HSD2 expression. This study demonstrated the sex difference in adrenal steroidogenic function of PDT offspring after birth and elucidated a sex hormone receptor-dependent epigenetically regulating mechanism for adrenal 11β-HSD2 programming alteration.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xuan Xia
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guanghui Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
36
|
Chen Y, Xia X, Fang M, Chen G, Cao J, Qu H, Wang H. Maternally derived low glucocorticoid mediates adrenal developmental programming alteration in offspring induced by dexamethasone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149084. [PMID: 34303245 DOI: 10.1016/j.scitotenv.2021.149084] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Adverse environments during pregnancy can increase susceptibility to chronic diseases in adult offspring. The occurrence and development of fetal-originated diseases were associated with adrenal developmental programming and homeostasis alteration in offspring. Dexamethasone is widely used for preterm delivery-related pregnancy diseases, but the intrauterine programming alteration and its occurrence mechanism of prenatal dexamethasone exposure (PDE) on adrenal development in offspring have not been clarified. In this study, prenatal dexamethasone therapy could inhibit neonatal development and cause a low exposure of maternally derived glucocorticoid in clinic. Then, we established a rat model of PDE and observed a similar phenomenon. Further, the adrenal steroidogenic function was continuously inhibited in the PDE male offspring rats, accompanied by the decreased H3K27ac level of adrenal insulin-like growth factor 1 (IGF1) and its expression. Moreover, chronic stress in PDE adult offspring rats could reverse the changes of the above indicators through the high level of glucocorticoid. In combination with in vivo, in vitro and a series of interference experiments, we confirmed that the low level of endogenous glucocorticoids inhibited the adrenal IGF1 expression and steroidogenic function through the GRα/miR-370-3p/Sirt3 pathway. In summary, PDE could continuously inhibit the adrenal steroidogenic function in the male offspring, which is associated with the maternally derived low glucocorticoid-mediated the adrenal developmental programming alteration in offspring. This study provides a theoretical and experimental basis for explaining the adrenal development origin of PDE-induced adult chronic diseases.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xuan Xia
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Jiangang Cao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
37
|
Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 2021; 17:564-579. [PMID: 34341569 DOI: 10.1038/s41582-021-00530-8] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Maternal health during pregnancy plays a major role in shaping health and disease risks in the offspring. The maternal immune activation hypothesis proposes that inflammatory perturbations in utero can affect fetal neurodevelopment, and evidence from human epidemiological studies supports an association between maternal inflammation during pregnancy and offspring neurodevelopmental disorders (NDDs). Diverse maternal inflammatory factors, including obesity, asthma, autoimmune disease, infection and psychosocial stress, are associated with an increased risk of NDDs in the offspring. In addition to inflammation, epigenetic factors are increasingly recognized to operate at the gene-environment interface during NDD pathogenesis. For example, integrated brain transcriptome and epigenetic analyses of individuals with NDDs demonstrate convergent dysregulated immune pathways. In this Review, we focus on the emerging human evidence for an association between maternal immune activation and childhood NDDs, including autism spectrum disorder, attention-deficit/hyperactivity disorder and Tourette syndrome. We refer to established pathophysiological concepts in animal models, including immune signalling across the placenta, epigenetic 'priming' of offspring microglia and postnatal immune-brain crosstalk. The increasing incidence of NDDs has created an urgent need to mitigate the risk and severity of these conditions through both preventive strategies in pregnancy and novel postnatal therapies targeting disease mechanisms.
Collapse
Affiliation(s)
- Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Neuroservices, Starship Children's Hospital, Auckland, New Zealand
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
38
|
Sarieva K, Mayer S. The Effects of Environmental Adversities on Human Neocortical Neurogenesis Modeled in Brain Organoids. Front Mol Biosci 2021; 8:686410. [PMID: 34250020 PMCID: PMC8264783 DOI: 10.3389/fmolb.2021.686410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, a growing body of evidence has demonstrated the impact of prenatal environmental adversity on the development of the human embryonic and fetal brain. Prenatal environmental adversity includes infectious agents, medication, and substances of use as well as inherently maternal factors, such as diabetes and stress. These adversities may cause long-lasting effects if occurring in sensitive time windows and, therefore, have high clinical relevance. However, our knowledge of their influence on specific cellular and molecular processes of in utero brain development remains scarce. This gap of knowledge can be partially explained by the restricted experimental access to the human embryonic and fetal brain and limited recapitulation of human-specific neurodevelopmental events in model organisms. In the past years, novel 3D human stem cell-based in vitro modeling systems, so-called brain organoids, have proven their applicability for modeling early events of human brain development in health and disease. Since their emergence, brain organoids have been successfully employed to study molecular mechanisms of Zika and Herpes simplex virus-associated microcephaly, as well as more subtle events happening upon maternal alcohol and nicotine consumption. These studies converge on pathological mechanisms targeting neural stem cells. In this review, we discuss how brain organoids have recently revealed commonalities and differences in the effects of environmental adversities on human neurogenesis. We highlight both the breakthroughs in understanding the molecular consequences of environmental exposures achieved using organoids as well as the on-going challenges in the field related to variability in protocols and a lack of benchmarking, which make cross-study comparisons difficult.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Premoli M, Memo M, Bonini SA. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies. Neural Regen Res 2021; 16:1158-1167. [PMID: 33269765 PMCID: PMC8224126 DOI: 10.4103/1673-5374.300340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mice use ultrasonic vocalizations (USVs) to communicate each other and to convey their emotional state. USVs have been greatly characterized in specific life phases and contexts, such as mother isolation-induced USVs for pups or female-induced USVs for male mice during courtship. USVs can be acquired by means of specific tools and later analyzed on the base of both quantitative and qualitative parameters. Indeed, different ultrasonic call categories exist and have already been defined. The understanding of different calls meaning is still missing, and it will represent an essential step forward in the field of USVs. They have long been studied in the ethological context, but recently they emerged as a precious instrument to study pathologies characterized by deficits in communication, in particular neurodevelopmental disorders (NDDs), such as autism spectrum disorders. This review covers the topics of USVs characteristics in mice, contexts for USVs emission and factors that modulate their expression. A particular focus will be devoted to mouse USVs in the context of NDDs. Indeed, several NDDs murine models exist and an intense study of USVs is currently in progress, with the aim of both performing an early diagnosis and to find a pharmacological/behavioral intervention to improve patients' quality of life.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| |
Collapse
|
40
|
Manosso LM, Lin J, Carlessi AS, Recco KCC, Quevedo J, Gonçalves CL, Réus GZ. Sex-related patterns of the gut-microbiota-brain axis in the neuropsychiatric conditions. Brain Res Bull 2021; 171:196-208. [PMID: 33838211 DOI: 10.1016/j.brainresbull.2021.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Sex differences are often observed in psychiatric patients, especially major depressive disorders (MDD), schizophrenia, and developmental disorders, including autism spectrum disorders (ASDs). The prevalence rates between males and females seem variate according to the clinical condition. Although the findings are still incipient, it is suggested that these differences can involve neuroanatomical, neurochemical, and physiological sex differences. In this context, the microbiota-gut-brain axis hypothesis arises to explain some aspects of the complex pathophysiology of neuropsychiatric disorders. The microbiota composition is host-specific and can change conforming to age, sex, diet, medication, exercise, and others. The communication between the brain and the gut is bidirectional and may impact the entire system homeostasis. Many pathways appear to be involved, including neuroanatomic communication, neuroendocrine pathways, immune system, bacteria-derived metabolites, hormones, neurotransmitters, and neurotrophic factors. Although the clinical and preclinical studies are sparse and not very consistent, they suggest that sex differences in the gut microbiota may play an essential role in some neuropsychiatric conditions. Thus, this narrative review has as a mainly aim to show the points sex-related patterns associated to the gut-microbiota-brain axis in the MDD, ASDs, and schizophrenia.
Collapse
Affiliation(s)
- Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaime Lin
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Anelise S Carlessi
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Kelen C C Recco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Cinara L Gonçalves
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
41
|
Liu J, Liang Y, Jiang X, Xu J, Sun Y, Wang Z, Lin L, Niu Y, Song S, Zhang H, Xue Z, Lu J, Yao P. Maternal Diabetes-Induced Suppression of Oxytocin Receptor Contributes to Social Deficits in Offspring. Front Neurosci 2021; 15:634781. [PMID: 33633538 PMCID: PMC7900564 DOI: 10.3389/fnins.2021.634781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/18/2021] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by impaired skills in social interaction and communication in addition to restricted and repetitive behaviors. Many different factors may contribute to ASD development; in particular, oxytocin receptor (OXTR) deficiency has been reported to be associated with ASD, although the detailed mechanism has remained largely unknown. Epidemiological study has shown that maternal diabetes is associated with ASD development. In this study, we aim to investigate the potential role of OXTR on maternal diabetes-mediated social deficits in offspring. Our in vitro study of human neuron progenitor cells showed that hyperglycemia induces OXTR suppression and that this suppression remains during subsequent normoglycemia. Further investigation showed that OXTR suppression is due to hyperglycemia-induced persistent oxidative stress and epigenetic methylation in addition to the subsequent dissociation of estrogen receptor β (ERβ) from the OXTR promoter. Furthermore, our in vivo mouse study showed that maternal diabetes induces OXTR suppression; prenatal OXTR deficiency mimics and potentiates maternal diabetes-mediated anxiety-like behaviors, while there is less of an effect on autism-like behaviors. Additionally, postnatal infusion of OXTR partly, while infusion of ERβ completely, reverses maternal diabetes-induced social deficits. We conclude that OXTR may be an important factor for ASD development and that maternal diabetes-induced suppression of oxytocin receptor contributes to social deficits in offspring.
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Xing Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Xu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yumeng Sun
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Zichen Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ling Lin
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yanbin Niu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shiqi Song
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Huawei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhenpeng Xue
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Paul Yao
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| |
Collapse
|
42
|
Mueller FS, Scarborough J, Schalbetter SM, Richetto J, Kim E, Couch A, Yee Y, Lerch JP, Vernon AC, Weber-Stadlbauer U, Meyer U. Behavioral, neuroanatomical, and molecular correlates of resilience and susceptibility to maternal immune activation. Mol Psychiatry 2021; 26:396-410. [PMID: 33230204 PMCID: PMC7850974 DOI: 10.1038/s41380-020-00952-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Infectious or noninfectious maternal immune activation (MIA) is an environmental risk factor for psychiatric and neurological disorders with neurodevelopmental etiologies. Whilst there is increasing evidence for significant health consequences, the effects of MIA on the offspring appear to be variable. Here, we aimed to identify and characterize subgroups of isogenic mouse offspring exposed to identical MIA, which was induced in C57BL6/N mice by administration of the viral mimetic, poly(I:C), on gestation day 12. Cluster analysis of behavioral data obtained from a first cohort containing >150 MIA and control offspring revealed that MIA offspring could be stratified into distinct subgroups that were characterized by the presence or absence of multiple behavioral dysfunctions. The two subgroups also differed in terms of their transcriptional profiles in cortical and subcortical brain regions and brain networks of structural covariance, as measured by ex vivo structural magnetic resonance imaging (MRI). In a second, independent cohort containing 50 MIA and control offspring, we identified a subgroup of MIA offspring that displayed elevated peripheral production of innate inflammatory cytokines, including IL-1β, IL-6, and TNF-α, in adulthood. This subgroup also showed significant impairments in social approach behavior and sensorimotor gating, whereas MIA offspring with a low inflammatory cytokine status did not. Taken together, our results highlight the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network, and immunological profiles even under conditions of genetic homogeneity. These data have relevance for advancing our understanding of the variable neurodevelopmental effects induced by MIA and for biomarker-guided approaches in preclinical psychiatric research.
Collapse
Affiliation(s)
- Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sina M Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Amalie Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yohan Yee
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Spence JP, Lai D, Reiter JL, Cao S, Bell RL, Williams KE, Liang T. Epigenetic changes on rat chromosome 4 contribute to disparate alcohol drinking behavior in alcohol-preferring and -nonpreferring rats. Alcohol 2020; 89:103-112. [PMID: 32798691 PMCID: PMC7722131 DOI: 10.1016/j.alcohol.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Paternal alcohol abuse is a well-recognized risk factor for the development of an alcohol use disorder (AUD). In addition to genetic and environmental risk factors, heritable epigenetic factors also have been proposed to play a key role in the development of AUD. However, it is not clear whether epigenetic factors contribute to the genetic inheritance in families affected by AUD. We used reciprocal crosses of the alcohol-preferring (P) and -nonpreferring (NP) rat lines to test whether epigenetic factors also impacted alcohol drinking in up to two generations of offspring. METHODS F1 offspring derived by reciprocal breeding of P and NP rats were tested for differences in alcohol consumption using a free-choice protocol of 10% ethanol, 20% ethanol, and water that were available concurrently. In a separate experiment, an F2 population was tested for alcohol consumption not only due to genetic differences. These rats were generated from inbred P (iP) and iNP rat lines that were reciprocally bred to produce genetically identical F1 offspring that remained alcohol-naïve. Intercrosses of the F1 generation animals produced the F2 generation. Alcohol consumption was then assessed in the F2 generation using a standard two-bottle choice protocol, and was analyzed using genome-wide linkage analysis. Alcohol consumption measures were also analyzed for sex differences. RESULTS Average alcohol consumption was higher in the F1 offspring of P vs. NP sires and in the F2 offspring of F0 iP vs. iNP grandsires. Linkage analyses showed the maximum LOD scores for alcohol consumption in both male and female offspring were on chromosome 4 (Chr 4). The LOD score for both sexes considered together was higher when the grandsire was iP vs. iNP (5.0 vs. 3.35, respectively). Furthermore, the F2 population displayed enhanced alcohol consumption when the P alleles from the F0 sire were present. CONCLUSIONS These results demonstrate that epigenetic and/or non-genetic factors mapping to rat chromosome 4 contribute to a transgenerational paternal effect on alcohol consumption in the P and NP rat model of AUD.
Collapse
Affiliation(s)
- John Paul Spence
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jill L Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Sha Cao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
44
|
Hirayama A, Wakusawa K, Fujioka T, Iwata K, Usui N, Kurita D, Kameno Y, Wakuda T, Takagai S, Hirai T, Nara T, Ito H, Nagano Y, Oowada S, Tsujii M, Tsuchiya KJ, Matsuzaki H. Simultaneous evaluation of antioxidative serum profiles facilitates the diagnostic screening of autism spectrum disorder in under-6-year-old children. Sci Rep 2020; 10:20602. [PMID: 33244118 PMCID: PMC7691362 DOI: 10.1038/s41598-020-77328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
This case–control study aimed to assess oxidative stress alterations in autism spectrum disorder (ASD). We used the MULTIS method, an electron spin resonance-based technique measuring multiple free radical scavenging activities simultaneously, in combination with conventional oxidative stress markers to investigate the ability of this MULTIS approach as a non-behavioural diagnostic tool for children with ASD. Serum samples of 39 children with ASD and 58 age-matched children with typical development were analysed. The ASD group showed decreased hydroxyl radical (·OH) and singlet oxygen scavenging activity with increased serum coenzyme Q10 oxidation rate, indicating a prooxidative tendency in ASD. By contrast, scavenging activities against superoxide (O2·−) and alkoxyl radical (RO·) were increased in the ASD group suggesting antioxidative shifts. In the subgroup analysis of 6-year-olds or younger, the combination of ·OH, O2·−, and RO· scavenging activities predicted ASD with high odds ratio (50.4), positive likelihood (12.6), and percentage of correct classification (87.0%). Our results indicate that oxidative stress in children with ASD is not simply elevated but rather shows a compensatory shift. MULTIS measurements may serve as a very powerful non-behavioural tool for the diagnosis of ASD in children.
Collapse
Affiliation(s)
- Aki Hirayama
- Center for Integrative Medicine, Tsukuba University of Technology, Tsukuba, Japan
| | - Keisuke Wakusawa
- Department of Developmental Neuropsychiatry, Miyagi Children's Hospital, Sendai, Japan
| | - Toru Fujioka
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Keiko Iwata
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Osaka, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Noriyoshi Usui
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Osaka, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,Center for Medical Research and Education, Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Daisuke Kurita
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yosuke Kameno
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shu Takagai
- United Graduate School of Child Development, Osaka University, Osaka, Japan.,Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takaharu Hirai
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Osaka, Japan.,Department of Community Health Nursing, School of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takahiro Nara
- Department of Developmental Neuropsychiatry, Miyagi Children's Hospital, Sendai, Japan
| | - Hiromu Ito
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yumiko Nagano
- Center for Integrative Medicine, Tsukuba University of Technology, Tsukuba, Japan
| | | | - Masatsugu Tsujii
- School of Contemporary Sociology, Chukyo University, Toyota, Japan
| | - Kenji J Tsuchiya
- United Graduate School of Child Development, Osaka University, Osaka, Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan. .,United Graduate School of Child Development, Osaka University, Osaka, Japan. .,Life Science Innovation Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
45
|
Pensado-López A, Veiga-Rúa S, Carracedo Á, Allegue C, Sánchez L. Experimental Models to Study Autism Spectrum Disorders: hiPSCs, Rodents and Zebrafish. Genes (Basel) 2020; 11:E1376. [PMID: 33233737 PMCID: PMC7699923 DOI: 10.3390/genes11111376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorders (ASD) affect around 1.5% of the global population, which manifest alterations in communication and socialization, as well as repetitive behaviors or restricted interests. ASD is a complex disorder with known environmental and genetic contributors; however, ASD etiology is far from being clear. In the past decades, many efforts have been put into developing new models to study ASD, both in vitro and in vivo. These models have a lot of potential to help to validate some of the previously associated risk factors to the development of the disorder, and to test new potential therapies that help to alleviate ASD symptoms. The present review is focused on the recent advances towards the generation of models for the study of ASD, which would be a useful tool to decipher the bases of the disorder, as well as to conduct drug screenings that hopefully lead to the identification of useful compounds to help patients deal with the symptoms of ASD.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (S.V.-R.)
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Sara Veiga-Rúa
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (S.V.-R.)
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Ángel Carracedo
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIMUS, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Catarina Allegue
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (S.V.-R.)
| |
Collapse
|
46
|
Increased RNA editing in maternal immune activation model of neurodevelopmental disease. Nat Commun 2020; 11:5236. [PMID: 33067431 PMCID: PMC7567798 DOI: 10.1038/s41467-020-19048-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The etiology of major neurodevelopmental disorders such as schizophrenia and autism is unclear, with evidence supporting a combination of genetic factors and environmental insults, including viral infection during pregnancy. Here we utilized a mouse model of maternal immune activation (MIA) with the viral mimic PolyI:C infection during early gestation. We investigated the transcriptional changes in the brains of mouse fetuses following MIA during the prenatal period, and evaluated the behavioral and biochemical changes in the adult brain. The results reveal an increase in RNA editing levels and dysregulation in brain development-related gene pathways in the fetal brains of MIA mice. These MIA-induced brain editing changes are not observed in adulthood, although MIA-induced behavioral deficits are observed. Taken together, our findings suggest that MIA induces transient dysregulation of RNA editing at a critical time in brain development.
Collapse
|
47
|
Pfaff D, Barbas H. Mechanisms for the Approach/Avoidance Decision Applied to Autism. Trends Neurosci 2020; 42:448-457. [PMID: 31253250 DOI: 10.1016/j.tins.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
As a neurodevelopmental disorder with serious lifelong consequences, autism has received considerable attention from neuroscientists and geneticists. We present a hypothesis of mechanisms plausibly affected during brain development in autism, based on neural pathways that are associated with social behavior and connect the prefrontal cortex (PFC) to the basal ganglia (BG). We consider failure of social approach in autism as a special case of imbalance in the fundamental dichotomy between behavioral approach and avoidance. Differential combinations of genes mutated, differences in the timing of their impact during development, and graded degrees of hormonal influences may help explain the heterogeneity in symptomatology in autism and predominance in boys.
Collapse
Affiliation(s)
- Donald Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY USA.
| | - Helen Barbas
- Neural Systems Laboratory, Boston University, Boston, MA, USA.
| |
Collapse
|
48
|
Matelski L, Keil Stietz KP, Sethi S, Taylor SL, Van de Water J, Lein PJ. The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Curr Res Toxicol 2020; 1:85-103. [PMID: 34296199 PMCID: PMC8294704 DOI: 10.1016/j.crtox.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants implicated as risk factors for neurodevelopmental disorders (NDDs). Immune dysregulation is another NDD risk factor, and developmental PCB exposures are associated with early life immune dysregulation. Studies of the immunomodulatory effects of PCBs have focused on the higher-chlorinated congeners found in legacy commercial mixtures. Comparatively little is known about the immune effects of contemporary, lower-chlorinated PCBs. This is a critical data gap given recent reports that lower-chlorinated congeners comprise >70% of the total PCB burden in serum of pregnant women enrolled in the MARBLES study who are at increased risk for having a child with an NDD. To examine the influence of PCBs, sex, and genotype on cytokine levels, mice were exposed throughout gestation and lactation to a PCB mixture in the maternal diet, which was based on the 12 most abundant PCBs in sera from MARBLES subjects. Using multiplex array, cytokines were quantified in the serum and hippocampus of weanling mice expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I mice), a human CGG premutation repeat expansion in the fragile X mental retardation gene 1 (CGG mice), or both mutations (DM mice). Congenic wildtype (WT) mice were used as controls. There were dose-dependent effects of PCB exposure on cytokine concentrations in the serum but not hippocampus. Differential effects of genotype were observed in the serum and hippocampus. Hippocampal cytokines were consistently elevated in T4826I mice and also in WT animals for some cytokines compared to CGG and DM mice, while serum cytokines were usually elevated in the mutant genotypes compared to the WT group. Males had elevated levels of 19 cytokines in the serum and 4 in the hippocampus compared to females, but there were also interactions between sex and genotype for 7 hippocampal cytokines. Only the chemokine CCL5 in the serum showed an interaction between PCB dose, genotype, and sex. Collectively, these findings indicate differential influences of PCB exposure and genotype on cytokine levels in serum and hippocampal tissue of weanling mice. These results suggest that developmental PCB exposure has chronic effects on baseline serum, but not hippocampal, cytokine levels in juvenile mice.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandra L. Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA,MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Corresponding author at: Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.
| |
Collapse
|
49
|
Hao X, Pan J, Gao X, Zhang S, Li Y. Gut microbiota on gender bias in autism spectrum disorder. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0042/revneuro-2020-0042.xml. [PMID: 32887209 DOI: 10.1515/revneuro-2020-0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Its three core symptoms are social communication disorder, communication disorder, narrow interest and stereotyped repetitive behavior. The proportion of male and female autistic patients is 4:1. Many researchers have studied this phenomenon, but the mechanism is still unclear. This review mainly discusses the related mechanism from the perspective of gut microbiota and introduces the influence of gut microbiota on the difference of ASD between men and women, as well as how gut microbiota may affect the gender dimorphism of ASD through metabolite of microbiota, immunity, and genetics, which provide some useful information for those who are interested in this research and find more gender-specific treatment for autistic men and women.
Collapse
Affiliation(s)
- Xia Hao
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
- College of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| | - Jiao Pan
- Department of Microbiology, Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin300071,China
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| | - Shiyu Zhang
- College of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| |
Collapse
|
50
|
Bjørklund G, Meguid NA, El-Bana MA, Tinkov AA, Saad K, Dadar M, Hemimi M, Skalny AV, Hosnedlová B, Kizek R, Osredkar J, Urbina MA, Fabjan T, El-Houfey AA, Kałużna-Czaplińska J, Gątarek P, Chirumbolo S. Oxidative Stress in Autism Spectrum Disorder. Mol Neurobiol 2020; 57:2314-2332. [PMID: 32026227 DOI: 10.1007/s12035-019-01742-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
According to the United States Centers for Disease Control and Prevention (CDC), as of July 11, 2016, the reported average incidence of children diagnosed with an autism spectrum disorder (ASD) was 1 in 68 (1.46%) among 8-year-old children born in 2004 and living within the 11 monitoring sites' surveillance areas in the United States of America (USA) in 2012. ASD is a multifaceted neurodevelopmental disorder that is also considered a hidden disability, as, for the most part; there are no apparent morphological differences between children with ASD and typically developing children. ASD is diagnosed based upon a triad of features including impairment in socialization, impairment in language, and repetitive and stereotypic behaviors. The increasing incidence of ASD in the pediatric population and the lack of successful curative therapies make ASD one of the most challenging disorders for medicine. ASD neurobiology is thought to be associated with oxidative stress, as shown by increased levels of reactive oxygen species and increased lipid peroxidation, as well as an increase in other indicators of oxidative stress. Children with ASD diagnosis are considered more vulnerable to oxidative stress because of their imbalance in intracellular and extracellular glutathione levels and decreased glutathione reserve capacity. Several studies have suggested that the redox imbalance and oxidative stress are integral parts of ASD pathophysiology. As such, early assessment and treatment of antioxidant status may result in a better prognosis as it could decrease the oxidative stress in the brain before it can induce more irreversible brain damage. In this review, many aspects of the role of oxidative stress in ASD are discussed, taking into account that the process of oxidative stress may be a target for therapeutic interventions.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Nagwa A Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Mona A El-Bana
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
- Medical Biochemistry Department, National Research Centre, Giza, Egypt
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maha Hemimi
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- IM Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia
- Taipei Medical University, Taipei, Taiwan
| | - Božena Hosnedlová
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
- Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
- Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry (KIKKB), Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Teja Fabjan
- Institute of Clinical Chemistry and Biochemistry (KIKKB), Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Amira A El-Houfey
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Sabia University College, Jazan University, Jizan, Saudi Arabia
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Paulina Gątarek
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| |
Collapse
|