1
|
Nardini R, Pacchiarotti G, Svicher V, Salpini R, Bellocchi MC, Conti R, Sala MG, La Rocca D, Carioti L, Cersini A, Manna G, the Equine Hepatic Viruses Consortium, Scicluna MT. First National Prevalence in Italian Horse Population and Phylogenesis Highlight a Fourth Sub-Type Candidate of Equine Hepacivirus. Viruses 2024; 16:616. [PMID: 38675957 PMCID: PMC11054338 DOI: 10.3390/v16040616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Equine hepacivirus (EqHV, Flaviviridae, hepacivirus) is a small, enveloped RNA virus generally causing sub-clinical hepatitis with occasional fatalities. EqHV is reported in equids worldwide, but for Italy data are limited. To address this, a survey study was set up to estimate prevalence at a national level and among different production categories (equestrian; competition; work and meat; reproduction) and national macro-regions (North, Central, South, and Islands). Data obtained testing 1801 horse serum samples by Real-Time RT PCR were compared within the categories and regions. The NS3 fragment of the PCR-positive samples was sequenced by Sanger protocol for phylogenetic and mutational analysis. The tertiary structure of the NS3 protein was also assessed. The estimated national prevalence was 4.27% [1.97-6.59, 95% CI] and no statistical differences were detected among production categories and macro-regions. The phylogenesis confirmed the distribution in Italy of the three known EqHV subtypes, also suggesting a possible fourth sub-type that, however, requires further confirmation. Mutational profiles that could also affect the NS3 binding affinity to the viral RNA were detected. The present paper demonstrates that EqHV should be included in diagnostic protocols when investigating causes of hepatitis, and in quality control protocols for blood derived products due to its parental transmission.
Collapse
Affiliation(s)
- Roberto Nardini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Giulia Pacchiarotti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Valentina Svicher
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.)
| | - Maria Concetta Bellocchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.)
| | - Raffaella Conti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Davide La Rocca
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (M.C.B.); (L.C.)
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | - Giuseppe Manna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| | | | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (G.P.); (R.C.); (M.G.S.); (D.L.R.); (A.C.); (G.M.); (M.T.S.)
| |
Collapse
|
2
|
Zhang Y, Kinast V, Sheldon J, Frericks N, Todt D, Zimmer M, Caliskan N, Brown RJP, Steinmann E, Pietschmann T. Mouse Liver-Expressed Shiftless Is an Evolutionarily Conserved Antiviral Effector Restricting Human and Murine Hepaciviruses. Microbiol Spectr 2023; 11:e0128423. [PMID: 37341610 PMCID: PMC10433982 DOI: 10.1128/spectrum.01284-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Mice are refractory to infection with human-tropic hepatitis C virus (HCV), although distantly related rodent hepaciviruses (RHV) circulate in wild rodents. To investigate whether liver intrinsic host factors can exhibit broad restriction against these distantly related hepaciviruses, we focused on Shiftless (Shfl), an interferon (IFN)-regulated gene (IRG) which restricts HCV in humans. Unusually, and in contrast to selected classical IRGs, human and mouse SHFL orthologues (hSHFL and mSHFL, respectively) were highly expressed in hepatocytes in the absence of viral infection, weakly induced by IFN, and highly conserved at the amino acid level (>95%). Replication of both HCV and RHV subgenomic replicons was suppressed by ectopic expression of mSHFL in human or rodent hepatoma cell lines. Gene editing of endogenous mShfl in mouse liver tumor cells increased HCV replication and virion production. Colocalization of mSHFL protein with viral double-stranded RNA (dsRNA) intermediates was confirmed and could be ablated by mutational disruption of the SHFL zinc finger domain, concomitant with a loss of antiviral activity. In summary, these data point to an evolutionarily conserved function for this gene in humans and rodents: SHFL is an ancient antiviral effector which targets distantly related hepaciviruses via restriction of viral RNA replication. IMPORTANCE Viruses have evolved ways to evade or blunt innate cellular antiviral mechanisms within their cognate host species. However, these adaptations may fail when viruses infect new species and can therefore limit cross-species transmission. This may also prevent development of animal models for human-pathogenic viruses. HCV shows a narrow species tropism likely due to distinct human host factor usage and innate antiviral defenses limiting infection of nonhuman liver cells. Interferon (IFN)-regulated genes (IRGs) partially inhibit HCV infection of human cells by diverse mechanisms. Here, we show that mouse Shiftless (mSHFL), a protein that interferes with HCV replication factories, inhibits HCV replication and infection in human and mouse liver cells. We further report that the zinc finger domain of SHFL is important for viral restriction. These findings implicate mSHFL as a host factor that impairs HCV infection of mice and provide guidance for development of HCV animal models needed for vaccine development.
Collapse
Affiliation(s)
- Yudi Zhang
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Volker Kinast
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nicola Frericks
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Matthias Zimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Zentrum für Infektionsforschung (Helmholtz Centre for Infection Research), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Richard J. P. Brown
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
3
|
Cardone R, Buonavoglia A, Lanave G, Vasinioti VI, Mininni V, Lorusso E, Decaro N, Martella V, Elia G, Diakoudi G. Description of an Equine Hepacivirus Cluster in a Horse Stable in Italy. Transbound Emerg Dis 2023; 2023:5251034. [PMID: 40303682 PMCID: PMC12017193 DOI: 10.1155/2023/5251034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2025]
Abstract
Equine hepacivirus (EqHV), also known as Hepacivirus A, represents the most closely related genetic homologue of human hepatitis C virus (HCV). Although detected worldwide, limited information on the clinical features of this infection is available and on the mechanisms by which EqHV is transmitted. In this study, we describe a spread of infection of EqHV that occurred in a small stable of horses in southern Italy. The RNA of EqHV was detected in 6/13 (46.2%) sera of the horses introduced into the herd, at different times, over a period of approximately one year. Based on the sequencing analyses of genomic portions located in the NS5B, 5'UTR, and NS3 genes, the viruses detected in the animals were genetically highly related (100% nt identity) to each other. The nearly full-length genome of the virus identified from two horses was generated. For one animal with a profile of chronic infection, the genome sequence was determined with a 7-month interval, revealing 26nt changes resulting in 11 nonsynonymous intrahost nucleotide variations. Overall, based on the epidemiological information, we support the hypothesis that horizontal transmission occurred in the herd.
Collapse
Affiliation(s)
- Roberta Cardone
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Alessio Buonavoglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | | | | | - Eleonora Lorusso
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| |
Collapse
|
4
|
Cavalleri JV, Korbacska‐Kutasi O, Leblond A, Paillot R, Pusterla N, Steinmann E, Tomlinson J. European College of Equine Internal Medicine consensus statement on equine flaviviridae infections in Europe. Vet Med (Auckl) 2022; 36:1858-1871. [DOI: 10.1111/jvim.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Jessika‐M. V. Cavalleri
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Orsolya Korbacska‐Kutasi
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
- Department for Animal Breeding, Nutrition and Laboratory Animal Science University of Veterinary Medicine Budapest Hungary
- Hungarian Academy of Sciences—Szent Istvan University (MTA‐SZIE) Large Animal Clinical Research Group Üllő Dóra major Hungary
| | - Agnès Leblond
- EPIA, UMR 0346, Epidemiologie des maladies animales et zoonotiques, INRAE, VetAgro Sup University of Lyon Marcy l'Etoile France
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy Writtle University College Chelmsford UK
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine University of California Davis California USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine Ruhr University Bochum Bochum Germany
| | - Joy Tomlinson
- Baker Institute for Animal Health Cornell University College of Veterinary Medicine Ithaca New York USA
| |
Collapse
|
5
|
Gömer A, Delarocque J, Puff C, Nocke MK, Reinecke B, Baumgärtner W, Cavalleri JMV, Feige K, Steinmann E, Todt D. Dose-Dependent Hepacivirus Infection Reveals Linkage between Infectious Dose and Immune Response. Microbiol Spectr 2022; 10:e0168622. [PMID: 35993785 PMCID: PMC9602444 DOI: 10.1128/spectrum.01686-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022] Open
Abstract
More than 70 million people worldwide are still infected with the hepatitis C virus 30 years after its discovery, underscoring the need for a vaccine. To develop an effective prophylactic vaccine, detailed knowledge of the correlates of protection and an immunocompetent surrogate model are needed. In this study, we describe the minimum dose required for robust equine hepacivirus (EqHV) infection in equids and examined how this relates to duration of infection, seroconversion, and transcriptomic responses. To investigate mechanisms of hepaciviral persistence, immune response, and immune-mediated pathology, we inoculated eight EqHV naive horses with doses ranging from 1-2 copies to 1.3 × 106 RNA copies per inoculation. We characterized infection kinetics, pathology, and transcriptomic responses via next generation sequencing. The minimal infectious dose of EqHV in horses was estimated at 13 RNA copies, whereas 6 to 7 copies were insufficient to cause infection. Peak viremia did not correlate with infectious dose, while seroconversion and duration of infection appeared to be affected. Notably, seroconversion was undetectable in the low-dose infections within the surveillance period (40 to 50 days). In addition, transcriptomic analysis revealed a nearly dose-dependent effect, with greater immune activation and inflammatory response observed in high-dose infections than in low-dose infections. Interestingly, inoculation with 6-7 copies of RNA that did not result in productive infection, but was associated with a strong immune response, similar to that observed in the high-dose infections. IMPORTANCE We demonstrate that the EqHV dose of infection plays an important role for inducing immune responses, possibly linked to early clearance in high-dose and prolonged viremia in low-dose infections. In particular, pathways associated with innate and adaptive immune responses, as well as inflammatory responses, were more strongly upregulated in high-dose infections than in lower doses. Hence, inoculation with low doses may enable EqHV to evade strong immune responses in the early phase and therefore promote robust, long-lasting infection.
Collapse
Affiliation(s)
- André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Julien Delarocque
- Clinic for Horses, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Maximilian K. Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Birthe Reinecke
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Jessika M. V. Cavalleri
- Clinical Section of Equine Internal Medicine, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
6
|
Pacchiarotti G, Nardini R, Scicluna MT. Equine Hepacivirus: A Systematic Review and a Meta-Analysis of Serological and Biomolecular Prevalence and a Phylogenetic Update. Animals (Basel) 2022; 12:2486. [PMID: 36230228 PMCID: PMC9558973 DOI: 10.3390/ani12192486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Viral hepatitis has recently assumed relevance for equine veterinary medicine since a variety of new viruses have been discovered. Equine Hepacivirus (EqHV) is an RNA virus belonging to the Flaviviridae family that can cause subclinical hepatitis in horses, occasionally evolving into a chronic disease. EqHV, to date, is considered the closest known relative of human HCV. EqHV has been reported worldwide therefore assessing its features is relevant, considering both the wide use of blood products and transfusions in veterinary therapies and its similitude to HCV. The present review resumes the actual knowledge on EqHV epidemiology, risk factors and immunology, together with potential diagnostics and good practices for prevention. Moreover, adhering to PRISMA guidelines for systematic reviews a meta-analysis of serological and biomolecular prevalence and an updated phylogenetic description is presented as a benchmark for further studies.
Collapse
|
7
|
An Equine Model for Vaccination against a Hepacivirus: Insights into Host Responses to E2 Recombinant Protein Vaccination and Subsequent Equine Hepacivirus Inoculation. Viruses 2022; 14:v14071401. [PMID: 35891381 PMCID: PMC9318657 DOI: 10.3390/v14071401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Equine hepacivirus (EqHV) is the closest known genetic homologue of hepatitis C virus. An effective prophylactic vaccine is currently not available for either of these hepaciviruses. The equine as potential surrogate model for hepacivirus vaccine studies was investigated, while equine host responses following vaccination with EqHV E2 recombinant protein and subsequent EqHV inoculation were elucidated. Four ponies received prime and booster vaccinations (recombinant protein, adjuvant) four weeks apart (day −55 and −27). Two control ponies received adjuvant only. Ponies were inoculated with EqHV RNA-positive plasma on day 0. Blood samples and liver biopsies were collected over 26 weeks (day −70 to +112). Serum analyses included detection of EqHV RNA, isotypes of E2-specific immunoglobulin G (IgG), nonstructural protein 3-specific IgG, haematology, serum biochemistry, and metabolomics. Liver tissue analyses included EqHV RNA detection, RNA sequencing, histopathology, immunohistochemistry, and fluorescent in situ hybridization. Al-though vaccination did not result in complete protective immunity against experimental EqHV inoculation, the majority of vaccinated ponies cleared the serum EqHV RNA earlier than the control ponies. The majority of vaccinated ponies appeared to recover from the EqHV-associated liver insult earlier than the control ponies. The equine model shows promise as a surrogate model for future hepacivirus vaccine research.
Collapse
|
8
|
Gömer A, Puff C, Reinecke B, Bracht S, Conze M, Baumgärtner W, Steinmann J, Feige K, Cavalleri JMV, Steinmann E, Todt D. Experimental cross-species infection of donkeys with equine hepacivirus and analysis of host immune signatures. ONE HEALTH OUTLOOK 2022; 4:9. [PMID: 35527255 PMCID: PMC9082851 DOI: 10.1186/s42522-022-00065-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The Equine Hepacivirus (EqHV) is an equine-specific and liver-tropic virus belonging to the diverse genus of Hepaciviruses. It was recently found in a large donkey (Equus asinus) cohort with a similar seroprevalence (30%), but lower rate of RNA-positive animals (0.3%) compared to horses. These rare infection events indicate either a lack of adaptation to the new host or a predominantly acute course of infection. METHODS In order to analyze the susceptibility and the course of EqHV infection in donkeys, we inoculated two adult female donkeys and one control horse intravenously with purified EqHV from a naturally infected horse. Liver biopsies were taken before and after inoculation to study changes in the transcriptome. RESULTS Infection kinetics were similar between the equids. All animals were EqHV PCR-positive from day three. EqHV RNA-levels declined when the animals seroconverted and both donkeys cleared the virus from the blood by week 12. Infection did not have an impact on the clinical findings and no significant histopathological differences were seen. Blood biochemistry revealed a mild increase in GLDH at the time of seroconversion in horses, which was less pronounced in donkeys. Transcriptomic analysis revealed a distinct set of differentially expressed genes, including viral host factors and immune genes. CONCLUSION To summarize, our findings indicate that donkeys are a natural host of EqHV, due to the almost identical infection kinetics. The different immune responses do however suggest different mechanisms in reacting to hepaciviral infections.
Collapse
Affiliation(s)
- André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Birthe Reinecke
- Institute of Experimental Virology, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Stephanie Bracht
- Institute of Experimental Virology, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Maria Conze
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jörg Steinmann
- Institute of Medical Microbiology, University of Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nürnberg, Paracelsus Medical University, Nürnberg, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jessika M V Cavalleri
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna (Vetmeduni), Vienna, Austria
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
- European Virus Bioinformatics Center (EVBC), Jena, Germany.
| |
Collapse
|
9
|
Tomlinson JE, Wolfisberg R, Fahnøe U, Patel RS, Trivedi S, Kumar A, Sharma H, Nielsen L, McDonough SP, Bukh J, Tennant BC, Kapoor A, Rosenberg BR, Rice CM, Divers TJ, Van de Walle GR, Scheel TK. Pathogenesis, MicroRNA-122 Gene-Regulation, and Protective Immune Responses After Acute Equine Hepacivirus Infection. Hepatology 2021; 74:1148-1163. [PMID: 33713356 PMCID: PMC8435542 DOI: 10.1002/hep.31802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Equine hepacivirus (EqHV) is phylogenetically the closest relative of HCV and shares genome organization, hepatotropism, transient or persistent infection outcome, and the ability to cause hepatitis. Thus, EqHV studies are important to understand equine liver disease and further as an outbred surrogate animal model for HCV pathogenesis and protective immune responses. Here, we aimed to characterize the course of EqHV infection and associated protective immune responses. APPROACH AND RESULTS Seven horses were experimentally inoculated with EqHV, monitored for 6 months, and rechallenged with the same and, subsequently, a heterologous EqHV. Clearance was the primary outcome (6 of 7) and was associated with subclinical hepatitis characterized by lymphocytic infiltrate and individual hepatocyte necrosis. Seroconversion was delayed and antibody titers waned slowly. Clearance of primary infection conferred nonsterilizing immunity, resulting in shortened duration of viremia after rechallenge. Peripheral blood mononuclear cell responses in horses were minimal, although EqHV-specific T cells were identified. Additionally, an interferon-stimulated gene signature was detected in the liver during EqHV infection, similar to acute HCV in humans. EqHV, as HCV, is stimulated by direct binding of the liver-specific microRNA (miR), miR-122. Interestingly, we found that EqHV infection sequesters enough miR-122 to functionally affect gene regulation in the liver. This RNA-based mechanism thus could have consequences for pathology. CONCLUSIONS EqHV infection in horses typically has an acute resolving course, and the protective immune response lasts for at least a year and broadly attenuates subsequent infections. This could have important implications to achieve the primary goal of an HCV vaccine; to prevent chronicity while accepting acute resolving infection after virus exposure.
Collapse
Affiliation(s)
- Joy E. Tomlinson
- Baker Institute for Animal HealthCornell University College of Veterinary MedicineIthacaNY
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Roosheel S. Patel
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Sheetal Trivedi
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Arvind Kumar
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Himanshu Sharma
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sean P. McDonough
- Department of Biomedical SciencesCornell University College of Veterinary MedicineIthacaNY
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Bud C. Tennant
- Department of Clinical SciencesCornell University College of Veterinary MedicineIthacaNY
| | - Amit Kapoor
- Center for Vaccines and ImmunityResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Brad R. Rosenberg
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Charles M. Rice
- Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNY
| | - Thomas J. Divers
- Department of Clinical SciencesCornell University College of Veterinary MedicineIthacaNY
| | | | - Troels K.H. Scheel
- Copenhagen Hepatitis C Program (CO‐HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark,Laboratory of Virology and Infectious DiseaseThe Rockefeller UniversityNew YorkNY
| |
Collapse
|
10
|
Hartlage AS, Kapoor A. Hepatitis C Virus Vaccine Research: Time to Put Up or Shut Up. Viruses 2021; 13:1596. [PMID: 34452460 PMCID: PMC8402855 DOI: 10.3390/v13081596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
Unless urgently needed to prevent a pandemic, the development of a viral vaccine should follow a rigorous scientific approach. Each vaccine candidate should be designed considering the in-depth knowledge of protective immunity, followed by preclinical studies to assess immunogenicity and safety, and lastly, the evaluation of selected vaccines in human clinical trials. The recently concluded first phase II clinical trial of a human hepatitis C virus (HCV) vaccine followed this approach. Still, despite promising preclinical results, it failed to protect against chronic infection, raising grave concerns about our understanding of protective immunity. This setback, combined with the lack of HCV animal models and availability of new highly effective antivirals, has fueled ongoing discussions of using a controlled human infection model (CHIM) to test new HCV vaccine candidates. Before taking on such an approach, however, we must carefully weigh all the ethical and health consequences of human infection in the absence of a complete understanding of HCV immunity and pathogenesis. We know that there are significant gaps in our knowledge of adaptive immunity necessary to prevent chronic HCV infection. This review discusses our current understanding of HCV immunity and the critical gaps that should be filled before embarking upon new HCV vaccine trials. We discuss the importance of T cells, neutralizing antibodies, and HCV genetic diversity. We address if and how the animal HCV-like viruses can be used for conceptualizing effective HCV vaccines and what we have learned so far from these HCV surrogates. Finally, we propose a logical but narrow path forward for HCV vaccine development.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
11
|
Larson EM, Wagner B. Viral infection and allergy - What equine immune responses can tell us about disease severity and protection. Mol Immunol 2021; 135:329-341. [PMID: 33975251 DOI: 10.1016/j.molimm.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022]
Abstract
Horses have many naturally occurring diseases that mimic similar conditions in humans. The ability to conduct environmentally controlled experiments and induced disease studies in a genetically diverse host makes the horse a valuable intermediate model between mouse studies and human clinical trials. This review highlights important similarities in the immune landscape between horses and humans using current research on two equine diseases as examples. First, equine herpesvirus type 1 (EHV-1) infection initiates a series of innate inflammatory signals at its mucosal entry site in the upper respiratory tract. These inflammatory markers are highly synchronized and predictable between individuals during viral respiratory infection and ultimately lead to adaptive immune induction and protection. The timing of early inflammatory signals, followed by specific adaptive immune markers correlating with immunity and protection, allow accurate outbreak tracking and also provide a foundation for understanding the importance of local mucosal immunity during other viral respiratory infections. Second, rare peripheral blood immune cells that promote allergic inflammation can be analyzed during Culicoides hypersensitivity, a naturally occurring type I IgE-mediated allergic disease of horses. Rare immune cells, such as IgE-binding monocytes or basophils, can be studied repeatedly in the horse model to unravel their larger mechanistic role in inflammation during allergic and other inflammatory diseases. We conclude with a survey of all other common equine inflammatory conditions. Together, this review serves as a reference and rationale for the horse as a non-rodent model for immunological research.
Collapse
Affiliation(s)
- Elisabeth M Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
12
|
Mann S, Ramsay JD, Wakshlag JJ, Stokol T, Reed S, Divers TJ. Investigating the pathogenesis of high-serum gamma-glutamyl transferase activity in Thoroughbred racehorses: A series of case-control studies. Equine Vet J 2021; 54:39-51. [PMID: 33555643 DOI: 10.1111/evj.13435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND High-serum γ-Glutamyl Transferase (GGT) activity has been associated with and thought to be a marker of maladaptation to training and possibly poor performance in racehorses, but the cause is unknown. OBJECTIVES To investigate possible metabolic and infectious causes for the high GGT syndrome. STUDY DESIGN Pilot case-control study and nested case-control study. METHODS The case-control study in 2017 included 16 horses (8 cases and 8 controls with median [range] serum GGT 82 [74-148] and 22 [19-28] IU/L, respectively) from the same stable. In 2018, similar testing was performed in a nested case-control study that identified 27 case (serum GGT 50 ≥ IU/L)-control pairs from three stables for further testing. Serum liver chemistries, selenium measurements, viral PCR and metabolomics were performed. RESULTS No differences were found in frequency of detection of viral RNA/DNA or copy numbers for equine hepacivirus (EqHV) and parvovirus-hepatitis (EqPV-H) between cases and controls. Mild increases in hepatocellular injury and cholestatic markers in case vs control horses suggested a degree of liver disease in a subset of cases. Metabolomic and individual bile acid testing showed differences in cases compared with controls, including increased abundance of pyroglutamic acid and taurine-conjugated bile acids, and reduced abundance of Vitamin B6. Selenium concentrations, although within or above the reference intervals, were also lower in case horses in both studies. MAIN LIMITATIONS Observational study design did not allow us to make causal inferences. CONCLUSIONS We conclude that high GGT syndrome is likely a complex metabolic disorder and that viral hepatitis was not identified as a cause for this syndrome in this cohort of racehorses. Our results support a contribution of oxidative stress and cholestasis in its pathophysiology.
Collapse
Affiliation(s)
- Sabine Mann
- Department of Population Medicine and Diagnostic Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua D Ramsay
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Joseph J Wakshlag
- Department of Clinical Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Steven Reed
- Rood & Riddle Equine Hospital, Lexington, KY, USA
| | - Thomas J Divers
- Department of Clinical Sciences, Cornell College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Brown RJP, Tegtmeyer B, Sheldon J, Khera T, Anggakusuma, Todt D, Vieyres G, Weller R, Joecks S, Zhang Y, Sake S, Bankwitz D, Welsch K, Ginkel C, Engelmann M, Gerold G, Steinmann E, Yuan Q, Ott M, Vondran FWR, Krey T, Ströh LJ, Miskey C, Ivics Z, Herder V, Baumgärtner W, Lauber C, Seifert M, Tarr AW, McClure CP, Randall G, Baktash Y, Ploss A, Thi VLD, Michailidis E, Saeed M, Verhoye L, Meuleman P, Goedecke N, Wirth D, Rice CM, Pietschmann T. Liver-expressed Cd302 and Cr1l limit hepatitis C virus cross-species transmission to mice. SCIENCE ADVANCES 2020; 6:eabd3233. [PMID: 33148654 PMCID: PMC7673688 DOI: 10.1126/sciadv.abd3233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/21/2020] [Indexed: 12/06/2023]
Abstract
Hepatitis C virus (HCV) has no animal reservoir, infecting only humans. To investigate species barrier determinants limiting infection of rodents, murine liver complementary DNA library screening was performed, identifying transmembrane proteins Cd302 and Cr1l as potent restrictors of HCV propagation. Combined ectopic expression in human hepatoma cells impeded HCV uptake and cooperatively mediated transcriptional dysregulation of a noncanonical program of immunity genes. Murine hepatocyte expression of both factors was constitutive and not interferon inducible, while differences in liver expression and the ability to restrict HCV were observed between the murine orthologs and their human counterparts. Genetic ablation of endogenous Cd302 expression in human HCV entry factor transgenic mice increased hepatocyte permissiveness for an adapted HCV strain and dysregulated expression of metabolic process and host defense genes. These findings highlight human-mouse differences in liver-intrinsic antiviral immunity and facilitate the development of next-generation murine models for preclinical testing of HCV vaccine candidates.
Collapse
Affiliation(s)
- Richard J P Brown
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany.
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Tanvi Khera
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Anggakusuma
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
- Department of Research and Development, uniQure Biopharma, BV, Amsterdam, Netherlands
| | - Daniel Todt
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
- Ruhr University Bochum, Faculty of Medicine, Department for Molecular and Medical Virology, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Gabrielle Vieyres
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Romy Weller
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Sebastian Joecks
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Yudi Zhang
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Svenja Sake
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Dorothea Bankwitz
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Kathrin Welsch
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Corinne Ginkel
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Michael Engelmann
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
- Ruhr University Bochum, Faculty of Medicine, Department for Molecular and Medical Virology, Bochum, Germany
| | - Gisa Gerold
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
- Department of Clinical Microbiology, Virology and Wallenberg Center for Molecular Medicine (WCMM), Umeå University, 901 85 Umeå, Sweden
| | - Eike Steinmann
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
- Ruhr University Bochum, Faculty of Medicine, Department for Molecular and Medical Virology, Bochum, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral, and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig Site, Braunschweig, Germany
| | - Thomas Krey
- German Centre for Infection Research (DZIF), Hannover-Braunschweig Site, Braunschweig, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Chris Lauber
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- School of Life Sciences and NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
- School of Life Sciences and NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL 60439, USA
| | - Yasmine Baktash
- Instituto de Biología Integrativa de Sistemas (I2SysBio), Parc Científic de Barcelona, Carrer del Catedràtic Agustín Escardino 9, 46980 Paterna, Valencia, Spain
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Viet Loan Dao Thi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
- Schaller Research Group at Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Eleftherios Michailidis
- Schaller Research Group at Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
- Department of Biochemistry, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Lieven Verhoye
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Natascha Goedecke
- Helmholtz Centre for Infection Research, Division Model Systems for Infection and Immunity, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Helmholtz Centre for Infection Research, Division Model Systems for Infection and Immunity, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Pietschmann
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, Twincore, Feodor-Lynen-Strasse 7, 30625 Hannover, Germany.
- German Centre for Infection Research (DZIF), Hannover-Braunschweig Site, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Elia G, Caringella F, Lanave G, Martella V, Losurdo M, Tittarelli M, Colitti B, Decaro N, Buonavoglia C. Genetic heterogeneity of bovine hepacivirus in Italy. Transbound Emerg Dis 2020; 67:2731-2740. [PMID: 32426936 DOI: 10.1111/tbed.13628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
Viruses similar to human hepatitis C virus (HCV) in the Hepacivirus genus have been identified in several animal hosts, including cattle. Since its first discovery in Germany, bovine hepacivirus (BovHepV) has been described in several countries globally. However, limited data are available on BovHepV epidemiology and genetic variability. The aim of this study was to investigate the prevalence and genetic diversity of BovHepV in Italy. Viral RNA was identified in 37 (0.15%) of 24,820 bovine sera, with titres ranging from 1.09 × 103 to 8.27 × 106 RNA copies/ml. Upon sequencing and phylogenetic analysis of the 5'UTR and NS3 genomic portions, the Italian BovHepV strains segregated into at least four distinct subtypes (A, B, C and F) that are also co-circulating globally.
Collapse
Affiliation(s)
- Gabriella Elia
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | | | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Michele Losurdo
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Torino, Grugliasco (Torino), Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| |
Collapse
|
15
|
Ploss A, Kapoor A. Animal Models of Hepatitis C Virus Infection. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036970. [PMID: 31843875 DOI: 10.1101/cshperspect.a036970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an important and underreported infectious disease, causing chronic infection in ∼71 million people worldwide. The limited host range of HCV, which robustly infects only humans and chimpanzees, has made studying this virus in vivo challenging and hampered the development of a desperately needed vaccine. The restrictions and ethical concerns surrounding biomedical research in chimpanzees has made the search for an animal model all the more important. In this review, we discuss different approaches that are being pursued toward creating small animal models for HCV infection. Although efforts to use a nonhuman primate species besides chimpanzees have proven challenging, important advances have been achieved in a variety of humanized mouse models. However, such models still fall short of the overarching goal to have an immunocompetent, inheritably susceptible in vivo platform in which the immunopathology of HCV could be studied and putative vaccines development. Alternatives to overcome this include virus adaptation, such as murine-tropic HCV strains, or the use of related hepaciviruses, of which many have been recently identified. Of the latter, the rodent/rat hepacivirus from Rattus norvegicus species-1 (RHV-rn1) holds promise as a surrogate virus in fully immunocompetent rats that can inform our understanding of the interaction between the immune response and viral outcomes (i.e., clearance vs. persistence). However, further characterization of these animal models is necessary before their use for gaining new insights into the immunopathogenesis of HCV and for conceptualizing HCV vaccines.
Collapse
Affiliation(s)
- Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Amit Kapoor
- Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| |
Collapse
|
16
|
Date T, Sugiyama M, Lkhagvasuren D, Wakita T, Oyunsuren T, Mizokami M. Prevalence of equine hepacivirus infection in Mongolia. Virus Res 2020; 282:197940. [PMID: 32259615 DOI: 10.1016/j.virusres.2020.197940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/05/2020] [Accepted: 03/15/2020] [Indexed: 01/17/2023]
Abstract
Equine hepacivirus (EHV) belongs to the hepacivirus A and is related to hepatitis C virus (HCV). This virus shows hepatic tropism and is known to chronically infect horses. EHV has been reported from various countries, but the prevalence in Mongolia, where large horse populations are pastured, remains unknown. This study collected serum samples from horses in six areas across Mongolia, in order to investigate the status of infection. The possibility of human infection was also examined. The results showed an infection rate among horses of about 40 % in all regions. However, no evidence of EHV viremia was found in human serum. A mutation characteristic of Mongolian EHV was found in the 5'-untranslated region of the viral sequence. Molecular phylogenetic trees for core, NS3, and NS5B sequences showed the formation of two clusters depending on the area from which samples were taken. The same results were obtained from molecular phylogenetic analyses using the full genome. From detailed calculations of genetic diversity calculated using the full genome, EHV appears divisible into two subgenotypes. Blood samples were collected again after a 7-month interval to examine infection persistence. Seventeen of 19 horses retested showed positive results for EHV after 7 months, suggesting a high rate of persistent infection. These results indicate a relatively higher frequency of EHV infection in Mongolia than in Europe or North America, with virus strains divided into at least two subgenotypes.
Collapse
Affiliation(s)
- Tomoko Date
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan.
| | - Damdindorj Lkhagvasuren
- Laboratory of Molecular Biology, Institute of Biology, Mongolian Academy of Sciences, Peace av.54b, Bayanzurkh 3, Ulaanbaatar, 13330, Mongolia
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsendsuren Oyunsuren
- Laboratory of Molecular Biology, Institute of Biology, Mongolian Academy of Sciences, Peace av.54b, Bayanzurkh 3, Ulaanbaatar, 13330, Mongolia
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| |
Collapse
|
17
|
Vengust M, Jager MC, Zalig V, Cociancich V, Laverack M, Renshaw RW, Dubovi E, Tomlinson JE, Van de Walle GR, Divers TJ. First report of equine parvovirus-hepatitis-associated Theiler's disease in Europe. Equine Vet J 2020; 52:841-847. [PMID: 32145096 DOI: 10.1111/evj.13254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/28/2020] [Accepted: 02/29/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Equine parvovirus-hepatitis (EqPV-H) has been proposed as the aetiological cause of Theiler's disease, also known as serum hepatitis. EqPV-H-associated Theiler's disease has not been previously reported in Europe. OBJECTIVES To determine whether EqPV-H infection was associated with a 2018-2019 outbreak of Theiler's disease in four horses on a studfarm. STUDY DESIGN Descriptive case series. METHODS The medical records of four horses from the same farm diagnosed with fatal Theiler's disease were examined retrospectively. Information collected included a clinical history, physical examination findings, tetanus antitoxin exposure, serum biochemistry and necropsy reports. Liver tissue from all four horses was tested for EqPV-H using PCR and in situ hybridisation (ISH) assays. RESULTS Three of the horses had a history of recent (7-11 weeks) tetanus antitoxin administration. Liver tissue from all four horses tested positive for EqPV-H with PCR. In situ hybridisation revealed a widespread distribution of viral nucleic acid in hepatocytes in one case, and a more sporadic distribution in the remaining three cases. MAIN LIMITATIONS Case controls were not available from the farm in question given the retrospective nature of analysis. CONCLUSIONS This case series documents the first reported EqPV-H-associated Theiler's disease in Europe and the first use of ISH to visualise the viral nucleic acid in liver tissues of horses with Theiler's disease.
Collapse
Affiliation(s)
- Modest Vengust
- University of Ljubljana, Veterinary Faculty, Ljubljana, Slovenia
| | - Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Valentina Zalig
- University of Ljubljana, Veterinary Faculty, Ljubljana, Slovenia.,Marc Veterinary Services, Sezana, Slovenia
| | | | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Randall W Renshaw
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Edward Dubovi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Thomas J Divers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
18
|
de Albuquerque PPLF, Santos LHS, Antunes D, Caffarena ER, Figueiredo AS. Structural insights into NS5B protein of novel equine hepaciviruses and pegiviruses complexed with polymerase inhibitors. Virus Res 2020; 278:197867. [PMID: 31972246 DOI: 10.1016/j.virusres.2020.197867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Infections produced by hepaciviruses have been associated with liver disease in horses. Currently, at least three viruses belonging to the Flaviviridae family are capable of producing a chronic infection in equines: non-primate hepacivirus (NPHV), Theiler's disease-associated virus (TDAV), and equine pegivirus (EPgV). The RNA-dependent RNA polymerases of viruses (RdRp) (NS5 protein), from the flavivirus family, use de novo RNA synthesis to initiate synthesis. The two antiviral drugs currently used to treat hepatitis C (HCV), sofosbuvir and dasabuvir, act on the viral NS5B polymerase as nucleoside and non-nucleoside inhibitors, respectively. Both drugs have shown significant clinical inhibition of viral response. In this work, we aimed to model the NS5B polymerase of the equine hepacivirus (EHCV) subtypes 1 and 2, TDAV and EPgV, to assess whether current direct-acting antiviral drugs against HCV interact with these proteins. Crystal structures of HCV-NS5B were used as templates for modeling target sequences in both conformations (open and closed). Also, molecular docking of sofosbuvir and dasabuvir were performed to predict their possible binding modes at the modeled NS5B polymerase binding sites. We observed that the NS5B models of the EHCV and EPgV shared well-conserved 3D structures to HCV-NS5B and other RdRps, suggesting functional conservation. Interactions of EHCV subtypes 1, 2 and TDAV polymerases with sofosbuvir showed a similar molecular interaction pattern compared to HCV-NS5B, while interactions with dasabuvir were less conserved. In silico studies of molecular interactions between these modeled structures and sofosbuvir suggest that this compound could be efficient in combating equine pathogens, thus contributing to animal welfare.
Collapse
Affiliation(s)
| | - Lucianna H S Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Deborah Antunes
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| | - Ernesto Raul Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro, Brazil
| | - Andreza Soriano Figueiredo
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
A biomolecular network-based strategy deciphers the underlying molecular mechanisms of Bupleuri Radix/ Curcumae Radix medicine pair in the treatment of hepatitis C. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2019.101043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Further Evidence for in Utero Transmission of Equine Hepacivirus to Foals. Viruses 2019; 11:v11121124. [PMID: 31817371 PMCID: PMC6950541 DOI: 10.3390/v11121124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Equine hepacivirus (EqHV), also referred to as non-primate hepacivirus (NPHV), infects horses—and dogs in some instances—and is closely related to hepatitis C virus (HCV) that has infected up to 3% of the world’s human population, causing an epidemic of liver cirrhosis and cancer. EqHV also chronically infects the liver of horses, but does not appear to cause serious liver damages. Previous studies have been looking to identify route(s) of EqHV transmission to and between horses. (2) Methods: In this retrospective study, we sought to evaluate the prevalence of vertical transmission taking place in utero with measuring by quantitative RT-PCR the amounts of EqHV genome in samples from 394 dead foals or fetuses, paired with the allantochorion whenever available. (3) Results: Detection of EqHV in three foals most likely resulted from a vertical transmission from the mares to the fetuses, consistent with the in utero transmission hypothesis. In support of this observation, the presence of EqHV genome was found for the first time in two of the allantochorions. (4) Conclusions: As seemingly benign viruses could turn deadly (e.g., Zika flavivirus) and EqHV happens to have infected a significant proportion of the world’s horse herds, EqHV infectious cycle should be further clarified.
Collapse
|
21
|
Lattimer J, Stewart H, Locker N, Tuplin A, Stonehouse NJ, Harris M. Structure-function analysis of the equine hepacivirus 5' untranslated region highlights the conservation of translational mechanisms across the hepaciviruses. J Gen Virol 2019; 100:1501-1514. [PMID: 31490115 PMCID: PMC7615701 DOI: 10.1099/jgv.0.001316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Equine hepacivirus (EHcV) (now also classified as hepacivirus A) is the closest genetic relative to hepatitis C virus (HCV) and is proposed to have diverged from HCV within the last 1000 years. The 5' untranslated regions (UTRs) of both HCV and EHcV exhibit internal ribosome entry site (IRES) activity, allowing cap-independent translational initiation, yet only the HCV 5'UTR has been systematically analysed. Here, we report a detailed structural and functional analysis of the EHcV 5'UTR. The secondary structure was determined using selective 2' hydroxyl acylation analysed by primer extension (SHAPE), revealing four stem-loops, termed SLI, SLIA, SLII and SLIII, by analogy to HCV. This guided a mutational analysis of the EHcV 5'UTR, allowing us to investigate the roles of the stem-loops in IRES function. This approach revealed that SLI was not required for EHcV IRES-mediated translation. Conversely, SLIII was essential, specifically SLIIIb, SLIIId and a GGG motif that is conserved across the Hepaciviridae. Further SHAPE analysis provided evidence that this GGG motif mediated interaction with the 40S ribosomal subunit, whilst a CUU sequence in the apical loop of SLIIIb mediated an interaction with eIF3. In addition, we showed that a microRNA122 target sequence located between SLIA and SLII mediated an enhancement of translation in the context of a subgenomic replicon. Taken together, these results highlight the conservation of hepaciviral translation mechanisms, despite divergent primary sequences.
Collapse
Affiliation(s)
- Joseph Lattimer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Hazel Stewart
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
22
|
Badenhorst M, de Heus P, Auer A, Rümenapf T, Tegtmeyer B, Kolodziejek J, Nowotny N, Steinmann E, Cavalleri JMV. No Evidence of Mosquito Involvement in the Transmission of Equine Hepacivirus (Flaviviridae) in an Epidemiological Survey of Austrian Horses. Viruses 2019; 11:v11111014. [PMID: 31683893 PMCID: PMC6893842 DOI: 10.3390/v11111014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Prevalence studies have demonstrated a global distribution of equine hepacivirus (EqHV), a member of the family Flaviviridae. However, apart from a single case of vertical transmission, natural routes of EqHV transmission remain elusive. Many known flaviviruses are horizontally transmitted between hematophagous arthropods and vertebrate hosts. This study represents the first investigation of potential EqHV transmission by mosquitoes. More than 5000 mosquitoes were collected across Austria and analyzed for EqHV ribonucleic acid (RNA) by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Concurrently, 386 serum samples from horses in eastern Austria were analyzed for EqHV-specific antibodies by luciferase immunoprecipitation system (LIPS) and for EqHV RNA by RT-qPCR. Additionally, liver-specific biochemistry parameters were compared between EqHV RNA-positive horses and EqHV RNA-negative horses. Phylogenetic analysis was conducted in comparison to previously published sequences from various origins. No EqHV RNA was detected in mosquito pools. Serum samples yielded an EqHV antibody prevalence of 45.9% (177/386) and RNA prevalence of 4.15% (16/386). EqHV RNA-positive horses had significantly higher glutamate dehydrogenase (GLDH) levels (p = 0.013) than control horses. Phylogenetic analysis showed high similarity between nucleotide sequences of EqHV in Austrian horses and EqHV circulating in other regions. Despite frequently detected evidence of EqHV infection in Austrian horses, no viral RNA was found in mosquitoes. It is therefore unlikely that mosquitoes are vectors of this flavivirus.
Collapse
Affiliation(s)
- Marcha Badenhorst
- University Equine Clinic - Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Phebe de Heus
- University Equine Clinic - Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Angelika Auer
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Till Rümenapf
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH) - Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625 Hannover, Germany.
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Healthcare City, Dubai, UAE.
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Jessika-M V Cavalleri
- University Equine Clinic - Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
23
|
Tegtmeyer B, Echelmeyer J, Pfankuche VM, Puff C, Todt D, Fischer N, Durham A, Feige K, Baumgärtner W, Steinmann E, Cavalleri JMV. Chronic equine hepacivirus infection in an adult gelding with severe hepatopathy. Vet Med Sci 2019; 5:372-378. [PMID: 31267690 PMCID: PMC6682795 DOI: 10.1002/vms3.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Equine hepacivirus (EqHV) in equids represents the closest homologue to hepatitis C virus (HCV) infecting humans. A majority of HCV infected patients develop a chronic course of infection leading to liver fibrosis, cirrhosis and liver failure. However, in horses mostly transient mild subclinical infections are reported for EqHV to date. Objectives: EqHV can be involved in chronic liver diseases of horses. Methods: Biochemical parameters in serum samples were measured. Viral load was determined using qPCR. Next generation sequencing (NGS) of serum was performed. Liver tissue was stained with haematoxylin and eosin and analysed for viral RNA with fluorescent in situ‐hybridization. Results: The horse showed symptoms of severe hepatopathy and was chronically infected with EqHV. Viral RNA was detectable in the liver during disease. To rule out other infectious agents NGS was performed and showed the highest abundance for EqHV. The identified virus sequence was similar to other circulating equine hepaciviruses. Conclusions: EqHV can be associated with liver disease in horses. Whether it causes the disease or contributes in a multifactorial manner needs further investigation.
Collapse
Affiliation(s)
- Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH), Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Julia Echelmeyer
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Vanessa M Pfankuche
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Daniel Todt
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH), Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Andy Durham
- Liphook Equine Hospital, Liphook, United Kingdom
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Eike Steinmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH), Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Jessika-M V Cavalleri
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.,Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
24
|
Detection and characterization of a novel hepacivirus in long-tailed ground squirrels (Spermophilus undulatus) in China. Arch Virol 2019; 164:2401-2410. [PMID: 31243554 DOI: 10.1007/s00705-019-04303-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Rodent populations are known to be reservoirs of viruses with the potential to infect humans. However, a large number of such viruses remain undiscovered. In this study, we investigated the shedding of unknown viruses in long-tailed ground squirrel (Spermophilus undulatus) feces by high-throughput sequencing. A novel and highly divergent virus related to members of the genus Hepacivirus was identified in ground squirrel liver. This virus, tentatively named RHV-GS2015, was found to have a genome organization that is typical of hepaciviruses, including a long open reading frame encoding a polyprotein of 2763 aa. Sequence alignment of RHV-GS2015 with the most closely related hepaciviruses yielded p-distances of the NS3 and NS5B regions of 0.546 and 0.476, respectively, supporting the conclusion that RHV-GS2015 is a member of a new hepacivirus species, which we propose to be named "Hepacivirus P". Phylogenetic analysis of the NS3 and NS5B regions indicated that RHV-GS2015 shares common ancestry with other rodent hepaciviruses (species Hepacivirus E, and species Hepacivirus F), Norway rat hepacivirus 1 (species Hepacivirus G), and Norway rat hepacivirus 2 (species Hepacivirus H). A phylogenetic tree including the seven previously identified rodent hepaciviruses revealed extreme genetic heterogeneity among these viruses. RHV-GS2015 was detected in 7 out of 12 ground squirrel pools and was present in liver, lung, and spleen tissues. Furthermore, livers showed extremely high viral loads of RHV-GS2015, ranging from 2.5 × 106 to 2.0 × 108 copies/g. It is reasonable to assume that this novel virus is hepatotropic, like hepatitis C virus. The discovery of RHV-GS2015 extends our knowledge of the genetic diversity and host range of hepaciviruses, helping to elucidate their origins and evolution.
Collapse
|
25
|
Lu G, Ou J, Sun Y, Wu L, Xu H, Zhang G, Li S. Natural recombination of equine hepacivirus subtype 1 within the NS5A and NS5B genes. Virology 2019; 533:93-98. [PMID: 31136896 DOI: 10.1016/j.virol.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
Equine hepacivirus (EqHV) was first reported in 2012 and is the closest known homolog of hepatitis C virus (HCV). A number of studies have reported HCV recombination events. The aim of this study was to determine whether recombination events occur in EqHV strains. Considering that no information on the Chinese EqHV genome sequence is available, we first sequenced the near-complete genomes of three field EqHV strains. Through systemic analysis, we obtained strong evidence supporting a recombination event within the NS5A and NS5B genes in the American EqHV strains, but not in the strains from China or other countries. Finally, using cut-off values for determination of HCV genotypes and subtypes, we classified the EqHV strains from around the world into one unique genotype and three subtypes. The recombination event occurred in subtype 1 EqHV strains. This study provides critical insights into the genetic variability and evolution of EqHV.
Collapse
Affiliation(s)
- Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou, Guangdong Province, People's Republic of China
| | - Jiajun Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou, Guangdong Province, People's Republic of China
| | - Yankuo Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China
| | - Liyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou, Guangdong Province, People's Republic of China
| | - Haibin Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou, Guangdong Province, People's Republic of China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province, People's Republic of China; Guangdong Technological Engineering Research Center for Pet, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
26
|
Tomlinson JE, Van de Walle GR, Divers TJ. What Do We Know About Hepatitis Viruses in Horses? Vet Clin North Am Equine Pract 2019; 35:351-362. [PMID: 31084975 DOI: 10.1016/j.cveq.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Theiler disease (serum hepatitis or idiopathic acute hepatic necrosis) has long been suspected to have a viral etiology. Four viruses have been described in association with hepatitis in horses. Further investigation suggests equine pegivirus and Theiler disease-associated virus (a second pegivirus) are neither hepatotropic nor pathogenic. Nonprimate hepacivirus (NPHV) causes subclinical disease in experimental models and has been associated with hepatitis in some clinical cases. Equine parvovirus-hepatitis (EqPV-H) experimentally causes subclinical-to-clinical liver disease and is found in the vast majority of Theiler disease cases. EqPV-H is likely of clinical significance, whereas the significance of NPHV is unknown.
Collapse
Affiliation(s)
- Joy E Tomlinson
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, 235 Hungerford Hill Road, Ithaca, NY 14853, USA.
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, 235 Hungerford Hill Road, Ithaca, NY 14853, USA
| | - Thomas J Divers
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, 930 Campus Road, Box25, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Figueiredo AS, de Moraes MVDS, Soares CC, Chalhoub FLL, de Filippis AMB, Dos Santos DRL, de Almeida FQ, Godoi TLOS, de Souza AM, Burdman TR, de Lemos ERS, Dos Reis JKP, Cruz OG, Pinto MA. First description of Theiler's disease-associated virus infection and epidemiological investigation of equine pegivirus and equine hepacivirus coinfection in Brazil. Transbound Emerg Dis 2019; 66:1737-1751. [PMID: 31017727 DOI: 10.1111/tbed.13210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/31/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Recent advances in the study of equine pegivirus (EPgV), Theiler's disease-associated virus (TDAV) and equine hepacivirus (EqHV) highlight their importance to veterinary and human health. To gain some insight into virus distribution, possible risk factors, presence of liver damage and genetic variability of these viruses in Brazil, we performed a cross-sectional study of EPgV and TDAV infections using a simultaneous detection assay, and assessed EqHV coinfection in different horse cohorts. Of the 500 serum samples screened, TDAV, EPgV and EPgV-EqHV were present in 1.6%, 14.2% and 18.3%, respectively. EPgV-positive horses were present in four Brazilian states: Espírito Santo, Mato Grosso do Sul, Minas Gerais and Rio de Janeiro. Serum biochemical alterations were present in 40.4% of EPgV-infected horses, two of them presenting current liver injury. Chance of infection was 2.7 times higher in horses ≤5 years old (p = 0.0008) and 4.9 times higher in horses raised under intensive production systems (p = 0.0009). EPgV-EqHV coinfection was 75% less likely in horses older than 5 years comparatively to those with ≤5 years old (p = 0.047). TDAV-positive animals were detected in different horse categories without biochemical alteration. Nucleotide sequences were highly conserved among isolates from this study and previous field and commercial product isolates (≥88% identity). Tree topology revealed the formation of two clades (pp = 1) for both EPgV and TDAV NS3 partial sequences. In conclusion, the widespread presence of EPgV-RNA suggests an enzootic infection with subclinical viremia in Brazil. Horse management can influence virus spread. This first report of TDAV-infected horses outside the USA reveals the existence of subclinical viremic horses in distant geographical regions. EPgV and TDAV have similar circulating isolates worldwide. These findings contribute to global efforts to understand the epidemiology and pathogenesis of these equine viruses.
Collapse
Affiliation(s)
- Andreza Soriano Figueiredo
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Tatianne Leme Oliveira Santos Godoi
- Coordenação de Produção Integrada ao Ensino, Pesquisa e Extensão, Reitoria, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Moreira de Souza
- Laboratório de Pesquisa Clínica e Diagnóstico Molecular Professor Marcílio Dias do Nascimento, Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, Brazil
| | - Tatiana Rozental Burdman
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | - Marcelo Alves Pinto
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Tomlinson JE, Tennant BC, Struzyna A, Mrad D, Browne N, Whelchel D, Johnson PJ, Jamieson C, Löhr CV, Bildfell R, McKenzie EC, Laverack M, Renshaw RW, Dubovi E, Kapoor A, Meirs RS, Belgrave R, Engiles J, Van de Walle GR, Divers TJ. Viral testing of 10 cases of Theiler's disease and 37 in-contact horses in the absence of equine biologic product administration: A prospective study (2014-2018). J Vet Intern Med 2018; 33:258-265. [PMID: 30520132 PMCID: PMC6335540 DOI: 10.1111/jvim.15362] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022] Open
Abstract
Background A novel equine parvovirus (EqPV‐H) was recently discovered in the equine liver with Theiler's disease. Objectives To determine the prevalence of EqPV‐H infection in naturally occurring Theiler's disease cases and in‐contact horses in the absence of historical equine biologic product administration. Animals Ten cases of Theiler's disease from 6 separate properties were included in the study, based on the criteria of acute onset of clinical signs of liver failure with laboratory or histopathologic findings characteristic of Theiler's disease and no history of receiving an equine biologic product within the preceding 4 months. In addition, 37 in‐contact horses from 4 of the 6 properties were screened for EqPV‐H infection and hepatitis. Methods In prospective case series, cases were diagnosed with Theiler's disease by the attending veterinarian and were tested for EqPV‐H by PCR of liver or serum. In‐contact horses were assessed via serum chemistry and PCR at the attending veterinarian's discretion. Hepatitis was defined as serum gamma‐glutamyltransferase activity above reference interval. The association of EqPV‐H with hepatitis was determined by Fisher's exact test. Results Nine of 10 (90%) Theiler's disease cases and 54% of tested in‐contact horses were EqPV‐H positive. Hepatitis was significantly associated with EqPV‐H infection (P = .036). Conclusions and Clinical Importance Although further study is required to identify EqPV‐H as the causative agent of Theiler's disease, EqPV‐H appears strongly associated with cases of fatal Theiler's disease and subclinical hepatitis in horses in contact with those cases. The prevalence of EqPV‐H infection on affected properties can be high.
Collapse
Affiliation(s)
- Joy E Tomlinson
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Bud C Tennant
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Dawn Mrad
- Mid-Rivers Equine Centre, Wentzville, Missouri
| | - Nimet Browne
- Department of Clinical Sciences, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Dorothy Whelchel
- Georgia Equine Veterinary Services and Hospital, Canton, Georgia
| | - Philip J Johnson
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri
| | - Camilla Jamieson
- Department of Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| | - Christiane V Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Robert Bildfell
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Erica C McKenzie
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Melissa Laverack
- New York State Animal Health Diagnostic Center, Cornell University, Ithaca, New York
| | - Randall W Renshaw
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Edward Dubovi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Amit Kapoor
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | | | | - Julie Engiles
- Department of Pathobiology, New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania
| | - Gerlinde R Van de Walle
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Thomas J Divers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
29
|
Tomlinson JE, Kapoor A, Kumar A, Tennant BC, Laverack MA, Beard L, Delph K, Davis E, Schott Ii H, Lascola K, Holbrook TC, Johnson P, Taylor SD, McKenzie E, Carter-Arnold J, Setlakwe E, Fultz L, Brakenhoff J, Ruby R, Trivedi S, Van de Walle GR, Renshaw RW, Dubovi EJ, Divers TJ. Viral testing of 18 consecutive cases of equine serum hepatitis: A prospective study (2014-2018). J Vet Intern Med 2018; 33:251-257. [PMID: 30520162 PMCID: PMC6335536 DOI: 10.1111/jvim.15368] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
Background Three flaviviruses (equine pegivirus [EPgV]; Theiler's disease–associated virus [TDAV]; non‐primate hepacivirus [NPHV]) and equine parvovirus (EqPV‐H) are present in equine blood products; the TDAV, NPHV, and EqPV‐H have been suggested as potential causes of serum hepatitis. Objective To determine the prevalence of these viruses in horses with equine serum hepatitis. Animals Eighteen horses diagnosed with serum hepatitis, enrolled from US referral hospitals. Methods In the prospective case study, liver, serum, or both samples were tested for EPgV, TDAV, NPHV, and EqPV‐H by PCR. Results Both liver tissue and serum were tested for 6 cases, serum only for 8 cases, and liver only for 4 cases. Twelve horses received tetanus antitoxin (TAT) 4‐12.7 weeks (median = 8 weeks), 3 horses received commercial equine plasma 6‐8.6 weeks, and 3 horses received allogenic stem cells 6.4‐7.6 weeks before the onset of hepatic failure. All samples were TDAV negative. Two of 14 serum samples were NPHV‐positive. Six of 14 serum samples were EPgV‐positive. All liver samples were NPHV‐negative and EPgV‐negative. EqPV‐H was detected in the serum (N = 8), liver (N = 4), or both samples (N = 6) of all 18 cases. The TAT of the same lot number was available for virologic testing in 10 of 12 TAT‐associated cases, and all 10 samples were EqPV‐H positive. Conclusions and Clinical Importance We demonstrated EqPV‐H in 18 consecutive cases of serum hepatitis. EPgV, TDAV, and NPHV were not consistently present. This information should encourage blood product manufacturers to test for EqPV‐H and eliminate EqPV‐H–infected horses from their donor herds.
Collapse
Affiliation(s)
- Joy E Tomlinson
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Amit Kapoor
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Arvind Kumar
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Bud C Tennant
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Melissa A Laverack
- New York State Animal Health Diagnostic Center, Cornell University, Ithaca, New York
| | - Laurie Beard
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Katie Delph
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Elizabeth Davis
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Harold Schott Ii
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Kara Lascola
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Todd C Holbrook
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Philip Johnson
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Sandra D Taylor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Erica McKenzie
- Department of Clinical Sciences, Oregon State University, Corvallis, Oregon
| | | | | | - Lisa Fultz
- Equine Medicine Specialists of South Florida, Wellington, Florida
| | | | - Rebecca Ruby
- Lloyd Veterinary Medical Center, Iowa State University, Ames, Iowa
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Gerlinde R Van de Walle
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Randall W Renshaw
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Edward J Dubovi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Thomas J Divers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
30
|
Schlottau K, Fereidouni S, Beer M, Hoffmann B. Molecular identification and characterization of nonprimate hepaciviruses in equines. Arch Virol 2018; 164:391-400. [PMID: 30361815 DOI: 10.1007/s00705-018-4077-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a positive-sense RNA virus belonging to the genus Hepacivirus, family Flaviviridae. Its genome has a length of 9.6 kb and encodes a single polyprotein flanked by two untranslated regions. HCV can cause liver cirrhosis and hepatocellular carcinoma, and approximately 2% of the world's population is chronically infected. The investigation of pathogenesis is complicated due to the lack of an animal model. The origin of this virus remains unclear, but in the last few years, relatives of HCV were initially identified in dogs and later in horses, rodents, bats and Old World monkeys. Non-primate hepacivirus (NPHV), which infects dogs and horses, is the closest relative to HCV. We established a pan-reactive "panHepaci"-RT-qPCR assay, which is able to detect human HCV as well as equine NPHV, and additionally, an equine-specific "equHepaci"-RT-qPCR for confirmation of positive results. Serum samples from 1158 clinically inconspicuous horses from Germany and several samples from other mammalian species were screened. We found 2.4% of the horses positive for hepacivirus RNA, and furthermore, the "panHepaci"-RT-qPCR assay also detected a hepacivirus in a donkey from Egypt. This virus had only 78% sequence identity in the E2 gene when compared to other known NPHVs. The established method could be useful for screening purposes, since it is likely that related hepaciviruses also occur in other species.
Collapse
Affiliation(s)
- Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
31
|
Identification and genetic characterization of a novel parvovirus associated with serum hepatitis in horses in China. Emerg Microbes Infect 2018; 7:170. [PMID: 30348940 PMCID: PMC6198012 DOI: 10.1038/s41426-018-0174-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
A novel equine parvovirus, equine parvovirus-hepatitis (EqPV-H), was first discovered in a horse that died of equine serum hepatitis in the USA in 2018. EqPV-H was shown to be a novel etiological agent associated with equine serum hepatitis. Following this initial report, no additional studies on EqPV-H have been published. In this study, a total of 143 serum samples were collected from racehorses at 5 separate farms in China and were analyzed to detect EqPV-H DNA via nested PCR. The results indicated a high prevalence of EqPV-H (11.9%, 17/143) in the studied animals. In addition, a remarkably high coinfection rate (58.8%, 10/17) with 2 equine flaviviruses (equine hepacivirus and equine pegivirus) was observed in the EqPV-H positive equines. However, all equines tested negative for Theiler’s disease-associated virus, an etiological agent associated with equine serum hepatitis. The genomes of six field EqPV-H strains were sequenced and analyzed, with the results indicating that the Chinese EqPV-H strains have low genetic diversity and high genetic similarity with the USA EqPV-H strain BCT-01. A phylogenetic analysis demonstrated that the Chinese EqPV-H strains clustered with BCT-01 in the genus Copiparvovirus but were distantly related to another equine parvovirus identified in horse cerebrospinal fluid. In addition, liver enzyme levels were detected in the EqPV-H positive serum samples, and all the values were in the normal range, indicating that infection can occur without concurrent liver disease. This study will promote an understanding of the geographical distribution, genetic diversity, and pathogenicity of EqPV-H.
Collapse
|
32
|
Baechlein C, Baron AL, Meyer D, Gorriz-Martin L, Pfankuche VM, Baumgärtner W, Polywka S, Peine S, Fischer N, Rehage J, Becher P. Further characterization of bovine hepacivirus: Antibody response, course of infection, and host tropism. Transbound Emerg Dis 2018; 66:195-206. [PMID: 30126081 DOI: 10.1111/tbed.12999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
Bovine hepacivirus (BovHepV) is a recently added member to the growing genus Hepacivirus within the family Flaviviridae. Animal hepaciviruses are rarely characterized so far. Apart from norway rat hepacivirus which represents a promising HCV surrogate model, only equine hepaciviruses have been studied to some extent. BovHepV has been initially identified in bovine samples and was shown to establish persistent infections in cattle. However, consequences of those chronic infections, humoral immune response and the possibility of an extended host spectrum have not been explored so far. Therefore, we here investigated (a) the presence of anti-NS3-antibodies and viral RNA in cattle herds in Germany, (b) the course of infection in cattle, and (c) the host tropism including zoonotic potential of bovine hepaciviruses. Our results show that 19.9% of investigated bovine serum samples had antibodies against BovHepV. In 8.2% of investigated samples, viral RNA was detected. Subsequent genetic analysis revealed a novel genetic cluster of BovHepV variants. For 25 selected cattle in a BovHepV positive herd the presence of viral genomic RNA was monitored over one year in two to three months intervals by RT-PCR in order to discriminate acute versus persistent infection. In persistently infected animals, no serum antibodies were detected. Biochemical analyses could not establish a link between BovHepV infection and liver injury. Apart from a single sample of a pig providing a positive reaction in the antibody test, neither BovHepV-specific antibodies nor viral RNA were detected in porcine, equine or human samples implying a strict host specificity of BovHepV.
Collapse
Affiliation(s)
- Christine Baechlein
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,German Center for Infection Research, Partner Site Hannover, Braunschweig, Germany
| | - Anna Lena Baron
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Denise Meyer
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lara Gorriz-Martin
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Susanne Polywka
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany.,German Center for Infection Research, Partner Site Hannover, Braunschweig, Germany
| |
Collapse
|
33
|
Hepacivirus A Infection in Horses Defines Distinct Envelope Hypervariable Regions and Elucidates Potential Roles of Viral Strain and Adaptive Immune Status in Determining Envelope Diversity and Infection Outcome. J Virol 2018; 92:JVI.00314-18. [PMID: 29976666 DOI: 10.1128/jvi.00314-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Hepacivirus A (also known as nonprimate hepacivirus and equine hepacivirus) is a hepatotropic virus that can cause both transient and persistent infections in horses. The evolution of intrahost viral populations (quasispecies) has not been studied in detail for hepacivirus A, and its roles in immune evasion and persistence are unknown. To address these knowledge gaps, we first evaluated the envelope gene (E1 and E2) diversity of two different hepacivirus A strains (WSU and CU) in longitudinal blood samples from experimentally infected adult horses, juvenile horses (foals), and foals with severe combined immunodeficiency (SCID). Persistent infection with the WSU strain was associated with significantly greater quasispecies diversity than that observed in horses who spontaneously cleared infection (P = 0.0002) or in SCID foals (P < 0.0001). In contrast, the CU strain was able to persist despite significantly lower (P < 0.0001) and relatively static envelope diversity. These findings indicate that envelope diversity is a poor predictor of hepacivirus A infection outcomes and could be dependent on strain-specific factors. Next, entropy analysis was performed on all E1/E2 genes entered into GenBank. This analysis defined three novel hypervariable regions (HVRs) in E2, at residues 391 to 402 (HVR1), 450 to 461 (HVR2), and 550 to 562 (HVR3). For the experimentally infected horses, entropy analysis focusing on the HVRs demonstrated that these regions were under increased selective pressure during persistent infection. Increased diversity in the HVRs was also temporally associated with seroconversion in some horses, suggesting that these regions may be targets of neutralizing antibody and may play a role in immune evasion.IMPORTANCE Hepacivirus C (hepatitis C virus) is estimated to infect 150 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. In contrast, its closest relative, hepacivirus A, causes relatively mild disease in horses and is frequently cleared. The relationship between quasispecies evolution and infection outcome has not been explored for hepacivirus A. To address this knowledge gap, we examined envelope gene diversity in horses with resolving and persistent infections. Interestingly, two strain-specific patterns of quasispecies diversity emerged. Persistence of the WSU strain was associated with increased quasispecies diversity and the accumulation of amino acid changes within three novel hypervariable regions following seroconversion. These findings provided evidence that envelope gene mutation is influenced by adaptive immune pressure and may contribute to hepacivirus persistence. However, the CU strain persisted despite relative evolutionary stasis, suggesting that some hepacivirus strains may use alternative mechanisms to persist in the host.
Collapse
|
34
|
Trivedi S, Murthy S, Sharma H, Hartlage AS, Kumar A, Gadi S, Simmonds P, Chauhan LV, Scheel TKH, Billerbeck E, Burbelo PD, Rice CM, Lipkin WI, Vandergrift K, Cullen JM, Kapoor A. Viral persistence, liver disease, and host response in a hepatitis C-like virus rat model. Hepatology 2018; 68:435-448. [PMID: 28859226 PMCID: PMC5832584 DOI: 10.1002/hep.29494] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022]
Abstract
UNLABELLED The lack of a relevant, tractable, and immunocompetent animal model for hepatitis C virus (HCV) has severely impeded investigations of viral persistence, immunity, and pathogenesis. In the absence of immunocompetent models with robust HCV infection, homolog hepaciviruses in their natural host could potentially provide useful surrogate models. We isolated a rodent hepacivirus from wild rats (Rattus norvegicus), RHV-rn1; acquired the complete viral genome sequence; and developed an infectious reverse genetics system. RHV-rn1 resembles HCV in genomic features including the pattern of polyprotein cleavage sites and secondary structures in the viral 5' and 3' untranslated regions. We used site-directed and random mutagenesis to determine that only the first of the two microRNA-122 seed sites in the viral 5' untranslated region is required for viral replication and persistence in rats. Next, we used the clone-derived virus progeny to infect several inbred and outbred rat strains. Our results determined that RHV-rn1 possesses several HCV-defining hallmarks: hepatotropism, propensity to persist, and the ability to induce gradual liver damage. Histological examination of liver samples revealed the presence of lymphoid aggregates, parenchymal inflammation, and macrovesicular and microvesicular steatosis in chronically infected rats. Gene expression analysis demonstrated that the intrahepatic response during RHV-rn1 infection in rats mirrors that of HCV infection, including persistent activation of interferon signaling pathways. Finally, we determined that the backbone drug of HCV direct-acting antiviral therapy, sofosbuvir, effectively suppresses chronic RHV-rn1 infection in rats. CONCLUSION We developed RHV-rn1-infected rats as a fully immunocompetent and informative surrogate model to delineate the mechanisms of HCV-related viral persistence, immunity, and pathogenesis. (Hepatology 2018).
Collapse
Affiliation(s)
- Sheetal Trivedi
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Himanshu Sharma
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Alex S. Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA,Medical Scientist Training Program, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210
| | - Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Sashi Gadi
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| | - Lokendra V. Chauhan
- Center for Infection and Immunity, Columbia University, New York, NY 10032, USA
| | - Troels K. H. Scheel
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065
| | - Eva Billerbeck
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065
| | | | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University, New York, NY 10032, USA
| | - Kurt Vandergrift
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802
| | - John M. Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA,Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210,Corresponding author. , Amit Kapoor, Ph.D., Associate Professor, Department of Pediatrics, College of Medicine, The Ohio State University, Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, Ohio 43205
| |
Collapse
|
35
|
Badenhorst M, Tegtmeyer B, Todt D, Guthrie A, Feige K, Campe A, Steinmann E, Cavalleri JMV. First detection and frequent occurrence of Equine Hepacivirus in horses on the African continent. Vet Microbiol 2018; 223:51-58. [PMID: 30173752 DOI: 10.1016/j.vetmic.2018.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/30/2023]
Abstract
Since the discovery of equine hepacivirus (EqHV) in 2011, the virus has been detected in horse populations from more than twelve countries across five continents. EqHV seroprevalence has been reported to be as high as 61.8% and EqHV ribonucleic acid (RNA) prevalence to range between 0.9% and 34.1%. Molecular and serological indications of EqHV infection have never been reported in equids on the African continent. Therefore, investigation of EqHV prevalence in South African horses and subsequent viral genetic characterization contribute to a better understanding of the global epidemiology of this virus. In a cross-sectional study, serum samples from 454 Thoroughbred foals (aged 58-183 days) were analysed for anti-EqHV non-structural protein 3 (NS3)-specific antibodies (abs) with a luciferase immunoprecipitation system (LIPS) and for EqHV RNA by quantitative real-time polymerase chain reaction (qRT-PCR). Farms of origin (n = 26) were situated in South Africa's Western Cape Province. The associations between EqHV infection state and farm of origin, foal gender and foal age were subsequently described. Furthermore, nested PCRs were performed on parts of the 5'UTR, NS3 and NS5B genes of 17 samples. Samples were sequenced and phylogenetic analyses were conducted. The population's seroprevalence was 83.70% and RNA was detected in 7.93% of samples. Increasing foal age was associated with decreasing ab prevalence and increasing prevalence of EqHV RNA. Sequences from South African EqHV strains did not show in-depth clustering with published sequences of EqHV isolates from particular continents. In conclusion, EqHV is present in the South African Thoroughbred population and appears more prevalent than reported in other horse populations worldwide.
Collapse
Affiliation(s)
- Marcha Badenhorst
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa; Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH) - Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625, Hannover, Germany
| | - Daniel Todt
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH) - Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625, Hannover, Germany; Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Alan Guthrie
- Equine Research Centre, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - Amely Campe
- Department of Biometry, Epidemiology and Information Processing (IBEI), WHO-Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559, Hannover, Germany
| | - Eike Steinmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Medical School Hannover (MHH) - Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625, Hannover, Germany; Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801, Bochum, Germany.
| | - Jessika M V Cavalleri
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa; Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria; Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| |
Collapse
|
36
|
Comparison of Different In Situ Hybridization Techniques for the Detection of Various RNA and DNA Viruses. Viruses 2018; 10:v10070384. [PMID: 30037026 PMCID: PMC6071121 DOI: 10.3390/v10070384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022] Open
Abstract
In situ hybridization (ISH) is a technique to determine potential correlations between viruses and lesions. The aim of the study was to compare ISH techniques for the detection of various viruses in different tissues. Tested RNA viruses include atypical porcine pestivirus (APPV) in the cerebellum of pigs, equine and bovine hepacivirus (EqHV, BovHepV) in the liver of horses and cattle, respectively, and Schmallenberg virus (SBV) in the cerebrum of goats. Examined DNA viruses comprise canine bocavirus 2 (CBoV-2) in the intestine of dogs, porcine bocavirus (PBoV) in the spinal cord of pigs and porcine circovirus 2 (PCV-2) in cerebrum, lymph node, and lung of pigs. ISH with self-designed digoxigenin-labelled RNA probes revealed a positive signal for SBV, CBoV-2, and PCV-2, whereas it was lacking for APPV, BovHepV, EqHV, and PBoV. Commercially produced digoxigenin-labelled DNA probes detected CBoV-2 and PCV-2, but failed to detect PBoV. ISH with a commercially available fluorescent ISH (FISH)-RNA probe mix identified nucleic acids of all tested viruses. The detection rate and the cell-associated positive area using the FISH-RNA probe mix was highest compared to the results using other probes and protocols, representing a major benefit of this method. Nevertheless, there are differences in costs and procedure time.
Collapse
|
37
|
Tomlinson JE, Wagner B, Felippe MJB, Van de Walle GR. Multispectral fluorescence-activated cell sorting of B and T cell subpopulations from equine peripheral blood. Vet Immunol Immunopathol 2018; 199:22-31. [DOI: 10.1016/j.vetimm.2018.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
|
38
|
Figueiredo AS, Lampe E, de Albuquerque PPLF, Chalhoub FLL, de Filippis AMB, Villar LM, Cruz OG, Pinto MA, de Oliveira JM. Epidemiological investigation and analysis of the NS5B gene and protein variability of non-primate hepacivirus in several horse cohorts in Rio de Janeiro state, Brazil. INFECTION GENETICS AND EVOLUTION 2018; 59:38-47. [PMID: 29413884 DOI: 10.1016/j.meegid.2018.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 01/24/2023]
Abstract
Among the hepacivirus species recently described, the non-primate hepacivirus/hepacivirus A found in horses and donkeys is closely related to the human hepatitis C virus (HCV). Therefore, the equine is an attractive surrogate large animal model for the study of HCV therapy, pathogenesis and prophylaxis. Despite global efforts, epidemiological and genetic studies have not elucidated the risk factors, virus distribution or genetic variability of the hepacivirus A, which are also important issues for the equine welfare. Little information about this background scenery is available in Brazil. The aims of this study were to investigate potential risk factors associated with hepacivirus A infection among different horse cohorts throughout the state of Rio de Janeiro and to evaluate the diversity of the viral NS5B gene and protein. Hepacivirus A RNA was detected in horse cohorts from all geographical mesoregions, independent of horse activity or breed investigated. Statewide prevalence ranged from 4.0% to 27.5%. Potential risk factors such as geographical location and age of female horses were significantly associated with the presence of virus RNA. Phylogenetic analysis revealed the circulation of subtype 2 in all mesoregions. NS5B gene sequences clustered according to geographical origin, while the NS5B fragments did not allow discriminant analysis. The predicted NS5B protein showed marked conservation, especially in the thumb domain. In conclusion, the higher frequency of hepacivirus A RNA detection in horses bred for reproduction purposes as well as in young females suggests a direct link between reproduction practices and the virus's spread. Additional studies are necessary to understand the distribution of this genetically conserved hepacivirus.
Collapse
Affiliation(s)
- Andreza Soriano Figueiredo
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil.
| | - Elisabeth Lampe
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Pedro Pereira Lira Furtado de Albuquerque
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Flávia Löwen Levy Chalhoub
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Ana Maria Bispo de Filippis
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Livia Melo Villar
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Oswaldo Gonçalves Cruz
- Programme of Scientific Computation, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Marcelo Alves Pinto
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Jaqueline Mendes de Oliveira
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| |
Collapse
|
39
|
Hayashi S, Tanaka T, Moriishi K, Hirayama K, Yamada A, Hotta K. Seroepidemiology of non-primate hepacivirus (NPHV) in Japanese native horses. J Vet Med Sci 2017; 80:186-189. [PMID: 29187712 PMCID: PMC5797880 DOI: 10.1292/jvms.17-0527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Non-primate hepacivirus (NPHV) is recently identified as a closely related homologue of hepatitis C virus. The previous studies showed a high prevalence of NPHV infection among Japanese domestic horses originated from
abroad. The historical distribution of NPHV among horses in Japan, therefore, is still unknown. In this study, seroepidemiological study of NPHV was conducted using 335 sera from five breeds of Japanese native horses.
These horses are maintained as the pedigree and are reared apart from other horse breeds. The detection of antibodies against NPHV were conducted by western blot analysis using the recombinant protein of the NPHV core
protein. The antibodies against NPHV were detected in all five breeds, 83 out of 335 (23.4%) horses. These results suggested that NPHV was circulating among Japanese native horses.
Collapse
Affiliation(s)
- Shizuka Hayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kazuhiro Hirayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akio Yamada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kozue Hotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
40
|
Elia G, Lanave G, Lorusso E, Parisi A, Cavaliere N, Patruno G, Terregino C, Decaro N, Martella V, Buonavoglia C. Identification and genetic characterization of equine hepaciviruses in Italy. Vet Microbiol 2017; 207:239-247. [PMID: 28757030 DOI: 10.1016/j.vetmic.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/26/2023]
Abstract
Viruses similar to human hepatitis C virus, hepaciviruses, have been identified in various animal species. Equine hepacivirus (EqHV) is the closest relative of human hepaciviruses. Although detected worldwide, information on EqHV epidemiology, genetic diversity and pathogenicity is still limited. In this study we investigated the prevalence and genetic diversity of EqHV in Italian equids. The RNA of EqHV was detected in 91/1932 sera (4.7%) whilst it was not detectable in 134 donkey sera screened by a TaqMan-based quantitative assay. Upon sequencing and phylogenetic analysis of genomic portions located in the NS5B, 5'UTR and NS3 genes, the Italian EqHV strains segregated into two distinct clades that are also co-circulating globally, without apparent geographic restrictions.
Collapse
Affiliation(s)
- Gabriella Elia
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy.
| | - Gianvito Lanave
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Eleonora Lorusso
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | - Nicola Cavaliere
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | | | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy
| | - Nicola Decaro
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Canio Buonavoglia
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| |
Collapse
|