1
|
Spagnol G, Trease A, Zheng L, Sobota S, Schmidt M, Cheku S, Sorgen PL. Cx45 regulation by kinases and impact of expression in heart failure. J Mol Cell Cardiol 2025; 203:91-105. [PMID: 40280467 DOI: 10.1016/j.yjmcc.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Phosphorylation plays a crucial role in connexin regulation by modulating gap junction intercellular communication (GJIC), localization, stability, and interactions with signaling proteins. Few kinases are known to phosphorylate Cx45, and their target residues remain unknown. A phosphorylation screen identified several Cx45-targeting kinases activated in heart disease, among which c-Src was found by mass spectroscopy to phosphorylate residues Y324 and Y356. Unlike Cx43, c-Src phosphorylation of Cx45 did not impair GJIC, alter junctional localization, or affect interactions with cytoskeletal proteins β-tubulin, Drebrin, and ZO-1. In LA-25 cells where Cx43 is internalized after temperature sensitive activation of v-Src, expression of Cx45 unexpectedly maintained Cx43 at the plasma membrane. Phospho-specific antibodies helped identify that while Cx43 had a tyrosine phosphorylation pattern favoring turnover, the serine phosphorylation pattern was conducive for GJIC. Furthermore, in a rat model of heart failure, Cx45 was expressed in the ventricle and co-localized with Cx43, leading to altered dye coupling indicative of a shift toward Cx45-like channel permeability. Altogether, our data suggests that in heart failure, c-Src activation on its own would not have an adverse effect on Cx45 function and that aberrant Cx45 expression helps Cx43 transport to and maintain at the intercalated disc. Yet the dominant effect of Cx45 in heteromeric channels could ultimately make Cx45 a key driver of cardiac dysfunction. Finally, the observation that Cx45-mediated coupling remains functional even in the same pathological environment where Cx43-mediated communication is inhibited suggests that kinase regulation of connexins is isoform-specific and not universally predictable.
Collapse
Affiliation(s)
- Gaelle Spagnol
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew Trease
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Li Zheng
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Stephen Sobota
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Marissa Schmidt
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sunayn Cheku
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Zong YJ, Liu XZ, Shi XY, Zhao ZD, Sun Y. Promotion of Cx26 mutants located in TM4 region for membrane translocation successfully rescued hearing loss. Theranostics 2025; 15:5801-5825. [PMID: 40365300 PMCID: PMC12068290 DOI: 10.7150/thno.112225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: The GJB2 gene, which encodes connexin 26 (Cx26), is recognized as the leading cause of non-syndromic hereditary hearing loss. In clinical settings, a total of 131 Cx26 mutations have been identified in association with hearing loss. Certain Cx26 mutants display normal structural and functional properties but fail to translocate to the plasma membrane. Enhancing the membrane localization of these mutants may provide a promising strategy for rescuing hearing loss and hair cell degeneration. Methods: This study investigated the membrane localization of Cx26 using in vitro cell lines, cultured cochlear explants, and in vivo murine models. Key proteins involved in the membrane localization of Cx26 were identified and validated through immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP). Additionally, cell lines and murine models harboring Cx26 mutants were developed to evaluate the effects of Narciclasine on enhancing the membrane localization of these mutants, as well as its potential to rescue hearing loss. Results: The membrane localization of Cx26 was dependent on the integrity of the intracellular transport network consisting of microtubules, actin microfilaments, and the Golgi apparatus. Additionally, SPTBN1 played a significant role in this process. The transmembrane domain 4 (TM4) region exhibited a strong association with the membrane localization of Cx26, and Cx26 mutants located in TM4 region retained in the cytoplasm. Narciclasine promoted cytoskeletal development, thereby enhancing the membrane localization of Cx26 mutants retained in the cytoplasm. This process helped to reconstruct the inner ear gap junction network and rescue hearing loss and hair cell degeneration. Conclusion: These findings present that enhancing the membrane localization of Cx26 mutants can significantly improve auditory function. This strategy offers a potential therapeutic approach for addressing hereditary sensorineural hearing loss associated with GJB2 mutations.
Collapse
Affiliation(s)
- Yan-Jun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin-Yu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng-Dong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinic Research Center for Deafness and Vertigo, Wuhan 430022, China
| |
Collapse
|
3
|
Jara O, Maripillán J, Momboisse F, Cárdenas AM, García IE, Martínez AD. Differential Regulation of Hemichannels and Gap Junction Channels by RhoA GTPase and Actin Cytoskeleton: A Comparative Analysis of Cx43 and Cx26. Int J Mol Sci 2024; 25:7246. [PMID: 39000353 PMCID: PMC11242593 DOI: 10.3390/ijms25137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.
Collapse
Affiliation(s)
- Oscar Jara
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jaime Maripillán
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Fanny Momboisse
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, 75013 Paris, France
| | - Ana María Cárdenas
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Isaac E García
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
- Centro de Investigación en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D Martínez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| |
Collapse
|
4
|
Okolo CA, Maran JJ, Watts A, Maripillan J, Harkiolaki M, Martínez AD, Green CR, Mugisho OO. Correlative light and X-ray tomography jointly unveil the critical role of connexin43 channels on inflammation-induced cellular ultrastructural alterations. Heliyon 2024; 10:e27888. [PMID: 38560181 PMCID: PMC10979075 DOI: 10.1016/j.heliyon.2024.e27888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Non-junctional connexin43 (Cx43) plasma membrane hemichannels have been implicated in several inflammatory diseases, particularly playing a role in ATP release that triggers activation of the inflammasome. Therapies targeting the blocking of the hemichannels to prevent the pathological release or uptake of ions and signalling molecules through its pores are of therapeutic interest. To date, there is no close-to-native, high-definition documentation of the impact of Cx43 hemichannel-mediated inflammation on cellular ultrastructure, neither is there a robust account of the ultrastructural changes that occur following treatment with selective Cx43 hemichannel blockers such as Xentry-Gap19 (XG19). A combination of same-sample correlative high-resolution three-dimensional fluorescence microscopy and soft X-ray tomography at cryogenic temperatures, enabled in the identification of novel 3D molecular interactions within the cellular milieu when comparing behaviour in healthy states and during the early onset or late stages under inflammatory conditions. Notably, our findings suggest that XG19 blockage of connexin hemichannels under pro-inflammatory conditions may be crucial in preventing the direct degradation of connexosomes by lysosomes, without affecting connexin protein translation and trafficking. We also delineated fine and gross cellular phenotypes, characteristic of inflammatory insult or road-to-recovery from inflammation, where XG19 could indirectly prevent and reverse inflammatory cytokine-induced mitochondrial swelling and cellular hypertrophy through its action on Cx43 hemichannels. Our findings suggest that XG19 might have prophylactic and therapeutic effects on the inflammatory response, in line with functional studies.
Collapse
Affiliation(s)
- Chidinma Adanna Okolo
- Beamline B24, Life Sciences Division, Diamond Light Source, Didcot, Oxfordshire, United Kingdom
| | - Jack Jonathan Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Amy Watts
- Beamline B24, Life Sciences Division, Diamond Light Source, Didcot, Oxfordshire, United Kingdom
| | - Jaime Maripillan
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Maria Harkiolaki
- Beamline B24, Life Sciences Division, Diamond Light Source, Didcot, Oxfordshire, United Kingdom
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Colin R. Green
- Department of Ophthalmology, University of Auckland, New Zealand
| | - Odunayo Omolola Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
5
|
Totland MZ, Knudsen LM, Rasmussen NL, Omori Y, Sørensen V, Elster VCW, Stenersen JM, Larsen M, Jensen CL, Zickfeldt Lade AA, Bruusgaard E, Basing S, Kryeziu K, Brech A, Aasen T, Lothe RA, Leithe E. The E3 ubiquitin ligase ITCH negatively regulates intercellular communication via gap junctions by targeting connexin43 for lysosomal degradation. Cell Mol Life Sci 2024; 81:171. [PMID: 38597989 PMCID: PMC11006747 DOI: 10.1007/s00018-024-05165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 04/11/2024]
Abstract
Intercellular communication via gap junctions has a fundamental role in regulating cell growth and tissue homeostasis, and its dysregulation may be involved in cancer development and radio- and chemotherapy resistance. Connexin43 (Cx43) is the most ubiquitously expressed gap junction channel protein in human tissues. Emerging evidence indicates that dysregulation of the sorting of Cx43 to lysosomes is important in mediating the loss of Cx43-based gap junctions in cancer cells. However, the molecular basis underlying this process is currently poorly understood. Here, we identified the E3 ubiquitin ligase ITCH as a novel regulator of intercellular communication via gap junctions. We demonstrate that ITCH promotes loss of gap junctions in cervical cancer cells, which is associated with increased degradation of Cx43 in lysosomes. The data further indicate that ITCH interacts with and regulates Cx43 ubiquitination and that the ITCH-induced loss of Cx43-based gap junctions requires its catalytic HECT (homologous to E6-AP C-terminus) domain. The data also suggest that the ability of ITCH to efficiently promote loss of Cx43-based gap junctions and degradation of Cx43 depends on a functional PY (PPXY) motif in the C-terminal tail of Cx43. Together, these data provide new insights into the molecular basis underlying the degradation of Cx43 and have implications for the understanding of how intercellular communication via gap junctions is lost during cancer development.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Centre for Molecular Medicine Norway, Faculty of Medicine, Oslo, Norway
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Vigdis Sørensen
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Vilde C Wivestad Elster
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Jakob Mørkved Stenersen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Mathias Larsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Caroline Lunder Jensen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Anna A Zickfeldt Lade
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Emilie Bruusgaard
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Sebastian Basing
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Kushtrim Kryeziu
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| | - Andreas Brech
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, Oslo, 0316, Norway
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, Oslo, 0316, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0317, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, NO-0424, Norway
| |
Collapse
|
6
|
Leighton SE, Wong RS, Lucaciu SA, Hauser A, Johnston D, Stathopulos PB, Bai D, Penuela S, Laird DW. Cx31.1 can selectively intermix with co-expressed connexins to facilitate its assembly into gap junctions. J Cell Sci 2024; 137:jcs261631. [PMID: 38533727 PMCID: PMC11058089 DOI: 10.1242/jcs.261631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.
Collapse
Affiliation(s)
- Stephanie E. Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Robert S. Wong
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sergiu A. Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON N6A 5B9, Canada
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
7
|
Acharya BR, Fang JS, Jeffery ED, Chavkin NW, Genet G, Vasavada H, Nelson EA, Sheynkman GM, Humphries MJ, Hirschi KK. Connexin 37 sequestering of activated-ERK in the cytoplasm promotes p27-mediated endothelial cell cycle arrest. Life Sci Alliance 2023; 6:e202201685. [PMID: 37197981 PMCID: PMC10192821 DOI: 10.26508/lsa.202201685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Connexin37-mediated regulation of cell cycle modulators and, consequently, growth arrest lack mechanistic understanding. We previously showed that arterial shear stress up-regulates Cx37 in endothelial cells and activates a Notch/Cx37/p27 signaling axis to promote G1 cell cycle arrest, and this is required to enable arterial gene expression. However, how induced expression of a gap junction protein, Cx37, up-regulates cyclin-dependent kinase inhibitor p27 to enable endothelial growth suppression and arterial specification is unclear. Herein, we fill this knowledge gap by expressing wild-type and regulatory domain mutants of Cx37 in cultured endothelial cells expressing the Fucci cell cycle reporter. We determined that both the channel-forming and cytoplasmic tail domains of Cx37 are required for p27 up-regulation and late G1 arrest. Mechanistically, the cytoplasmic tail domain of Cx37 interacts with, and sequesters, activated ERK in the cytoplasm. This then stabilizes pERK nuclear target Foxo3a, which up-regulates p27 transcription. Consistent with previous studies, we found this Cx37/pERK/Foxo3a/p27 signaling axis functions downstream of arterial shear stress to promote endothelial late G1 state and enable up-regulation of arterial genes.
Collapse
Affiliation(s)
- Bipul R Acharya
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jennifer S Fang
- Department of Molecular Biology & Biochemistry, University of California at Irvine, Irvine, CA, USA
| | - Erin D Jeffery
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nicholas W Chavkin
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gael Genet
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Hema Vasavada
- Departments of Medicine and Genetics, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth A Nelson
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Karen K Hirschi
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Departments of Medicine and Genetics, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Wang Q, Liang X, Shang S, Fan Y, Lv H, Tang B, Lu Y. Desmosomal Junctions and Connexin-43 Remodeling in High-Pacing-Induced Heart Failure Dogs. Anatol J Cardiol 2023; 27:462-471. [PMID: 37288855 PMCID: PMC10406148 DOI: 10.14744/anatoljcardiol.2023.2823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/22/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND While desmosomal junctions and gap junction remodeling are among the arrhythmogenic substrates, the fate of desmosomal and gap junctions in high-pacing-induced heart failure remains unclear. This aim of this study was to determine the fate of desmosomal junctions in high-pacing-induced heart failure. METHODS Dogs were randomly divided into 2 equal groups, a high-pacing-induced heart failure model group (heart failure group, n = 6) and a sham operation group (control group, n = 6). Echocardiography and cardiac electrophysiological examination were performed. Cardiac tissue was analyzed by immunofluorescence and transmission electron microscopy. The expression of desmoplakin and desmoglein-2 proteins was detected by western blot. RESULTS A significant decrease in ejection fraction, significant cardiac dilatation, diastolic and systolic dysfunction, and ventricular thinning occurred after 4 weeks in high-pacing-induced dog model of heart failure. Effective refractory period action potential duration at 90% repolarization was prolonged in the heart failure group. Immunofluorescence analysis and transmission electron microscopy demonstrated connexin-43 lateralization accompanies desmoglein-2 and desmoplakin remodeling in the heart failure group. Western blotting showed that the expression of desmoplakin and desmoglein-2 proteins was higher in heart failure than in normal tissue. CONCLUSION Desmosome (desmoglein-2 and desmoplakin) redistribution and desmosome (desmoglein-2) overexpression accompanying connexin-43 lateralization were parts of a complex remodeling in high-pacing-induced heart failure.
Collapse
Affiliation(s)
- Qing Wang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Xiaoyan Liang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Shuai Shang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yongqiang Fan
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Huasheng Lv
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Baopeng Tang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yanmei Lu
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
9
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
10
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
11
|
Zong YJ, Liu XZ, Tu L, Sun Y. Cytomembrane Trafficking Pathways of Connexin 26, 30, and 43. Int J Mol Sci 2023; 24:10349. [PMID: 37373495 DOI: 10.3390/ijms241210349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The connexin gene family is the most prevalent gene that contributes to hearing loss. Connexins 26 and 30, encoded by GJB2 and GJB6, respectively, are the most abundantly expressed connexins in the inner ear. Connexin 43, which is encoded by GJA1, appears to be widely expressed in various organs, including the heart, skin, the brain, and the inner ear. The mutations that arise in GJB2, GJB6, and GJA1 can all result in comprehensive or non-comprehensive genetic deafness in newborns. As it is predicted that connexins include at least 20 isoforms in humans, the biosynthesis, structural composition, and degradation of connexins must be precisely regulated so that the gap junctions can properly operate. Certain mutations result in connexins possessing a faulty subcellular localization, failing to transport to the cell membrane and preventing gap junction formation, ultimately leading to connexin dysfunction and hearing loss. In this review, we provide a discussion of the transport models for connexin 43, connexins 30 and 26, mutations affecting trafficking pathways of these connexins, the existing controversies in the trafficking pathways of connexins, and the molecules involved in connexin trafficking and their functions. This review can contribute to a new way of understanding the etiological principles of connexin mutations and finding therapeutic strategies for hereditary deafness.
Collapse
Affiliation(s)
- Yan-Jun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
12
|
Scott H, Dong L, Stevenson A, MacDonald AI, Srinivasan S, Massimi P, Banks L, Martin PE, Johnstone SR, Graham SV. The human discs large protein 1 interacts with and maintains connexin 43 at the plasma membrane in keratinocytes. J Cell Sci 2023; 136:jcs259984. [PMID: 37288673 PMCID: PMC10309592 DOI: 10.1242/jcs.259984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Gap junction channels, composed of connexins, allow direct cell-to-cell communication. Connexin 43 (Cx43; also known as GJA1) is widely expressed in tissues, including the epidermis. In a previous study of human papillomavirus-positive cervical epithelial tumour cells, we identified Cx43 as a binding partner of the human homologue of Drosophila Discs large (Dlg1; also known as SAP97). Dlg1 is a member of the membrane associated-guanylate kinase (MAGUK) scaffolding protein family, which is known to control cell shape and polarity. Here, we show that Cx43 also interacts with Dlg1 in uninfected keratinocytes in vitro and in keratinocytes, dermal cells and adipocytes in normal human epidermis in vivo. Depletion of Dlg1 in keratinocytes did not alter Cx43 transcription but was associated with a reduction in Cx43 protein levels. Reduced Dlg1 levels in keratinocytes resulted in a reduction in Cx43 at the plasma membrane with a concomitant reduction in gap junctional intercellular communication and relocation of Cx43 to the Golgi compartment. Our data suggest a key role for Dlg1 in maintaining Cx43 at the plasma membrane in keratinocytes.
Collapse
Affiliation(s)
- Harry Scott
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Li Dong
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Andrew Stevenson
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Alasdair I. MacDonald
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Sharmila Srinivasan
- Translation Research Platform for Veterinary Biologicals, Chennai, Tamil Nadu, India
| | - Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Patricia E. Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke VA 24016, USA
| | - Sheila V. Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| |
Collapse
|
13
|
Basu I, Li H, Trease AJ, Sorgen PL. Regulation of Cx43 Gap Junction Intercellular Communication by Bruton's Tyrosine Kinase and Interleukin-2-Inducible T-Cell Kinase. Biomolecules 2023; 13:biom13040660. [PMID: 37189407 DOI: 10.3390/biom13040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
T and B cell receptor signaling involves the activation of Akt, MAPKs, and PKC as well as an increase in intracellular Ca2+ and calmodulin activation. While these coordinate the rapid turnover of gap junctions, also implicated in this process is Src, which is not activated as part of T and B cell receptor signaling. An in vitro kinase screen identified that Bruton's tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) phosphorylate Cx43. Mass spectroscopy revealed that BTK and ITK phosphorylate Cx43 residues Y247, Y265, and Y313, which are identical to the residues phosphorylated by Src. Overexpression of BTK or ITK in the HEK-293T cells led to increased Cx43 tyrosine phosphorylation as well as decreased gap junction intercellular communication (GJIC) and Cx43 membrane localization. In the lymphocytes, activation of the B cell receptor (Daudi cells) or T cell receptor (Jurkat cells) increased the BTK and ITK activity, respectively. While this led to increased tyrosine phosphorylation of Cx43 and decreased GJIC, the cellular localization of Cx43 changed little. We have previously identified that Pyk2 and Tyk2 also phosphorylate Cx43 at residues Y247, Y265, and Y313 with a similar cellular fate to that of Src. With phosphorylation critical to Cx43 assembly and turnover, and kinase expression varying between different cell types, there would be a need for different kinases to achieve the same regulation of Cx43. The work presented herein suggests that in the immune system, ITK and BTK have the capacity for the tyrosine phosphorylation of Cx43 to alter the gap junction function in a similar manner as Pyk2, Tyk2, and Src.
Collapse
Affiliation(s)
- Ishika Basu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Leybaert L, De Smet MA, Lissoni A, Allewaert R, Roderick HL, Bultynck G, Delmar M, Sipido KR, Witschas K. Connexin hemichannels as candidate targets for cardioprotective and anti-arrhythmic treatments. J Clin Invest 2023; 133:168117. [PMID: 36919695 PMCID: PMC10014111 DOI: 10.1172/jci168117] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Connexins are crucial cardiac proteins that form hemichannels and gap junctions. Gap junctions are responsible for the propagation of electrical and chemical signals between myocardial cells and cells of the specialized conduction system in order to synchronize the cardiac cycle and steer cardiac pump function. Gap junctions are normally open, while hemichannels are closed, but pathological circumstances may close gap junctions and open hemichannels, thereby perturbing cardiac function and homeostasis. Current evidence demonstrates an emerging role of hemichannels in myocardial ischemia and arrhythmia, and tools are now available to selectively inhibit hemichannels without inhibiting gap junctions as well as to stimulate hemichannel incorporation into gap junctions. We review available experimental evidence for hemichannel contributions to cellular pro-arrhythmic events in ventricular and atrial cardiomyocytes, and link these to insights at the level of molecular control of connexin-43-based hemichannel opening. We conclude that a double-edged approach of both preventing hemichannel opening and preserving gap junctional function will be key for further research and development of new connexin-based experimental approaches for treating heart disease.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Maarten Aj De Smet
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Alessio Lissoni
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Rosalie Allewaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, and
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, School of Medicine, New York University, New York, USA
| | - Karin R Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, and
| | - Katja Witschas
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Defourny J, Thiry M. Recent insights into gap junction biogenesis in the cochlea. Dev Dyn 2023; 252:239-246. [PMID: 36106826 DOI: 10.1002/dvdy.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022] Open
Abstract
In the cochlea, connexin 26 (Cx26) and connexin 30 (Cx30) co-assemble into two types of homomeric and heteromeric gap junctions between adjacent non-sensory epithelial cells. These channels provide a mechanical coupling between connected cells, and their activity is critical to maintain cochlear homeostasis. Many of the mutations in GJB2 or GJB6, which encode Cx26 and Cx30 in humans, impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. Thus, deciphering the connexin trafficking pathways in situ should represent a major step forward in understanding the pathogenic significance of many of these mutations. A growing body of evidence now suggests that Cx26/Cx30 heteromeric and Cx30 homomeric channels display distinct assembly mechanisms. Here, we review the most recent advances that have been made toward unraveling the biogenesis and stability of these gap junctions in the cochlea.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, Liège, Belgium
| | - Marc Thiry
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Pun R, Kim MH, North BJ. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease. Front Cardiovasc Med 2023; 9:1080131. [PMID: 36712244 PMCID: PMC9877470 DOI: 10.3389/fcvm.2022.1080131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Intercellular communication mediated by gap junction channels and hemichannels composed of Connexin 43 (Cx43) is vital for the propagation of electrical impulses through cardiomyocytes. The carboxyl terminal tail of Cx43 undergoes various post-translational modifications including phosphorylation of its Serine-368 (S368) residue. Protein Kinase C isozymes directly phosphorylate S368 to alter Cx43 function and stability through inducing conformational changes affecting channel permeability or promoting internalization and degradation to reduce intercellular communication between cardiomyocytes. Recent studies have implicated this PKC/Cx43-pS368 circuit in several cardiac-associated diseases. In this review, we describe the molecular and cellular basis of PKC-mediated Cx43 phosphorylation and discuss the implications of Cx43 S368 phosphorylation in the context of various cardiac diseases, such as cardiomyopathy, as well as the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Renju Pun
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Michael H. Kim
- CHI Health Heart Institute, School of Medicine, Creighton University, Omaha, NE, United States
| | - Brian J. North
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States,*Correspondence: Brian J. North,
| |
Collapse
|
17
|
Abbott AC, García IE, Villanelo F, Flores-Muñoz C, Ceriani R, Maripillán J, Novoa-Molina J, Figueroa-Cares C, Pérez-Acle T, Sáez JC, Sánchez HA, Martínez AD. Expression of KID syndromic mutation Cx26S17F produces hyperactive hemichannels in supporting cells of the organ of Corti. Front Cell Dev Biol 2023; 10:1071202. [PMID: 36699003 PMCID: PMC9868548 DOI: 10.3389/fcell.2022.1071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Some mutations in gap junction protein Connexin 26 (Cx26) lead to syndromic deafness, where hearing impairment is associated with skin disease, like in Keratitis Ichthyosis Deafness (KID) syndrome. This condition has been linked to hyperactivity of connexin hemichannels but this has never been demonstrated in cochlear tissue. Moreover, some KID mutants, like Cx26S17F, form hyperactive HCs only when co-expressed with other wild-type connexins. In this work, we evaluated the functional consequences of expressing a KID syndromic mutation, Cx26S17F, in the transgenic mouse cochlea and whether co-expression of Cx26S17F and Cx30 leads to the formation of hyperactive HCs. Indeed, we found that cochlear explants from a constitutive knock-in Cx26S17F mouse or conditional in vitro cochlear expression of Cx26S17F produces hyperactive HCs in supporting cells of the organ of Corti. These conditions also produce loss of hair cells stereocilia. In supporting cells, we found high co-localization between Cx26S17F and Cx30. The functional properties of HCs formed in cells co-expressing Cx26S17F and Cx30 were also studied in oocytes and HeLa cells. Under the recording conditions used in this study Cx26S17F did not form functional HCs and GJCs, but cells co-expressing Cx26S17F and Cx30 present hyperactive HCs insensitive to HCs blockers, Ca2+ and La3+, resulting in more Ca2+ influx and cellular damage. Molecular dynamic analysis of putative heteromeric HC formed by Cx26S17F and Cx30 presents alterations in extracellular Ca2+ binding sites. These results support that in KID syndrome, hyperactive HCs are formed by the interaction between Cx26S17F and Cx30 in supporting cells probably causing damage to hair cells associated to deafness.
Collapse
Affiliation(s)
- Ana C. Abbott
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Viña del Mar, Chile
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile,Centro de Investigaciones en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Villanelo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tomas Pérez-Acle
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| |
Collapse
|
18
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
19
|
Corvace F, Faustmann TJ, Faustmann PM, Ismail FS. Anti-inflammatory properties of lacosamide in an astrocyte-microglia co-culture model of inflammation. Eur J Pharmacol 2022; 915:174696. [PMID: 34902360 DOI: 10.1016/j.ejphar.2021.174696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE Understanding the effects of antiepileptic drugs on glial cells and glia-mediated inflammation is a new approach to future treatment of epilepsy. Little is known about direct effects of the antiepileptic drug lacosamide (LCM) on glial cells. Therefore, we aimed to study the LCM effects on glial viability, microglial activation, expression of gap-junctional (GJ) protein Cx43 as well as intercellular communication in an in vitro astrocyte-microglia co-culture model of inflammation. METHODS Primary rat astrocytes co-cultures containing 5% (M5, "physiological" conditions) or 30% (M30, "pathological inflammatory" conditions) of microglia were treated with different concentrations of LCM [5, 15, 30, and 90 μg/ml] for 24 h. Glial cell viability was measured by MTT assay. Immunocytochemistry was performed to analyze the microglial activation state. Western blot analysis was used to quantify the astroglial Cx43 expression. The GJ cell communication was studied via Scrape Loading. RESULTS A concentration-dependent incubation with LCM did not affect the glial cell viability both under physiological and pathological conditions. LCM induced a significant concentration-dependent decrease of activated microglia with parallel increase of ramified microglia under pathological inflammatory conditions. This correlated with an increase in astroglial Cx43 expression. Nevertheless, the functional coupling via GJs was significantly reduced after incubation with LCM. CONCLUSION LCM has not shown effects on the glial cell viability. The reduced GJ coupling by LCM could be related to its anti-epileptic activity. The anti-inflammatory glial features of LCM with inhibition of microglial activation under inflammatory conditions support beneficial role in epilepsy associated with neuroinflammation.
Collapse
Affiliation(s)
- Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
20
|
King DR, Sedovy MW, Leng X, Xue J, Lamouille S, Koval M, Isakson BE, Johnstone SR. Mechanisms of Connexin Regulating Peptides. Int J Mol Sci 2021; 22:ijms221910186. [PMID: 34638526 PMCID: PMC8507914 DOI: 10.3390/ijms221910186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJ) and connexins play integral roles in cellular physiology and have been found to be involved in multiple pathophysiological states from cancer to cardiovascular disease. Studies over the last 60 years have demonstrated the utility of altering GJ signaling pathways in experimental models, which has led to them being attractive targets for therapeutic intervention. A number of different mechanisms have been proposed to regulate GJ signaling, including channel blocking, enhancing channel open state, and disrupting protein-protein interactions. The primary mechanism for this has been through the design of numerous peptides as therapeutics, that are either currently in early development or are in various stages of clinical trials. Despite over 25 years of research into connexin targeting peptides, the overall mechanisms of action are still poorly understood. In this overview, we discuss published connexin targeting peptides, their reported mechanisms of action, and the potential for these molecules in the treatment of disease.
Collapse
Affiliation(s)
- D. Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Meghan W. Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xinyan Leng
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Jianxiang Xue
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
- Correspondence:
| |
Collapse
|
21
|
Hyland C, Mfarej M, Hiotis G, Lancaster S, Novak N, Iovine MK, Falk MM. Impaired Cx43 gap junction endocytosis causes morphological and functional defects in zebrafish. Mol Biol Cell 2021; 32:ar13. [PMID: 34379446 PMCID: PMC8684743 DOI: 10.1091/mbc.e20-12-0797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gap junctions mediate direct cell-to-cell communication by forming channels that physically couple cells, thereby linking their cytoplasm, permitting the exchange of molecules, ions, and electrical impulses. Gap junctions are assembled from connexin (Cx) proteins, with connexin 43 (Cx43) being the most ubiquitously expressed and best studied. While the molecular events that dictate the Cx43 life cycle have largely been characterized, the unusually short half-life of connexins of only 1-5 hours, resulting in constant endocytosis and biosynthetic replacement of gap junction channels has remained puzzling. The Cx43 C-terminal (CT) domain serves as the regulatory hub of the protein affecting all aspects of gap junction function. Here, deletion within the Cx43 CT (amino acids 256-289), a region known to encode key residues regulating gap junction turnover is employed to examine the effects of dysregulated Cx43 gap junction endocytosis using cultured cells (Cx43∆256-289) and a zebrafish model (cx43lh10). We report that this CT deletion causes defective gap junction endocytosis as well as increased gap junction intercellular communication (GJIC). Increased Cx43 protein content in cx43lh10 zebrafish, specifically in the cardiac tissue, larger gap junction plaques and longer Cx43 protein half-lives coincide with severely impaired development. Our findings demonstrate for the first time that Cx43 gap junction endocytosis is an essential aspect of gap junction function and when impaired, gives rise to significant physiological problems as revealed here for cardiovascular development and function. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Caitlin Hyland
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - Michael Mfarej
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - Giorgos Hiotis
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - Sabrina Lancaster
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - Noelle Novak
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, Iacocca Hall, 111 Research Drive, Bethlehem PA, 18015
| |
Collapse
|
22
|
Sawa Y, Matsushita N, Sato S, Ishida N, Saito M, Sanbe A, Morino Y, Taira E, Obara M, Hirose M. Chronic HDAC6 Activation Induces Atrial Fibrillation Through Atrial Electrical and Structural Remodeling in Transgenic Mice. Int Heart J 2021; 62:616-626. [PMID: 34054002 DOI: 10.1536/ihj.20-703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atrial fibrillation (AF) is a relatively common complication of hypertension. Chronic hypertension induces cardiac HDAC6 catalytic activity. However, whether HDAC6 activation contributes to hypertension-induced AF is still uncertain. We examined whether chronic cardiac HDAC6 activation-induced atrial remodeling, leading to AF induction.The HDAC6 constitutively active transgenic (TG) (HDAC6 active TG) mouse overexpressing the active HDAC6 protein, specifically in cardiomyocytes, was created to examine the effects of chronic HDAC6 activation on atrial electrical and structural remodeling and AF induction in HDAC6 active TG and non-transgenic (NTG) mice. Left atrial burst pacing (S1S1 = 30 msec) for 15-30 sec significantly increased the frequency of sustained AF in HDAC6 active-TG mice compared with NTG mice. Left steady-state atrial pacing (S1S1 = 80 msec) decreased the atrial conduction velocity in isolated HDAC6 active TG compared with NTG mouse atria. The atrial size was similar between HDAC6 active TG and NTG mice. In contrast, atrial interstitial fibrosis increased in HDAC6 active TG compared with that of NTG mouse atria. While protein expression levels of both CX40 and CX43 were similar between HDAC6 active TG and NTG mouse atria, a heterogeneous distribution of CX40 and CX43 occurred in HDAC6 active-TG mouse atria but not in NTG mouse atria. Gene expression of interleukin 6 increased in HDAC6 active TG compared with NTG mouse atria.Chronic cardiac HDAC6 activation induced atrial electrical and structural remodeling, and sustained AF. Hypertension-induced cardiac HDAC6 catalytic activity may play important roles in the development of AF.
Collapse
Affiliation(s)
- Yohei Sawa
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, Iwate Medical University School of Pharmaceutical Science.,Division of Cardiology, Department of Internal Medicine, Iwate Medical University, School of Medicine
| | - Naoko Matsushita
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, School of Medicine
| | - Sachiko Sato
- Department of Pharmacology, Iwate Medical University, School of Medicine
| | - Nanae Ishida
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, Iwate Medical University School of Pharmaceutical Science
| | - Maki Saito
- Department of Pharmacy, Iryo Sosei University, School of Pharmaceutical Science
| | - Atsushi Sanbe
- Division of Pharmacotherapeutics, Department of Pathophysiology and Pharmacology, Iwate Medical University School of Pharmaceutical Science
| | - Yoshihiro Morino
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, School of Medicine
| | - Eiichi Taira
- Department of Pharmacology, Iwate Medical University, School of Medicine
| | - Mami Obara
- Department of Pharmacology, Iwate Medical University, School of Medicine
| | - Masamichi Hirose
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, Iwate Medical University School of Pharmaceutical Science
| |
Collapse
|
23
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
24
|
Natha CM, Vemulapalli V, Fiori MC, Chang CWT, Altenberg GA. Connexin hemichannel inhibitors with a focus on aminoglycosides. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166115. [PMID: 33711451 DOI: 10.1016/j.bbadis.2021.166115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
Connexins are membrane proteins involved directly in cell-to-cell communication through the formation of gap-junctional channels. These channels result from the head-to-head docking of two hemichannels, one from each of two adjacent cells. Undocked hemichannels are also present at the plasma membrane where they mediate the efflux of molecules that participate in autocrine and paracrine signaling, but abnormal increase in hemichannel activity can lead to cell damage in disorders such as cardiac infarct, stroke, deafness, cataracts, and skin diseases. For this reason, connexin hemichannels have emerged as a valid therapeutic target. Know small molecule hemichannel inhibitors are not ideal leads for the development of better drugs for clinical use because they are not specific and/or have toxic effects. Newer inhibitors are more selective and include connexin mimetic peptides, anti-connexin antibodies and drugs that reduce connexin expression such as antisense oligonucleotides. Re-purposed drugs and their derivatives are also promising because of the significant experience with their clinical use. Among these, aminoglycoside antibiotics have been identified as inhibitors of connexin hemichannels that do not inhibit gap-junctional channels. In this review, we discuss connexin hemichannels and their inhibitors, with a focus on aminoglycoside antibiotics and derivatives of kanamycin A that inhibit connexin hemichannels, but do not have antibiotic effect.
Collapse
Affiliation(s)
- Cristina M Natha
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Varun Vemulapalli
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
25
|
Zandi F, Khalaj V, Goshadrou F, Meyfour A, Gholami A, Enayati S, Mehranfar M, Rahmati S, Kheiri EV, Badie HG, Vaziri B. Rabies virus matrix protein targets host actin cytoskeleton: a protein-protein interaction analysis. Pathog Dis 2020; 79:6027507. [PMID: 33289839 DOI: 10.1093/femspd/ftaa075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Multifunctional matrix protein (M) of rabies virus (RABV) plays essential roles in the pathogenesis of rabies infection. Identification of M protein interacting partners in target hosts could help to elucidate the biological pathways and molecular mechanisms involved in the pathogenesis of this virus. In this study, two-dimensional Far-western blotting (2D-Far-WB) technique was applied to find possible matrix protein partners in the rat brainstem. Recombinant RABV M was expressed in Pichia pastoris and was partially purified. Subsequently, 2D-Far-WB-determined six rat brainstem proteins interacted with recombinant M proteins that were identified by mass spectrometry. Functional annotation by gene ontology analysis determined these proteins were involved in the regulation of synaptic transmission processes, metabolic process and cell morphogenesis-cytoskeleton organization. The interaction of viral M protein with selected host proteins in mouse Neuro-2a cells infected with RABV was verified by super-resolution confocal microscopy. Molecular docking simulations also demonstrated the formation of RABV M complexes. However, further confirmation with co-immunoprecipitation was only successful for M-actin cytoplasmic 1 interaction. Our study revealed actin cytoplasmic 1 as a binding partner of M protein, which might have important role(s) in rabies pathogenesis.
Collapse
Affiliation(s)
- Fatemeh Zandi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.,Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313, Iran
| | - Vahid Khalaj
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Goshadrou
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, 16635-148, Iran
| | - Alireza Gholami
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Somayeh Enayati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahsa Mehranfar
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | | | - Hamid Gholamipour Badie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
26
|
Defourny J, Thiry M. Tricellular adherens junctions provide a cell surface delivery platform for connexin 26/30 oligomers in the cochlea. Hear Res 2020; 400:108137. [PMID: 33291008 DOI: 10.1016/j.heares.2020.108137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
In the cochlea, connexins 26 (Cx26) and 30 (Cx30) largely co-assemble into heteromeric gap junctions, which connect adjacent non-sensory epithelial cells. These channels are believed to ensure the rapid removal of K+ away from the base of sensory hair cells, resulting in K+ recycling back to the endolymph to maintain cochlear homeostasis. Many of the mutations in GJB2 and GJB6, which encode CX26 and CX30, impair the formation of membrane channels and cause autosomal hearing loss in humans. Although recent advances have been made, several important questions remain about connexin trafficking and gap junction biogenesis. Here we show that tricellular adherens junctions present at the crossroad between adjacent gap junction plaques, provide an unexpected cell surface delivery platform for Cx26/Cx30 oligomers. Using an in situ proximity ligation assay, we detected the presence of non-junctional Cx26/Cx30 oligomers within lipid raft-enriched tricellular junction sites. In addition, we observed that cadherin homophilic interactions are critically involved in microtubule-mediated trafficking of Cx26/Cx30 oligomers to the cell surface. Overall, our results unveil an unexpected role for tricellular junctions in the trafficking and assembly of membrane channels.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, C.H.U B36, B-4000 Liège, Belgium.
| | - Marc Thiry
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, C.H.U B36, B-4000 Liège, Belgium
| |
Collapse
|
27
|
Meng L, Yan D. NLR-1/CASPR Anchors F-Actin to Promote Gap Junction Formation. Dev Cell 2020; 55:574-587.e3. [PMID: 33238150 DOI: 10.1016/j.devcel.2020.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Gap junctions are present in most tissues and play essential roles in various biological processes. However, we know surprisingly little about the molecular mechanisms underlying gap junction formation. Here, we uncover the essential role of a conserved EGF- and laminin-G-domain-containing protein nlr-1/CASPR in the regulation of gap junction formation in multiple tissues across different developmental stages in C. elegans. NLR-1 is located in the gap junction perinexus, a region adjacent to but not overlapping with gap junctions, and forms puncta before the clusters of gap junction channels appear on the membrane. We show that NLR-1 can directly bind to actin to recruit F-actin networks at the gap junction formation plaque, and the formation of F-actin patches plays a critical role in the assembly of gap junction channels. Our findings demonstrate that nlr-1/CASPR acts as an early stage signal for gap junction formation through anchoring of F-actin networks.
Collapse
Affiliation(s)
- Lingfeng Meng
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Solan JL, Lampe PD. Src Regulation of Cx43 Phosphorylation and Gap Junction Turnover. Biomolecules 2020; 10:biom10121596. [PMID: 33255329 PMCID: PMC7759836 DOI: 10.3390/biom10121596] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
The gap junction protein Connexin43 (Cx43) is highly regulated by phosphorylation at over a dozen sites by probably at least as many kinases. This Cx43 “kinome” plays an important role in gap junction assembly and turnover. We sought to gain a better understanding of the interrelationship of these phosphorylation events particularly related to src activation and Cx43 turnover. Using state-of-the-art live imaging methods, specific inhibitors and many phosphorylation-status specific antibodies, we found phospho-specific domains in gap junction plaques and show evidence that multiple pathways of disassembly exist and can be regulated at the cellular and subcellular level. We found Src activation promotes formation of connexisomes (internalized gap junctions) in a process involving ERK-mediated phosphorylation of S279/282. Proteasome inhibition dramatically and rapidly restored gap junctions in the presence of Src and led to dramatic changes in the Cx43 phospho-profile including to increased Y247, Y265, S279/282, S365, and S373 phosphorylation. Lysosomal inhibition, on the other hand, nearly eliminated phosphorylation on Y247 and Y265 and reduced S368 and S373 while increasing S279/282 phosphorylation levels. We present a model of gap junction disassembly where multiple modes of disassembly are regulated by phosphorylation and can have differential effects on cellular signaling.
Collapse
Affiliation(s)
- Joell L. Solan
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Global Health, Pathobiology Program, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
29
|
Li C, Shi L, Peng C, Yu G, Zhang Y, Du Z. Lead-induced cardiomyocytes apoptosis by inhibiting gap junction intercellular communication via autophagy activation. Chem Biol Interact 2020; 337:109331. [PMID: 33242459 DOI: 10.1016/j.cbi.2020.109331] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/01/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Lead (Pb) is one of the most common heavy metal contaminants in the environment. Pb can cause pathophysiological changes in several organ systems, including the cardiovascular system, but the molecular mechanism remains elusive. The study aimed to study the effects of Pb on Gap junction intercellular communication (GJIC) and its role in Pb-induced apoptosis. The present study aims to determine whether Pb-induced autophagy promotes apoptosis of rat cardiac myocytes (H9c2 cells) by downregulating GJIC using CCK-8 Kit, scrape loading/dye transfer assay, Annexin V/PI assays, Western blot analysis and double-immunofluorescence experiments. The results showed that Pb elicited cytotoxicity in a time- and concentration-dependent manner and led to increased apoptosis in a concentration-dependent manner in H9c2 cells. Pb also reduced GJIC in H9c2 cells in a concentration-dependent manner through the downregulation of connexin (Cx) 43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium (CBX) resulted in increased apoptosis. Furthermore, Pb increased autophagy in a concentration-dependent manner in H9c2 cells, decreasing the distribution of Cx43 on the cell membrane, and targeted Cx43 to autophagosome via light chain 3 (LC3). However, autophagy inhibitor 3-Methyladenine (3-MA) can slow down the downregulation of Cx43 induced by Pb in H9c2 cells. In conclusion, our results provide evidence that Pb-decreased GJIC promotes apoptosis in cardiomyocytes. This is probably because of the fact that Pb-induced autophagy exacerbates GJIC inhibition and downregulation of Cx43.
Collapse
Affiliation(s)
- Chao Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China; Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Liang Shi
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, 4108, Queensland, Australia
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China; Laboratory Animal Center, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China.
| |
Collapse
|
30
|
Hasegawa DK, Zhang P, Turnbull MW. Intracellular dynamics of polydnavirus innexin homologues. INSECT MOLECULAR BIOLOGY 2020; 29:477-489. [PMID: 32683761 DOI: 10.1111/imb.12657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Polydnaviruses associated with ichneumonid parasitoid wasps (Ichnoviruses) encode large numbers of genes, often in multigene families. The Ichnovirus Vinnexin gene family, which is expressed in parasitized lepidopteran larvae, encodes homologues of Innexins, the structural components of insect gap junctions. Here, we have examined intracellular behaviours of the Campoletis sonorensis Ichnovirus (CsIV) Vinnexins, alone and in combination with a host Innexin orthologue, Innexin2 (Inx2). QRT-PCR verified that transcription of CsIV vinnexins occurs contemporaneously with inx2, implying co-occurrence of Vinnexin and Inx2 proteins. Confocal microscopy demonstrated that epitope-tagged VinnexinG (VnxG) and VinnexinQ2 (VnxQ2) exhibit similar subcellular localization as Spodoptera frugiperda Inx2 (Sf-Inx2). Surface biotinylation assays verified that all three proteins localize to the cell surface, and cytochalasin B and nocodazole that they rely on actin and microtubule cytoskeletal networks for localization. Immunomicroscopy following co-transfection of constructs indicates extensive co-localization of Vinnexins with each other and Sf-Inx2, and live-cell imaging of mCherry-labelled Inx2 supports that Vinnexins may affect Sf-Inx2 distribution in a Vinnexin-specific fashion. Our findings support that the Vinnexins may disrupt host cell physiology in a protein-specific manner through altering gap junctional intercellular channel communication, as well as indirectly by affecting multicellular junction characteristics.
Collapse
Affiliation(s)
- D K Hasegawa
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, CA, USA
| | - P Zhang
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - M W Turnbull
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
31
|
Maulik M, Vasan L, Bose A, Dutta Chowdhury S, Sengupta N, Das Sarma J. Amyloid-β regulates gap junction protein connexin 43 trafficking in cultured primary astrocytes. J Biol Chem 2020; 295:15097-15111. [PMID: 32868453 DOI: 10.1074/jbc.ra120.013705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/06/2020] [Indexed: 11/06/2022] Open
Abstract
Altered expression and function of astroglial gap junction protein connexin 43 (Cx43) has increasingly been associated to neurotoxicity in Alzheimer disease (AD). Although earlier studies have examined the effect of increased β-amyloid (Aβ) on Cx43 expression and function leading to neuronal damage, underlying mechanisms by which Aβ modulates Cx43 in astrocytes remain elusive. Here, using mouse primary astrocyte cultures, we have examined the cellular processes by which Aβ can alter Cx43 gap junctions. We show that Aβ25-35 impairs functional gap junction coupling yet increases hemichannel activity. Interestingly, Aβ25-35 increased the intracellular pool of Cx43 with a parallel decrease in gap junction assembly at the surface. Intracellular Cx43 was found to be partly retained in the endoplasmic reticulum-associated cell compartments. However, forward trafficking of the newly synthesized Cx43 that already reached the Golgi was not affected in Aβ25-35-exposed astrocytes. Supporting this, treatment with 4-phenylbutyrate, a well-known chemical chaperone that improves trafficking of several transmembrane proteins, restored Aβ-induced impaired gap junction coupling between astrocytes. We further show that interruption of Cx43 endocytosis in Aβ25-35-exposed astrocytes resulted in their retention at the cell surface in the form of functional gap junctions indicating that Aβ25-35 causes rapid internalization of Cx43 gap junctions. Additionally, in silico molecular docking suggests that Aβ can bind favorably to Cx43. Our study thus provides novel insights into the cellular mechanisms by which Aβ modulates Cx43 function in astrocytes, the basic understanding of which is vital for the development of alternative therapeutic strategy targeting connexin channels in AD.
Collapse
Affiliation(s)
- Mahua Maulik
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| | - Lakshmy Vasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Saikat Dutta Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
32
|
Kotova A, Timonina K, Zoidl GR. Endocytosis of Connexin 36 is Mediated by Interaction with Caveolin-1. Int J Mol Sci 2020; 21:E5401. [PMID: 32751343 PMCID: PMC7432810 DOI: 10.3390/ijms21155401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
The gap junctional protein connexin 36 (Cx36) has been co-purified with the lipid raft protein caveolin-1 (Cav-1). The relevance of an interaction between the two proteins is unknown. In this study, we explored the significance of Cav-1 interaction in the context of intracellular and membrane transport of Cx36. Coimmunoprecipitation assays and Förster resonance energy transfer analysis (FRET) were used to confirm the interaction between the two proteins in the Neuro 2a cell line. We found that the Cx36 and Cav-1 interaction was dependent on the intracellular calcium levels. By employing different microscopy techniques, we demonstrated that Cav-1 enhances the vesicular transport of Cx36. Pharmacological interventions coupled with cell surface biotinylation assays and FRET analysis revealed that Cav-1 regulates membrane localization of Cx36. Our data indicate that the interaction between Cx36 and Cav-1 plays a role in the internalization of Cx36 by a caveolin-dependent pathway.
Collapse
Affiliation(s)
- Anna Kotova
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
| | - Ksenia Timonina
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
| | - Georg R. Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
33
|
Wang R, Yu R, Zhu C, Lin HY, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol 2020; 11:967-978. [PMID: 31408157 PMCID: PMC6927241 DOI: 10.1093/jmcb/mjz084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/22/2019] [Accepted: 07/11/2019] [Indexed: 12/03/2022] Open
Abstract
Human trophoblast syncytialization is one of the most important yet least understood events during placental development. In this study, we found that detyrosinated α-tubulin (detyr-α-tub), which is negatively regulated by tubulin tyrosine ligase (TTL), was elevated during human placental cytotrophoblast fusion. Correspondingly, relatively high expression of TTL protein was observed in first-trimester human placental cytotrophoblast cells, but fusing trophoblast cells exhibited much lower levels of TTL. Notably, fusion of preeclamptic cytotrophoblast cells was compromised but could be partially rescued by knockdown of TTL levels. Mechanistically, chronic downregulation of TTL in trophoblast cells resulted in significantly elevated expression of detyr-α-tub. Restoration of detyr-α-tub thus contributed to the cell surface localization of the fusogenic protein Syncytin-2 and the gap junction protein Connexin 43 (Cx43), which in turn promoted successful fusion between trophoblast cells. Taken together, the results suggest that tubulin detyrosination plays an essential role in human trophoblast fusogenic protein aggregation and syncytialization. Insufficient tubulin detyrosination leads to defects in syncytialization and potentially to the onset of preeclampsia.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyin Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Liu S, Hu C, Luo Y, Yao K. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract. Epigenomics 2020; 12:771-788. [PMID: 32516005 DOI: 10.2217/epi-2019-0254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To investigate the possible epigenetic pathogenesis of sporadic congenital cataract. Materials & methods: We conducted whole genome bisulfite sequencing on peripheral blood from sporadic binocular or monocular congenital cataract patients and cataract-free participants. Results: We found massive differentially methylated regions within the whole genomes between any two groups. Meanwhile, we identified five genes (ACTN4, ACTG1, TUBA1A, TUBA1C, TUBB4B) for the binocular and control groups and TUBA1A for the monocular and control groups as the core differentially methylated region-related genes. The proteins encoded by these core genes are involved in building cytoskeleton and intercellular junctions. Conclusion: Changes in the methylation levels of core genes may disturb the function of cytoskeleton and intercellular junctions, eventually leading to sporadic congenital cataract.
Collapse
Affiliation(s)
- Siyu Liu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Chenyang Hu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Yueqiu Luo
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Ke Yao
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| |
Collapse
|
35
|
Martin EA, Lasseigne AM, Miller AC. Understanding the Molecular and Cell Biological Mechanisms of Electrical Synapse Formation. Front Neuroanat 2020; 14:12. [PMID: 32372919 PMCID: PMC7179694 DOI: 10.3389/fnana.2020.00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In this review article, we will describe the recent advances made towards understanding the molecular and cell biological mechanisms of electrical synapse formation. New evidence indicates that electrical synapses, which are gap junctions between neurons, can have complex molecular compositions including protein asymmetries across joined cells, diverse morphological arrangements, and overlooked similarities with other junctions, all of which indicate new potential roles in neurodevelopmental disease. Aquatic organisms, and in particular the vertebrate zebrafish, have proven to be excellent models for elucidating the molecular mechanisms of electrical synapse formation. Zebrafish will serve as our main exemplar throughout this review and will be compared with other model organisms. We highlight the known cell biological processes that build neuronal gap junctions and compare these with the assemblies of adherens junctions, tight junctions, non-neuronal gap junctions, and chemical synapses to explore the unknown frontiers remaining in our understanding of the critical and ubiquitous electrical synapse.
Collapse
Affiliation(s)
| | | | - Adam C. Miller
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| |
Collapse
|
36
|
Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 2020; 77:573-591. [PMID: 31501970 PMCID: PMC7040059 DOI: 10.1007/s00018-019-03285-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junctions have a wide diversity of physiological functions, playing critical roles in both excitable and non-excitable tissues. Gap junction channels are formed by integral membrane proteins called connexins. Inherited or acquired alterations in connexins are associated with numerous diseases, including heart failure, neuropathologies, deafness, skin disorders, cataracts and cancer. Gap junctions are highly dynamic structures and by modulating the turnover rate of connexins, cells can rapidly alter the number of gap junction channels at the plasma membrane in response to extracellular or intracellular cues. Increasing evidence suggests that ubiquitination has important roles in the regulation of endoplasmic reticulum-associated degradation of connexins as well as in the modulation of gap junction endocytosis and post-endocytic sorting of connexins to lysosomes. In recent years, researchers have also started to provide insights into the physiological roles of connexin ubiquitination in specific tissue types. This review provides an overview of the advances made in understanding the roles of connexin ubiquitination in the regulation of gap junction intercellular communication and discusses the emerging physiological and pathophysiological implications of these processes.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway.
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
37
|
Singh AK, Cancelas JA. Gap Junctions in the Bone Marrow Lympho-Hematopoietic Stem Cell Niche, Leukemia Progression, and Chemoresistance. Int J Mol Sci 2020; 21:E796. [PMID: 31991829 PMCID: PMC7038046 DOI: 10.3390/ijms21030796] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract: The crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for homeostasis and hematopoietic regeneration in response to blood formation emergencies after injury, and has been associated with leukemia transformation and progression. Intercellular signals by the BM stromal cells in the form of cell-bound or secreted factors, or by physical interaction, regulate HSC localization, maintenance, and differentiation within increasingly defined BM HSC niches. Gap junctions (GJ) are comprised of arrays of membrane embedded channels formed by connexin proteins, and control crucial signaling functions, including the transfer of ions, small metabolites, and organelles to adjacent cells which affect intracellular mechanisms of signaling and autophagy. This review will discuss the role of GJ in both normal and leukemic hematopoiesis, and highlight some of the most novel approaches that may improve the efficacy of cytotoxic drugs. Connexin GJ channels exert both cell-intrinsic and cell-extrinsic effects on HSC and BM stromal cells, involved in regenerative hematopoiesis after myelosuppression, and represent an alternative system of cell communication through a combination of electrical and metabolic coupling as well as organelle transfer in the HSC niche. GJ intercellular communication (GJIC) in the HSC niche improves cellular bioenergetics, and rejuvenates damaged recipient cells. Unfortunately, they can also support leukemia proliferation and survival by creating leukemic niches that provide GJIC dependent energy sources and facilitate chemoresistance and relapse. The emergence of new strategies to disrupt self-reinforcing malignant niches and intercellular organelle exchange in leukemic niches, while at the same time conserving normal hematopoietic GJIC function, could synergize the effect of chemotherapy drugs in eradicating minimal residual disease. An improved understanding of the molecular basis of connexin regulation in normal and leukemic hematopoiesis is warranted for the re-establishment of normal hematopoiesis after chemotherapy.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA;
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA;
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| |
Collapse
|
38
|
Brown CA, Del Corsso C, Zoidl C, Donaldson LW, Spray DC, Zoidl G. Tubulin-Dependent Transport of Connexin-36 Potentiates the Size and Strength of Electrical Synapses. Cells 2019; 8:E1146. [PMID: 31557934 PMCID: PMC6829524 DOI: 10.3390/cells8101146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Connexin-36 (Cx36) electrical synapses strengthen transmission in a calcium/calmodulin (CaM)/calmodulin-dependent kinase II (CaMKII)-dependent manner similar to a mechanism whereby the N-methyl-D-aspartate (NMDA) receptor subunit NR2B facilitates chemical transmission. Since NR2B-microtubule interactions recruit receptors to the cell membrane during plasticity, we hypothesized an analogous modality for Cx36. We determined that Cx36 binding to tubulin at the carboxy-terminal domain was distinct from Cx43 and NR2B by binding a motif overlapping with the CaM and CaMKII binding motifs. Dual patch-clamp recordings demonstrated that pharmacological interference of the cytoskeleton and deleting the binding motif at the Cx36 carboxyl-terminal (CT) reversibly abolished Cx36 plasticity. Mechanistic details of trafficking to the gap-junction plaque (GJP) were probed pharmacologically and through mutational analysis, all of which affected GJP size and formation between cell pairs. Lys279, Ile280, and Lys281 positions were particularly critical. This study demonstrates that tubulin-dependent transport of Cx36 potentiates synaptic strength by delivering channels to GJPs, reinforcing the role of protein transport at chemical and electrical synapses to fine-tune communication between neurons.
Collapse
Affiliation(s)
- Cherie A Brown
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Cristiane Del Corsso
- Department of Biophysics and Physiology, Federal University of Rio de Janeiro-RJ, Rio de Janeiro 21941-901, Brazil.
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Logan W Donaldson
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - David C Spray
- Department of Neuroscience, Albert Einstein College, Bronx, NY 10461, USA.
- Department of Medicine, Albert Einstein College, Bronx, NY 10461, USA.
| | - Georg Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
39
|
Schultz F, Swiatlowska P, Alvarez-Laviada A, Sanchez-Alonso JL, Song Q, de Vries AAF, Pijnappels DA, Ongstad E, Braga VMM, Entcheva E, Gourdie RG, Miragoli M, Gorelik J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43. FASEB J 2019; 33:10453-10468. [PMID: 31253057 PMCID: PMC6704460 DOI: 10.1096/fj.201802740rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Healthy cardiomyocytes are electrically coupled at the intercalated discs by gap junctions. In infarcted hearts, adverse gap-junctional remodeling occurs in the border zone, where cardiomyocytes are chemically and electrically influenced by myofibroblasts. The physical movement of these contacts remains unquantified. Using scanning ion conductance microscopy, we show that intercellular contacts between cardiomyocytes and myofibroblasts are highly dynamic, mainly owing to the edge dynamics (lamellipodia) of the myofibroblasts. Decreasing the amount of functional connexin-43 (Cx43) at the membrane through Cx43 silencing, suppression of Cx43 trafficking, or hypoxia-induced Cx43 internalization attenuates heterocellular contact dynamism. However, we found decreased dynamism and stabilized membrane contacts when cellular coupling was strengthened using 4-phenylbutyrate (4PB). Fluorescent-dye transfer between cells showed that the extent of functional coupling between the 2 cell types correlated with contact dynamism. Intercellular calcein transfer from myofibroblasts to cardiomyocytes is reduced after myofibroblast-specific Cx43 down-regulation. Conversely, 4PB-treated myofibroblasts increased their functional coupling to cardiomyocytes. Consistent with lamellipodia-mediated contacts, latrunculin-B decreases dynamism, lowers physical communication between heterocellular pairs, and reduces Cx43 intensity in contact regions. Our data show that heterocellular cardiomyocyte-myofibroblast contacts exhibit high dynamism. Therefore, Cx43 is a potential target for prevention of aberrant cardiomyocyte coupling and myofibroblast proliferation in the infarct border zone.-Schultz, F., Swiatlowska, P., Alvarez-Laviada, A., Sanchez-Alonso, J. L., Song, Q., de Vries, A. A. F., Pijnappels, D. A., Ongstad, E., Braga, V. M. M., Entcheva, E., Gourdie, R. G., Miragoli, M., Gorelik, J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43.
Collapse
Affiliation(s)
- Francisca Schultz
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pamela Swiatlowska
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | - Qianqian Song
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Daniël A. Pijnappels
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emily Ongstad
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Vania M. M. Braga
- Department of Respiratory Sciences, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Robert G. Gourdie
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Michele Miragoli
- Humanitas Clinical and Research Center, Milan, Italy;,Department of Medicine and Surgery, University of Parma, Parma, Italy,Correspondence: Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43124 Parma, Italy. E-mail:
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom;,Correspondence: National Heart and Lung Institute, 4th Floor, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Rd., London W12 0NN, United Kingdom. E-mail:
| |
Collapse
|
40
|
Beckmann A, Hainz N, Tschernig T, Meier C. Facets of Communication: Gap Junction Ultrastructure and Function in Cancer Stem Cells and Tumor Cells. Cancers (Basel) 2019; 11:cancers11030288. [PMID: 30823688 PMCID: PMC6468480 DOI: 10.3390/cancers11030288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Gap junction proteins are expressed in cancer stem cells and non-stem cancer cells of many tumors. As the morphology and assembly of gap junction channels are crucial for their function in intercellular communication, one focus of our review is to outline the data on gap junction plaque morphology available for cancer cells. Electron microscopic studies and freeze-fracture analyses on gap junction ultrastructure in cancer are summarized. As the presence of gap junctions is relevant in solid tumors, we exemplarily outline their role in glioblastomas and in breast cancer. These were also shown to contain cancer stem cells, which are an essential cause of tumor onset and of tumor transmission into metastases. For these processes, gap junctional communication was shown to be important and thus we summarize, how the expression of gap junction proteins and the resulting communication between cancer stem cells and their surrounding cells contributes to the dissemination of cancer stem cells via blood or lymphatic vessels. Based on their importance for tumors and metastases, future cancer-specific therapies are expected to address gap junction proteins. In turn, gap junctions also seem to contribute to the unattainability of cancer stem cells by certain treatments and might thus contribute to therapeutic resistance.
Collapse
Affiliation(s)
- Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| | - Nadine Hainz
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
41
|
Defourny J, Thelen N, Thiry M. Actin-independent trafficking of cochlear connexin 26 to non-lipid raft gap junction plaques. Hear Res 2019; 374:69-75. [DOI: 10.1016/j.heares.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/13/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
|
42
|
Bell CL, Shakespeare TI, Smith AR, Murray SA. Visualization of Annular Gap Junction Vesicle Processing: The Interplay Between Annular Gap Junctions and Mitochondria. Int J Mol Sci 2018; 20:ijms20010044. [PMID: 30583492 PMCID: PMC6337258 DOI: 10.3390/ijms20010044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
It is becoming clear that in addition to gap junctions playing a role in cell⁻cell communication, gap junction proteins (connexins) located in cytoplasmic compartments may have other important functions. Mitochondrial connexin 43 (Cx43) is increased after ischemic preconditioning and has been suggested to play a protective role in the heart. How Cx43 traffics to the mitochondria and the interactions of mitochondria with other Cx43-containing structures are unclear. In this study, immunocytochemical, super-resolution, and transmission electron microscopy were used to detect cytoplasmic Cx43-containing structures and to demonstrate their interactions with other cytoplasmic organelles. The most prominent cytoplasmic Cx43-containing structures-annular gap junctions-were demonstrated to form intimate associations with lysosomes as well as with mitochondria. Surprisingly, the frequency of associations between mitochondria and annular gap junctions was greater than that between lysosomes and annular gap junctions. The benefits of annular gap junction/mitochondrial associations are not known. However, it is tempting to suggest, among other possibilities, that the contact between annular gap junction vesicles and mitochondria facilitates Cx43 delivery to the mitochondria. Furthermore, it points to the need for investigating annular gap junctions as more than only vesicles destined for degradation.
Collapse
Affiliation(s)
- Cheryl L Bell
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | - Amber R Smith
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
43
|
Lynn BD, Li X, Hormuzdi SG, Griffiths EK, McGlade CJ, Nagy JI. E3 ubiquitin ligases LNX1 and LNX2 localize at neuronal gap junctions formed by connexin36 in rodent brain and molecularly interact with connexin36. Eur J Neurosci 2018; 48:3062-3081. [PMID: 30295974 DOI: 10.1111/ejn.14198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
Electrical synapses in the mammalian central nervous system (CNS) are increasingly recognized as highly complex structures for mediation of neuronal communication, both with respect to their capacity for dynamic short- and long-term modification in efficacy of synaptic transmission and their multimolecular regulatory and structural components. These two characteristics are inextricably linked, such that understanding of mechanisms that contribute to electrical synaptic plasticity requires knowledge of the molecular composition of electrical synapses and the functions of proteins associated with these synapses. Here, we provide evidence that the key component of gap junctions that form the majority of electrical synapses in the mammalian CNS, namely connexin36 (Cx36), directly interacts with the related E3 ubiquitin ligase proteins Ligand of NUMB protein X1 (LNX1) and Ligand of NUMB protein X2 (LNX2). This is based on immunofluorescence colocalization of LNX1 and LNX2 with Cx36-containing gap junctions in adult mouse brain versus lack of such coassociation in LNX null mice, coimmunoprecipitation of LNX proteins with Cx36, and pull-down of Cx36 with the second PDZ domain of LNX1 and LNX2. Furthermore, cotransfection of cultured cells with Cx36 and E3 ubiquitin ligase-competent LNX1 and LNX2 isoforms led to loss of Cx36-containing gap junctions between cells, whereas these junctions persisted following transfection with isoforms of these proteins that lack ligase activity. Our results suggest that a LNX protein mediates ubiquitination of Cx36 at neuronal gap junctions, with consequent Cx36 internalization, and may thereby contribute to intracellular mechanisms that govern the recently identified modifiability of synaptic transmission at electrical synapses.
Collapse
Affiliation(s)
- Bruce D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Sheriar G Hormuzdi
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emily K Griffiths
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
44
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
45
|
Yang X, Xu S, Su Y, Chen B, Yuan H, Xu A, Wu L. Autophagy-Src Regulates Connexin43-Mediated Gap Junction Intercellular Communication in Irradiated HepG2 Cells. Radiat Res 2018; 190:494-503. [PMID: 30095367 DOI: 10.1667/rr15073.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Connexin molecules are an important component of the gap junction, with connexin43 (Cx43) being the most abundantly expressed type. Src is a nonreceptor tyrosine-protein kinase that affects Cx43 activity by multiple mechanisms. However, it is not clear how Src regulates Cx43 to influence radiation-induced bystander effects (RIBEs). In this study, we demonstrated that Cx43 on Tyr265 was phosphorylated by activated Src in α-irradiated HepG2 cells, with the total expression of Cx43 unchanged. After inhibition of Cx43 phosphorylation in irradiated cells, the frequency of γ-H2AX foci formation in adjacent nonirradiated bystander cells was significantly enhanced. Furthermore, this study showed that autophagy regulated the activity of Src and phosphorylation of Cx43, and the level of autophagy was correlated with the radiation-induced reactive oxygen species (ROS). These results suggest that ROS and autophagy play an important role in regulating the Src-Cx43 axis to affect the RIBEs. Our findings provide new insights into the Cx43-mediated gap junction intercellular communication, as well as the underlying mechanism of RIBEs.
Collapse
Affiliation(s)
- Xiaoyao Yang
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,b University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Shengmin Xu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,d Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Yao Su
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,b University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Biao Chen
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,b University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hang Yuan
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,d Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - An Xu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,d Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Lijun Wu
- a Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,c Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601.,d Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| |
Collapse
|
46
|
Kells-Andrews RM, Margraf RA, Fisher CG, Falk MM. Connexin-43 K63-polyubiquitylation on lysines 264 and 303 regulates gap junction internalization. J Cell Sci 2018; 131:jcs.204321. [PMID: 30054380 DOI: 10.1242/jcs.204321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Gap junctions (GJs) assembled from connexin (Cx) proteins allow direct cell-cell communication. While phosphorylation is known to regulate multiple GJ functions, much less is known about the role of ubiquitin in these processes. Using ubiquitylation-type-specific antibodies and Cx43 lysine-to-arginine mutants we show that ∼8% of a GJ, localized in central plaque domains, is K63-polyubiquitylated on K264 and K303. Levels and localization of ubiquitylation correlated well with: (1) the short turnover rate of Cxs and GJs; (2) removal of older channels from the plaque center; and (3) the fact that not all Cxs in an internalizing GJ channel need to be ubiquitylated. Connexins mutated at these two sites assembled significantly larger GJs, exhibited much longer protein half-lives and were internalization impaired. Interestingly, these ubiquitin-deficient Cx43 mutants accumulated as hyper-phosphorylated polypeptides in the plasma membrane, suggesting that K63-polyubiquitylation is triggered by phosphorylation. Phospho-specific anti-Cx43 antibodies revealed that upregulated phosphorylation affected serines 368, 279/282 and 255, which are well-known regulatory PKC and MAPK sites. Together, these novel findings suggest that the internalizing portion of channels in a GJ is K63-polyubiquitylated, ubiquitylation is critical for GJ internalization and that phosphorylation induces Cx K63-polyubiquitylation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachael M Kells-Andrews
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Rachel A Margraf
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Charles G Fisher
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| |
Collapse
|
47
|
Jabeen S, Thirumalai V. The interplay between electrical and chemical synaptogenesis. J Neurophysiol 2018; 120:1914-1922. [PMID: 30067121 PMCID: PMC6230774 DOI: 10.1152/jn.00398.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurons communicate with each other via electrical or chemical synaptic connections. The pattern and strength of connections between neurons are critical for generating appropriate output. What mechanisms govern the formation of electrical and/or chemical synapses between two neurons? Recent studies indicate that common molecular players could regulate the formation of both of these classes of synapses. In addition, electrical and chemical synapses can mutually coregulate each other’s formation. Electrical activity, generated spontaneously by the nervous system or initiated from sensory experience, plays an important role in this process, leading to the selection of appropriate connections and the elimination of inappropriate ones. In this review, we discuss recent studies that shed light on the formation and developmental interactions of chemical and electrical synapses.
Collapse
Affiliation(s)
- Shaista Jabeen
- National Centre for Biological Sciences, Tata Institute for Fundamental Research , Bangalore , India.,Manipal Academy of Higher Education, Madhav Nagar, Manipal , India
| | - Vatsala Thirumalai
- National Centre for Biological Sciences, Tata Institute for Fundamental Research , Bangalore , India
| |
Collapse
|
48
|
Lagos-Cabré R, Brenet M, Díaz J, Pérez RD, Pérez LA, Herrera-Molina R, Quest AFG, Leyton L. Intracellular Ca 2+ Increases and Connexin 43 Hemichannel Opening Are Necessary but Not Sufficient for Thy-1-Induced Astrocyte Migration. Int J Mol Sci 2018; 19:E2179. [PMID: 30049932 PMCID: PMC6121259 DOI: 10.3390/ijms19082179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Under pro-inflammatory conditions, astrocytes become reactive and acquire a migratory phenotype. Our results show that hemichannels formed by connexin 43 (Cx43) play an important role in Thy-1-induced astrocyte migration. The neuronal protein Thy-1 binds to αvβ3 integrin in astrocytes, thereby leading to intricate signaling pathways that include calcium (Ca2+) release from intracellular stores, opening of Cx43 hemichannels, release of ATP, activation of P2X7 receptor, and Ca2+ influx. However, because these Thy-1 effects occur exclusively in reactive astrocytes, we wondered whether by elevating calcium levels and promoting hemichannel opening we could prompt non-reactive astrocytes to respond to Thy-1. Cx43 immunoreactivity increased at juxta-membrane sites, where hemichannels (not gap junctions) participate in astrocyte polarization and migration stimulated by Thy-1. Also, intracellular Ca2+ increase, due to ionomycin treatment, induced hemichannel opening, but activated astrocyte migration only partially, and this limitation was overcome by pre-treatment with tumor necrosis factor (TNF) and Thy-1. Finally, αvβ3 integrin formed membrane clusters after TNF stimulation or overexpression of β3 integrin. We suggest that these microclusters are required for cells to respond to Thy-1 stimulation. Therefore, the large increase in intracellular Ca2+ and hemichannel opening induced by ionomycin are required, but not sufficient, to permit Thy-1-induced astrocyte migration. Thus, we suggest that proinflammatory stimuli prompt astrocytes to respond to migratory signals of neuronal cells.
Collapse
Affiliation(s)
- Raúl Lagos-Cabré
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
| | - Marianne Brenet
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
| | - Jorge Díaz
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
| | - Ramón D Pérez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
| | - Leonardo A Pérez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
| | - Rodrigo Herrera-Molina
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago 837-0993, Chile.
| | - Andrew F G Quest
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
| |
Collapse
|
49
|
Spagnol G, Trease AJ, Zheng L, Gutierrez M, Basu I, Sarmiento C, Moore G, Cervantes M, Sorgen PL. Connexin43 Carboxyl-Terminal Domain Directly Interacts with β-Catenin. Int J Mol Sci 2018; 19:ijms19061562. [PMID: 29882937 PMCID: PMC6032326 DOI: 10.3390/ijms19061562] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
Activation of Wnt signaling induces Connexin43 (Cx43) expression via the transcriptional activity of β-catenin, and results in the enhanced accumulation of the Cx43 protein and the formation of gap junction channels. In response to Wnt signaling, β-catenin co-localizes with the Cx43 protein itself as part of a complex at the gap junction plaque. Work from several labs have also shown indirect evidence of this interaction via reciprocal co-immunoprecipitation. Our goal for the current study was to identify whether β-catenin directly interacts with Cx43, and if so, the location of that direct interaction. Identifying residues involved in direct protein⁻protein interaction is of importance when they are correlated to the phosphorylation of Cx43, as phosphorylation can modify the binding affinities of Cx43 regulatory protein partners. Therefore, combining the location of a protein partner interaction on Cx43 along with the phosphorylation pattern under different homeostatic and pathological conditions will be crucial information for any potential therapeutic intervention. Here, we identified that β-catenin directly interacts with the Cx43 carboxyl-terminal domain, and that this interaction would be inhibited by the Src phosphorylation of Cx43CT residues Y265 and Y313.
Collapse
Affiliation(s)
- Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mirtha Gutierrez
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Ishika Basu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Cleofes Sarmiento
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Gabriella Moore
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Matthew Cervantes
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
50
|
Aasen T, Johnstone S, Vidal-Brime L, Lynn KS, Koval M. Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease. Int J Mol Sci 2018; 19:ijms19051296. [PMID: 29701678 PMCID: PMC5983588 DOI: 10.3390/ijms19051296] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VI 22908, USA.
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK.
| | - Laia Vidal-Brime
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|