1
|
Tormena N, Pilizota T, Voïtchovsky K. A Minimalist Model Lipid System Mimicking the Biophysical Properties of Escherichia coli's Inner Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12301-12310. [PMID: 40335890 PMCID: PMC12100707 DOI: 10.1021/acs.langmuir.5c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Biological membranes are essential for the development and survival of organisms. They can be highly complex, usually comprising a variety of lipids, proteins, and other biomolecules organized around a lipid bilayer structure. This complexity makes studying specific features of biological membranes difficult, with many research studies relying on simplified models, such as artificial vesicles or supported lipid bilayers. Here, we search for a minimal, lipid-only model system of the Escherichia coli inner membrane. We aim to retain the main lipidomic components in their native ratio while mimicking the membrane's thermal and mechanical properties. Based on previous studies, we identify 18 potential model systems reflecting key aspects of the known lipidomic composition and progressively narrow down our selection based on the systems' phase transition temperature and mechanical properties. We identify three ternary model systems able to form stable bilayers that can be made of the commercially available synthetic lipids 16:0-18:1 phosphatidylethanolamine (POPE), 16:0-18:1 phosphatidylglycerol (POPG), and 16:0-18:1 cardiolipin (CL). We anticipate our results to be of interest for future studies making use of E. coli models, for example, investigating membrane proteins' function or macromolecule-membrane interactions.
Collapse
Affiliation(s)
- Nicolo Tormena
- Physics
Department, Durham University, South Road, DurhamDH1 3LE, U.K.
| | - Teuta Pilizota
- School
of Biological Sciences and Centre for Engineering Biology, The University of Edinburgh, Alexander Crum Brown Road, EdinburghEH9 3FF, U.K.
- Department
of Physics, University of Cambridge, JJ Thompson Avenue, CambridgeCB3 0HE, U.K.
| | | |
Collapse
|
2
|
Zhang C, Zhang R, Yuan J. Potassium-mediated bacterial chemotactic response. eLife 2024; 12:RP91452. [PMID: 38832501 PMCID: PMC11149930 DOI: 10.7554/elife.91452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Bacteria in biofilms secrete potassium ions to attract free swimming cells. However, the basis of chemotaxis to potassium remains poorly understood. Here, using a microfluidic device, we found that Escherichia coli can rapidly accumulate in regions of high potassium concentration on the order of millimoles. Using a bead assay, we measured the dynamic response of individual flagellar motors to stepwise changes in potassium concentration, finding that the response resulted from the chemotaxis signaling pathway. To characterize the chemotactic response to potassium, we measured the dose-response curve and adaptation kinetics via an Förster resonance energy transfer (FRET) assay, finding that the chemotaxis pathway exhibited a sensitive response and fast adaptation to potassium. We further found that the two major chemoreceptors Tar and Tsr respond differently to potassium. Tar receptors exhibit a biphasic response, whereas Tsr receptors respond to potassium as an attractant. These different responses were consistent with the responses of the two receptors to intracellular pH changes. The sensitive response and fast adaptation allow bacteria to sense and localize small changes in potassium concentration. The differential responses of Tar and Tsr receptors to potassium suggest that cells at different growth stages respond differently to potassium and may have different requirements for potassium.
Collapse
Affiliation(s)
- Chi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of ChinaHefeiChina
| | - Rongjing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of ChinaHefeiChina
| | - Junhua Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
3
|
Khan MI, Begum RA, Franková L, Fry SC. Allelochemical root-growth inhibitors in low-molecular-weight cress-seed exudate. ANNALS OF BOTANY 2024; 133:447-458. [PMID: 38141653 PMCID: PMC11006535 DOI: 10.1093/aob/mcad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIMS Cress seeds release allelochemicals that over-stimulate the elongation of hypocotyls of neighbouring (potentially competing) seedlings and inhibit their root growth. The hypocotyl promoter is potassium, but the root inhibitor was unidentified; its nature is investigated here. METHODS Low-molecular-weight cress-seed exudate (LCSE) from imbibed Lepidium sativum seeds was fractionated by phase partitioning, paper chromatography, high-voltage electrophoresis and gel-permeation chromatography (on Bio-Gel P-2). Fractions, compared with pure potassium salts, were bioassayed for effects on Amaranthus caudatus seedling growth in the dark for 4 days. KEY RESULTS The LCSE robustly promoted amaranth hypocotyl elongation and inhibited root growth. The hypocotyl inhibitor was non-volatile, hot acid stable, hydrophilic and resistant to incineration, as expected for K+. The root inhibitor(s) had similar properties but were organic (activity lost on incineration). The root inhibitor(s) remained in the aqueous phase (at pH 2.0, 6.5 and 9.0) when partitioned against butan-1-ol or toluene, and were thus hydrophilic. Activity was diminished after electrophoresis, but the remaining root inhibitors were neutral. They became undetectable after paper chromatography; therefore, they probably comprised multiple compounds, which separated from each other, in part, during fractionation. On gel-permeation chromatography, the root inhibitor co-eluted with hexoses. CONCLUSIONS Cress-seed allelochemicals inhibiting root growth are different from the agent (K+) that over-stimulates hypocotyl elongation and the former probably comprise a mixture of small, non-volatile, hydrophilic, organic substances. Abundant components identified chromatographically and by electrophoresis in cress-seed exudate fitting this description include glucose, fructose, sucrose and galacturonic acid. However, none of these sugars co-chromatographed and co-electrophoresed with the root-inhibitory principle of LCSE, and none of them (in pure form at naturally occurring concentrations) inhibited root growth. We conclude that the root-inhibiting allelochemicals of cress-seed exudate remain unidentified.
Collapse
Affiliation(s)
- Muhammad Ishfaq Khan
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Rifat Ara Begum
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Lenka Franková
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
4
|
Mancini L, Pilizota T. Environmental conditions define the energetics of bacterial dormancy and its antibiotic susceptibility. Biophys J 2023; 122:3207-3218. [PMID: 37403359 PMCID: PMC10465703 DOI: 10.1016/j.bpj.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
Bacterial cells that stop growing but maintain viability and the capability to regrow are termed dormant and have been shown to transiently tolerate high concentrations of antimicrobials. Links between tolerance and cellular energetics as a possible explanation for the tolerance, have been investigated and have produced mixed and seemingly contradictory results. Because dormancy merely indicates growth arrest, which can be induced by various stimuli, we hypothesize that dormant cells may exist in a range of energetic states that depend on the environment. To energetically characterize different dormancies, we first induce them in a way that results in dormant populations and subsequently measure both of their main energy sources, the proton motive force magnitude and the concentration of ATP. We find that different types of dormancy exhibit characteristic energetic profiles that vary in level and dynamics. The energetic makeup was associated with survival to some antibiotics but not others. Our findings portray dormancy as a state that is rich in phenotypes with various stress survival capabilities. Because environmental conditions outside of the lab often halt or limit microbial growth, a typologization of dormant states may yield relevant insights on the survival and evolutionary strategies of these organisms.
Collapse
Affiliation(s)
- Leonardo Mancini
- School of Biological Sciences, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Teuta Pilizota
- School of Biological Sciences, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
5
|
Ji F, Wu Y, Pumera M, Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203959. [PMID: 35986637 DOI: 10.1002/adma.202203959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Taxis orientation is common in microorganisms, and it provides feasible strategies to operate active colloids as small-scale robots. Collective taxes involve numerous units that collectively perform taxis motion, whereby the collective cooperation between individuals enables the group to perform efficiently, adaptively, and robustly. Hence, analyzing and designing collectives is crucial for developing and advancing microswarm toward practical or clinical applications. In this review, natural taxis behaviors are categorized and synthetic microrobotic collectives are discussed as bio-inspired realizations, aiming at closing the gap between taxis strategies of living creatures and those of functional active microswarms. As collective behaviors emerge within a group, the global taxis to external stimuli guides the group to conduct overall tasks, whereas the local taxis between individuals induces synchronization and global patterns. By encoding the local orientations and programming the global stimuli, various paradigms can be introduced for coordinating and controlling such collective microrobots, from the viewpoints of fundamental science and practical applications. Therefore, by discussing the key points and difficulties associated with collective taxes of different paradigms, this review potentially offers insights into mimicking natural collective behaviors and constructing intelligent microrobotic systems for on-demand control and preassigned tasks.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
6
|
Voliotis M, Rosko J, Pilizota T, Liverpool TB. Steady-state running rate sets the speed and accuracy of accumulation of swimming bacteria. Biophys J 2022; 121:3435-3444. [PMID: 36045575 PMCID: PMC9515231 DOI: 10.1016/j.bpj.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
We study the chemotaxis of a population of genetically identical swimming bacteria undergoing run and tumble dynamics driven by stochastic switching between clockwise and counterclockwise rotation of the flagellar rotary system, where the steady-state rate of the switching changes in different environments. Understanding chemotaxis quantitatively requires that one links the measured steady-state switching rates of the rotary system, as well as the directional changes of individual swimming bacteria in a gradient of chemoattractant/repellant, to the efficiency of a population of bacteria in moving up/down the gradient. Here we achieve this by using a probabilistic model, parametrized with our experimental data, and show that the response of a population to the gradient is complex. We find the changes to the steady-state switching rate in the absence of gradients affect the average speed of the swimming bacterial population response as well as the width of the distribution. Both must be taken into account when optimizing the overall response of the population in complex environments.
Collapse
Affiliation(s)
- Margaritis Voliotis
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom.
| | - Jerko Rosko
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom.
| | - Tanniemola B Liverpool
- School of Mathematics, University of Bristol, Bristol, United Kingdom; BrisSynBio, Life Sciences Building, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
7
|
Honda T, Cremer J, Mancini L, Zhang Z, Pilizota T, Hwa T. Coordination of gene expression with cell size enables Escherichia coli to efficiently maintain motility across conditions. Proc Natl Acad Sci U S A 2022; 119:e2110342119. [PMID: 36067284 PMCID: PMC9478672 DOI: 10.1073/pnas.2110342119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
To swim and navigate, motile bacteria synthesize a complex motility machinery involving flagella, motors, and a sensory system. A myriad of studies has elucidated the molecular processes involved, but less is known about the coordination of motility expression with cellular physiology: In Escherichia coli, motility genes are strongly up-regulated in nutrient-poor conditions compared to nutrient-replete conditions; yet a quantitative link to cellular motility has not been developed. Here, we systematically investigated gene expression, swimming behavior, cell growth, and available proteomics data across a broad spectrum of exponential growth conditions. Our results suggest that cells up-regulate the expression of motility genes at slow growth to compensate for reduction in cell size, such that the number of flagella per cell is maintained across conditions. The observed four or five flagella per cell is the minimum number needed to keep the majority of cells motile. This simple regulatory objective allows E. coli cells to remain motile across a broad range of growth conditions, while keeping the biosynthetic and energetic demands to establish and drive the motility machinery at the minimum needed. Given the strong reduction in flagella synthesis resulting from cell size increases at fast growth, our findings also provide a different physiological perspective on bacterial cell size control: A larger cell size at fast growth is an efficient strategy to increase the allocation of cellular resources to the synthesis of those proteins required for biomass synthesis and growth, while maintaining processes such as motility that are only needed on a per-cell basis.
Collapse
Affiliation(s)
- Tomoya Honda
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
- US Department of Energy, Joint Genome Institute, Berkeley, CA 94720
| | - Jonas Cremer
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Leonardo Mancini
- School of Biological Sciences, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| | - Teuta Pilizota
- School of Biological Sciences, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, United Kingdom
| | - Terence Hwa
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
8
|
Al-Shahrani M, Bryant G. Differential dynamic microscopy for the characterisation of motility in biological systems. Phys Chem Chem Phys 2022; 24:20616-20623. [PMID: 36048134 DOI: 10.1039/d2cp02034c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differential Dynamic Microscopy (DDM) is a relatively new technique which measures the dynamics of suspended particles using a dynamic light scattering formalism. Videos are recorded using standard light microscopy at moderate frame rates, and fluctuations in pixel intensity are measured as a function of time. As only pixel intensity is analysed, it is not necessary to resolve individual particles. This allows for low magnifications and wide fields of view, and therefore dynamics can be measured on tens of thousands of scattering objects, providing robust statistics. A decade ago the technique was successfully applied to measure bacterial motility. Since then, it has been applied to a range of motile systems, but has not yet reached the wider biological community. This perspective reviews the work done so far, and provides the basic background to enable the broader application of this promising technique.
Collapse
Affiliation(s)
- Monerh Al-Shahrani
- Physics, School of Science, RMIT University, Melbourne, Australia. .,Department of Physics, College of Science, University of Bisha, Bisha, Saudi Arabia
| | - Gary Bryant
- Physics, School of Science, RMIT University, Melbourne, Australia.
| |
Collapse
|
9
|
Yang Y, Yue C, Zhang C, Yuan J. Chemotactic response of Escherichia coli to polymer solutions. Phys Biol 2022; 19. [PMID: 35545074 DOI: 10.1088/1478-3975/ac6eb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
Polymers are important components of the complex fluid environment for microorganisms. The mechanical effects on bacterial motile behavior due to the viscous or viscoelastic properties of polymers were extensively studied, whereas possible chemical effects on bacterial motility through bacterial chemoreception of the polymers were unclear. Here we studied the chemotactic response of Escherichia coli to polymeric solutions by combining the bead assay and FRET measurements. We found that the wild-type E. coli strain exhibited an attractant response to widely used polymers such as Ficoll 400, PEG 20000 and PVP 360000, and the response amplitude from chemoreception was much larger than that from the load-dependence of motor switching due to viscosity change. The chemotactic response depended on the type of receptors and the chain length of the polymers. Our findings here provided novel ingredients for further studies of bacterial motile behavior in complex fluids.
Collapse
Affiliation(s)
- Yue Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui, 230026, CHINA
| | - Caijuan Yue
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui, 230026, CHINA
| | - Chi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui, 230026, CHINA
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui, 230026, CHINA
| |
Collapse
|
10
|
Palma V, Gutiérrez MS, Vargas O, Parthasarathy R, Navarrete P. Methods to Evaluate Bacterial Motility and Its Role in Bacterial–Host Interactions. Microorganisms 2022; 10:microorganisms10030563. [PMID: 35336138 PMCID: PMC8953368 DOI: 10.3390/microorganisms10030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial motility is a widespread characteristic that can provide several advantages for the cell, allowing it to move towards more favorable conditions and enabling host-associated processes such as colonization. There are different bacterial motility types, and their expression is highly regulated by the environmental conditions. Because of this, methods for studying motility under realistic experimental conditions are required. A wide variety of approaches have been developed to study bacterial motility. Here, we present the most common techniques and recent advances and discuss their strengths as well as their limitations. We classify them as macroscopic or microscopic and highlight the advantages of three-dimensional imaging in microscopic approaches. Lastly, we discuss methods suited for studying motility in bacterial–host interactions, including the use of the zebrafish model.
Collapse
Affiliation(s)
- Victoria Palma
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - María Soledad Gutiérrez
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
| | - Orlando Vargas
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA;
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Santiago 7830490, Chile; (V.P.); (M.S.G.); (O.V.)
- Millennium Science Initiative Program, Milenium Nucleus in the Biology of the Intestinal Microbiota, National Agency for Research and Development (ANID), Moneda 1375, Santiago 8200000, Chile
- Correspondence:
| |
Collapse
|
11
|
Liu G, Liu Z, Zhu L, Zhang R, Yuan J. Upcoming flow promotes the bundle formation of bacterial flagella. Biophys J 2021; 120:4391-4398. [PMID: 34509505 DOI: 10.1016/j.bpj.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 11/15/2022] Open
Abstract
Flagellated bacteria swim by rotating a bundle of helical flagella and commonly explore the surrounding environment in a "run-and-tumble" motility mode. Here, we show that the upcoming flow could impact the bacterial run-and-tumble behavior by affecting the formation and dispersal of the flagellar bundle. Using a dual optical tweezers setup to trap individual bacteria, we characterized the effects of the imposed fluid flow and cell body rotation on the run-and-tumble behavior. We found that the two factors affect the behavior differently, with the imposed fluid flow increasing the running time and decreasing the tumbling time and the cell body rotation decreasing the tumbling time only. Using numerical simulations, we computed the flagellar bundling time as a function of flow velocity, which agrees well with our experimental observations. The mechanical effects we characterized here provide novel, to our knowledge, ingredients for further studies of bacterial chemotaxis in complex environments such as dynamic fluid environments.
Collapse
Affiliation(s)
- Guangzhe Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, Hefei, China
| | - Zhaorong Liu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China
| | - Lailai Zhu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, Hefei, China.
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, Hefei, China.
| |
Collapse
|
12
|
Le D, Krasnopeeva E, Sinjab F, Pilizota T, Kim M. Active Efflux Leads to Heterogeneous Dissipation of Proton Motive Force by Protonophores in Bacteria. mBio 2021; 12:e0067621. [PMID: 34253054 PMCID: PMC8406135 DOI: 10.1128/mbio.00676-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022] Open
Abstract
Various toxic compounds disrupt bacterial physiology. While bacteria harbor defense mechanisms to mitigate the toxicity, these mechanisms are often coupled to the physiological state of the cells and become ineffective when the physiology is severely disrupted. Here, we characterized such feedback by exposing Escherichia coli to protonophores. Protonophores dissipate the proton motive force (PMF), a fundamental force that drives physiological functions. We found that E. coli cells responded to protonophores heterogeneously, resulting in bimodal distributions of cell growth, substrate transport, and motility. Furthermore, we showed that this heterogeneous response required active efflux systems. The analysis of underlying interactions indicated the heterogeneous response results from efflux-mediated positive feedback between PMF and protonophores' action. Our studies have broad implications for bacterial adaptation to stress, including antibiotics. IMPORTANCE An electrochemical proton gradient across the cytoplasmic membrane, alternatively known as proton motive force, energizes vital cellular processes in bacteria, including ATP synthesis, nutrient uptake, and cell division. Therefore, a wide range of organisms produce the agents that collapse the proton motive force, protonophores, to gain a competitive advantage. Studies have shown that protonophores have significant effects on microbial competition, host-pathogen interaction, and antibiotic action and resistance. Furthermore, protonophores are extensively used in various laboratory studies to perturb bacterial physiology. Here, we have characterized cell growth, substrate transport, and motility of Escherichia coli cells exposed to protonophores. Our findings demonstrate heterogeneous effects of protonophores on cell physiology and the underlying mechanism.
Collapse
Affiliation(s)
- Dai Le
- Department of Physics, Emory University, Atlanta, Georgia, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Ekaterina Krasnopeeva
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Faris Sinjab
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, Georgia, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Naaz F, Agrawal M, Chakraborty S, Tirumkudulu MS, Venkatesh KV. Ligand sensing enhances bacterial flagellar motor output via stator recruitment. eLife 2021; 10:62848. [PMID: 33821791 PMCID: PMC8062133 DOI: 10.7554/elife.62848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/03/2021] [Indexed: 11/13/2022] Open
Abstract
It is well known that flagellated bacteria, such as Escherichia coli, sense chemicals in their environment by a chemoreceptor and relay the signals via a well-characterized signaling pathway to the flagellar motor. It is widely accepted that the signals change the rotation bias of the motor without influencing the motor speed. Here, we present results to the contrary and show that the bacteria is also capable of modulating motor speed on merely sensing a ligand. Step changes in concentration of non-metabolizable ligand cause temporary recruitment of stator units leading to a momentary increase in motor speeds. For metabolizable ligand, the combined effect of sensing and metabolism leads to higher motor speeds for longer durations. Experiments performed with mutant strains delineate the role of metabolism and sensing in the modulation of motor speed and show how speed changes along with changes in bias can significantly enhance response to changes in its environment.
Collapse
Affiliation(s)
- Farha Naaz
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Megha Agrawal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Soumyadeep Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mahesh S Tirumkudulu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
14
|
Doan VS, Saingam P, Yan T, Shin S. A Trace Amount of Surfactants Enables Diffusiophoretic Swimming of Bacteria. ACS NANO 2020; 14:14219-14227. [PMID: 33000940 DOI: 10.1021/acsnano.0c07502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
From birth to health, surfactants play an essential role in our lives. Due to the importance, their environmental impacts are well understood. One of the aspects that has been extensively studied is their impact on bacteria, particularly on their motility. Here, we uncover an alternate chemotactic strategy triggered by surfactants-diffusiophoresis. We show that even a trace amount of ionic surfactants, down to a single ppm level, can promote the bacterial diffusiophoresis by boosting the surface charge of the cells. Because diffusiophoresis is driven by the surface-solute interactions, surfactant-enhanced diffusiophoresis is observed regardless of the types of bacteria. Whether Gram-positive or -negative, flagellated or nonflagellated, the surfactants enable fast migration of freely suspended bacteria, suggesting a ubiquitous locomotion mechanism that has been largely overlooked. We also demonstrate the implication of surfactant-enhanced bacterial diffusiophoresis on the rapid formation of biofilms in flow networks, suggesting environmental and biomedical implications.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Prakit Saingam
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Sangwoo Shin
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
15
|
Bacterial flagellar motor as a multimodal biosensor. Methods 2020; 193:5-15. [PMID: 32640316 DOI: 10.1016/j.ymeth.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023] Open
Abstract
Bacterial Flagellar Motor is one of nature's rare rotary molecular machines. It enables bacterial swimming and it is the key part of the bacterial chemotactic network, one of the best studied chemical signalling networks in biology, which enables bacteria to direct its movement in accordance with the chemical environment. The network can sense down to nanomolar concentrations of specific chemicals on the time scale of seconds. Motor's rotational speed is linearly proportional to the electrochemical gradients of either proton or sodium driving ions, while its direction is regulated by the chemotactic network. Recently, it has been discovered that motor is also a mechanosensor. Given these properties, we discuss the motor's potential to serve as a multifunctional biosensor and a tool for characterising and studying the external environment, the bacterial physiology itself and single molecular motor biophysics.
Collapse
|
16
|
Schofield Z, Meloni GN, Tran P, Zerfass C, Sena G, Hayashi Y, Grant M, Contera SA, Minteer SD, Kim M, Prindle A, Rocha P, Djamgoz MBA, Pilizota T, Unwin PR, Asally M, Soyer OS. Bioelectrical understanding and engineering of cell biology. J R Soc Interface 2020; 17:20200013. [PMID: 32429828 PMCID: PMC7276535 DOI: 10.1098/rsif.2020.0013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
The last five decades of molecular and systems biology research have provided unprecedented insights into the molecular and genetic basis of many cellular processes. Despite these insights, however, it is arguable that there is still only limited predictive understanding of cell behaviours. In particular, the basis of heterogeneity in single-cell behaviour and the initiation of many different metabolic, transcriptional or mechanical responses to environmental stimuli remain largely unexplained. To go beyond the status quo, the understanding of cell behaviours emerging from molecular genetics must be complemented with physical and physiological ones, focusing on the intracellular and extracellular conditions within and around cells. Here, we argue that such a combination of genetics, physics and physiology can be grounded on a bioelectrical conceptualization of cells. We motivate the reasoning behind such a proposal and describe examples where a bioelectrical view has been shown to, or can, provide predictive biological understanding. In addition, we discuss how this view opens up novel ways to control cell behaviours by electrical and electrochemical means, setting the stage for the emergence of bioelectrical engineering.
Collapse
Affiliation(s)
- Zoe Schofield
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Gabriel N. Meloni
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter Tran
- Department of Chemical and Biological Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Christian Zerfass
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Giovanni Sena
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Yoshikatsu Hayashi
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Murray Grant
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sonia A. Contera
- Clarendon Laboratory, Physics Department, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Arthur Prindle
- Department of Chemical and Biological Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Paulo Rocha
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Mustafa B. A. Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Teuta Pilizota
- Systems and Synthetic Biology Centre and School of Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Patrick R. Unwin
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
17
|
Gurung JP, Gel M, Baker MAB. Microfluidic techniques for separation of bacterial cells via taxis. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:66-79. [PMID: 32161767 PMCID: PMC7052948 DOI: 10.15698/mic2020.03.710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
Abstract
The microbial environment is typically within a fluid and the key processes happen at the microscopic scale where viscosity dominates over inertial forces. Microfluidic tools are thus well suited to study microbial motility because they offer precise control of spatial structures and are ideal for the generation of laminar fluid flows with low Reynolds numbers at microbial lengthscales. These tools have been used in combination with microscopy platforms to visualise and study various microbial taxes. These include establishing concentration and temperature gradients to influence motility via chemotaxis and thermotaxis, or controlling the surrounding microenvironment to influence rheotaxis, magnetotaxis, and phototaxis. Improvements in microfluidic technology have allowed fine separation of cells based on subtle differences in motility traits and have applications in synthetic biology, directed evolution, and applied medical microbiology.
Collapse
Affiliation(s)
- Jyoti P. Gurung
- School of Biotechnology and Biomolecular Science, UNSW Sydney
| | - Murat Gel
- CSIRO Manufacturing, Clayton
- CSIRO Future Science Platform for Synthetic Biology
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney
- CSIRO Future Science Platform for Synthetic Biology
| |
Collapse
|
18
|
Wang YK, Krasnopeeva E, Lin SY, Bai F, Pilizota T, Lo CJ. Comparison of Escherichia coli surface attachment methods for single-cell microscopy. Sci Rep 2019; 9:19418. [PMID: 31857669 PMCID: PMC6923479 DOI: 10.1038/s41598-019-55798-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
For in vivo, single-cell imaging bacterial cells are commonly immobilised via physical confinement or surface attachment. Different surface attachment methods have been used both for atomic force and optical microscopy (including super resolution), and some have been reported to affect bacterial physiology. However, a systematic comparison of the effects these attachment methods have on the bacterial physiology is lacking. Here we present such a comparison for bacterium Escherichia coli, and assess the growth rate, size and intracellular pH of cells growing attached to different, commonly used, surfaces. We demonstrate that E. coli grow at the same rate, length and internal pH on all the tested surfaces when in the same growth medium. The result suggests that tested attachment methods can be used interchangeably when studying E. coli physiology.
Collapse
Affiliation(s)
- Yao-Kuan Wang
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China
| | - Ekaterina Krasnopeeva
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, EH9 3FF, Edinburgh, UK
| | - Ssu-Yuan Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China
| | - Fan Bai
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, EH9 3FF, Edinburgh, UK.
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China.
| |
Collapse
|
19
|
A General Workflow for Characterization of Nernstian Dyes and Their Effects on Bacterial Physiology. Biophys J 2019; 118:4-14. [PMID: 31810660 PMCID: PMC6950638 DOI: 10.1016/j.bpj.2019.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
The electrical membrane potential (Vm) is one of the components of the electrochemical potential of protons across the biological membrane (proton motive force), which powers many vital cellular processes. Because Vm also plays a role in signal transduction, measuring it is of great interest. Over the years, a variety of techniques have been developed for the purpose. In bacteria, given their small size, Nernstian membrane voltage probes are arguably the favorite strategy, and their cytoplasmic accumulation depends on Vm according to the Nernst equation. However, a careful calibration of Nernstian probes that takes into account the tradeoffs between the ease with which the signal from the dye is observed and the dyes’ interactions with cellular physiology is rarely performed. Here, we use a mathematical model to understand such tradeoffs and apply the results to assess the applicability of the Thioflavin T dye as a Vm sensor in Escherichia coli. We identify the conditions in which the dye turns from a Vm probe into an actuator and, based on the model and experimental results, propose a general workflow for the characterization of Nernstian dye candidates.
Collapse
|
20
|
Krasnopeeva E, Lo CJ, Pilizota T. Single-Cell Bacterial Electrophysiology Reveals Mechanisms of Stress-Induced Damage. Biophys J 2019; 116:2390-2399. [PMID: 31174851 PMCID: PMC6588726 DOI: 10.1016/j.bpj.2019.04.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/06/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
An electrochemical gradient of protons, or proton motive force (PMF), is at the basis of bacterial energetics. It powers vital cellular processes and defines the physiological state of the cell. Here, we use an electric circuit analogy of an Escherichia coli cell to mathematically describe the relationship between bacterial PMF, electric properties of the cell membrane, and catabolism. We combine the analogy with the use of bacterial flagellar motor as a single-cell "voltmeter" to measure cellular PMF in varied and dynamic external environments (for example, under different stresses). We find that butanol acts as an ionophore and functionally characterize membrane damage caused by the light of shorter wavelengths. Our approach coalesces noninvasive and fast single-cell voltmeter with a well-defined mathematical framework to enable quantitative bacterial electrophysiology.
Collapse
Affiliation(s)
- Ekaterina Krasnopeeva
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, Republic of China
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
21
|
Arlt J, Martinez VA, Dawson A, Pilizota T, Poon WCK. Dynamics-dependent density distribution in active suspensions. Nat Commun 2019; 10:2321. [PMID: 31127122 PMCID: PMC6534614 DOI: 10.1038/s41467-019-10283-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/26/2019] [Indexed: 12/04/2022] Open
Abstract
Self-propelled colloids constitute an important class of intrinsically non-equilibrium matter. Typically, such a particle moves ballistically at short times, but eventually changes its orientation, and displays random-walk behaviour in the long-time limit. Theory predicts that if the velocity of non-interacting swimmers varies spatially in 1D, v(x), then their density ρ(x) satisfies ρ(x) = ρ(0)v(0)/v(x), where x = 0 is an arbitrary reference point. Such a dependence of steady-state ρ(x) on the particle dynamics, which was the qualitative basis of recent work demonstrating how to 'paint' with bacteria, is forbidden in thermal equilibrium. Here we verify this prediction quantitatively by constructing bacteria that swim with an intensity-dependent speed when illuminated and implementing spatially-resolved differential dynamic microscopy (sDDM) for quantitative analysis over millimeter length scales. Applying a spatial light pattern therefore creates a speed profile, along which we find that, indeed, ρ(x)v(x) = constant, provided that steady state is reached.
Collapse
Affiliation(s)
- Jochen Arlt
- School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD UK
| | - Vincent A. Martinez
- School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD UK
| | - Angela Dawson
- School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD UK
| | - Teuta Pilizota
- School of Biological Sciences and Centre for Synthetic and Systems Biology, The University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF UK
| | - Wilson C. K. Poon
- School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD UK
| |
Collapse
|
22
|
Huang HW, Uslu FE, Katsamba P, Lauga E, Sakar MS, Nelson BJ. Adaptive locomotion of artificial microswimmers. SCIENCE ADVANCES 2019; 5:eaau1532. [PMID: 30746446 PMCID: PMC6357760 DOI: 10.1126/sciadv.aau1532] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/04/2018] [Indexed: 05/06/2023]
Abstract
Bacteria can exploit mechanics to display remarkable plasticity in response to locally changing physical and chemical conditions. Compliant structures play a notable role in their taxis behavior, specifically for navigation inside complex and structured environments. Bioinspired mechanisms with rationally designed architectures capable of large, nonlinear deformation present opportunities for introducing autonomy into engineered small-scale devices. This work analyzes the effect of hydrodynamic forces and rheology of local surroundings on swimming at low Reynolds number, identifies the challenges and benefits of using elastohydrodynamic coupling in locomotion, and further develops a suite of machinery for building untethered microrobots with self-regulated mobility. We demonstrate that coupling the structural and magnetic properties of artificial microswimmers with the dynamic properties of the fluid leads to adaptive locomotion in the absence of on-board sensors.
Collapse
Affiliation(s)
- H.-W. Huang
- Department of Mechanical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - F. E. Uslu
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - P. Katsamba
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - E. Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - M. S. Sakar
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - B. J. Nelson
- Department of Mechanical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
23
|
Grauer J, Löwen H, Janssen LMC. Spontaneous membrane formation and self-encapsulation of active rods in an inhomogeneous motility field. Phys Rev E 2018; 97:022608. [PMID: 29548202 DOI: 10.1103/physreve.97.022608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 06/08/2023]
Abstract
We study the collective dynamics of self-propelled rods in an inhomogeneous motility field. At the interface between two regions of constant but different motility, a smectic rod layer is spontaneously created through aligning interactions between the active rods, reminiscent of an artificial, semipermeable membrane. This "active membrane" engulfes rods which are locally trapped in low-motility regions and thereby further enhances the trapping efficiency by self-organization, an effect which we call "self-encapsulation." Our results are gained by computer simulations of self-propelled rod models confined on a two-dimensional planar or spherical surface with a stepwise constant motility field, but the phenomenon should be observable in any geometry with sufficiently large spatial inhomogeneity. We also discuss possibilities to verify our predictions of active-membrane formation in experiments of self-propelled colloidal rods and vibrated granular matter.
Collapse
Affiliation(s)
- Jens Grauer
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Liesbeth M C Janssen
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, P. O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|