1
|
Alexandrescu AT, Dregni AJ. The Temperature Dependence of Hydrogen Bonds Is More Uniform in Stable Proteins: An Analysis of NMR h3J NC' Couplings in Four Different Protein Structures. Molecules 2024; 29:2950. [PMID: 38998901 PMCID: PMC11243222 DOI: 10.3390/molecules29132950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Long-range HNCO NMR spectra for proteins show crosspeaks due to 1JNC', 2JNC', 3JNCγ, and h3JNC' couplings. The h3JNC' couplings are transmitted through hydrogen bonds and their sizes are correlated to hydrogen bond lengths. We collected long-range HNCO data at a series of temperatures for four protein structures. P22i and CUS-3i are six-stranded beta-barrel I-domains from phages P22 and CUS-3 that share less than 40% sequence identity. The cis and trans states of the C-terminal domain from pore-forming toxin hemolysin ΙΙ (HlyIIC) arise from the isomerization of a single G404-P405 peptide bond. For P22i and CUS-3i, hydrogen bonds detected by NMR agree with those observed in the corresponding domains from cryoEM structures of the two phages. Hydrogen bond lengths derived from the h3JNC' couplings, however, are poorly conserved between the distantly related CUS-3i and P22i domains and show differences even between the closely related cis and trans state structures of HlyIIC. This is consistent with hydrogen bond lengths being determined by local differences in structure rather than the overall folding topology. With increasing temperature, hydrogen bonds typically show an apparent increase in length that has been attributed to protein thermal expansion. Some hydrogen bonds are invariant with temperature, however, while others show apparent decreases in length, suggesting they become stabilized with increasing temperature. Considering the data for the three proteins in this study and previously published data for ubiquitin and GB3, lowered protein folding stability and cooperativity corresponds with a larger range of temperature responses for hydrogen bonds. This suggests a partial uncoupling of hydrogen bond energetics from global unfolding cooperativity as protein stability decreases.
Collapse
Affiliation(s)
- Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Liu X, Yu L, Xia Z, Li J, Meng W, Min L, Li F, Wang X. Purification, identification and Cryo-EM structure of prostatic acid phosphatase in human semen. Biochem Biophys Res Commun 2024; 702:149652. [PMID: 38341922 DOI: 10.1016/j.bbrc.2024.149652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Prostatic acid phosphatase (PAP) is a glycoprotein that plays a crucial role in the hydrolysis of phosphate ester present in prostatic exudates. It is a well-established indicator for prostate cancer due to its elevated serum levels in disease progression. Despite its abundance in semen, PAP's influence on male fertility has not been extensively studied. In our study, we report a significantly optimized method for purifying human endogenous PAP, achieving remarkably high efficiency and active protein recovery rate. This achievement allowed us to better analyze and understand the PAP protein. We determined the cryo-electron microscopic (Cryo-EM) structure of prostatic acid phosphatase in its physiological state for the first time. Our structural and gel filtration analysis confirmed the formation of a tight homodimer structure of human PAP. This functional homodimer displayed an elongated conformation in the cryo-EM structure compared to the previously reported crystal structure. Additionally, there was a notable 5-degree rotation in the angle between the α domain and α/β domain of each monomer. Through structural analysis, we revealed three potential glycosylation sites: Asn94, Asn220, and Asn333. These sites contained varying numbers and forms of glycosyl units, suggesting sugar moieties influence PAP function. Furthermore, we found that the active sites of PAP, His44 and Asp290, are located between the two protein domains. Overall, our study not only provide an optimized approach for PAP purification, but also offer crucial insights into its structural characteristics. These findings lay the groundwork for further investigations into the physiological function and potential therapeutic applications of this important protein.
Collapse
Affiliation(s)
- Xuanzhong Liu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Lin Yu
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610066, Sichuan Province, China
| | - Zhili Xia
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Jialu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Ling Min
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610066, Sichuan Province, China.
| | - Xiang Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
3
|
Kim K, Kim G, Bae J, Song J, Kim H. A pH-Responsive Virus-Like Particle as a Protein Cage for a Targeted Delivery. Adv Healthc Mater 2024; 13:e2302656. [PMID: 37966427 PMCID: PMC11469083 DOI: 10.1002/adhm.202302656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/05/2023] [Indexed: 11/16/2023]
Abstract
A stimuli-responsive protein self-assembly offers promising utility as a protein nanocage for biotechnological and medical applications. Herein, the development of a virus-like particle (VLP) that undergoes a transition between assembly and disassembly under a neutral and acidic pH, respectively, for a targeted delivery is reported. The structure of the bacteriophage P22 coat protein is used for the computational design of coat subunits that self-assemble into a pH-responsive VLP. Subunit designs are generated through iterative computational cycles of histidine substitutions and evaluation of the interaction energies among the subunits under an acidic and neutral pH. The top subunit designs are tested and one that is assembled into a VLP showing the highest pH-dependent structural transition is selected. The cryo-EM structure of the VLP is determined, and the structural basis of a pH-triggered disassembly is delineated. The utility of the designed VLP is exemplified through the targeted delivery of a cytotoxic protein cargo into tumor cells in a pH-dependent manner. These results provide strategies for the development of self-assembling protein architectures with new functionality for diverse applications.
Collapse
Affiliation(s)
- Kwan‐Jip Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roDaejon34141South Korea
| | - Gijeong Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roDaejon34141South Korea
| | - Jin‐Ho Bae
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roDaejon34141South Korea
| | - Ji‐Joon Song
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roDaejon34141South Korea
| | - Hak‐Sung Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roDaejon34141South Korea
| |
Collapse
|
4
|
Bick T, Dominiak PM, Wendler P. Exploiting the full potential of cryo-EM maps. BBA ADVANCES 2024; 5:100113. [PMID: 38292063 PMCID: PMC10825613 DOI: 10.1016/j.bbadva.2024.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
The Coulomb potential maps generated by electron microscopy (EM) experiments contain not only information about the position but also about the charge state of the atom. This feature of EM maps allows the identification of specific ions and the protonation state of amino acid side chains in the sample. Here, we summarize qualitative observations of charges in EM maps, discuss the difficulties in interpreting the charge in Coulomb potential maps with respect to distinguishing it from radiation damage, and outline considerations to implement the correct charge in fitting algorithms.
Collapse
Affiliation(s)
- Thomas Bick
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476 Potsdam Golm, Germany
| | - Paulina M. Dominiak
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476 Potsdam Golm, Germany
| |
Collapse
|
5
|
Pezzotti G, Ohgitani E, Imamura H, Ikegami S, Shin-Ya M, Adachi T, Adachi K, Yamamoto T, Kanamura N, Marin E, Zhu W, Higasa K, Yasukochi Y, Okuma K, Mazda O. Raman Multi-Omic Snapshot and Statistical Validation of Structural Differences between Herpes Simplex Type I and Epstein-Barr Viruses. Int J Mol Sci 2023; 24:15567. [PMID: 37958551 PMCID: PMC10647490 DOI: 10.3390/ijms242115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Raman spectroscopy was applied to study the structural differences between herpes simplex virus Type I (HSV-1) and Epstein-Barr virus (EBV). Raman spectra were first collected with statistical validity on clusters of the respective virions and analyzed according to principal component analysis (PCA). Then, average spectra were computed and a machine-learning approach applied to deconvolute them into sub-band components in order to perform comparative analyses. The Raman results revealed marked structural differences between the two viral strains, which could mainly be traced back to the massive presence of carbohydrates in the glycoproteins of EBV virions. Clear differences could also be recorded for selected tyrosine and tryptophan Raman bands sensitive to pH at the virion/environment interface. According to the observed spectral differences, Raman signatures of known biomolecules were interpreted to link structural differences with the viral functions of the two strains. The present study confirms the unique ability of Raman spectroscopy for answering structural questions at the molecular level in virology and, despite the structural complexity of viral structures, its capacity to readily and reliably differentiate between different virus types and strains.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Saki Ikegami
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
| | - Masaharu Shin-Ya
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan;
| | - Keiji Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
| | - Koichiro Higasa
- Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-3-1 Shinmachi, Hirakata 573-1191, Japan; (K.H.); (Y.Y.)
| | - Yoshiki Yasukochi
- Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-3-1 Shinmachi, Hirakata 573-1191, Japan; (K.H.); (Y.Y.)
| | - Kazu Okuma
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
| |
Collapse
|
6
|
Podgorski JM, Freeman K, Gosselin S, Huet A, Conway JF, Bird M, Grecco J, Patel S, Jacobs-Sera D, Hatfull G, Gogarten JP, Ravantti J, White SJ. A structural dendrogram of the actinobacteriophage major capsid proteins provides important structural insights into the evolution of capsid stability. Structure 2023; 31:282-294.e5. [PMID: 36649709 PMCID: PMC10071307 DOI: 10.1016/j.str.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
Many double-stranded DNA viruses, including tailed bacteriophages (phages) and herpesviruses, use the HK97-fold in their major capsid protein to make the capsomers of the icosahedral viral capsid. After the genome packaging at near-crystalline densities, the capsid is subjected to a major expansion and stabilization step that allows it to withstand environmental stresses and internal high pressure. Several different mechanisms for stabilizing the capsid have been structurally characterized, but how these mechanisms have evolved is still not understood. Using cryo-EM structure determination of 10 capsids, structural comparisons, phylogenetic analyses, and Alphafold predictions, we have constructed a detailed structural dendrogram describing the evolution of capsid structural stability within the actinobacteriophages. We show that the actinobacteriophage major capsid proteins can be classified into 15 groups based upon their HK97-fold.
Collapse
Affiliation(s)
- Jennifer M Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Krista Freeman
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sophia Gosselin
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Bird
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - John Grecco
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Shreya Patel
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Deborah Jacobs-Sera
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Graham Hatfull
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Johann Peter Gogarten
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268-3125, USA
| | - Janne Ravantti
- University of Helsinki, Molecular and Integrative Biosciences Research Programme, Helsinki, Finland
| | - Simon J White
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA.
| |
Collapse
|
7
|
Essus VA, Souza Júnior GSE, Nunes GHP, Oliveira JDS, de Faria BM, Romão LF, Cortines JR. Bacteriophage P22 Capsid as a Pluripotent Nanotechnology Tool. Viruses 2023; 15:516. [PMID: 36851730 PMCID: PMC9962691 DOI: 10.3390/v15020516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The Salmonella enterica bacteriophage P22 is one of the most promising models for the development of virus-like particle (VLP) nanocages. It possesses an icosahedral T = 7 capsid, assembled by the combination of two structural proteins: the coat protein (gp5) and the scaffold protein (gp8). The P22 capsid has the remarkable capability of undergoing structural transition into three morphologies with differing diameters and wall-pore sizes. These varied morphologies can be explored for the design of nanoplatforms, such as for the development of cargo internalization strategies. The capsid proteic nature allows for the extensive modification of its structure, enabling the addition of non-native structures to alter the VLP properties or confer them to diverse ends. Various molecules were added to the P22 VLP through genetic, chemical, and other means to both the capsid and the scaffold protein, permitting the encapsulation or the presentation of cargo. This allows the particle to be exploited for numerous purposes-for example, as a nanocarrier, nanoreactor, and vaccine model, among other applications. Therefore, the present review intends to give an overview of the literature on this amazing particle.
Collapse
Affiliation(s)
- Victor Alejandro Essus
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Getúlio Silva e Souza Júnior
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Gabriel Henrique Pereira Nunes
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Juliana dos Santos Oliveira
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Bruna Mafra de Faria
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, Rio de Janeiro 21941-590, Brazil
| | - Luciana Ferreira Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, Rio de Janeiro 21941-590, Brazil
| | - Juliana Reis Cortines
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| |
Collapse
|
8
|
Xiao H, Zhou J, Yang F, Liu Z, Song J, Chen W, Liu H, Cheng L. Assembly and Capsid Expansion Mechanism of Bacteriophage P22 Revealed by High-Resolution Cryo-EM Structures. Viruses 2023; 15:v15020355. [PMID: 36851569 PMCID: PMC9965877 DOI: 10.3390/v15020355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The formation of many double-stranded DNA viruses, such as herpesviruses and bacteriophages, begins with the scaffolding-protein-mediated assembly of the procapsid. Subsequently, the procapsid undergoes extensive structural rearrangement and expansion to become the mature capsid. Bacteriophage P22 is an established model system used to study virus maturation. Here, we report the cryo-electron microscopy structures of procapsid, empty procapsid, empty mature capsid, and mature capsid of phage P22 at resolutions of 2.6 Å, 3.9 Å, 2.8 Å, and 3.0 Å, respectively. The structure of the procapsid allowed us to build an accurate model of the coat protein gp5 and the C-terminal region of the scaffolding protein gp8. In addition, interactions among the gp5 subunits responsible for procapsid assembly and stabilization were identified. Two C-terminal α-helices of gp8 were observed to interact with the coat protein in the procapsid. The amino acid interactions between gp5 and gp8 in the procapsid were consistent with the results of previous biochemical studies involving mutant proteins. Our structures reveal hydrogen bonds and salt bridges between the gp5 subunits in the procapsid and the conformational changes of the gp5 domains involved in the closure of the local sixfold opening and a thinner capsid shell during capsid maturation.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
| | - Junquan Zhou
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
| | - Fan Yang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jingdong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
- Correspondence: (W.C.); (H.L.); (L.C.)
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
- Correspondence: (W.C.); (H.L.); (L.C.)
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
- Correspondence: (W.C.); (H.L.); (L.C.)
| |
Collapse
|
9
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
10
|
Su S, Li S, Deng T, Gao M, Yin Y, Wu B, Peng C, Liu J, Ma J, Zhang K. Cryo-EM structures of human m 6A writer complexes. Cell Res 2022; 32:982-994. [PMID: 36167981 PMCID: PMC9652331 DOI: 10.1038/s41422-022-00725-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant ribonucleotide modification among eukaryotic messenger RNAs. The m6A "writer" consists of the catalytic subunit m6A-METTL complex (MAC) and the regulatory subunit m6A-METTL-associated complex (MACOM), the latter being essential for enzymatic activity. Here, we report the cryo-electron microscopy (cryo-EM) structures of MACOM at a 3.0-Å resolution, uncovering that WTAP and VIRMA form the core structure of MACOM and that ZC3H13 stretches the conformation by binding VIRMA. Furthermore, the 4.4-Å resolution cryo-EM map of the MACOM-MAC complex, combined with crosslinking mass spectrometry and GST pull-down analysis, elucidates a plausible model of the m6A writer complex, in which MACOM binds to MAC mainly through WTAP and METTL3 interactions. In combination with in vitro RNA substrate binding and m6A methyltransferase activity assays, our results illustrate the molecular basis of how MACOM assembles and interacts with MAC to form an active m6A writer complex.
Collapse
Affiliation(s)
- Shichen Su
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Shanshan Li
- grid.59053.3a0000000121679639MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Ting Deng
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Minsong Gao
- grid.13402.340000 0004 1759 700XMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang China
| | - Yue Yin
- grid.458506.a0000 0004 0497 0637National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Baixing Wu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Chao Peng
- grid.458506.a0000 0004 0497 0637National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Jianzhao Liu
- grid.13402.340000 0004 1759 700XMOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute of Complex Systems, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
11
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination. Front Chem 2022; 10:889203. [PMID: 36110139 PMCID: PMC9468540 DOI: 10.3389/fchem.2022.889203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
To understand the dynamic structure-function relationship of soft- and biomolecules, the determination of the three-dimensional (3D) structure of each individual molecule (nonaveraged structure) in its native state is sought-after. Cryo-electron tomography (cryo-ET) is a unique tool for imaging an individual object from a series of tilted views. However, due to radiation damage from the incident electron beam, the tolerable electron dose limits image contrast and the signal-to-noise ratio (SNR) of the data, preventing the 3D structure determination of individual molecules, especially at high-resolution. Although recently developed technologies and techniques, such as the direct electron detector, phase plate, and computational algorithms, can partially improve image contrast/SNR at the same electron dose, the high-resolution structure, such as tertiary structure of individual molecules, has not yet been resolved. Here, we review the cryo-electron microscopy (cryo-EM) and cryo-ET experimental parameters to discuss how these parameters affect the extent of radiation damage. This discussion can guide us in optimizing the experimental strategy to increase the imaging dose or improve image SNR without increasing the radiation damage. With a higher dose, a higher image contrast/SNR can be achieved, which is crucial for individual-molecule 3D structure. With 3D structures determined from an ensemble of individual molecules in different conformations, the molecular mechanism through their biochemical reactions, such as self-folding or synthesis, can be elucidated in a straightforward manner.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
12
|
Zhu Z, Deng Z, Wang Q, Wang Y, Zhang D, Xu R, Guo L, Wen H. Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design. Front Pharmacol 2022; 13:939555. [PMID: 35837274 PMCID: PMC9275593 DOI: 10.3389/fphar.2022.939555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ion channels are expressed in almost all living cells, controlling the in-and-out communications, making them ideal drug targets, especially for central nervous system diseases. However, owing to their dynamic nature and the presence of a membrane environment, ion channels remain difficult targets for the past decades. Recent advancement in cryo-electron microscopy and computational methods has shed light on this issue. An explosion in high-resolution ion channel structures paved way for structure-based rational drug design and the state-of-the-art simulation and machine learning techniques dramatically improved the efficiency and effectiveness of computer-aided drug design. Here we present an overview of how simulation and machine learning-based methods fundamentally changed the ion channel-related drug design at different levels, as well as the emerging trends in the field.
Collapse
Affiliation(s)
- Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Institute of Big Data Research, Beijing, China
| | - Zhenfeng Deng
- DP Technology, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | - Duo Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- DP Technology, Beijing, China
| | - Ruihan Xu
- DP Technology, Beijing, China
- National Engineering Research Center of Visual Technology, Peking University, Beijing, China
| | | | - Han Wen
- DP Technology, Beijing, China
| |
Collapse
|
13
|
Kavalchuk M, Jomaa A, Müller AU, Weber-Ban E. Structural basis of prokaryotic ubiquitin-like protein engagement and translocation by the mycobacterial Mpa-proteasome complex. Nat Commun 2022; 13:276. [PMID: 35022401 PMCID: PMC8755798 DOI: 10.1038/s41467-021-27787-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Proteasomes are present in eukaryotes, archaea and Actinobacteria, including the human pathogen Mycobacterium tuberculosis, where proteasomal degradation supports persistence inside the host. In mycobacteria and other members of Actinobacteria, prokaryotic ubiquitin-like protein (Pup) serves as a degradation tag post-translationally conjugated to target proteins for their recruitment to the mycobacterial proteasome ATPase (Mpa). Here, we use single-particle cryo-electron microscopy to determine the structure of Mpa in complex with the 20S core particle at an early stage of pupylated substrate recruitment, shedding light on the mechanism of substrate translocation. Two conformational states of Mpa show how substrate is translocated stepwise towards the degradation chamber of the proteasome core particle. We also demonstrate, in vitro and in vivo, the importance of a structural feature in Mpa that allows formation of alternating charge-complementary interactions with the proteasome resulting in radial, rail-guided movements during the ATPase conformational cycle. Pup is the bacterial analog of ubiquitin for targeting proteins to the proteasome. Here, the authors use cryoEM to visualize structures of the Mycobacterium tuberculosis proteasome translocating a Pup-tagged substrate.
Collapse
Affiliation(s)
- Mikhail Kavalchuk
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland
| | - Ahmad Jomaa
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland.
| | - Andreas U Müller
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology & Biophysics, CH-8093, Zurich, Switzerland.
| |
Collapse
|
14
|
Cui N, Yang F, Zhang JT, Sun H, Chen Y, Yu RC, Chen ZP, Jiang YL, Han SJ, Xu X, Li Q, Zhou CZ. Capsid Structure of Anabaena Cyanophage A-1(L). J Virol 2021; 95:e0135621. [PMID: 34549983 PMCID: PMC8610606 DOI: 10.1128/jvi.01356-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/19/2021] [Indexed: 01/09/2023] Open
Abstract
A-1(L) is a freshwater cyanophage with a contractile tail that specifically infects Anabaena sp. PCC 7120, one of the model strains for molecular studies of cyanobacteria. Although isolated for half a century, its structure remains unknown, which limits our understanding on the interplay between A-1(L) and its host. Here we report the 3.35 Å cryo-EM structure of A-1(L) capsid, representing the first near-atomic resolution structure of a phage capsid with a T number of 9. The major capsid gp4 proteins assemble into 91 capsomers, including 80 hexons: 20 at the center of the facet and 60 at the facet edge, in addition to 11 identical pentons. These capsomers further assemble into the icosahedral capsid, via gradually increasing curvatures. Different from the previously reported capsids of known-structure, A-1(L) adopts a noncovalent chainmail structure of capsid stabilized by two kinds of mortise-and-tenon inter-capsomer interactions: a three-layered interface at the pseudo 3-fold axis combined with the complementarity in shape and electrostatic potential around the 2-fold axis. This unique capsomer construction enables A-1(L) to possess a rigid capsid, which is solely composed of the major capsid proteins with an HK97 fold. IMPORTANCE Cyanobacteria are the most abundant photosynthetic bacteria, contributing significantly to the biomass production, O2 generation, and CO2 consumption on our planet. Their community structure and homeostasis in natural aquatic ecosystems are largely regulated by the corresponding cyanophages. In this study, we solved the structure of cyanophage A-1(L) capsid at near-atomic resolution and revealed a unique capsid construction. This capsid structure provides the molecular details for better understanding the assembly of A-1(L), and a structural platform for future investigation and application of A-1(L) in combination with its host Anabaena sp. PCC 7120. As the first isolated freshwater cyanophage that infects the genetically tractable model cyanobacterium, A-1(L) should become an ideal template for the genetic engineering and synthetic biology studies.
Collapse
Affiliation(s)
- Ning Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun-Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Rong-Cheng Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Shu-Jing Han
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xudong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
15
|
Martino E, Chiarugi S, Margheriti F, Garau G. Mapping, Structure and Modulation of PPI. Front Chem 2021; 9:718405. [PMID: 34692637 PMCID: PMC8529325 DOI: 10.3389/fchem.2021.718405] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Because of the key relevance of protein–protein interactions (PPI) in diseases, the modulation of protein-protein complexes is of relevant clinical significance. The successful design of binding compounds modulating PPI requires a detailed knowledge of the involved protein-protein system at molecular level, and investigation of the structural motifs that drive the association of the proteins at the recognition interface. These elements represent hot spots of the protein binding free energy, define the complex lifetime and possible modulation strategies. Here, we review the advanced technologies used to map the PPI involved in human diseases, to investigate the structure-function features of protein complexes, and to discover effective ligands that modulate the PPI for therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Martino
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Sara Chiarugi
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy.,BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| | | | - Gianpiero Garau
- BioStructures Lab, Istituto Italiano di Tecnologia (IIT@NEST), Pisa, Italy
| |
Collapse
|
16
|
High Resolution Structure of the Mature Capsid of Ralstonia solanacearum Bacteriophage ϕRSA1 by Cryo-Electron Microscopy. Int J Mol Sci 2021; 22:ijms222011053. [PMID: 34681713 PMCID: PMC8538268 DOI: 10.3390/ijms222011053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
The ϕRSA1 bacteriophage has been isolated from Ralstonia solanacearum, a gram negative bacteria having a significant economic impact on many important crops. We solved the three-dimensional structure of the ϕRSA1 mature capsid to 3.9 Å resolution by cryo-electron microscopy. The capsid shell, that contains the 39 kbp of dsDNA genome, has an icosahedral symmetry characterized by an unusual triangulation number of T = 7, dextro. The ϕRSA1 capsid is composed solely of the polymerization of the major capsid protein, gp8, which exhibits the typical “Johnson” fold first characterized in E. coli bacteriophage HK97. As opposed to the latter, the ϕRSA1 mature capsid is not stabilized by covalent crosslinking between its subunits, nor by the addition of a decoration protein. We further describe the molecular interactions occurring between the subunits of the ϕRSA1 capsid and their relationships with the other known bacteriophages.
Collapse
|
17
|
Kamiya R, Uchiyama J, Matsuzaki S, Murata K, Iwasaki K, Miyazaki N. Acid-stable capsid structure of Helicobacter pylori bacteriophage KHP30 by single-particle cryoelectron microscopy. Structure 2021; 30:300-312.e3. [PMID: 34597601 DOI: 10.1016/j.str.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/04/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement protein. The major capsid proteins form 12 pentagonal capsomeres occupying icosahedral vertexes and 80 hexagonal capsomeres located at icosahedral faces and edges. The major capsid protein has a unique protruding loop extending to the neighboring subunit that stabilizes hexagonal capsomeres. Furthermore, the capsid is decorated with trimeric cement proteins with a jelly roll motif. The cement protein trimer sits on the quasi-three-fold axis formed by three major capsid protein capsomeres, thereby enhancing the particle stability by connecting these capsomeres. Sequence and structure comparisons between the related Helicobacter pylori phages suggest a possible mechanism of phage adaptation to the human gastric environment.
Collapse
Affiliation(s)
- Ryosuke Kamiya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan
| | - Jumpei Uchiyama
- Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan; Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Shigenobu Matsuzaki
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi 780-0955, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan
| | - Naoyuki Miyazaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan.
| |
Collapse
|
18
|
Pintilie G, Chiu W. Validation, analysis and annotation of cryo-EM structures. Acta Crystallogr D Struct Biol 2021; 77:1142-1152. [PMID: 34473085 PMCID: PMC8411978 DOI: 10.1107/s2059798321006069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2021] [Indexed: 11/08/2023] Open
Abstract
The process of turning 2D micrographs into 3D atomic models of the imaged macromolecules has been under rapid development and scrutiny in the field of cryo-EM. Here, some important methods for validation at several stages in this process are described. Firstly, how Fourier shell correlation of two independent maps and phase randomization beyond a certain frequency address the assessment of map resolution is reviewed. Techniques for local resolution estimation and map sharpening are also touched upon. The topic of validating models which are either built de novo or based on a known atomic structure fitted into a cryo-EM map is then approached. Map-model comparison using Q-scores and Fourier shell correlation plots is used to assure the agreement of the model with the observed map density. The importance of annotating the model with B factors to account for the resolvability of individual atoms in the map is illustrated. Finally, the timely topic of detecting and validating water molecules and metal ions in maps that have surpassed ∼2 Å resolution is described.
Collapse
Affiliation(s)
- Grigore Pintilie
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
19
|
Rovšnik U, Zhuang Y, Forsberg BO, Carroni M, Yvonnesdotter L, Howard RJ, Lindahl E. Dynamic closed states of a ligand-gated ion channel captured by cryo-EM and simulations. Life Sci Alliance 2021; 4:e202101011. [PMID: 34210687 PMCID: PMC8326787 DOI: 10.26508/lsa.202101011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
Ligand-gated ion channels are critical mediators of electrochemical signal transduction across evolution. Biophysical and pharmacological characterization of these receptor proteins relies on high-quality structures in multiple, subtly distinct functional states. However, structural data in this family remain limited, particularly for resting and intermediate states on the activation pathway. Here, we report cryo-electron microscopy (cryo-EM) structures of the proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC) under three pH conditions. Decreased pH was associated with improved resolution and side chain rearrangements at the subunit/domain interface, particularly involving functionally important residues in the β1-β2 and M2-M3 loops. Molecular dynamics simulations substantiated flexibility in the closed-channel extracellular domains relative to the transmembrane ones and supported electrostatic remodeling around E35 and E243 in proton-induced gating. Exploration of secondary cryo-EM classes further indicated a low-pH population with an expanded pore. These results allow us to define distinct protonation and activation steps in pH-stimulated conformational cycling in GLIC, including interfacial rearrangements largely conserved in the pentameric channel family.
Collapse
Affiliation(s)
- Urška Rovšnik
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Björn O Forsberg
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Linnea Yvonnesdotter
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
20
|
Intravirion DNA Can Access the Space Occupied by the Bacteriophage P22 Ejection Proteins. Viruses 2021; 13:v13081504. [PMID: 34452369 PMCID: PMC8402733 DOI: 10.3390/v13081504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Tailed double-stranded DNA bacteriophages inject some proteins with their dsDNA during infection. Phage P22 injects about 12, 12, and 30 molecules of the proteins encoded by genes 7, 16 and 20, respectively. After their ejection from the virion, they assemble into a trans-periplasmic conduit through which the DNA passes to enter the cytoplasm. The location of these proteins in the virion before injection is not well understood, although we recently showed they reside near the portal protein barrel in DNA-filled heads. In this report we show that when these proteins are missing from the virion, a longer than normal DNA molecule is encapsidated by the P22 headful DNA packaging machinery. Thus, the ejection proteins occupy positions within the virion that can be occupied by packaged DNA when they are absent.
Collapse
|
21
|
Szyszka TN, Jenner EN, Tasneem N, Lau YH. Molecular Display on Protein Nanocompartments: Design Strategies and Systems Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Taylor N. Szyszka
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2006 Australia
| | - Eric N. Jenner
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
| | - Nuren Tasneem
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
| | - Yu Heng Lau
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2006 Australia
| |
Collapse
|
22
|
Schaffer LV, Ideker T. Mapping the multiscale structure of biological systems. Cell Syst 2021; 12:622-635. [PMID: 34139169 PMCID: PMC8245186 DOI: 10.1016/j.cels.2021.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023]
Abstract
Biological systems are by nature multiscale, consisting of subsystems that factor into progressively smaller units in a deeply hierarchical structure. At any level of the hierarchy, an ever-increasing diversity of technologies can be applied to characterize the corresponding biological units and their relations, resulting in large networks of physical or functional proximities-e.g., proximities of amino acids within a protein, of proteins within a complex, or of cell types within a tissue. Here, we review general concepts and progress in using network proximity measures as a basis for creation of multiscale hierarchical maps of biological systems. We discuss the functionalization of these maps to create predictive models, including those useful in translation of genotype to phenotype, along with strategies for model visualization and challenges faced by multiscale modeling in the near future. Collectively, these approaches enable a unified hierarchical approach to biological data, with application from the molecular to the macroscopic.
Collapse
Affiliation(s)
- Leah V Schaffer
- Division of Genetics, Department of Medicine, University of California San Diego, San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Zumbado-Corrales M, Esquivel-Rodríguez J. EvoSeg: Automated Electron Microscopy Segmentation through Random Forests and Evolutionary Optimization. Biomimetics (Basel) 2021; 6:biomimetics6020037. [PMID: 34206006 PMCID: PMC8293153 DOI: 10.3390/biomimetics6020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Electron Microscopy Maps are key in the study of bio-molecular structures, ranging from borderline atomic level to the sub-cellular range. These maps describe the envelopes that cover possibly a very large number of proteins that form molecular machines within the cell. Within those envelopes, we are interested to find what regions correspond to specific proteins so that we can understand how they function, and design drugs that can enhance or suppress a process that they are involved in, along with other experimental purposes. A classic approach by which we can begin the exploration of map regions is to apply a segmentation algorithm. This yields a mask where each voxel in 3D space is assigned an identifier that maps it to a segment; an ideal segmentation would map each segment to one protein unit, which is rarely the case. In this work, we present a method that uses bio-inspired optimization, through an Evolutionary-Optimized Segmentation algorithm, to iteratively improve upon baseline segments obtained from a classical approach, called watershed segmentation. The cost function used by the evolutionary optimization is based on an ideal segmentation classifier trained as part of this development, which uses basic structural information available to scientists, such as the number of expected units, volume and topology. We show that a basic initial segmentation with the additional information allows our evolutionary method to find better segmentation results, compared to the baseline generated by the watershed.
Collapse
|
24
|
Selivanovitch E, LaFrance B, Douglas T. Molecular exclusion limits for diffusion across a porous capsid. Nat Commun 2021; 12:2903. [PMID: 34006828 PMCID: PMC8131759 DOI: 10.1038/s41467-021-23200-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Molecular communication across physical barriers requires pores to connect the environments on either side and discriminate between the diffusants. Here we use porous virus-like particles (VLPs) derived from bacteriophage P22 to investigate the range of molecule sizes able to gain access to its interior. Although there are cryo-EM models of the VLP, they may not accurately depict the parameters of the molecules able to pass across the pores due to the dynamic nature of the P22 particles in the solution. After encapsulating the enzyme AdhD within the P22 VLPs, we use a redox reaction involving PAMAM dendrimer modified NADH/NAD+ to examine the size and charge limitations of molecules entering P22. Utilizing the three different accessible morphologies of the P22 particles, we determine the effective pore sizes of each and demonstrate that negatively charged substrates diffuse across more readily when compared to those that are neutral, despite the negatively charge exterior of the particles.
Collapse
Affiliation(s)
| | - Benjamin LaFrance
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
25
|
Wang J, Natchiar SK, Moore PB, Klaholz BP. Identification of Mg 2+ ions next to nucleotides in cryo-EM maps using electrostatic potential maps. Acta Crystallogr D Struct Biol 2021; 77:534-539. [PMID: 33825713 PMCID: PMC8025889 DOI: 10.1107/s2059798321001893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 11/10/2022] Open
Abstract
Cryo electron microscopy (cryo-EM) can produce maps of macromolecules that have resolutions that are sufficiently high that structural details such as chemical modifications, water molecules and bound metal ions can be discerned. However, those accustomed to interpreting the electron-density maps of macromolecules produced by X-ray crystallography need to be careful when assigning features such as these in cryo-EM maps because cations, for example, interact far more strongly with electrons than they do with X-rays. Using simulated electrostatic potential (ESP) maps as a tool led us to re-examine a recent cryo-EM map of the human ribosome, and we realized that some of the ESP peaks originally identified as novel groups covalently bonded to the N7, O6 or O4 atoms of several guanines, adenines or uridines, respectively, in this structure are likely to instead represent Mg2+ ions coordinated to these atoms, which provide only partial charge compensation compared with Mg2+ ions located next to phosphate groups. In addition, direct evidence is provided for a variation in the level of 2'-O ribose methylation of nucleotides in the human ribosome. ESP maps can thus help in identifying ions next to nucleotide bases, i.e. at positions that can be difficult to address in cryo-EM maps due to charge effects, which are specifically encountered in cryo-EM. This work is particularly relevant to nucleoprotein complexes and shows that it is important to consider charge effects when interpreting cryo-EM maps, thus opening possibilities for localizing charges in structures that may be relevant for enzymatic mechanisms and drug interactions.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - S. Kundhavai Natchiar
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 Rue Laurent Fries, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Peter B. Moore
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Bruno P. Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 Rue Laurent Fries, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
26
|
Tan YQ, Xue B, Yew WS. Genetically Encodable Scaffolds for Optimizing Enzyme Function. Molecules 2021; 26:molecules26051389. [PMID: 33806660 PMCID: PMC7961827 DOI: 10.3390/molecules26051389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Enzyme engineering is an indispensable tool in the field of synthetic biology, where enzymes are challenged to carry out novel or improved functions. Achieving these goals sometimes goes beyond modifying the primary sequence of the enzyme itself. The use of protein or nucleic acid scaffolds to enhance enzyme properties has been reported for applications such as microbial production of chemicals, biosensor development and bioremediation. Key advantages of using these assemblies include optimizing reaction conditions, improving metabolic flux and increasing enzyme stability. This review summarizes recent trends in utilizing genetically encodable scaffolds, developed in line with synthetic biology methodologies, to complement the purposeful deployment of enzymes. Current molecular tools for constructing these synthetic enzyme-scaffold systems are also highlighted.
Collapse
Affiliation(s)
- Yong Quan Tan
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Bo Xue
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-6516-8624
| |
Collapse
|
27
|
Beckers M, Mann D, Sachse C. Structural interpretation of cryo-EM image reconstructions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 160:26-36. [PMID: 32735944 DOI: 10.1016/j.pbiomolbio.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The productivity of single-particle cryo-EM as a structure determination method has rapidly increased as many novel biological structures are being elucidated. The ultimate result of the cryo-EM experiment is an atomic model that should faithfully represent the computed image reconstruction. Although the principal approach of atomic model building and refinement from maps resembles that of the X-ray crystallographic methods, there are important differences due to the unique properties resulting from the 3D image reconstructions. In this review, we discuss the practiced work-flow from the cryo-EM image reconstruction to the atomic model. We give an overview of (i) resolution determination methods in cryo-EM including local and directional resolution variation, (ii) cryo-EM map contrast optimization including complementary map types that can help in identifying ambiguous density features, (iii) atomic model building and (iv) refinement in various resolution regimes including (v) their validation and (vi) discuss differences between X-ray and cryo-EM maps. Based on the methods originally developed for X-ray crystallography, the path from 3D image reconstruction to atomic coordinates has become an integral and important part of the cryo-EM structure determination work-flow that routinely delivers atomic models.
Collapse
Affiliation(s)
- Maximilian Beckers
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany; Candidate for Joint PhD Degree from EMBL and Heidelberg University, Faculty of Biosciences, Germany; Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Daniel Mann
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany; Chemistry Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
28
|
Lawson CL, Kryshtafovych A, Adams PD, Afonine PV, Baker ML, Barad BA, Bond P, Burnley T, Cao R, Cheng J, Chojnowski G, Cowtan K, Dill KA, DiMaio F, Farrell DP, Fraser JS, Herzik MA, Hoh SW, Hou J, Hung LW, Igaev M, Joseph AP, Kihara D, Kumar D, Mittal S, Monastyrskyy B, Olek M, Palmer CM, Patwardhan A, Perez A, Pfab J, Pintilie GD, Richardson JS, Rosenthal PB, Sarkar D, Schäfer LU, Schmid MF, Schröder GF, Shekhar M, Si D, Singharoy A, Terashi G, Terwilliger TC, Vaiana A, Wang L, Wang Z, Wankowicz SA, Williams CJ, Winn M, Wu T, Yu X, Zhang K, Berman HM, Chiu W. Cryo-EM model validation recommendations based on outcomes of the 2019 EMDataResource challenge. Nat Methods 2021; 18:156-164. [PMID: 33542514 PMCID: PMC7864804 DOI: 10.1038/s41592-020-01051-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.
Collapse
Affiliation(s)
- Catherine L. Lawson
- grid.430387.b0000 0004 1936 8796Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Andriy Kryshtafovych
- grid.27860.3b0000 0004 1936 9684Genome Center, University of California, Davis, CA USA
| | - Paul D. Adams
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California Berkeley, Berkeley, CA USA
| | - Pavel V. Afonine
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Matthew L. Baker
- grid.267308.80000 0000 9206 2401Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Benjamin A. Barad
- grid.214007.00000000122199231Department of Integrated Computational Structural Biology, The Scripps Research Institute, La Jolla, CA USA
| | - Paul Bond
- grid.5685.e0000 0004 1936 9668York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Tom Burnley
- grid.465239.fScientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Renzhi Cao
- grid.261584.c0000 0001 0492 9915Department of Computer Science, Pacific Lutheran University, Tacoma, WA USA
| | - Jianlin Cheng
- grid.134936.a0000 0001 2162 3504Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO USA
| | - Grzegorz Chojnowski
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory, c/o DESY, Hamburg, Germany
| | - Kevin Cowtan
- grid.5685.e0000 0004 1936 9668York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Ken A. Dill
- grid.36425.360000 0001 2216 9681Laufer Center, Stony Brook University, Stony Brook, NY USA
| | - Frank DiMaio
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Daniel P. Farrell
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - James S. Fraser
- grid.266102.10000 0001 2297 6811Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA USA
| | - Mark A. Herzik
- grid.266100.30000 0001 2107 4242Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA USA
| | - Soon Wen Hoh
- grid.5685.e0000 0004 1936 9668York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Jie Hou
- grid.262962.b0000 0004 1936 9342Department of Computer Science, Saint Louis University, St. Louis, MO USA
| | - Li-Wei Hung
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Maxim Igaev
- grid.418140.80000 0001 2104 4211Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Agnel P. Joseph
- grid.465239.fScientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Daisuke Kihara
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN USA ,grid.169077.e0000 0004 1937 2197Department of Computer Science, Purdue University, West Lafayette, IN USA
| | - Dilip Kumar
- grid.39382.330000 0001 2160 926XVerna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX USA
| | - Sumit Mittal
- grid.215654.10000 0001 2151 2636Biodesign Institute, Arizona State University, Tempe, AZ USA ,grid.411530.20000 0001 0694 3745School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, India
| | - Bohdan Monastyrskyy
- grid.27860.3b0000 0004 1936 9684Genome Center, University of California, Davis, CA USA
| | - Mateusz Olek
- grid.5685.e0000 0004 1936 9668York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Colin M. Palmer
- grid.465239.fScientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Ardan Patwardhan
- grid.225360.00000 0000 9709 7726The European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Alberto Perez
- grid.15276.370000 0004 1936 8091Department of Chemistry, University of Florida, Gainesville, FL USA
| | - Jonas Pfab
- grid.462982.30000 0000 8883 2602Division of Computing & Software Systems, University of Washington, Bothell, WA USA
| | - Grigore D. Pintilie
- grid.168010.e0000000419368956Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Jane S. Richardson
- grid.26009.3d0000 0004 1936 7961Department of Biochemistry, Duke University, Durham, NC USA
| | - Peter B. Rosenthal
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, UK
| | - Daipayan Sarkar
- grid.169077.e0000 0004 1937 2197Department of Biological Sciences, Purdue University, West Lafayette, IN USA ,grid.215654.10000 0001 2151 2636Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Luisa U. Schäfer
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Michael F. Schmid
- grid.168010.e0000000419368956Division of CryoEM and Biomaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA USA
| | - Gunnar F. Schröder
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mrinal Shekhar
- grid.215654.10000 0001 2151 2636Biodesign Institute, Arizona State University, Tempe, AZ USA ,grid.66859.34Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Dong Si
- grid.462982.30000 0000 8883 2602Division of Computing & Software Systems, University of Washington, Bothell, WA USA
| | - Abishek Singharoy
- grid.215654.10000 0001 2151 2636Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Genki Terashi
- grid.418140.80000 0001 2104 4211Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Andrea Vaiana
- grid.418140.80000 0001 2104 4211Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Liguo Wang
- grid.34477.330000000122986657Department of Biological Structure, University of Washington, Seattle, WA USA
| | - Zhe Wang
- grid.225360.00000 0000 9709 7726The European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Stephanie A. Wankowicz
- grid.266102.10000 0001 2297 6811Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA USA ,grid.266102.10000 0001 2297 6811Biophysics Graduate Program, University of California, San Francisco, CA USA
| | | | - Martyn Winn
- grid.465239.fScientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Tianqi Wu
- grid.134936.a0000 0001 2162 3504Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO USA
| | - Xiaodi Yu
- grid.497530.c0000 0004 0389 4927SMPS, Janssen Research and Development, Spring House, PA USA
| | - Kaiming Zhang
- grid.168010.e0000000419368956Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Helen M. Berman
- grid.430387.b0000 0004 1936 8796Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ USA ,grid.42505.360000 0001 2156 6853Department of Biological Sciences and Bridge Institute, University of Southern California, Los Angeles, CA USA
| | - Wah Chiu
- grid.168010.e0000000419368956Department of Bioengineering, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Division of CryoEM and Biomaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA USA
| |
Collapse
|
29
|
Chandler-Bostock R, Mata CP, Bingham RJ, Dykeman EC, Meng B, Tuthill TJ, Rowlands DJ, Ranson NA, Twarock R, Stockley PG. Assembly of infectious enteroviruses depends on multiple, conserved genomic RNA-coat protein contacts. PLoS Pathog 2020; 16:e1009146. [PMID: 33370422 PMCID: PMC7793301 DOI: 10.1371/journal.ppat.1009146] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/08/2021] [Accepted: 11/11/2020] [Indexed: 02/04/2023] Open
Abstract
Picornaviruses are important viral pathogens, but despite extensive study, the assembly process of their infectious virions is still incompletely understood, preventing the development of anti-viral strategies targeting this essential part of the life cycle. We report the identification, via RNA SELEX and bioinformatics, of multiple RNA sites across the genome of a typical enterovirus, enterovirus-E (EV-E), that each have affinity for the cognate viral capsid protein (CP) capsomer. Many of these sites are evolutionarily conserved across known EV-E variants, suggesting they play essential functional roles. Cryo-electron microscopy was used to reconstruct the EV-E particle at ~2.2 Å resolution, revealing extensive density for the genomic RNA. Relaxing the imposed symmetry within the reconstructed particles reveals multiple RNA-CP contacts, a first for any picornavirus. Conservative mutagenesis of the individual RNA-contacting amino acid side chains in EV-E, many of which are conserved across the enterovirus family including poliovirus, is lethal but does not interfere with replication or translation. Anti-EV-E and anti-poliovirus aptamers share sequence similarities with sites distributed across the poliovirus genome. These data are consistent with the hypothesis that these RNA-CP contacts are RNA Packaging Signals (PSs) that play vital roles in assembly and suggest that the RNA PSs are evolutionarily conserved between pathogens within the family, augmenting the current protein-only assembly paradigm for this family of viruses.
Collapse
Affiliation(s)
- Rebecca Chandler-Bostock
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Carlos P. Mata
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Richard J. Bingham
- Department of Mathematics, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, United Kingdom
| | - Eric C. Dykeman
- Department of Mathematics, University of York, York, United Kingdom
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, United Kingdom
| | - Bo Meng
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tobias J. Tuthill
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David J. Rowlands
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJR); (NAR); (RT); (PGS)
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJR); (NAR); (RT); (PGS)
| | - Reidun Twarock
- Department of Mathematics, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
- York Cross-disciplinary Centre for Systems Analysis, University of York, York, United Kingdom
- * E-mail: (DJR); (NAR); (RT); (PGS)
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJR); (NAR); (RT); (PGS)
| |
Collapse
|
30
|
Resolving individual atoms of protein complex by cryo-electron microscopy. Cell Res 2020; 30:1136-1139. [PMID: 33139928 PMCID: PMC7605492 DOI: 10.1038/s41422-020-00432-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/12/2020] [Indexed: 11/12/2022] Open
|
31
|
Gilcrease E, Williams R, Goel R. Evaluating the effect of silver nanoparticles on bacteriophage lytic infection cycle-a mechanistic understanding. WATER RESEARCH 2020; 181:115900. [PMID: 32504909 DOI: 10.1016/j.watres.2020.115900] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Bacteriophages and engineered nano-material (AgNPS) interactions is a relatively unexplored area of research. To answer the fundamental question whether bacteriophage lytic growth cycle is affected by the presence of AgNPs, laboratory experiments were performed with phages of Klebsiella pneumoniae, Delftia tsuruhatensis, Salmonella typhimurium, and Shigella flexneri using silver nanoparticles (AgNPs) with coating materials. One-step growth curves of bacteriophages indicated that the presence of these nanoparticles, and the associated ions of silver, produced pronounced effects on the lytic infection of certain bacteriophages. Effects included 96% reductions in post-infection phage yield in terms of plaque forming units (PFUs) after phages were incubated with silver nanoparticles and 28%-43% reductions from the presence of Ag+ alone. However, when Klebsiella pneumonia phage KL and Salmonella typhimurium phage Det7 were exposed to silver nanoparticles coated with poly-N-vinyl-2 pyrrolidone (PVP), an increase in final phage yield by as much as 250% was observed compared with the same phage not incubated with nanoparticles. A proposed mechanism, observed by transmission electron microscopy and verified using synthetic biology by which the nanoparticle binding phenotype can be produced, is that the binding of metal nanomaterial to phage virions results in potentially inhibitory effects. This binding was found to be dependent on the presence of exposed positively charged C-terminal amino-acid residues on the phage capsid surface, implied at first by amino-acid sequence comparisons between capsid proteins of the different phages used in this study. This was then proven experimentally using targeted DNA editing methods to fuse positive charged amino-acid residues to the coat protein C-terminus of non-binding phage. This induced the AgNP binding phenotype, as observed by TEM, DLS size measurements, and growth curve data that show the mutant constructs to be functionally inhibited after exposure to AgNPs. This research sets up a first platform for further research in the unexplored area of phage and AgNP interactions and provides useful findings.
Collapse
Affiliation(s)
- Eddie Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ryan Williams
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, UT, USA.
| |
Collapse
|
32
|
Johnson RM, Fais C, Parmar M, Cheruvara H, Marshall RL, Hesketh SJ, Feasey MC, Ruggerone P, Vargiu AV, Postis VLG, Muench SP, Bavro VN. Cryo-EM Structure and Molecular Dynamics Analysis of the Fluoroquinolone Resistant Mutant of the AcrB Transporter from Salmonella. Microorganisms 2020; 8:E943. [PMID: 32585951 PMCID: PMC7355581 DOI: 10.3390/microorganisms8060943] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 12/31/2022] Open
Abstract
Salmonella is an important genus of Gram-negative pathogens, treatment of which has become problematic due to increases in antimicrobial resistance. This is partly attributable to the overexpression of tripartite efflux pumps, particularly the constitutively expressed AcrAB-TolC. Despite its clinical importance, the structure of the Salmonella AcrB transporter remained unknown to-date, with much of our structural understanding coming from the Escherichia coli orthologue. Here, by taking advantage of the styrene maleic acid (SMA) technology to isolate membrane proteins with closely associated lipids, we report the very first experimental structure of Salmonella AcrB transporter. Furthermore, this novel structure provides additional insight into mechanisms of drug efflux as it bears the mutation (G288D), originating from a clinical isolate of Salmonella Typhimurium presenting an increased resistance to fluoroquinolones. Experimental data are complemented by state-of-the-art molecular dynamics (MD) simulations on both the wild type and G288D variant of Salmonella AcrB. Together, these reveal several important differences with respect to the E. coli protein, providing insights into the role of the G288D mutation in increasing drug efflux and extending our understanding of the mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Rachel M. Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (R.M.J.); (S.J.H.); (M.C.F.)
| | - Chiara Fais
- Department of Physics, University of Cagliari, s.p. 8, Cittadella Universitaria, 09042 Monserrato, Italy; (C.F.); (P.R.); (A.V.V.)
| | - Mayuriben Parmar
- Biomedicine Research Group, Faculty of Health and Social Sciences, Leeds Beckett University, Leeds LS1 3HE, UK; (M.P.); (V.L.G.P.)
| | - Harish Cheruvara
- Diamond Light Source, Membrane Protein Laboratory (MPL), Diamond House, Harwell Science and Innovation Campus, Fermi Ave, Didcot OX11 0DE, UK;
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Robert L. Marshall
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Sophie J. Hesketh
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (R.M.J.); (S.J.H.); (M.C.F.)
| | - Matthew C. Feasey
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (R.M.J.); (S.J.H.); (M.C.F.)
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, s.p. 8, Cittadella Universitaria, 09042 Monserrato, Italy; (C.F.); (P.R.); (A.V.V.)
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, s.p. 8, Cittadella Universitaria, 09042 Monserrato, Italy; (C.F.); (P.R.); (A.V.V.)
| | - Vincent L. G. Postis
- Biomedicine Research Group, Faculty of Health and Social Sciences, Leeds Beckett University, Leeds LS1 3HE, UK; (M.P.); (V.L.G.P.)
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (R.M.J.); (S.J.H.); (M.C.F.)
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
33
|
Waghwani HK, Uchida M, Fu CY, LaFrance B, Sharma J, McCoy K, Douglas T. Virus-Like Particles (VLPs) as a Platform for Hierarchical Compartmentalization. Biomacromolecules 2020; 21:2060-2072. [PMID: 32319761 DOI: 10.1021/acs.biomac.0c00030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hierarchically self-assembled structures are common in biology, but it is often challenging to design and fabricate synthetic analogs. The archetypal cell is defined by hierarchically organized multicompartmentalized structures with boundaries that delineate the interior from exterior environments and is an inspiration for complex functional materials. Here, we have demonstrated an approach to the design and construction of a nested protein cage system that can additionally incorporate the packing of other functional macromolecules and exhibit some of the features of a minimal synthetic cell-like material. We have demonstrated a strategy for controlled co-packaging of subcompartments, ferritin (Fn) cages, together with active cellobiose-hydrolyzing β-glycosidase enzyme macromolecules, CelB, inside the sequestered volume of the bacteriophage P22 capsid. Using controlled in vitro assembly, we were able to modulate the stoichiometry of Fn cages and CelB encapsulated inside the P22 to control the degree of compartmentalization. The co-encapsulated enzyme CelB showed catalytic activity even when packaged at high total macromolecular concentrations comparable to an intracellular environment. This approach could be used as a model to create synthetic protein-based protocells that can confine smaller functionalized proto-organelles and additional macromolecules to support a range of biochemical reactions.
Collapse
Affiliation(s)
- Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Masaki Uchida
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States.,Department of Chemistry, California State University Fresno, Fresno, California 93740, United States
| | - Chi-Yu Fu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Benjamin LaFrance
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Jhanvi Sharma
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kimberly McCoy
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
34
|
Wilson DP. Unveiling the Hidden Rules of Spherical Viruses Using Point Arrays. Viruses 2020; 12:v12040467. [PMID: 32326043 PMCID: PMC7232142 DOI: 10.3390/v12040467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Since its introduction, the Triangulation number has been the most successful and ubiquitous scheme for classifying spherical viruses. However, despite its many successes, it fails to describe the relative angular orientations of proteins, as well as their radial mass distribution within the capsid. It also fails to provide any critical insight into sites of stability, modifications or possible mutations. We show how classifying spherical viruses using icosahedral point arrays, introduced by Keef and Twarock, unveils new geometric rules and constraints for understanding virus stability and key locations for exterior and interior modifications. We present a modified fitness measure which classifies viruses in an unambiguous and rigorous manner, irrespective of local surface chemistry, steric hinderance, solvent accessibility or Triangulation number. We then use these point arrays to explain the immutable surface loops of bacteriophage MS2, the relative reactivity of surface lysine residues in CPMV and the non-quasi-equivalent flexibility of the HBV dimers. We then explain how point arrays can be used as a predictive tool for site-directed modifications of capsids. This success builds on our previous work showing that viruses place their protruding features along the great circles of the asymmetric unit, demonstrating that viruses indeed adhere to these geometric constraints.
Collapse
Affiliation(s)
- David P Wilson
- Department of Physics, Kalamazoo College, Kalamazoo, MI 49006, USA
| |
Collapse
|
35
|
Pintilie G, Zhang K, Su Z, Li S, Schmid MF, Chiu W. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat Methods 2020; 17:328-334. [PMID: 32042190 PMCID: PMC7446556 DOI: 10.1038/s41592-020-0731-1] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/31/2019] [Indexed: 01/18/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) maps are now at the point where resolvability of individual atoms can be achieved. However, resolvability is not necessarily uniform throughout the map. We introduce a quantitative parameter to characterize the resolvability of individual atoms in cryo-EM maps, the map Q-score. Q-scores can be calculated for atoms in proteins, nucleic acids, water, ligands and other solvent atoms, using models fitted to or derived from cryo-EM maps. Q-scores can also be averaged to represent larger features such as entire residues and nucleotides. Averaged over entire models, Q-scores correlate very well with the estimated resolution of cryo-EM maps for both protein and RNA. Assuming the models they are calculated from are well fitted to the map, Q-scores can be used as a measure of resolvability in cryo-EM maps at various scales, from entire macromolecules down to individual atoms. Q-score analysis of multiple cryo-EM maps of the same proteins derived from different laboratories confirms the reproducibility of structural features from side chains down to water and ion atoms.
Collapse
Affiliation(s)
- Grigore Pintilie
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA.
| | - Kaiming Zhang
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Zhaoming Su
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Shanshan Li
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA.
| |
Collapse
|
36
|
Luque D, Castón JR. Cryo-electron microscopy for the study of virus assembly. Nat Chem Biol 2020; 16:231-239. [PMID: 32080621 DOI: 10.1038/s41589-020-0477-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Although viruses are extremely diverse in shape and size, evolution has led to a limited number of viral classes or lineages, which is probably linked to the assembly constraints of a viable capsid. Viral assembly mechanisms are restricted to two general pathways, (i) co-assembly of capsid proteins and single-stranded nucleic acids and (ii) a sequential mechanism in which scaffolding-mediated capsid precursor assembly is followed by genome packaging. Cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), which are revolutionizing structural biology, are central to determining the high-resolution structures of many viral assemblies as well as those of assembly intermediates. This wealth of cryo-EM data has also led to the development and redesign of virus-based platforms for biomedical and biotechnological applications. In this Review, we will discuss recent viral assembly analyses by cryo-EM and cryo-ET showing how natural assembly mechanisms are used to encapsulate heterologous cargos including chemicals, enzymes, and/or nucleic acids for a variety of nanotechnological applications.
Collapse
Affiliation(s)
- Daniel Luque
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Madrid, Spain
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
37
|
TrkA undergoes a tetramer-to-dimer conversion to open TrkH which enables changes in membrane potential. Nat Commun 2020; 11:547. [PMID: 31992706 PMCID: PMC6987127 DOI: 10.1038/s41467-019-14240-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023] Open
Abstract
TrkH is a bacterial ion channel implicated in K+ uptake and pH regulation. TrkH assembles with its regulatory protein, TrkA, which closes the channel when bound to ADP and opens it when bound to ATP. However, it is unknown how nucleotides control the gating of TrkH through TrkA. Here we report the structures of the TrkH-TrkA complex in the presence of ADP or ATP. TrkA forms a tetrameric ring when bound to ADP and constrains TrkH to a closed conformation. The TrkA ring splits into two TrkA dimers in the presence of ATP and releases the constraints on TrkH, resulting in an open channel conformation. Functional studies show that both the tetramer-to-dimer conversion of TrkA and the loss of constraints on TrkH are required for channel gating. In addition, deletion of TrkA in Escherichia coli depolarizes the cell, suggesting that the TrkH-TrkA complex couples changes in intracellular nucleotides to membrane potential.
Collapse
|
38
|
Vilas JL, Vargas J, Martinez M, Ramirez-Aportela E, Melero R, Jimenez-Moreno A, Garduño E, Conesa P, Marabini R, Maluenda D, Carazo JM, Sorzano COS. Re-examining the spectra of macromolecules. Current practice of spectral quasi B-factor flattening. J Struct Biol 2020; 209:107447. [PMID: 31911170 DOI: 10.1016/j.jsb.2020.107447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 11/24/2022]
Abstract
The analysis of structure factors in 3D cryo-EM Coulomb potential maps and their "enhancement" at the end of the reconstruction process is a well-established practice, normally referred to as sharpening. The aim is to increase contrast and, in this way, to help tracing the atomic model. The most common way to accomplish this enhancement is by means of the so-called B-factor correction, which applies a global filter to boost high frequencies with some dampening considerations related to noise amplification. The results are maps with a better visual aspect and a quasiflat spectrum at medium and high frequencies. This practice is so widespread that most map depositions in the Electron Microscopy Data Base (EMDB) only contain sharpened maps. Here, the use in cryoEM of global B-factor corrections is theoretically and experimentally analyzed. Results clearly illustrate that protein spectra present a falloff. Thus, spectral quasi-flattening may produce protein spectra with distortions when compared with experimental ones, this fact, combined with the practice of reporting only sharpened maps, generates a sub-optimal situation in terms of data preservation, reuse and reproducibility. Now that the field is more advanced, we put forward two suggestions: (1) to use methods which keep more faithfully the original experimental signal properties of macromolecules when "enhancing" the map, and (2) to further stress the need to deposit the original experimental maps without any postprocessing or sharpening, not only the enhanced maps. In the absence of access to these original maps data is lost, preventing their future analysis with new methods.
Collapse
Affiliation(s)
- J L Vilas
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - J Vargas
- Dept. Anatomy and Cell Biology, McGill Univ., Montreal, Canada
| | - M Martinez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - E Ramirez-Aportela
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - R Melero
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - A Jimenez-Moreno
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - E Garduño
- Department of Computer Science, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - P Conesa
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - R Marabini
- Escuela Politecnica Superior, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - D Maluenda
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - C O S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain; Univ. San Pablo - CEU, Campus Urb. Monteprincipe, 28668 Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
39
|
Gruza B, Chodkiewicz ML, Krzeszczakowska J, Dominiak PM. Refinement of organic crystal structures with multipolar electron scattering factors. Acta Crystallogr A Found Adv 2020; 76:92-109. [PMID: 31908353 PMCID: PMC8127334 DOI: 10.1107/s2053273319015304] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
A revolution in resolution is occurring now in electron microscopy arising from the development of methods for imaging single particles at cryogenic temperatures and obtaining electron diffraction data from nanocrystals of small organic molecules or macromolecules. Near-atomic or even atomic resolution of molecular structures can be achieved. The basis of these methods is the scattering of an electron beam due to the electrostatic potential of the sample. To analyse these high-quality experimental data, it is necessary to use appropriate atomic scattering factors. The independent atom model (IAM) is commonly used although various more advanced models, already known from X-ray diffraction, can also be applied to enhance the analysis. In this study a comparison is presented of IAM and TAAM (transferable aspherical atom model), the latter with the parameters of the Hansen-Coppens multipole model transferred from the University at Buffalo Databank (UBDB). By this method, TAAM takes into account the fact that atoms in molecules are partially charged and are not spherical. Structure refinements were performed on a carbamazepine crystal using electron structure-factor amplitudes determined experimentally [Jones et al. (2018). ACS Cent. Sci. 4, 1587-1592] or modelled with theoretical quantum-mechanical methods. The results show the possibilities and limitations of the TAAM method when applied to electron diffraction. Among others, the method clearly improves model fitting statistics, when compared with IAM, and allows for reliable refinement of atomic thermal parameters. The improvements are more pronounced with poorer-resolution diffraction data.
Collapse
Affiliation(s)
- Barbara Gruza
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw, 02-089, Poland
| | - Michał Leszek Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw, 02-089, Poland
| | - Joanna Krzeszczakowska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw, 02-089, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw, 02-089, Poland
| |
Collapse
|
40
|
Terwilliger TC, Adams PD, Afonine PV, Sobolev OV. Cryo-EM map interpretation and protein model-building using iterative map segmentation. Protein Sci 2020; 29:87-99. [PMID: 31599033 PMCID: PMC6933853 DOI: 10.1002/pro.3740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022]
Abstract
A procedure for building protein chains into maps produced by single-particle electron cryo-microscopy (cryo-EM) is described. The procedure is similar to the way an experienced structural biologist might analyze a map, focusing first on secondary structure elements such as helices and sheets, then varying the contour level to identify connections between these elements. Since the high density in a map typically follows the main-chain of the protein, the main-chain connection between secondary structure elements can often be identified as the unbranched path between them with the highest minimum value along the path. This chain-tracing procedure is then combined with finding side-chain positions based on the presence of density extending away from the main path of the chain, allowing generation of a Cα model. The Cα model is converted to an all-atom model and is refined against the map. We show that this procedure is as effective as other existing methods for interpretation of cryo-EM maps and that it is considerably faster and produces models with fewer chain breaks than our previous methods that were based on approaches developed for crystallographic maps.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- Los Alamos National LaboratoryLos AlamosNew Mexico
- New Mexico ConsortiumLos AlamosNew Mexico
| | - Paul D. Adams
- Molecular Biophysics & Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
- Department of BioengineeringUniversity of California BerkeleyBerkeleyCalifornia
| | - Pavel V. Afonine
- Molecular Biophysics & Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Oleg V. Sobolev
- Molecular Biophysics & Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| |
Collapse
|
41
|
Ladrón-de-Guevara E, Dominguez L, Rangel-Yescas GE, Fernández-Velasco DA, Torres-Larios A, Rosenbaum T, Islas LD. The Contribution of the Ankyrin Repeat Domain of TRPV1 as a Thermal Module. Biophys J 2019; 118:836-845. [PMID: 31757360 DOI: 10.1016/j.bpj.2019.10.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
The TRPV1 cation nonselective ion channel plays an essential role in thermosensation and perception of other noxious stimuli. TRPV1 can be activated by low extracellular pH, high temperature, or naturally occurring pungent molecules such as allicin, capsaicin, or resiniferatoxin. Its noxious thermal sensitivity makes it an important participant as a thermal sensor in mammals. However, details of the mechanism of channel activation by increases in temperature remain unclear. Here, we used a combination of approaches to try to understand the role of the ankyrin repeat domain (ARD) in channel behavior. First, a computational modeling approach by coarse-grained molecular dynamics simulation of the whole TRPV1 embedded in a phosphatidylcholine and phosphatidylethanolamine membrane provides insight into the dynamics of this channel domain. Global analysis of the structural ensemble shows that the ARD is a region that sustains high fluctuations during dynamics at different temperatures. We then performed biochemical and thermal stability studies of the purified ARD by the means of circular dichroism and tryptophan fluorescence and demonstrate that this region undergoes structural changes at similar temperatures that lead to TRPV1 activation. Our data suggest that the ARD is a dynamic module and that it may participate in controlling the temperature sensitivity of TRPV1.
Collapse
Affiliation(s)
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Mexico City, Mexico
| | | | | | - Alfredo Torres-Larios
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tamara Rosenbaum
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leon D Islas
- Facultad de Medicina, Departamento de Fisiología, Mexico City, Mexico.
| |
Collapse
|
42
|
Heffron J, McDermid B, Maher E, McNamara PJ, Mayer BK. Mechanisms of virus mitigation and suitability of bacteriophages as surrogates in drinking water treatment by iron electrocoagulation. WATER RESEARCH 2019; 163:114877. [PMID: 31349091 DOI: 10.1016/j.watres.2019.114877] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 05/03/2023]
Abstract
Emerging water treatment technologies using ferrous and zero-valent iron show promising virus mitigation by both inactivation and adsorption. In this study, iron electrocoagulation was investigated for virus mitigation in drinking water via bench-scale batch experiments. Relative contributions of physical removal and inactivation, as determined by recovery via pH 9.5 beef broth elution, were investigated for three mammalian viruses (adenovirus, echovirus, and feline calicivirus) and four bacteriophage surrogates (fr, MS2, P22, and ΦX174). Though no one bacteriophage exactly represented mitigation of the mammalian viruses in all water matrices, bacteriophage ΦX174 was the only surrogate that showed overall removal comparable to that of the mammalian viruses. Bacteriophages fr, MS2, and P22 were all more susceptible to inactivation than the three mammalian viruses, raising concerns about the suitability of these common surrogates as indicators of virus mitigation. To determine why some bacteriophages were particularly susceptible to inactivation, mechanisms of bacteriophage mitigation due to electrocoagulation were investigated. Physical removal was primarily due to inclusion in flocs, while inactivation was primarily due to ferrous iron oxidation. Greater electrostatic attraction, virus aggregation, and capsid durability were proposed as reasons for virus susceptibility to ferrous-based inactivation. Results suggest that overall treatment claims based on bacteriophage mitigation for any iron-based technology should be critically considered due to higher susceptibility of bacteriophages to inactivation via ferrous oxidation.
Collapse
Affiliation(s)
- Joe Heffron
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Brad McDermid
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Emily Maher
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Patrick J McNamara
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave., Milwaukee, WI, 53233, USA.
| |
Collapse
|
43
|
Capsid expansion of bacteriophage T5 revealed by high resolution cryoelectron microscopy. Proc Natl Acad Sci U S A 2019; 116:21037-21046. [PMID: 31578255 DOI: 10.1073/pnas.1909645116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The large (90-nm) icosahedral capsid of bacteriophage T5 is composed of 775 copies of the major capsid protein (mcp) together with portal, protease, and decoration proteins. Its assembly is a regulated process that involves several intermediates, including a thick-walled round precursor prohead that expands as the viral DNA is packaged to yield a thin-walled and angular mature capsid. We investigated capsid maturation by comparing cryoelectron microscopy (cryo-EM) structures of the prohead, the empty expanded capsid both with and without decoration protein, and the virion capsid at a resolution of 3.8 Å for the latter. We detail the molecular structure of the mcp, its complex pattern of interactions, and their evolution during maturation. The bacteriophage T5 mcp is a variant of the canonical HK97-fold with a high level of plasticity that allows for the precise assembly of a giant macromolecule and the adaptability needed to interact with other proteins and the packaged DNA.
Collapse
|
44
|
Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure. Nat Commun 2019; 10:4471. [PMID: 31578335 PMCID: PMC6775164 DOI: 10.1038/s41467-019-12341-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/31/2019] [Indexed: 12/21/2022] Open
Abstract
The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we use cryoelectron microscopy to determine the capsid structure of thermostable phage P74-26 to 2.8-Å resolution. We find P74-26 capsids exhibit an overall architecture very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T = 7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased with a larger, flatter major capsid protein. Given these results, we predict decreased icosahedral complexity (i.e. T ≤ 7) leads to a more stable capsid assembly. Viral capsids need to protect the genome against harsh environmental conditions and cope with high internal pressure from the packaged genome. Here, the authors determine the structure of the thermostable phage P74-26 capsid at 2.8-Å resolution and identify features underlying enhanced capsid capacity and structural stability.
Collapse
|
45
|
Klaholz BP. Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis. Acta Crystallogr D Struct Biol 2019; 75:878-881. [PMID: 31588919 PMCID: PMC6778849 DOI: 10.1107/s2059798319013391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023] Open
Abstract
In structural biology, deriving and refining atomic models into maps obtained from X-ray crystallography or cryo electron microscopy (cryo-EM) is essential for the detailed interpretation of a structure and its functional implications through interactions so that for example hydrogen bonds, drug specificity and associated molecular mechanisms can be analysed. This commentary summarizes the latest features of the Phenix software and also highlights the fact that cryo-EM increasingly contributes to data depositions in the PDB and EMDB.
Collapse
Affiliation(s)
- Bruno P. Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 1 rue Laurent Fries, Illkirch 67404, France
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
46
|
Jin H, Jiang YL, Yang F, Zhang JT, Li WF, Zhou K, Ju J, Chen Y, Zhou CZ. Capsid Structure of a Freshwater Cyanophage Siphoviridae Mic1. Structure 2019; 27:1508-1516.e3. [DOI: 10.1016/j.str.2019.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
|
47
|
Marques MA, Purdy MD, Yeager M. CryoEM maps are full of potential. Curr Opin Struct Biol 2019; 58:214-223. [PMID: 31400843 DOI: 10.1016/j.sbi.2019.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 01/08/2023]
Abstract
Electron microscopy is based on elastic scattering due to Coulomb forces between the incident electrons and the sample; thus, electron scattering is dependent on the charge distribution in the sample. Unlike atomic scattering factors for X-rays, electron scattering factors for some atoms are strongly dependent on scattering angle, and the scattering factor for ionic oxygen is negative at low scattering angle. This phenomenon can result in a significant negative contribution to Coulomb potential maps by oxygen and can result in deviations in the positions of positive map features from atomic centers. An important factor that can also complicate the interpretation of cryoEM maps is the exquisite sensitivity of macromolecules to damage from electron irradiation, especially the carboxylates of acidic amino acids. Ideally, when compared with electron density maps derived by X-ray crystallography, Coulomb potential maps can provide additional details about the electrostatic environment and charge state of atoms. Enhancements in model building, refinement and computational simulation will be required to realize the full potential of EM-derived maps to reveal deeper insight into the electronic structure and functional properties of macromolecular complexes and their interactions with binding partners, ligands, cofactors, and drugs.
Collapse
Affiliation(s)
- Mayra A Marques
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael D Purdy
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
48
|
Asija K, Teschke CM. Of capsid structure and stability: The partnership between charged residues of E-loop and P-domain of the bacteriophage P22 coat protein. Virology 2019; 534:45-53. [PMID: 31176063 PMCID: PMC6614003 DOI: 10.1016/j.virol.2019.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 01/14/2023]
Abstract
Tailed dsDNA bacteriophages and herpesviruses form capsids using coat proteins that have the HK97 fold. In these viruses, the coat proteins first assemble into procapsids, which subsequently mature during DNA packaging. Generally interactions between the coat protein E-loop of one subunit and the P-domain of an adjacent subunit help stabilize both capsomers and capsids. Based on a recent 3.3 Å cryo-EM structure of the bacteriophage P22 virion, E-loop amino acids E52, E59 and E72 were suggested to stabilize the capsid through intra-capsomer salt bridges with the P-domain residues R102, R109 and K118. The glutamic acid residues were each mutated to alanine to test this hypothesis. The substitutions resulted in a WT phenotype and did not destabilize capsids; rather, the alanine substituted coat proteins increased the stability of procapsids and virions. These results indicate that different types of interactions must be used between the E-loop and P-domain to stabilize phage P22 procapsids and virions.
Collapse
Affiliation(s)
- Kunica Asija
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA; Department of Chemistry, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
49
|
Vallotton P, Rajoo S, Wojtynek M, Onischenko E, Kralt A, Derrer CP, Weis K. Mapping the native organization of the yeast nuclear pore complex using nuclear radial intensity measurements. Proc Natl Acad Sci U S A 2019; 116:14606-14613. [PMID: 31262825 PMCID: PMC6642398 DOI: 10.1073/pnas.1903764116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selective transport across the nuclear envelope (NE) is mediated by the nuclear pore complex (NPC), a massive ∼100-MDa assembly composed of multiple copies of ∼30 nuclear pore proteins (Nups). Recent advances have shed light on the composition and structure of NPCs, but approaches that could map their organization in live cells are still lacking. Here, we introduce an in vivo method to perform nuclear radial intensity measurements (NuRIM) using fluorescence microscopy to determine the average position of NE-localized proteins along the nucleocytoplasmic transport axis. We apply NuRIM to study the organization of the NPC and the mobile transport machinery in budding yeast. This reveals a unique snapshot of the intact yeast NPC and identifies distinct steady-state localizations for various NE-associated proteins and nuclear transport factors. We find that the NPC architecture is robust against compositional changes and could also confirm that in contrast to Chlamydomonas reinhardtii, the scaffold Y complex is arranged symmetrically in the yeast NPC. Furthermore, NuRIM was applied to probe the orientation of intrinsically disordered FG-repeat segments, providing insight into their roles in selective NPC permeability and structure.
Collapse
Affiliation(s)
- Pascal Vallotton
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland;
| | - Sasikumar Rajoo
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Evgeny Onischenko
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland
| | - Annemarie Kralt
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland
| | - Carina Patrizia Derrer
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland
| | - Karsten Weis
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich (ETH Zürich), 8093 Zürich, Switzerland;
| |
Collapse
|
50
|
Asija K, Teschke CM. A Hydrophobic Network: Intersubunit and Intercapsomer Interactions Stabilizing the Bacteriophage P22 Capsid. J Virol 2019; 93:e00727-19. [PMID: 31068429 PMCID: PMC6600197 DOI: 10.1128/jvi.00727-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Double-stranded DNA (dsDNA) tailed phages and herpesviruses assemble their capsids using coat proteins that have the ubiquitous HK97 fold. Though this fold is common, we do not have a thorough understanding of the different ways viruses adapt it to maintain stability in various environments. The HK97-fold E-loop, which connects adjacent subunits at the outer periphery of capsomers, has been implicated in capsid stability. Here, we show that in bacteriophage P22, residue W61 at the tip of the E-loop plays a role in stabilizing procapsids and in maturation. We hypothesize that a hydrophobic pocket is formed by residues I366 and W410 in the P domain of a neighboring subunit within a capsomer, into which W61 fits like a peg. In addition, W61 likely bridges to residues A91 and L401 in P-domain loops of an adjacent capsomer, thereby linking the entire capsid together with a network of hydrophobic interactions. There is conservation of this hydrophobic network in the distantly related P22-like phages, indicating that this structural feature is likely important for stabilizing this family of phages. Thus, our data shed light on one of the varied elegant mechanisms used in nature to consistently build stable viral genome containers through subtle adaptation of the HK97 fold.IMPORTANCE Similarities in assembly reactions and coat protein structures of the dsDNA tailed phages and herpesviruses make phages ideal models to understand capsid assembly and identify potential targets for antiviral drug discovery. The coat protein E-loops of these viruses are involved in both intra- and intercapsomer interactions. In phage P22, hydrophobic interactions peg the coat protein subunits together within a capsomer, where the E-loop hydrophobic residue W61 of one subunit packs into a pocket of hydrophobic residues I366 and W410 of the adjacent subunit. W61 also makes hydrophobic interactions with A91 and L401 of a subunit in an adjacent capsomer. We show these intra- and intercapsomer hydrophobic interactions form a network crucial to capsid stability and proper assembly.
Collapse
Affiliation(s)
- Kunica Asija
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|