1
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Kim YJ, Kim K, Lee Y, Min HW, Ko YH, Lee BR, Hur KH, Kim SK, Lee SY, Jang CG. The mutated cytoplasmic fragile X messenger ribonucleoprotein 1 (FMR1)-interacting protein 2 (CYFIP2 S968F) regulates cocaine-induced reward behaviour and plasticity in the nucleus accumbens. Br J Pharmacol 2024; 181:3327-3345. [PMID: 38751203 DOI: 10.1111/bph.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Cytoplasmic fragile X messenger ribonucleoprotein 1 (FMR1)-interacting protein 2 (CYFIP2), as a component of the Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) regulatory complex, is involved in actin polymerization, contributing to neuronal development and structural plasticity. Mutating serine-968 to phenylalanine (S968F) in CYFIP2 causes an altered cocaine response in mice. The neuronal mechanisms underlying this response remain unknown. EXPERIMENTAL APPROACH We performed cocaine reward-related behavioural tests and examined changes in synaptic protein phenotypes and neuronal morphology in the nucleus accumbens (NAc), using CYFIP2 S968F knock-in mice to investigate the role of CYFIP2 in regulating cocaine reward. KEY RESULTS CYFIP2 S968F mutation attenuated cocaine-induced behavioural sensitization and conditioned place preference. Cocaine-induced c-Fos was not observed in the NAc of CYFIP2 S968F knock-in mice. However, c-Fos induction was still evident in the medial prefrontal cortex (mPFC). CYFIP2 S968F mutation altered cocaine-associated CYFIP2 signalling, glutamatergic protein expression and synaptic density in the NAc following cocaine exposure. To further determine the role of CYFIP2 in NAc neuronal activity and the mPFC projecting to the NAc activity-mediating reward response, we used optogenetic tools to stimulate the NAc or mPFC-NAc pathway and observed that optogenetic activation of the NAc or mPFC-NAc pathway induced reward-related behaviours. This effect was not observed in the S968F mutation in CYFIP2. CONCLUSION AND IMPLICATIONS These results suggest that CYFIP2 plays a role in controlling cocaine-mediated neuronal function and structural plasticity in the NAc, and that CYFIP2 could serve as a target for regulating cocaine reward.
Collapse
Affiliation(s)
- Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyungin Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hee-Won Min
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
3
|
Gupta SC, Taugher-Hebl RJ, Hardie JB, Fan R, LaLumiere RT, Wemmie JA. Effects of acid-sensing ion channel-1A (ASIC1A) on cocaine-induced synaptic adaptations. Front Physiol 2023; 14:1191275. [PMID: 37389125 PMCID: PMC10300415 DOI: 10.3389/fphys.2023.1191275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Chronic drug abuse is thought to induce synaptic changes in nucleus accumbens medium spiny neurons (MSNs) that promote subsequent craving and drug-seeking behavior. Accumulating data suggest acid-sensing ion channels (ASICs) may play a critical role. In drug naïve mice, disrupting the ASIC1A subunit produced a variety of synaptic changes reminiscent of wild-type mice following cocaine withdrawal, including increased AMPAR/NMDAR ratio, increased AMPAR rectification, and increased dendrite spine density. Importantly, these changes in Asic1a -/- mice were normalized by a single dose of cocaine. Here we sought to understand the temporal effects of cocaine exposure in Asic1a -/- mice and the cellular site of ASIC1A action. Six hours after cocaine exposure, there was no effect. However, 15 h, 24 h and 4 days after cocaine exposure there was a significant reduction in AMPAR/NMDAR ratio in Asic1a -/- mice. Within 7 days the AMPAR/NMDAR ratio had returned to baseline levels. Cocaine-evoked changes in AMPAR rectification and dendritic spine density followed a similar time course with significant reductions in rectification and dendritic spines 24 h after cocaine exposure in Asic1a -/- mice. To test the cellular site of ASIC1A action on these responses, we disrupted ASIC1A specifically in a subpopulation of MSNs. We found that effects of ASIC1A disruption were cell autonomous and restricted to neurons in which the channels are disrupted. We further tested whether ASIC1A disruption differentially affects MSNs subtypes and found AMPAR/NMDAR ratio was elevated in dopamine receptor 1-expressing MSNs, suggesting a preferential effect for these cells. Finally, we tested if protein synthesis was involved in synaptic adaptations that occurred after ASIC1A disruption, and found the protein synthesis inhibitor anisomycin normalized AMPAR-rectification and AMPAR/NMDAR ratio in drug-naïve Asic1a -/- mice to control levels, observed in wild-type mice. Together, these results provide valuable mechanistic insight into the effects of ASICs on synaptic plasticity and drug-induced effects and raise the possibility that ASIC1A might be therapeutically manipulated to oppose drug-induced synaptic changes and behavior.
Collapse
Affiliation(s)
- Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Jason B. Hardie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Liu M, Mu S, Han W, Tan X, Liu E, Hang Z, Zhu S, Yue Q, Sun J. Dopamine D1 receptor in orbitofrontal cortex to dorsal striatum pathway modulates methamphetamine addiction. Biochem Biophys Res Commun 2023; 671:96-104. [PMID: 37300946 DOI: 10.1016/j.bbrc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The orbitofrontal cortex (OFC)-dorsal striatum (DS) is an important neural circuit that contributes to addictive behavior, including compulsive reinforcement, yet the specific types of neurons that play a major role still need to be further elucidated. Here, we used a place conditioning paradigm to measure the conditioned responses to methamphetamine (MA). The results demonstrated that MA increases the expression of c-Fos, synaptic plasticity in OFC and DS. Patch-clamp recording showed that MA activated projection neurons from the OFC to the DS, and chemogenetic manipulation of neuronal activity in OFC-DS projection neurons affects conditioned place preference (CPP) scores. And the combined patch-electrochemical technique was used to detect the DA release in OFC, the data indicated that the DA release was increased in MA group. Additionally, SCH23390, a D1R antagonist, was used to verify the function of D1R projection neurons, showing that SCH23390 reversed MA addiction-like behavior. Collectively, these findings provide evidence for the D1R neuron is sufficient to regulate MA addiction in the OFC-DS pathway, and the study provides new insight into the underlying mechanism of pathological changes in MA addiction.
Collapse
Affiliation(s)
- Min Liu
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shouhong Mu
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Weikai Han
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xu Tan
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - E Liu
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhaofang Hang
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shaowei Zhu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Qingwei Yue
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jinhao Sun
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
5
|
Han KA, Ko J. Orchestration of synaptic functions by WAVE regulatory complex-mediated actin reorganization. Exp Mol Med 2023; 55:1065-1075. [PMID: 37258575 PMCID: PMC10318009 DOI: 10.1038/s12276-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The WAVE regulatory complex (WRC), composed of five components-Cyfip1/Sra1, WAVE/Scar, Abi, Nap1/Nckap1, and Brk1/HSPC300-is essential for proper actin cytoskeletal dynamics and remodeling in eukaryotic cells, likely by matching various patterned signals to Arp2/3-mediated actin nucleation. Accumulating evidence from recent studies has revealed diverse functions of the WRC in neurons, demonstrating its crucial role in dictating the assembly of molecular complexes for the patterning of various trans-synaptic signals. In this review, we discuss recent exciting findings on the physiological role of the WRC in regulating synaptic properties and highlight the involvement of WRC dysfunction in various brain disorders.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
6
|
Chen H, Chen L, Yuan Z, Yuan J, Li Y, Xu Y, Wu J, Zhang L, Wang G, Li J. Glutamate receptor-interacting protein 1 in D1- and D2-dopamine receptor-expressing medium spiny neurons differentially regulates cocaine acquisition, reinstatement, and associated spine plasticity. Front Cell Neurosci 2022; 16:979078. [PMID: 36406750 PMCID: PMC9669444 DOI: 10.3389/fncel.2022.979078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND The nucleus accumbens (NAc) is involved in the expression of cocaine addictive phenotypes, including acquisition, extinction, and reinstatement. In the NAc, D1-medium spiny neurons (MSNs) encode cocaine reward, whereas D2-MSNs encode aversive responses in drug addiction. Glutamate receptor-interacting protein 1 (GRIP1) is known to be associated with cocaine addiction, but the role of GRIP1 in D1-MSNs and D2-MSNs of the NAc in cocaine acquisition and reinstatement remains unknown. METHODS A conditioned place preference apparatus was used to establish cocaine acquisition, extinction, and reinstatement in mouse models. GRIP1 expression was evaluated using Western blotting. Furthermore, GRIP1-siRNA and GRIP1 overexpression lentivirus were used to interfere with GRIP1 in the NAc. After the behavioral test, green fluorescent protein immunostaining of brain slices was used to detect spine density. RESULTS GRIP1 expression decreased during cocaine acquisition and reinstatement. GRIP1-siRNA enhanced cocaine-induced CPP behavior in acquisition and reinstatement and regulated associated spine plasticity. Importantly, the decreased GRIP1 expression that mediated cocaine acquisition and reinstatement was mainly driven by the interference of the GRIP1-GluA2 interaction in D1-MSNs and could be blocked by the interference of the GRIP1-GluA2 interaction in D2-MSNs. Interference with the GRIP1-GluA2 interaction in D1- and D2-MSNs decreased spine density in D1- and D2-MSNs, respectively. CONCLUSION GRIP1 in D1- and D2-MSNs of the NAc differentially modulates cocaine acquisition and reinstatement. GRIP1 downregulation in D1-MSNs has a positive effect on cocaine acquisition and reinstatement, while GRIP1 downregulation in D2-MSNs has a negative effect. Additionally, GRIP1 downregulation in D1-MSNs plays a leading role in cocaine acquisition and reinstatement.
Collapse
Affiliation(s)
- He Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Limei Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhirong Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiajie Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yitong Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuesi Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jieyi Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guohua Wang
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, China
| | - Juan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Inactivation of the Lateral Hypothalamus Attenuates Methamphetamine-Induced Conditioned Place Preference through Regulation of Kcnq3 Expression. Int J Mol Sci 2022; 23:ijms23137305. [PMID: 35806315 PMCID: PMC9266452 DOI: 10.3390/ijms23137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022] Open
Abstract
Repeated administration of methylamphetamine (MA) induces MA addiction, which is featured by awfully unpleasant physical and emotional experiences after drug use is terminated. Neurophysiological studies show that the lateral hypothalamus (LH) is involved in reward development and addictive behaviors. Here, we show that repeated administration of MA activates the expression of c-Fos in LH neurons responding to conditioned place preference (CPP). Chemogenetic inhibition of the LH can disrupt the addiction behavior, demonstrating that the LH plays an important role in MA-induced reward processing. Critically, MA remodels the neurons of LH synaptic plasticity, increases intracellular calcium level, and enhances spontaneous current and evoked potentials of neurons compared to the saline group. Furthermore, overexpression of the potassium voltage-gated channel subfamily Q member 3 (Kcnq3) expression can reverse the CPP score and alleviate the occurrence of addictive behaviors. Together, these results unravel a new neurobiological mechanism underlying the MA-induced addiction in the lateral hypothalamus, which could pave the way toward new and effective interventions for this addiction disease.
Collapse
|
8
|
Zhou H, Zhang J, Shi H, Li P, Sui X, Wang Y, Wang L. Downregulation of CDK5 signaling in the dorsal striatum alters striatal microcircuits implicating the association of pathologies with circadian behavior in mice. Mol Brain 2022; 15:53. [PMID: 35701839 PMCID: PMC9195255 DOI: 10.1186/s13041-022-00939-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of striatal dopaminergic circuits has been implicated in motor impairment and Parkinson’s disease (PD)-related circadian perturbations that may represent an early prodromal marker of PD. Cyclin-dependent kinase 5 (CDK5) negatively regulates dopamine signaling in the striatum, suggesting a critical role of CDK5 in circadian and sleep disorders. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to produce mice with a dorsal striatum (DS)-specific knockdown (KD) of the Cdk5 gene (referred to as DS-CDK5-KD mice) and investigate its role in vivo. DS-CDK5-KD mice exhibited deficits in locomotor activity and disturbances in activity/rest behavior. Additionally, Golgi staining of neurons in the DS revealed that CDK5 deletion reduced dendrite length and the number of functional synapses, which was confirmed by significant downregulation of MAP2, PSD-95, and synapsin I. Correlated with this, DS-CDK5-KD mice displayed reduced phosphorylation of Tau at Thr181. Furthermore, whole-cell patch-clamp recordings of green fluorescent protein-tagged neurons in the striatum of DS-CDK5-KD mice revealed a decreased frequency of spontaneous inhibitory postsynaptic currents and altered excitatory/inhibitory synaptic balance. Notably, anterograde labeling showed that CDK5 KD in the DS disrupted long-range projections to the secondary motor cortex, dorsal and ventral thalamic nuclei, and basolateral amygdala, which are involved in the regulation of motor and circadian rhythms in the brain. These findings support a critical role of CDK5 in the DS in maintaining the striatal neural circuitry underlying motor functions and activity/rest associated with circadian rhythms that are perturbed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hu Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingxin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huaxiang Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengfei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
9
|
Allichon MC, Ortiz V, Pousinha P, Andrianarivelo A, Petitbon A, Heck N, Trifilieff P, Barik J, Vanhoutte P. Cell-Type-Specific Adaptions in Striatal Medium-Sized Spiny Neurons and Their Roles in Behavioral Responses to Drugs of Abuse. Front Synaptic Neurosci 2022; 13:799274. [PMID: 34970134 PMCID: PMC8712310 DOI: 10.3389/fnsyn.2021.799274] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Drug addiction is defined as a compulsive pattern of drug-seeking- and taking- behavior, with recurrent episodes of abstinence and relapse, and a loss of control despite negative consequences. Addictive drugs promote reinforcement by increasing dopamine in the mesocorticolimbic system, which alters excitatory glutamate transmission within the reward circuitry, thereby hijacking reward processing. Within the reward circuitry, the striatum is a key target structure of drugs of abuse since it is at the crossroad of converging glutamate inputs from limbic, thalamic and cortical regions, encoding components of drug-associated stimuli and environment, and dopamine that mediates reward prediction error and incentive values. These signals are integrated by medium-sized spiny neurons (MSN), which receive glutamate and dopamine axons converging onto their dendritic spines. MSN primarily form two mostly distinct populations based on the expression of either DA-D1 (D1R) or DA-D2 (D2R) receptors. While a classical view is that the two MSN populations act in parallel, playing antagonistic functional roles, the picture seems much more complex. Herein, we review recent studies, based on the use of cell-type-specific manipulations, demonstrating that dopamine differentially modulates dendritic spine density and synapse formation, as well as glutamate transmission, at specific inputs projecting onto D1R-MSN and D2R-MSN to shape persistent pathological behavioral in response to drugs of abuse. We also discuss the identification of distinct molecular events underlying the detrimental interplay between dopamine and glutamate signaling in D1R-MSN and D2R-MSN and highlight the relevance of such cell-type-specific molecular studies for the development of innovative strategies with potential therapeutic value for addiction. Because drug addiction is highly prevalent in patients with other psychiatric disorders when compared to the general population, we last discuss the hypothesis that shared cellular and molecular adaptations within common circuits could explain the co-occurrence of addiction and depression. We will therefore conclude this review by examining how the nucleus accumbens (NAc) could constitute a key interface between addiction and depression.
Collapse
Affiliation(s)
- Marie-Charlotte Allichon
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Vanesa Ortiz
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Paula Pousinha
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Andry Andrianarivelo
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Anna Petitbon
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Nicolas Heck
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Jacques Barik
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Peter Vanhoutte
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| |
Collapse
|
10
|
Kawahara Y, Ohnishi YN, Ohnishi YH, Kawahara H, Nishi A. Distinct Role of Dopamine in the PFC and NAc During Exposure to Cocaine-Associated Cues. Int J Neuropsychopharmacol 2021; 24:988-1001. [PMID: 34626116 PMCID: PMC8653875 DOI: 10.1093/ijnp/pyab067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dopamine neurotransmission plays a critical role in reward in drug abuse and drug addiction. However, the role of dopamine in the recognition of drug-associated environmental stimuli, retrieval of drug-associated memory, and drug-seeking behaviors is not fully understood. METHODS Roles of dopamine neurotransmission in the prefrontal cortex (PFC) and nucleus accumbens (NAc) in the cocaine-conditioned place preference (CPP) paradigm were evaluated using in vivo microdialysis. RESULTS In mice that had acquired cocaine CPP, dopamine levels in the PFC, but not in the NAc, increased in response to cocaine-associated cues when mice were placed in the cocaine chamber of an apparatus with 2 separated chambers. The induction of the dopamine response and the development of cocaine CPP were mediated through activation of glutamate NMDA (N-methyl-D-aspartate)/AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor signaling in the PFC during conditioning. Activation of dopamine D1 or D2 receptor signaling in the PFC was required for cocaine-induced locomotion, but not for the induction of the dopamine response or the development of cocaine CPP. Interestingly, dopamine levels in the NAc increased in response to cocaine-associated cues when mice were placed at the center of an apparatus with 2 connected chambers, which requires motivated exploration associated with cocaine reward. CONCLUSIONS Dopamine neurotransmission in the PFC is activated by the exposure to the cocaine-associated cues, whereas dopamine neurotransmission in the NAc is activated in a process of motivated exploration of cues associated with cocaine reward. Furthermore, the glutamate signaling cascade in the PFC is suggested to be a potential therapeutic target to prevent the progression of drug addiction.
Collapse
Affiliation(s)
- Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan,Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan,Correspondence: Yukie Kawahara, DDS, PhD, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan ()
| | - Yoshinori N Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Yoko H Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroshi Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
11
|
Nguyen ATM, Quach TVB, Kotha P, Chien SY, MacDonald IJ, Lane HY, Tu CH, Lin JG, Chen YH. Electroacupuncture prevents cocaine-induced conditioned place preference reinstatement and attenuates ΔFosB and GluR2 expression. Sci Rep 2021; 11:13694. [PMID: 34211013 PMCID: PMC8249658 DOI: 10.1038/s41598-021-93014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Acupuncture has been used for treating drug addiction since the 1970s, but little is known about the mechanisms by which acupuncture affects drug cue-induced relapse. The transcription factor delta-FosB (ΔFosB) plays a critical role in behavior and pathology after chronic use of cocaine. ΔFosB regulates glutamate receptor signaling and dendritic spine morphology in animal models. This experimental study compared the effects of electroacupuncture (EA) at acupoints LI4 and LI11 with those of another potentially beneficial intervention, gabapentin (GBP), alone or in combination, on reinstatement of cocaine-induced conditioned place preference (CPP) and levels of ΔFosB and glutamate receptor subunit 2 (GluR2) expression in the nucleus accumbens (NAc). EA at LI4 and LI11 significantly prevented cue-induced cocaine CPP reinstatement, whereas needle insertion without electrical stimulation at these acupoints had no such effect. EA also significantly attenuated cocaine-induced increases in ΔFosB and GluR2 expression in the NAc. Unexpectedly, these effects were reversed when GBP was combined with EA. Treatment with EA at LI4 and LI11 prevented cocaine-induced increases in dendritic spine density in the NAc core and shell. Our results suggest that EA at LI4 and LI11 may prevent cocaine relapse by modulating ΔFosB and GluR2 expression, as well as dendritic spine density.
Collapse
Affiliation(s)
- Ai T M Nguyen
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tran V B Quach
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Peddanna Kotha
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Iona J MacDonald
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Cheng-Hao Tu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
12
|
Paul Greengard: A persistent desire to comprehend the brain, and also to fix it. ADVANCES IN PHARMACOLOGY 2020; 90:1-18. [PMID: 33706929 DOI: 10.1016/bs.apha.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Paul Greengard's name is and will remain profoundly associated with Neuroscience, with brain signaling and chemical transmission, with Parkinson's and Alzheimer's diseases, with fundamental discoveries and solving paradoxes, but much less perhaps with drug discovery. This should not be mistaken as disdain. Paul in fact did contemplate developing therapeutic avenues to actually treat brain diseases much more than it is known, perhaps during his entire career, and certainly over the last two decades. As a matter of fact, he did more than contemplate it, he directly and indirectly contributed in the development of treatments for neurological diseases and disorders. Paul's impact on fundamental aspects of the brain has been so gargantuan that any other aspect of Paul's life will have difficulty to shine. It is precisely this less known aspect of Paul's career that will be covered in this review. We will discover how Paul very early on moved away from biophysics to avoid working on nuclear weapons and instead started his career in the pharmacological spheres of a large pharmaceutical company.
Collapse
|
13
|
Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020; 9:cells9040835. [PMID: 32244264 PMCID: PMC7226772 DOI: 10.3390/cells9040835] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Collapse
|
14
|
Dopamine D 1 and D 2 Receptors Differentially Regulate Rac1 and Cdc42 Signaling in the Nucleus Accumbens to Modulate Behavioral and Structural Plasticity After Repeated Methamphetamine Treatment. Biol Psychiatry 2019; 86:820-835. [PMID: 31060803 DOI: 10.1016/j.biopsych.2019.03.966] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/21/2019] [Accepted: 03/03/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Methamphetamine (METH) is a highly addictive psychostimulant that strongly activates dopamine receptor signaling in the nucleus accumbens (NAc). However, how dopamine D1 and D2 receptors (D1Rs and D2Rs, respectively) as well as downstream signaling pathways, such as those involving Rac1 and Cdc42, modulate METH-induced behavioral and structural plasticity is largely unknown. METHODS Using NAc conditional D1R and D2R deletion mice, Rac1 and Cdc42 mutant viruses, and a series of behavioral and morphological methods, we assessed the effects of D1Rs and D2Rs on Rac1 and Cdc42 in modulating METH-induced behavioral and structural plasticity in the NAc. RESULTS D1Rs and D2Rs in the NAc consistently regulated METH-induced conditioned place preference, locomotor activation, and dendritic and spine remodeling of medium spiny neurons but differentially regulated METH withdrawal-induced spatial learning and memory impairment and anxiety. Interestingly, Rac1 and Cdc42 signaling were oppositely modulated by METH, and suppression of Rac1 signaling and activation of Cdc42 signaling were crucial to METH-induced conditioned place preference and structural plasticity but not to locomotor activation. D1Rs activated Rac1 and Cdc42 signaling, while D2Rs inhibited Rac1 signaling but activated Cdc42 signaling to mediate METH-induced conditioned place preference and structural plasticity but not locomotor activation. In addition, NAc D1R deletion aggravated METH withdrawal-induced spatial learning and memory impairment by suppressing Rac1 signaling but not Cdc42 signaling, while NAc D2R deletion aggravated METH withdrawal-induced anxiety without affecting Rac1 or Cdc42 signaling. CONCLUSIONS D1Rs and D2Rs differentially regulate Rac1 and Cdc42 signaling to modulate METH-induced behavioral plasticity and the structural remodeling of medium spiny neurons in the NAc.
Collapse
|
15
|
Zhao J, Ying L, Liu Y, Liu N, Tu G, Zhu M, Wu Y, Xiao B, Ye L, Li J, Guo F, Zhang L, Wang H, Zhang L. Different roles of Rac1 in the acquisition and extinction of methamphetamine-associated contextual memory in the nucleus accumbens. Am J Cancer Res 2019; 9:7051-7071. [PMID: 31660086 PMCID: PMC6815963 DOI: 10.7150/thno.34655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/30/2019] [Indexed: 02/03/2023] Open
Abstract
Rationale: Repeated methamphetamine (METH) exposure induces long-term cognitive deficits and pathological drug-associated memory that can be disrupted by manipulating memory reconsolidation and extinction. The nucleus accumbens (NAc) is the key region of the brain reward system and predominantly consists of two subtypes of medium spiny neurons (MSNs) based on the expression of D1 or D2 dopamine receptors (D1-MSNs or D2-MSNs). Spine structural plasticity in the NAc is critical for the acquisition, reconsolidation and extinction of drug-associated memory. However, the molecular mechanisms underlying METH-associated memory and spine remodelling in each type of MSNs in the NAc remain unknown. Here, we explored whether Rac1 in the NAc mediates METH-associated contextual memory and spine remodelling. Methods: Pharmacological and genetic manipulations of Rac1 were used to investigate its role during the acquisition, reconsolidation and extinction of METH-associated contextual memory. Recombinant adeno-associated viruses expressing mCherry under the control of the dopamine D1 receptor gene promoter (Drd1-mCherry) or dopamine D2 receptor gene promoter (Drd2-mCherry) were used to specifically label D1-MSNs or D2-MSNs. Results: Using viral-mediated gene transfer, we demonstrated that decreased Rac1 activity was required for the acquisition of METH-associated contextual memory and the METH-induced increase in thin spine density, whereas increased Rac1 signalling was important for the extinction of METH-associated contextual memory and the related elimination of thin spines. Moreover, the increase of dendritic spines was both found in D1-MSNs and D2-MSNs during the acquisition process, but extinction training selectively decreased the spine density in D1-MSNs. Interestingly, Rac1 was responsible for METH-induced spine plasticity in D1-MSNs but not in D2-MSNs. Additionally, we found that microinjection of a Rac1 inhibitor or activator into the NAc was not sufficient to disrupt reconsolidation, and the pharmacological activation of Rac1 in the NAc facilitated the extinction of METH-associated contextual memory. Regarding cognitive memory, decreased Rac1 activity improved the METH-induced impairment in object recognition memory. Conclusion: Our findings indicate that Rac1 plays opposing roles in the acquisition and extinction of METH-associated contextual memory and reveal the cell-specific role of Rac1 in METH-associated spine remodelling, suggesting that Rac1 is a potential therapeutic target for reducing relapse in METH addiction and remediating METH-induced recognition memory impairment.
Collapse
|
16
|
Lin ZL, Li YH, Jin YX, Kim NH. A Maternal Transcription Factor, Junction Mediating and Regulatory
Protein is Required for Preimplantation Development in the Mouse. Dev Reprod 2019; 23:285-295. [PMID: 31660455 PMCID: PMC6812975 DOI: 10.12717/dr.2019.23.3.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/05/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022]
Abstract
Junction-mediating and regulatory protein (JMY) is a regulator of both
transcription and actin filament assembly. The actin-regulatory activity of JMY
is based on a cluster of three actin-binding Wiskott-Aldrich syndrome protein
homology 2 (WH2) domains that nucleate actin filaments directly and promote
nucleation of the Arp2/3 complex. In addition to these activities, we examined
the activity of JMY generation in early embryo of mice carrying mutations in the
JMY gene by CRISPR/Cas9 mediated genome engineering. We demonstrated that JMY
protein shuttled expression between the cytoplasm and the nucleus. Knockout of
exon 2, CA (central domain and Arp2/3-binding acidic domain) and NLS-2 (nuclear
localization signal domain) on the JMY gene by CRISPR/Cas9
system was effective and markedly impeded embryonicdevelopment. Additionally, it
impaired transcription and zygotic genome activation (ZGA)-related genes. These
results suggest that JMY acts as a transcription factor, which is essential for
the early embryonic development in mice.
Collapse
Affiliation(s)
- Zi-Li Lin
- College of Animal Sciences, Jilin
University, Changchun, China
- School of Life Sciences, Tsinghua
University, Beijing 100084, China
| | - Ying-Hua Li
- Department of Animal Sciences, Yanbian
University, Yanji, Jilin Province,
China
| | - Yong-Xun Jin
- College of Animal Sciences, Jilin
University, Changchun, China
- Corresponding Author : Nam-Hyung Kim, Ph.D.,
Department of Animal Sciences, Chungbuk National University, Cheongju 28644,
Korea. Tel: +82-43-261-2546, E-mail:
, Yong-Xun Jin, College of Animal
Sciences, Jilin University, Changchun, China. Tel:
+86-431-8516-6316, E-mail:
| | - Nam-Hyung Kim
- College of Animal Sciences, Jilin
University, Changchun, China
- Department of Animal Sciences, Chungbuk National
University, Cheongju 28644, Korea
- Corresponding Author : Nam-Hyung Kim, Ph.D.,
Department of Animal Sciences, Chungbuk National University, Cheongju 28644,
Korea. Tel: +82-43-261-2546, E-mail:
, Yong-Xun Jin, College of Animal
Sciences, Jilin University, Changchun, China. Tel:
+86-431-8516-6316, E-mail:
| |
Collapse
|