1
|
Go GE, Kim D. Advancing biosensing through super-resolution fluorescence microscopy. Biosens Bioelectron 2025; 278:117374. [PMID: 40112521 DOI: 10.1016/j.bios.2025.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Advancement of super-resolution fluorescence microscopy (SRM) has recently allowed applications to the biosensing by offering significant advantages over conventional methods. Its nanoscale spatial resolution and single-molecule sensitivity allow visualization and quantification of biomolecular targets without the need of signal amplification steps typically required in traditional biosensing methods. Moreover, recent innovations in probe design and imaging protocols have expanded SRM capabilities to enable dynamic biosensing in living cells, revealing molecular processes in their native cellular contexts. In this review, we discuss these applications of various SRM techniques to biosensing by highlighting their unique capabilities in providing spatial distribution information and high molecular sensitivity. We address several challenges that must be overcome for the broader application of SRM-based biosensing. Finally, we discuss perspectives on future directions for advancing this field towards practical applications.
Collapse
Affiliation(s)
- Ga-Eun Go
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Institute of Nano Science and Technology, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Ghosh A, Gupta A, Jena S, Kirti A, Choudhury A, Saha U, Sinha A, Kumari S, Kujawska M, Kaushik A, Verma SK. Advances in posterity of visualization in paradigm of nano‐level ultra‐structures for nano–bio interaction studies. VIEW 2025; 6. [DOI: 10.1002/viw.20240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
AbstractThe progression in contemporary scientific field is facilitated by a multitude of sophisticated and cutting‐edge methodologies that are employed for various research purposes. Among these methodologies, microscopy stands out as a fundamental and essential technique utilized in scientific investigations. Moreover, due to the continuous evolution and enhancement of microscopic methodologies, nanotechnology has reached a highly developed stage within modern scientific realm, particularly renowned for its wide‐ranging applications in the fields of biomedicine and environmental science. When it comes to conducting comprehensive and in‐depth experimental analyses to explore the nanotechnological aspects relevant to biological applications, the concept of nano–biological interaction emerges as the focal point of any research initiative. Nonetheless, this particular study necessitates a meticulous approach toward imaging and visualization at diverse magnification levels to ensure accurate observations and interpretations. It is widely acknowledged that modern microscopy has emerged as a sophisticated and invaluable instrument in this regard. This review aims to provide a comprehensive discussion on the progress made in microscopic techniques specifically tailored for visualizing the interactions between nanostructures and biological entities, thereby facilitating the exploration of the practical applications of nanotechnology in the realm of biological sciences.
Collapse
Affiliation(s)
- Aishee Ghosh
- School of Biotechnology KIIT University Bhubaneswar Odisha India
- Department of Physics and Astronomy Uppsala University Uppsala Sweden
| | - Abha Gupta
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Snehasmita Jena
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Apoorv Kirti
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Anmol Choudhury
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Utsa Saha
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Adrija Sinha
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Shalini Kumari
- Markham College of Commerce Vinoba Bhave University Hazaribagh Jharkhand India
| | - Małgorzata Kujawska
- Department of Toxicology Poznan University of Medical Sciences Poznan Poland
| | - Ajeet Kaushik
- NanoBioTech Laboratory Department of Environmental Engineering Florida Polytechnic University Lakeland Florida USA
| | - Suresh K. Verma
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| |
Collapse
|
3
|
Shroff H, Testa I, Jug F, Manley S. Live-cell imaging powered by computation. Nat Rev Mol Cell Biol 2024; 25:443-463. [PMID: 38378991 DOI: 10.1038/s41580-024-00702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
The proliferation of microscopy methods for live-cell imaging offers many new possibilities for users but can also be challenging to navigate. The prevailing challenge in live-cell fluorescence microscopy is capturing intra-cellular dynamics while preserving cell viability. Computational methods can help to address this challenge and are now shifting the boundaries of what is possible to capture in living systems. In this Review, we discuss these computational methods focusing on artificial intelligence-based approaches that can be layered on top of commonly used existing microscopies as well as hybrid methods that integrate computation and microscope hardware. We specifically discuss how computational approaches can improve the signal-to-noise ratio, spatial resolution, temporal resolution and multi-colour capacity of live-cell imaging.
Collapse
Affiliation(s)
- Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Florian Jug
- Fondazione Human Technopole (HT), Milan, Italy
| | - Suliana Manley
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Jeong S, Koh D, Gwak E, Srambickal CV, Seo D, Widengren J, Lee JC. Pushing the Resolution Limit of Stimulated Emission Depletion Optical Nanoscopy. Int J Mol Sci 2023; 25:26. [PMID: 38203197 PMCID: PMC10779414 DOI: 10.3390/ijms25010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Optical nanoscopy, also known as super-resolution optical microscopy, has provided scientists with the means to surpass the diffraction limit of light microscopy and attain new insights into nanoscopic structures and processes that were previously inaccessible. In recent decades, numerous studies have endeavored to enhance super-resolution microscopy in terms of its spatial (lateral) resolution, axial resolution, and temporal resolution. In this review, we discuss recent efforts to push the resolution limit of stimulated emission depletion (STED) optical nanoscopy across multiple dimensions, including lateral resolution, axial resolution, temporal resolution, and labeling precision. We introduce promising techniques and methodologies building on the STED concept that have emerged in the field, such as MINSTED, isotropic STED, and event-triggered STED, and evaluate their respective strengths and limitations. Moreover, we discuss trade-off relationships that exist in far-field optical microscopy and how they come about in STED optical nanoscopy. By examining the latest developments addressing these aspects, we aim to provide an updated overview of the current state of STED nanoscopy and its potential for future research.
Collapse
Affiliation(s)
- Sejoo Jeong
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Dongbin Koh
- School of Undergraduate Studies, DGIST, Daegu 42988, Republic of Korea
| | - Eunha Gwak
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Chinmaya V. Srambickal
- Exp. Biomol. Physics, Dept. Applied Physics, KTH—Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Daeha Seo
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Jerker Widengren
- Exp. Biomol. Physics, Dept. Applied Physics, KTH—Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Jong-Chan Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
- New Biology Research Center, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
5
|
Weber M, von der Emde H, Leutenegger M, Gunkel P, Sambandan S, Khan TA, Keller-Findeisen J, Cordes VC, Hell SW. MINSTED nanoscopy enters the Ångström localization range. Nat Biotechnol 2023; 41:569-576. [PMID: 36344840 PMCID: PMC10110459 DOI: 10.1038/s41587-022-01519-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Super-resolution techniques have achieved localization precisions in the nanometer regime. Here we report all-optical, room temperature localization of fluorophores with precision in the Ångström range. We built on the concept of MINSTED nanoscopy where precision is increased by encircling the fluorophore with the low-intensity central region of a stimulated emission depletion (STED) donut beam while constantly increasing the absolute donut power. By blue-shifting the STED beam and separating fluorophores by on/off switching, individual fluorophores bound to a DNA strand are localized with σ = 4.7 Å, corresponding to a fraction of the fluorophore size, with only 2,000 detected photons. MINSTED fluorescence nanoscopy with single-digit nanometer resolution is exemplified by imaging nuclear pore complexes and the distribution of nuclear lamin in mammalian cells labeled by transient DNA hybridization. Because our experiments yield a localization precision σ = 2.3 Å, estimated for 10,000 detected photons, we anticipate that MINSTED will open up new areas of application in the study of macromolecular complexes in cells.
Collapse
Affiliation(s)
- Michael Weber
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henrik von der Emde
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marcel Leutenegger
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Philip Gunkel
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sivakumar Sambandan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Taukeer A Khan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Volker C Cordes
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
6
|
Tortarolo G, Manley S. Optical microscopy gets down to angstroms. Nat Biotechnol 2023; 41:473-474. [PMID: 36344839 DOI: 10.1038/s41587-022-01544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Giorgio Tortarolo
- École Polytechnique Fédérale de Lausanne, Laboratory of Experimental Biophysics, Lausanne, Switzerland
| | - Suliana Manley
- École Polytechnique Fédérale de Lausanne, Laboratory of Experimental Biophysics, Lausanne, Switzerland.
| |
Collapse
|
7
|
Mochizuki K, Kumamoto Y, Maeda S, Tanuma M, Kasai A, Takemura M, Harada Y, Hashimoto H, Tanaka H, Smith NI, Fujita K. High-throughput line-illumination Raman microscopy with multislit detection. BIOMEDICAL OPTICS EXPRESS 2023; 14:1015-1026. [PMID: 36950233 PMCID: PMC10026569 DOI: 10.1364/boe.480611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Raman microscopy is an emerging tool for molecular imaging and analysis of living samples. Use of Raman microscopy in life sciences is, however, still limited because of its slow measurement speed for spectral imaging and analysis. We developed a multiline-illumination Raman microscope to achieve ultrafast Raman spectral imaging. A spectrophotometer equipped with a periodic array of confocal slits detects Raman spectra from a sample irradiated by multiple line illuminations. A comb-like Raman hyperspectral image is formed on a two-dimensional detector in the spectrophotometer, and a hyperspectral Raman image is acquired by scanning the sample with multiline illumination array. By irradiating a sample with 21 simultaneous illumination lines, we achieved high-throughput Raman hyperspectral imaging of mouse brain tissue, acquiring 1108800 spectra in 11.4 min. We also measured mouse kidney and liver tissue as well as conducted label-free live-cell molecular imaging. The ultrafast Raman hyperspectral imaging enabled by the presented technique will expand the possible applications of Raman microscopy in biological and medical fields.
Collapse
Affiliation(s)
- Kentaro Mochizuki
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- These authors contributed equally
| | - Yasuaki Kumamoto
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- These authors contributed equally
| | - Shunsuke Maeda
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masashi Takemura
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hitoshi Hashimoto
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
- Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Nicholas Isaac Smith
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Biophotonics Laboratory, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Focus image scanning microscopy for sharp and gentle super-resolved microscopy. Nat Commun 2022; 13:7723. [PMID: 36513680 PMCID: PMC9747786 DOI: 10.1038/s41467-022-35333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the feasibility of super-resolution microscopy for imaging live and thick samples is still limited. Stimulated emission depletion (STED) microscopy requires high-intensity illumination to achieve sub-diffraction resolution, potentially introducing photodamage to live specimens. Moreover, the out-of-focus background may degrade the signal stemming from the focal plane. Here, we propose a new method to mitigate these limitations without drawbacks. First, we enhance a STED microscope with a detector array, enabling image scanning microscopy (ISM). Therefore, we implement STED-ISM, a method that exploits the working principle of ISM to reduce the depletion intensity and achieve a target resolution. Later, we develop Focus-ISM, a strategy to improve the optical sectioning and remove the background of any ISM-based imaging technique, with or without a STED beam. The proposed approach requires minimal architectural changes to a conventional microscope but provides substantial advantages for live and thick sample imaging.
Collapse
|
9
|
Holsapple JS, Schnitzler L, Rusch L, Baldeweg TH, Neubert E, Kruss S, Erpenbeck L. Expansion microscopy of neutrophil nuclear structure and extracellular traps. BIOPHYSICAL REPORTS 2022; 3:100091. [PMID: 36619899 PMCID: PMC9813678 DOI: 10.1016/j.bpr.2022.100091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Neutrophils are key players of the immune system and possess an arsenal of effector functions, including the ability to form and expel neutrophil extracellular traps (NETs) in a process termed NETosis. During NETosis, the nuclear DNA/chromatin expands until it fills the whole cell and is released into the extracellular space. NETs are composed of DNA decorated with histones, proteins, or peptides, and NETosis is implicated in many diseases. Resolving the structure of the nucleus in great detail is essential to understand the underlying processes, but so far, superresolution methods have not been applied. Here, we developed an expansion-microscopy-based method and determined the spatial distribution of chromatin/DNA, histone H1, and nucleophosmin with an over fourfold improved resolution (<40-50 nm) and increased information content. It allowed us to identify the punctate localization of nucleophosmin in the nucleus and histone-rich domains in NETotic cells with a size of 54-66 nm. The technique could also be applied to components of the nuclear envelope (lamins B1 and B2) and myeloperoxidase, providing a complete picture of nuclear composition and structure. In conclusion, expansion microscopy enables superresolved imaging of the highly dynamic structure of nuclei in immune cells.
Collapse
Affiliation(s)
| | - Lena Schnitzler
- Department of Chemistry, Ruhr-University Bochum, Bochum, Germany
| | - Louisa Rusch
- Department of Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Elsa Neubert
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, Bochum, Germany,Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany,Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany,Corresponding author
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany,Corresponding author
| |
Collapse
|
10
|
Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol 2022; 40:606-617. [PMID: 34782739 DOI: 10.1038/s41587-021-01092-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
A main determinant of the spatial resolution of live-cell super-resolution (SR) microscopes is the maximum photon flux that can be collected. To further increase the effective resolution for a given photon flux, we take advantage of a priori knowledge about the sparsity and continuity of biological structures to develop a deconvolution algorithm that increases the resolution of SR microscopes nearly twofold. Our method, sparse structured illumination microscopy (Sparse-SIM), achieves ~60-nm resolution at a frame rate of up to 564 Hz, allowing it to resolve intricate structures, including small vesicular fusion pores, ring-shaped nuclear pores formed by nucleoporins and relative movements of inner and outer mitochondrial membranes in live cells. Sparse deconvolution can also be used to increase the three-dimensional resolution of spinning-disc confocal-based SIM, even at low signal-to-noise ratios, which allows four-color, three-dimensional live-cell SR imaging at ~90-nm resolution. Overall, sparse deconvolution will be useful to increase the spatiotemporal resolution of live-cell fluorescence microscopy.
Collapse
|
11
|
Upmanyu N, Jin J, Emde HVD, Ganzella M, Bösche L, Malviya VN, Zhuleku E, Politi AZ, Ninov M, Silbern I, Leutenegger M, Urlaub H, Riedel D, Preobraschenski J, Milosevic I, Hell SW, Jahn R, Sambandan S. Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. Neuron 2022; 110:1483-1497.e7. [PMID: 35263617 DOI: 10.1016/j.neuron.2022.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/08/2022] [Accepted: 02/10/2022] [Indexed: 12/26/2022]
Abstract
Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time.
Collapse
Affiliation(s)
- Neha Upmanyu
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jialin Jin
- European Neurosciences Institute, A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen 37077, Germany
| | - Henrik von der Emde
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Leon Bösche
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Viveka Nand Malviya
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Evi Zhuleku
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Antonio Zaccaria Politi
- Live-Cell Imaging Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Marcel Leutenegger
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Dietmar Riedel
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Julia Preobraschenski
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen 37075, Germany
| | - Ira Milosevic
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, UK; Multidisciplinary Institute of Ageing, MIA-Portugal, University of Coimbra, Coimbra 3000-370, Portugal
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69028, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sivakumar Sambandan
- Synaptic Metal Ion Dynamics and Signaling, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany; Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
| |
Collapse
|
12
|
Bond C, Santiago-Ruiz AN, Tang Q, Lakadamyali M. Technological advances in super-resolution microscopy to study cellular processes. Mol Cell 2022; 82:315-332. [PMID: 35063099 PMCID: PMC8852216 DOI: 10.1016/j.molcel.2021.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023]
Abstract
Since its initial demonstration in 2000, far-field super-resolution light microscopy has undergone tremendous technological developments. In parallel, these developments have opened a new window into visualizing the inner life of cells at unprecedented levels of detail. Here, we review the technical details behind the most common implementations of super-resolution microscopy and highlight some of the recent, promising advances in this field.
Collapse
Affiliation(s)
- Charles Bond
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adriana N Santiago-Ruiz
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qing Tang
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Kratz J, Geisler C, Egner A. ISM-assisted tomographic STED microscopy. OPTICS EXPRESS 2022; 30:939-956. [PMID: 35209272 DOI: 10.1364/oe.445441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Stimulated emission depletion (STED) microscopy theoretically provides unlimited resolution. However, in practice the achievable resolution in biological samples is essentially limited by photobleaching. One method which overcomes this problem is tomographic STED (tomoSTED) microscopy. In tomoSTED microscopy, one-dimensional depletion patterns facing in different directions are successively applied in order to acquire a highly-resolved image in two dimensions. In this context, the number of addressed directions depends on the desired angular homogeneity of the point spread function or the optical transfer function and thus on the resolution increase as compared to diffraction-limited imaging. At a reasonable angular homogeneity the light dose and thus bleaching can be reduced, as compared to conventional STED microscopy. Here, we propose and demonstrate for the first time, to our knowledge, that the number of required depletion pattern orientations can be reduced by combining tomoSTED microscopy with the concept of image scanning microscopy (ISM). With our realization of an ISM-tomoSTED microscope, we show that approximately a factor of 2 lower number of orientations are required to achieve the same resolution and image quality as in tomoSTED microscopy.
Collapse
|
14
|
Winkler PM, García-Parajo MF. Correlative nanophotonic approaches to enlighten the nanoscale dynamics of living cell membranes. Biochem Soc Trans 2021; 49:2357-2369. [PMID: 34495333 PMCID: PMC8589428 DOI: 10.1042/bst20210457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023]
Abstract
Dynamic compartmentalization is a prevailing principle regulating the spatiotemporal organization of the living cell membrane from the nano- up to the mesoscale. This non-arbitrary organization is intricately linked to cell function. On living cell membranes, dynamic domains or 'membrane rafts' enriched with cholesterol, sphingolipids and other certain proteins exist at the nanoscale serving as signaling and sorting platforms. Moreover, it has been postulated that other local organizers of the cell membrane such as intrinsic protein interactions, the extracellular matrix and/or the actin cytoskeleton synergize with rafts to provide spatiotemporal hierarchy to the membrane. Elucidating the intricate coupling of multiple spatial and temporal scales requires the application of correlative techniques, with a particular need for simultaneous nanometer spatial precision and microsecond temporal resolution. Here, we review novel fluorescence-based techniques that readily allow to decode nanoscale membrane dynamics with unprecedented spatiotemporal resolution and single-molecule sensitivity. We particularly focus on correlative approaches from the field of nanophotonics. Notably, we introduce a versatile planar nanoantenna platform combined with fluorescence correlation spectroscopy to study spatiotemporal heterogeneities on living cell membranes at the nano- up to the mesoscale. Finally, we outline remaining future technological challenges and comment on potential directions to advance our understanding of cell membrane dynamics under the influence of the actin cytoskeleton and extracellular matrix in uttermost detail.
Collapse
Affiliation(s)
- Pamina M. Winkler
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - María F. García-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
15
|
van der Wee EB, Fokkema J, Kennedy CL, Del Pozo M, de Winter DAM, Speets PNA, Gerritsen HC, van Blaaderen A. 3D test sample for the calibration and quality control of stimulated emission depletion (STED) and confocal microscopes. Commun Biol 2021; 4:909. [PMID: 34302049 PMCID: PMC8302645 DOI: 10.1038/s42003-021-02432-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple samples are required to monitor and optimize the quality and reliability of quantitative measurements of stimulated emission depletion (STED) and confocal microscopes. Here, we present a single sample to calibrate these microscopes, align their laser beams and measure their point spread function (PSF) in 3D. The sample is composed of a refractive index matched colloidal crystal of silica beads with fluorescent and gold cores. The microscopes can be calibrated in three dimensions using the periodicity of the crystal; the alignment of the laser beams can be checked using the reflection of the gold cores; and the PSF can be measured at multiple positions and depths using the fluorescent cores. It is demonstrated how this sample can be used to visualize and improve the quality of STED and confocal microscopy images. The sample is adjustable to meet the requirements of different NA objectives and microscopy techniques and additionally can be used to evaluate refractive index mismatches as a function of depth quantitatively.
Collapse
Affiliation(s)
- Ernest B van der Wee
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Jantina Fokkema
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Chris L Kennedy
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Marc Del Pozo
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - D A Matthijs de Winter
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
- Environmental Hydrogeology, Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Peter N A Speets
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Hans C Gerritsen
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Alfons van Blaaderen
- Soft Condensed Matter and Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Weber M, Leutenegger M, Stoldt S, Jakobs S, Mihaila TS, Butkevich AN, Hell SW. MINSTED fluorescence localization and nanoscopy. NATURE PHOTONICS 2021; 15:361-366. [PMID: 33953795 PMCID: PMC7610723 DOI: 10.1038/s41566-021-00774-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 05/24/2023]
Abstract
We introduce MINSTED, a fluorophore localization and super-resolution microscopy concept based on stimulated emission depletion (STED) that provides spatial precision and resolution down to the molecular scale. In MINSTED, the intensity minimum of the STED doughnut, and hence the point of minimal STED, serves as a movable reference coordinate for fluorophore localization. As the STED rate, the background and the required number of fluorescence detections are low compared with most other STED microscopy and localization methods, MINSTED entails substantially less fluorophore bleaching. In our implementation, 200-1,000 detections per fluorophore provide a localization precision of 1-3nm in standard deviation, which in conjunction with independent single fluorophore switching translates to a -100-fold improvement in far-field microscopy resolution over the diffraction limit. The performance of MINSTED nanoscopy is demonstrated by imaging the distribution of Mic60 proteins in the mitochondrial inner membrane of human cells.
Collapse
Affiliation(s)
- Michael Weber
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marcel Leutenegger
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiberiu S Mihaila
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexey N Butkevich
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
17
|
Wu Z, Xu X, Xi P. Stimulated emission depletion microscopy for biological imaging in four dimensions: A review. Microsc Res Tech 2021; 84:1947-1958. [PMID: 33713513 DOI: 10.1002/jemt.23750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
Stimulated emission depletion (STED) microscopy allows high lateral and axial resolution, long term imaging in living cells. Here we review recent technical advances in STED microscopy, with emphasis on resolution and measurement range of XYZt four dimensions. Different STED technical advances and novel STED probes are discussed with their respective application in biological subcellular imaging. This review may serve as a practical guide for choosing a suitable approach to the advanced STED super-resolution imaging.
Collapse
Affiliation(s)
- Zhaoyang Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Xinzhu Xu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.,UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
18
|
Imaging of spine synapses using super-resolution microscopy. Anat Sci Int 2021; 96:343-358. [PMID: 33459976 DOI: 10.1007/s12565-021-00603-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Neuronal circuits in the neocortex and hippocampus are essential for higher brain functions such as motor learning and spatial memory. In the mammalian forebrain, most excitatory synapses of pyramidal neurons are formed on spines, which are tiny protrusions extending from the dendritic shaft. The spine contains specialized molecular machinery that regulates synaptic transmission and plasticity. Spine size correlates with the efficacy of synaptic transmission, and spine morphology affects signal transduction at the post-synaptic compartment. Plasticity-related changes in the structural and molecular organization of spine synapses are thought to underlie the cellular basis of learning and memory. Recent advances in super-resolution microscopy have revealed the molecular mechanisms of the nanoscale synaptic structures regulating synaptic transmission and plasticity in living neurons, which are difficult to investigate using electron microscopy alone. In this review, we summarize recent advances in super-resolution imaging of spine synapses and discuss the implications of nanoscale structures in the regulation of synaptic function, learning, and memory.
Collapse
|
19
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Liu Z, Liu J, Wang X, Mi F, Wang D, Wu C. Fluorescent Bioconjugates for Super-Resolution Optical Nanoscopy. Bioconjug Chem 2020; 31:1857-1872. [DOI: 10.1021/acs.bioconjchem.0c00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Jie Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaodong Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Feixue Mi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Dan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| |
Collapse
|
21
|
Krüger JR, Keller-Findeisen J, Geisler C, Egner A. Tomographic STED microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:3139-3163. [PMID: 32637247 PMCID: PMC7316010 DOI: 10.1364/boe.391787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Stimulated emission depletion (STED) microscopy is a versatile imaging method with diffraction-unlimited resolution. Here, we present a novel STED microscopy variant that achieves either increased resolution at equal laser power or identical super-resolution conditions at significantly lower laser power when compared to the classical implementation. By applying a one-dimensional depletion pattern instead of the well-known doughnut-shaped STED focus, a more efficient depletion is achieved, thereby necessitating less STED laser power to achieve identical resolution. A two-dimensional resolution increase is obtained by recording a sequence of images with different high-resolution directions. This corresponds to a collection of tomographic projections within diffraction-limited spots, an approach that so far has not been explored in super-resolution microscopy. Via appropriate reconstruction algorithms, our method also provides an opportunity to speed up the acquisition process. Both aspects, the necessity of less STED laser power and the feasibility to decrease the recording time, have the potential to reduce photo-bleaching as well as sample damage drastically.
Collapse
Affiliation(s)
- Jennifer-Rose Krüger
- Department of Optical Nanoscopy, Laser-Laboratory Göttingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Claudia Geisler
- Department of Optical Nanoscopy, Laser-Laboratory Göttingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen, Germany
| | - Alexander Egner
- Department of Optical Nanoscopy, Laser-Laboratory Göttingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| |
Collapse
|
22
|
Tosheva KL, Yuan Y, Matos Pereira P, Culley S, Henriques R. Between life and death: strategies to reduce phototoxicity in super-resolution microscopy. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:163001. [PMID: 33994582 PMCID: PMC8114953 DOI: 10.1088/1361-6463/ab6b95] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 05/23/2023]
Abstract
Super-resolution microscopy (SRM) enables non-invasive, molecule-specific imaging of the internal structure and dynamics of cells with sub-diffraction limit spatial resolution. One of its major limitations is the requirement for high-intensity illumination, generating considerable cellular phototoxicity. This factor considerably limits the capacity for live-cell observations, particularly for extended periods of time. Here, we give an overview of new developments in hardware, software and probe chemistry aiming to reduce phototoxicity. Additionally, we discuss how the choice of biological model and sample environment impacts the capacity for live-cell observations.
Collapse
Affiliation(s)
- Kalina L Tosheva
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Yue Yuan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - Siân Culley
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
23
|
Kobbersmed JR, Grasskamp AT, Jusyte M, Böhme MA, Ditlevsen S, Sørensen JB, Walter AM. Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca 2+ channel distances. eLife 2020; 9:51032. [PMID: 32077852 PMCID: PMC7145420 DOI: 10.7554/elife.51032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Chemical synaptic transmission relies on the Ca2+-induced fusion of transmitter-laden vesicles whose coupling distance to Ca2+ channels determines synaptic release probability and short-term plasticity, the facilitation or depression of repetitive responses. Here, using electron- and super-resolution microscopy at the Drosophila neuromuscular junction we quantitatively map vesicle:Ca2+ channel coupling distances. These are very heterogeneous, resulting in a broad spectrum of vesicular release probabilities within synapses. Stochastic simulations of transmitter release from vesicles placed according to this distribution revealed strong constraints on short-term plasticity; particularly facilitation was difficult to achieve. We show that postulated facilitation mechanisms operating via activity-dependent changes of vesicular release probability (e.g. by a facilitation fusion sensor) generate too little facilitation and too much variance. In contrast, Ca2+-dependent mechanisms rapidly increasing the number of releasable vesicles reliably reproduce short-term plasticity and variance of synaptic responses. We propose activity-dependent inhibition of vesicle un-priming or release site activation as novel facilitation mechanisms. Cells in the nervous system of all animals communicate by releasing and sensing chemicals at contact points named synapses. The ‘talking’ (or pre-synaptic) cell stores the chemicals close to the synapse, in small spheres called vesicles. When the cell is activated, calcium ions flow in and interact with the release-ready vesicles, which then spill the chemicals into the synapse. In turn, the ‘listening’ (or post-synaptic) cell can detect the chemicals and react accordingly. When the pre-synaptic cell is activated many times in a short period, it can release a greater quantity of chemicals, allowing a bigger reaction in the post-synaptic cell. This phenomenon is known as facilitation, but it is still unclear how exactly it can take place. This is especially the case when many of the vesicles are not ready to respond, for example when they are too far from where calcium flows into the cell. Computer simulations have been created to model facilitation but they have assumed that all vesicles are placed at the same distance to the calcium entry point: Kobbersmed et al. now provide evidence that this assumption is incorrect. Two high-resolution imaging techniques were used to measure the actual distances between the vesicles and the calcium source in the pre-synaptic cells of fruit flies: this showed that these distances are quite variable – some vesicles sit much closer to the source than others. This information was then used to create a new computer model to simulate facilitation. The results from this computing work led Kobbersmed et al. to suggest that facilitation may take place because a calcium-based mechanism in the cell increases the number of vesicles ready to release their chemicals. This new model may help researchers to better understand how the cells in the nervous system work. Ultimately, this can guide experiments to investigate what happens when information processing at synapses breaks down, for example in diseases such as epilepsy.
Collapse
Affiliation(s)
- Janus Rl Kobbersmed
- Department of Mathematical Sciences, University of Copenhagen, København, Denmark.,Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Andreas T Grasskamp
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany
| | - Meida Jusyte
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany
| | - Mathias A Böhme
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, København, Denmark
| | | | - Alexander M Walter
- Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP im CharitéCrossOver, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany
| |
Collapse
|
24
|
Vinçon B, Geisler C, Egner A. Pixel hopping enables fast STED nanoscopy at low light dose. OPTICS EXPRESS 2020; 28:4516-4528. [PMID: 32121686 DOI: 10.1364/oe.385174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/23/2020] [Indexed: 05/22/2023]
Abstract
The achievable image quality in fluorescence microscopy and nanoscopy is usually limited by photobleaching. Reducing the light dose imposed on the sample is thus a challenge for all these imaging techniques. Various approaches like CLEM, RESCue, MINFIELD, DyMIN and smart RESOLFT have been presented in the last years and have proven to significantly reduce the required light dose in diffraction-limited as well as super-resolution imaging, thus resulting in less photobleaching and phototoxicity. None of these methods has so far been able to transfer the light dose reduction into a faster recording at pixel dwell times of a few ten microseconds. By implementing a scan system with low latency and large field of view we could directly convert the light dose reduction of RESCue into a shorter acquisition time for STED nanoscopy. In this way, FastRESCue speeds up the acquisition locally up to 10-fold and allows overall for a 5 times faster acquisition at only 20% of the light dose in biological samples.
Collapse
|
25
|
Nanobody production can be simplified by direct secretion from Escherichia coli. Protein Expr Purif 2020; 170:105607. [PMID: 32062022 DOI: 10.1016/j.pep.2020.105607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
It is well known that camelids (camels and llamas) have fully functional antibodies with only a heavy chain consisting of a single variable domain and two constant domains. This single variable domain is called a "nanobody" and many nanobodies are synthesized in the cytosol of Escherichia coli, however, most of the nanobodies become inclusion bodies without tags to enhance their solubility. We generated a vector system to enable the secretary expression of nanobodies in Escherichia coli. In this system, several NBs were secreted into the culture supernatant. Since the vector contained 6xHis tag and AviTAG, biotinylation (even fluorescent-labeled) of AviTAG was achieved during cell culture, and purification of the supernatant was a step by immobilized metal ion adsorption chromatography. The procedure described in this study is believed to be as simple as regular plasmid minipreps. Therefore, many laboratories can use this method.
Collapse
|
26
|
Song G, Jiang D, Wang L, Ning J, Sun X, Su F, Chen M, Tian Y. A mitochondria-targeting NIR fluorescent potassium ion sensor: real-time investigation of the mitochondrial K+ regulation of apoptosis in situ. Chem Commun (Camb) 2020; 56:5405-5408. [DOI: 10.1039/d0cc00579g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
TAC-Rh, as the first mitochondria-targeting NIR K+ sensor, was applied to explore mutual regulation between mitochondrial K+ and apoptosis.
Collapse
Affiliation(s)
- Guangjie Song
- Department of Materials Science and Engineering Southern University of Science and Technology
- Shenzhen
- China
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences
- University of Macau
| | - Di Jiang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Lei Wang
- Department of Materials Science and Engineering Southern University of Science and Technology
- Shenzhen
- China
| | - Juewei Ning
- Department of Materials Science and Engineering Southern University of Science and Technology
- Shenzhen
- China
| | - Xiangzhong Sun
- Department of Materials Science and Engineering Southern University of Science and Technology
- Shenzhen
- China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology
- Shenzhen
- China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Yanqing Tian
- Department of Materials Science and Engineering Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
27
|
Hansel CS, Holme MN, Gopal S, Stevens MM. Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials 2020; 226:119406. [DOI: 10.1016/j.biomaterials.2019.119406] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|
28
|
Cui C, Jin R, Jiang D, Zhang J, Zhu JJ. Electrogenerated Chemiluminescence in Submicrometer Wells for Very High-Density Biosensing. Anal Chem 2019; 92:578-582. [DOI: 10.1021/acs.analchem.9b04488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chen Cui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Rong Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
29
|
Alvelid J, Testa I. Fluorescence microscopy at the molecular scale. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Abstract
In this study, we propose a microchip that is sequentially capable of fluorescently staining and washing DNAs. The main advantage of this microchip is that it allows for one-step preparation of small amounts of solution without degrading microscopic bio-objects such as the DNAs, cells, and biomolecules to be stained. The microchip consists of two inlets, the main channel, staining zone, washing zone, and one outlet, and was processed using a femtosecond laser system. High molecular transport of rhodamine B to deionized water was observed in the performance test of the microchip. Results revealed that the one-step procedure of on-chip DNA staining and washing was excellent compared to the conventional staining method. The one-step preparation of stained and washed DNAs through the microchip will be useful for preparing small volumes of experimental samples.
Collapse
|
31
|
Thevathasan JV, Kahnwald M, Cieśliński K, Hoess P, Peneti SK, Reitberger M, Heid D, Kasuba KC, Hoerner SJ, Li Y, Wu YL, Mund M, Matti U, Pereira PM, Henriques R, Nijmeijer B, Kueblbeck M, Sabinina VJ, Ellenberg J, Ries J. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat Methods 2019; 16:1045-1053. [PMID: 31562488 PMCID: PMC6768092 DOI: 10.1038/s41592-019-0574-9] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
Quantitative fluorescence and superresolution microscopy are often limited by insufficient data quality or artifacts. In this context, it is essential to have biologically relevant control samples to benchmark and optimize the quality of microscopes, labels and imaging conditions. Here, we exploit the stereotypic arrangement of proteins in the nuclear pore complex as in situ reference structures to characterize the performance of a variety of microscopy modalities. We created four genome edited cell lines in which we endogenously labeled the nucleoporin Nup96 with mEGFP, SNAP-tag, HaloTag or the photoconvertible fluorescent protein mMaple. We demonstrate their use (1) as three-dimensional resolution standards for calibration and quality control, (2) to quantify absolute labeling efficiencies and (3) as precise reference standards for molecular counting. These cell lines will enable the broader community to assess the quality of their microscopes and labels, and to perform quantitative, absolute measurements.
Collapse
Affiliation(s)
- Jervis Vermal Thevathasan
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | | | - Philipp Hoess
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sudheer Kumar Peneti
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Manuel Reitberger
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Heid
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Department for Applied Tumor Biology, Heidelberg University Hospital, Heidelberg, Germany
| | - Krishna Chaitanya Kasuba
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Eidgenössische Technische Hochschule Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Sarah Janice Hoerner
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences and Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg, Germany
| | - Yiming Li
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
| | - Yu-Le Wu
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Markus Mund
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
- Department of Biochemistry, University of Geneva, Science 2, Genève, Switzerland
| | - Ulf Matti
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
| | - Pedro Matos Pereira
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ricardo Henriques
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | | | | | - Jan Ellenberg
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany
| | - Jonas Ries
- EMBL, Cell Biology and Biophysics, Heidelberg, Germany.
| |
Collapse
|
32
|
Mahecic D, Testa I, Griffié J, Manley S. Strategies for increasing the throughput of super-resolution microscopies. Curr Opin Chem Biol 2019; 51:84-91. [DOI: 10.1016/j.cbpa.2019.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 11/29/2022]
|
33
|
Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens. Methods 2019; 174:27-41. [PMID: 31344404 DOI: 10.1016/j.ymeth.2019.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
Super-resolution fluorescence microscopy has become an important catalyst for discovery in the life sciences. In STimulated Emission Depletion (STED) microscopy, a pattern of light drives fluorophores from a signal-emitting on-state to a non-signalling off-state. Only emitters residing in a sub-diffraction volume around an intensity minimum are allowed to fluoresce, rendering them distinguishable from the nearby, but dark fluorophores. STED routinely achieves resolution in the few tens of nanometers range in biological samples and is suitable for live imaging. Here, we review the working principle of STED and provide general guidelines for successful STED imaging. The strive for ever higher resolution comes at the cost of increased light burden. We discuss techniques to reduce light exposure and mitigate its detrimental effects on the specimen. These include specialized illumination strategies as well as protecting fluorophores from photobleaching mediated by high-intensity STED light. This opens up the prospect of volumetric imaging in living cells and tissues with diffraction-unlimited resolution in all three spatial dimensions.
Collapse
|
34
|
Abstract
STimulated emission depletion (STED) nanoscopy has been proposed to extend greatly our capability of using light to study a variety of biological problems with nanometer-scale resolution. However, in practice the unwanted background noise degrades the STED image quality and precludes quantitative analysis. Here, we discuss the underlying sources of the background noise in STED images, and review current approaches to alleviate this problem, such as time-gating, anti-Stokes excitation removal, and off-focus incomplete depletion suppression. Progress in correcting uncorrelated background photons in fluorescence correlation spectroscopy combined with STED (STED-FCS) will also be discussed.
Collapse
Affiliation(s)
- Ye Ma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Taekjip Ha
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.,Departments of Biophysics and Biophysical Chemistry, Biophysics, Johns Hopkins University, Baltimore, MD, United States of America.,Howard Hughes Medical Institute, Baltimore, MD, United States of America.,Author to whom any correspondence should be addressed
| |
Collapse
|
35
|
Mishin AS, Lukyanov KA. Live-Cell Super-resolution Fluorescence Microscopy. BIOCHEMISTRY (MOSCOW) 2019; 84:S19-S31. [PMID: 31213193 DOI: 10.1134/s0006297919140025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Super-resolution fluorescence microscopy (nanoscopy) enables imaging with a spatial resolution much higher than the diffraction limit of optical microscopy. However, the methods of fluorescence nanoscopy are still poorly suitable for studying living cells. In this review, we describe some of methods for nanoscopy and specific fluorescent labeling aimed to decrease the damaging effects of light illumination on live samples.
Collapse
Affiliation(s)
- A S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - K A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
36
|
Wirth R, Gao P, Nienhaus GU, Sunbul M, Jäschke A. SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging. J Am Chem Soc 2019; 141:7562-7571. [PMID: 30986047 DOI: 10.1021/jacs.9b02697] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although genetically encoded light-up RNA aptamers have become promising tools for visualizing and tracking RNAs in living cells, aptamer/ligand pairs that emit in the far-red and near-infrared (NIR) regions are still rare. In this work, we developed a light-up RNA aptamer that binds silicon rhodamines (SiRs). SiRs are photostable, NIR-emitting fluorophores that change their open-closed equilibrium between the noncolored spirolactone and the fluorescent zwitterion in response to their environment. This property is responsible for their high cell permeability and fluorogenic behavior. Aptamers binding to SiR were in vitro selected from a combinatorial RNA library. Sequencing, bioinformatic analysis, truncation, and mutational studies revealed a 50-nucleotide minimal aptamer, SiRA, which binds with nanomolar affinity to the target SiR. In addition to silicon rhodamines, SiRA binds structurally related rhodamines and carborhodamines, making it a versatile tool spanning the far-red region of the spectrum. Photophysical characterization showed that SiRA is remarkably resistant to photobleaching and constitutes the brightest far-red light-up aptamer system known to date owing to its favorable features: a fluorescence quantum yield of 0.98 and an extinction coefficient of 86 000 M-1cm-1. Using the SiRA system, we visualized the expression of RNAs in bacteria in no-wash live-cell imaging experiments and also report stimulated emission depletion (STED) super-resolution microscopy images of aptamer-based, fluorescently labeled mRNA in live cells. This work represents, to our knowledge, the first application of the popular SiR dyes and of intramolecular spirocyclization as a means of background reduction in the field of aptamer-based RNA imaging. We anticipate a high potential for this novel RNA labeling tool to address biological questions.
Collapse
Affiliation(s)
- Regina Wirth
- Institute of Pharmacy and Molecular Biotechnology (IPMB) , Heidelberg University , 69120 Heidelberg , Germany
| | - Peng Gao
- Institute of Applied Physics (APH) , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , D-76131 Karlsruhe , Germany.,Institute of Nanotechnology (INT) , Karlsruhe Institute of Technology (KIT) , D-76344 Eggenstein-Leopoldshafen , Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics (APH) , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , D-76131 Karlsruhe , Germany.,Institute of Nanotechnology (INT) , Karlsruhe Institute of Technology (KIT) , D-76344 Eggenstein-Leopoldshafen , Germany.,Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , D-76344 Eggenstein-Leopoldshafen , Germany.,Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology (IPMB) , Heidelberg University , 69120 Heidelberg , Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB) , Heidelberg University , 69120 Heidelberg , Germany
| |
Collapse
|
37
|
Pereira A, Sousa M, Almeida AC, Ferreira LT, Costa AR, Novais-Cruz M, Ferrás C, Sousa MM, Sampaio P, Belsley M, Maiato H. Coherent-hybrid STED: high contrast sub-diffraction imaging using a bi-vortex depletion beam. OPTICS EXPRESS 2019; 27:8092-8111. [PMID: 30894786 PMCID: PMC6420153 DOI: 10.1364/oe.27.008092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 05/21/2023]
Abstract
Stimulated emission depletion (STED) fluorescence microscopy squeezes an excited spot well below the wavelength scale using a doughnut-shaped depletion beam. To generate a doughnut, a scale-free vortex phase modulation (2D-STED) is often used because it provides maximal transverse confinement and radial-aberration immunity (RAI) to the central dip. However, RAI also means blindness to a defocus term, making the axial origin of fluorescence photons uncertain within the wavelength scale provided by the confocal detection pinhole. Here, to reduce the uncertainty, we perturb the 2D-STED phase mask so as to change the sign of the axial concavity near focus, creating a dilated dip. By providing laser depletion power, the dip can be compressed back in three dimensions to retrieve lateral resolution, now at a significantly higher contrast. We test this coherent-hybrid STED (CH-STED) mode in x-y imaging of complex biological structures, such as the dividing cell. The proposed strategy creates an orthogonal direction in the STED parametric space that uniquely allows independent tuning of resolution and contrast using a single depletion beam in a conventional (circular polarization-based) STED setup.
Collapse
Affiliation(s)
- António Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mafalda Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana C. Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Luísa T. Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana Rita Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marco Novais-Cruz
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cristina Ferrás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mónica Mendes Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Michael Belsley
- Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helder Maiato
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
38
|
Schloetel JG, Heine J, Cowman AF, Pasternak M. Guided STED nanoscopy enables super-resolution imaging of blood stage malaria parasites. Sci Rep 2019; 9:4674. [PMID: 30886187 PMCID: PMC6423018 DOI: 10.1038/s41598-019-40718-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Malaria remains a major burden world-wide, but the disease-causing parasites from the genus Plasmodium are difficult to study in vitro. Owing to the small size of the parasites, subcellular imaging poses a major challenge and the use of super-resolution techniques has been hindered by the parasites' sensitivity to light. This is particularly apparent during the blood-stage of the Plasmodium life cycle, which presents an important target for drug research. The iron-rich food vacuole of the parasite undergoes disintegration when illuminated with high-power lasers such as those required for high resolution in Stimulated Emission Depletion (STED) microscopy. This causes major damage to the sample precluding the use of this super-resolution technique. Here we present guided STED, a novel adaptive illumination (AI) STED approach, which takes advantage of the highly-reflective nature of the iron deposit in the cell to identify the most light-sensitive parts of the sample. Specifically in these parts, the high-power STED laser is deactivated automatically to prevent local damage. Guided STED nanoscopy finally allows super-resolution imaging of the whole Plasmodium life cycle, enabling multicolour imaging of blood-stage malaria parasites with resolutions down to 35 nm without sample destruction.
Collapse
Affiliation(s)
| | - Jörn Heine
- Abberior Instruments GmbH, 37077, Göttingen, Germany
| | - Alan F Cowman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Michał Pasternak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
39
|
Böhme MA, McCarthy AW, Grasskamp AT, Beuschel CB, Goel P, Jusyte M, Laber D, Huang S, Rey U, Petzoldt AG, Lehmann M, Göttfert F, Haghighi P, Hell SW, Owald D, Dickman D, Sigrist SJ, Walter AM. Rapid active zone remodeling consolidates presynaptic potentiation. Nat Commun 2019; 10:1085. [PMID: 30842428 PMCID: PMC6403334 DOI: 10.1038/s41467-019-08977-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/07/2019] [Indexed: 01/22/2023] Open
Abstract
Neuronal communication across synapses relies on neurotransmitter release from presynaptic active zones (AZs) followed by postsynaptic transmitter detection. Synaptic plasticity homeostatically maintains functionality during perturbations and enables memory formation. Postsynaptic plasticity targets neurotransmitter receptors, but presynaptic mechanisms regulating the neurotransmitter release apparatus remain largely enigmatic. By studying Drosophila neuromuscular junctions (NMJs) we show that AZs consist of nano-modular release sites and identify a molecular sequence that adds modules within minutes of inducing homeostatic plasticity. This requires cognate transport machinery and specific AZ-scaffolding proteins. Structural remodeling is not required for immediate potentiation of neurotransmitter release, but necessary to sustain potentiation over longer timescales. Finally, mutations in Unc13 disrupting homeostatic plasticity at the NMJ also impair short-term memory when central neurons are targeted, suggesting that both plasticity mechanisms utilize Unc13. Together, while immediate synaptic potentiation capitalizes on available material, it triggers the coincident incorporation of modular release sites to consolidate synaptic potentiation.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany.,Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Anthony W McCarthy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Andreas T Grasskamp
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Christine B Beuschel
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany.,Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Meida Jusyte
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Desiree Laber
- Institut für Neurophysiologie, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Ulises Rey
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany.,Department of Theory and Bio-systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Astrid G Petzoldt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Fabian Göttfert
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Stefan W Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - David Owald
- Institut für Neurophysiologie, Charité Universitätsmedizin, 10117, Berlin, Germany
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Stephan J Sigrist
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117, Berlin, Germany. .,Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany.
| | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
| |
Collapse
|
40
|
Pujals S, Feiner-Gracia N, Delcanale P, Voets I, Albertazzi L. Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nat Rev Chem 2019. [DOI: 10.1038/s41570-018-0070-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Sahl SJ, Schönle A, Hell SW. Fluorescence Microscopy with Nanometer Resolution. SPRINGER HANDBOOK OF MICROSCOPY 2019. [DOI: 10.1007/978-3-030-00069-1_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Abstract
Fluorescence-based nanoscopy methods (also known as "superresolution" microscopy) have substantially expanded our options to examine the distributions of molecules inside cells with nanometer-scale resolution and molecular specificity. In the biophysical analysis of aggregation-prone misfolded proteins and peptides, this has enabled the visualization of distinct populations of aggregated species such as fibrillar assemblies within intact neuronal cells, well below previous limits of sensitivity and resolution. With the Huntington's disease protein, polyglutamine-expanded mutant huntingtin, as an example, we provide sample preparation and imaging protocols for superresolution microscopy down to the ~30 nm-level.
Collapse
|
43
|
Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D, Borgers S, Heine J, Schloetel JG, Reuss M, Unser M, Boyden ES, Sauer M, Hamel V, Guichard P. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods 2018; 16:71-74. [PMID: 30559430 PMCID: PMC6314451 DOI: 10.1038/s41592-018-0238-1] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022]
Abstract
The attribution of a protein to an ultrastructural element by optical microscopy represents a major challenge in biology. Here, we report a method of near-native expansion microscopy (U-ExM), enabling the visualization of preserved ultrastructures of macromolecules by optical microscopy. Combined with super-resolution, U-ExM unveiled the centriolar chirality, only visualizable by electron microscopy. We demonstrate the general applicability of U-ExM by imaging different cellular structures including microtubules and mitochondria in cellulo.
Collapse
Affiliation(s)
- Davide Gambarotto
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Fabian U Zwettler
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Maeva Le Guennec
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Marketa Schmidt-Cernohorska
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland.,Laboratory of Adaptative Immunity, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Denis Fortun
- Signal Processing Core of Center for Biomedical Imaging (CIBM-SP), EPFL, Lausanne, Switzerland.,ICube, CNRS, University of Strasbourg, Illkirch, France
| | - Susanne Borgers
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Jörn Heine
- Abberior Instruments GmbH, Göttingen, Germany
| | | | | | - Michael Unser
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Biomedical Imaging Group, Lausanne, Switzerland
| | - Edward S Boyden
- Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Virginie Hamel
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland.
| | - Paul Guichard
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
44
|
Durand A, Wiesner T, Gardner MA, Robitaille LÉ, Bilodeau A, Gagné C, De Koninck P, Lavoie-Cardinal F. A machine learning approach for online automated optimization of super-resolution optical microscopy. Nat Commun 2018; 9:5247. [PMID: 30531817 PMCID: PMC6286316 DOI: 10.1038/s41467-018-07668-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022] Open
Abstract
Traditional approaches for finding well-performing parameterizations of complex imaging systems, such as super-resolution microscopes rely on an extensive exploration phase over the illumination and acquisition settings, prior to the imaging task. This strategy suffers from several issues: it requires a large amount of parameter configurations to be evaluated, it leads to discrepancies between well-performing parameters in the exploration phase and imaging task, and it results in a waste of time and resources given that optimization and final imaging tasks are conducted separately. Here we show that a fully automated, machine learning-based system can conduct imaging parameter optimization toward a trade-off between several objectives, simultaneously to the imaging task. Its potential is highlighted on various imaging tasks, such as live-cell and multicolor imaging and multimodal optimization. This online optimization routine can be integrated to various imaging systems to increase accessibility, optimize performance and improve overall imaging quality. Complex imaging systems like super-resolution microscopes currently require laborious parameter optimization before imaging. Here, the authors present an imaging optimization framework based on machine learning that performs simultaneous parameter optimization to simplify this procedure for a wide range of imaging tasks.
Collapse
Affiliation(s)
- Audrey Durand
- Département de génie électrique et de génie informatique, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Theresa Wiesner
- CERVO Brain Research Center, 2601 de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Marc-André Gardner
- Département de génie électrique et de génie informatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Louis-Émile Robitaille
- Département de génie électrique et de génie informatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Anthony Bilodeau
- CERVO Brain Research Center, 2601 de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Christian Gagné
- Département de génie électrique et de génie informatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Paul De Koninck
- CERVO Brain Research Center, 2601 de la Canardière, Québec, QC, G1J 2G3, Canada.,Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | | |
Collapse
|
45
|
Heil HS, Schreiber B, Götz R, Emmerling M, Dabauvalle MC, Krohne G, Höfling S, Kamp M, Sauer M, Heinze KG. Sharpening emitter localization in front of a tuned mirror. LIGHT, SCIENCE & APPLICATIONS 2018; 7:99. [PMID: 30534368 PMCID: PMC6279778 DOI: 10.1038/s41377-018-0104-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 05/23/2023]
Abstract
Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror2-4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells.
Collapse
Affiliation(s)
- Hannah S. Heil
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, 97080 Würzburg, Germany
| | - Benjamin Schreiber
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, 97080 Würzburg, Germany
| | - Ralph Götz
- Department of Biotechnology and Biophysics, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Monika Emmerling
- Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marie-Christine Dabauvalle
- Division of Electron Microscopy, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Georg Krohne
- Division of Electron Microscopy, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sven Höfling
- Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS UK
| | - Martin Kamp
- Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Katrin G. Heinze
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, 97080 Würzburg, Germany
| |
Collapse
|
46
|
Affiliation(s)
- Pieter E. Oomen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
| | - Mohaddeseh A. Aref
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
| | - Ibrahim Kaya
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 43180 Mölndal, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Nhu T. N. Phan
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
- University of Göttingen Medical Center, Institute of Neuro- and Sensory Physiology, Göttingen 37073, Germany
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg 41296, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Laboratory, University of Gothenburg and Chalmers University of Technology, Gothenburg 41296, Sweden
| |
Collapse
|
47
|
Heine J, Wurm CA, Keller-Findeisen J, Schönle A, Harke B, Reuss M, Winter FR, Donnert G. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:053701. [PMID: 29864829 DOI: 10.1063/1.5020249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Modern fluorescence superresolution microscopes are capable of imaging living cells on the nanometer scale. One of those techniques is stimulated emission depletion (STED) which increases the microscope's resolution many times in the lateral and the axial directions. To achieve these high resolutions not only close to the coverslip but also at greater depths, the choice of objective becomes crucial. Oil immersion objectives have frequently been used for STED imaging since their high numerical aperture (NA) leads to high spatial resolutions. But during live-cell imaging, especially at great penetration depths, these objectives have a distinct disadvantage. The refractive index mismatch between the immersion oil and the usually aqueous embedding media of living specimens results in unwanted spherical aberrations. These aberrations distort the point spread functions (PSFs). Notably, during z- and 3D-STED imaging, the resolution increase along the optical axis is majorly hampered if at all possible. To overcome this limitation, we here use a water immersion objective in combination with a spatial light modulator for z-STED measurements of living samples at great depths. This compact design allows for switching between objectives without having to adapt the STED beam path and enables on the fly alterations of the STED PSF to correct for aberrations. Furthermore, we derive the influence of the NA on the axial STED resolution theoretically and experimentally. We show under live-cell imaging conditions that a water immersion objective leads to far superior results than an oil immersion objective at penetration depths of 5-180 μm.
Collapse
Affiliation(s)
- Jörn Heine
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Christian A Wurm
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Andreas Schönle
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Benjamin Harke
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Matthias Reuss
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Franziska R Winter
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Gerald Donnert
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| |
Collapse
|
48
|
Dlasková A, Engstová H, Špaček T, Kahancová A, Pavluch V, Smolková K, Špačková J, Bartoš M, Hlavatá LP, Ježek P. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:829-844. [PMID: 29727614 DOI: 10.1016/j.bbabio.2018.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic β-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-β plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.
Collapse
Affiliation(s)
- Andrea Dlasková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Špaček
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anežka Kahancová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtěch Pavluch
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Smolková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Špačková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Bartoš
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Alef Ltd, Prague, Czech Republic
| | - Lydie Plecitá Hlavatá
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
49
|
Tinning PW, Scrimgeour R, McConnell G. Widefield standing wave microscopy of red blood cell membrane morphology with high temporal resolution. BIOMEDICAL OPTICS EXPRESS 2018; 9:1745-1761. [PMID: 29675316 PMCID: PMC5905920 DOI: 10.1364/boe.9.001745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 05/10/2023]
Abstract
We report the first demonstration of widefield standing wave (SW) microscopy of fluorescently labelled red blood cells at high speeds that allow for the rapid imaging of membrane deformations. Using existing and custom MATLAB functions, we also present a method to generate 2D and 3D reconstructions of the SW data for improved visualization of the cell. We compare our technique with standard widefield epifluorescence imaging and show that the SW technique not only reveals more topographical information about the specimen but does so without increasing toxicity or the rate of photobleaching and could make this a powerful technique for the diagnosis or study of red blood cell morphology and biomechanical characteristics.
Collapse
Affiliation(s)
- Peter W Tinning
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 ONG, UK
| | - Ross Scrimgeour
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 ONG, UK
| | - Gail McConnell
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 ONG, UK
| |
Collapse
|
50
|
Li C, Liu S, Wang W, Liu W, Kuang C, Liu X. Recent research on stimulated emission depletion microscopy for reducing photobleaching. J Microsc 2018; 271:4-16. [PMID: 29600565 DOI: 10.1111/jmi.12698] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Abstract
Stimulated emission depletion (STED) microscopy is a useful tool in investigation for super-resolution realm. By silencing the peripheral fluorophores of the excited spot, leaving only the very centre zone vigorous for fluorescence, the effective point spread function (PSF) could be immensely squeezed and subcellular structures, such as organelles, become discernable. Nevertheless, because of the low cross-section of stimulated emission and the short fluorescence lifetime, the depletion power density has to be extremely higher than the excitation power density and molecules are exposed in high risk of photobleaching. The existence of photobleaching greatly limits the research of STED in achieving higher resolution and more delicate imaging quality, as well as long-term and dynamic observation. Since the first experimental implementation of STED microscopy, researchers have lift out variety of methods and techniques to alleviate the problem. This paper would present some researches via conventional methods which have been explored and utilised relatively thoroughly, such as fast scanning, time-gating, two-photon excitation (TPE), triplet relaxation (T-Rex) and background suppression. Alternatively, several up-to-date techniques, especially adaptive illumination, would also be unveiled for discussion in this paper. The contrast and discussion of these modalities would play an important role in ameliorating the research of STED microscopy.
Collapse
Affiliation(s)
- C Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - S Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - W Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - W Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - C Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| | - X Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| |
Collapse
|