1
|
Gupta N, Somayajulu M, Gurdziel K, LoGrasso G, Aziz H, Rosati R, McClellan S, Pitchaikannu A, Santra M, Shukkur MFA, Stemmer P, Hazlett LD, Xu S. The miR-183/96/182 cluster regulates sensory innervation, resident myeloid cells and functions of the cornea through cell type-specific target genes. Sci Rep 2024; 14:7676. [PMID: 38561433 PMCID: PMC10985120 DOI: 10.1038/s41598-024-58403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The conserved miR-183/96/182 cluster (miR-183C) is expressed in both corneal resident myeloid cells (CRMCs) and sensory nerves (CSN) and modulates corneal immune/inflammatory responses. To uncover cell type-specific roles of miR-183C in CRMC and CSN and their contributions to corneal physiology, myeloid-specific miR-183C conditional knockout (MS-CKO), and sensory nerve-specific CKO (SNS-CKO) mice were produced and characterized in comparison to the conventional miR-183C KO. Immunofluorescence and confocal microscopy of flatmount corneas, corneal sensitivity, and tear volume assays were performed in young adult naïve mice; 3' RNA sequencing (Seq) and proteomics in the trigeminal ganglion (TG), cornea and CRMCs. Our results showed that, similar to conventional KO mice, the numbers of CRMCs were increased in both MS-CKO and SNS-CKO vs age- and sex-matched WT control littermates, suggesting intrinsic and extrinsic regulations of miR-183C on CRMCs. The number of CRMCs was increased in male vs female MS-CKO mice, suggesting sex-dependent regulation of miR-183C on CRMCs. In the miR-183C KO and SNS-CKO, but not the MS-CKO mice, CSN density was decreased in the epithelial layer of the cornea, but not the stromal layer. Functionally, corneal sensitivity and basal tear volume were reduced in the KO and SNS-CKO, but not the MS-CKO mice. Tear volume in males is consistently higher than female WT mice. Bioinformatic analyses of the transcriptomes revealed a series of cell-type specific target genes of miR-183C in TG sensory neurons and CRMCs. Our data elucidate that miR-183C imposes intrinsic and extrinsic regulation on the establishment and function of CSN and CRMCs by cell-specific target genes. miR-183C modulates corneal sensitivity and tear production through its regulation of corneal sensory innervation.
Collapse
Affiliation(s)
- Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | | | - Giovanni LoGrasso
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Haidy Aziz
- School of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sharon McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Manoranjan Santra
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Muhammed Farooq Abdul Shukkur
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA.
| |
Collapse
|
2
|
Abstract
To identify novel host factors as putative targets to reverse HIV-1 latency, we performed an insertional mutagenesis genetic screen in a latent HIV-1 infected pseudohaploid KBM7 cell line (Hap-Lat). Following mutagenesis, insertions were mapped to the genome, and bioinformatic analysis resulted in the identification of 69 candidate host genes involved in maintaining HIV-1 latency. A select set of candidate genes was functionally validated using short hairpin RNA (shRNA)-mediated depletion in latent HIV-1 infected J-Lat A2 and 11.1 T cell lines. We confirmed ADK, CHD9, CMSS1, EVI2B, EXOSC8, FAM19A, GRIK5, IRF2BP2, NF1, and USP15 as novel host factors involved in the maintenance of HIV-1 latency. Chromatin immunoprecipitation assays indicated that CHD9, a chromodomain helicase DNA-binding protein, maintains HIV-1 latency via direct association with the HIV-1 5′ long terminal repeat (LTR), and its depletion results in increased histone acetylation at the HIV-1 promoter, concomitant with HIV-1 latency reversal. FDA-approved inhibitors 5-iodotubercidin, trametinib, and topiramate, targeting ADK, NF1, and GRIK5, respectively, were characterized for their latency reversal potential. While 5-iodotubercidin exhibited significant cytotoxicity in both J-Lat and primary CD4+ T cells, trametinib reversed latency in J-Lat cells but not in latent HIV-1 infected primary CD4+ T cells. Importantly, topiramate reversed latency in cell line models, in latently infected primary CD4+ T cells, and crucially in CD4+ T cells from three people living with HIV-1 (PLWH) under suppressive antiretroviral therapy, without inducing T cell activation or significant toxicity. Thus, using an adaptation of a haploid forward genetic screen, we identified novel and druggable host factors contributing to HIV-1 latency.
Collapse
|
3
|
The Genome-Wide Binding Profile for Human RE1 Silencing Transcription Factor Unveils a Unique Genetic Circuitry in Hippocampus. J Neurosci 2021; 41:6582-6595. [PMID: 34210779 DOI: 10.1523/jneurosci.2059-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/12/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Early studies in mouse neurodevelopment led to the discovery of the RE1 Silencing Transcription Factor (REST) and its role as a master repressor of neuronal gene expression. Recently, REST was reported to also repress neuronal genes in the human adult brain. These genes were found to be involved in pro-apoptotic pathways; and their repression, associated with increased REST levels during aging, were found to be neuroprotective and conserved across species. However, direct genome-wide REST binding profiles for REST in adult brain have not been identified for any species. Here, we apply this approach to mouse and human hippocampus. We find an expansion of REST binding sites in the human hippocampus that are lacking in both mouse hippocampus and other human non-neuronal cell types. The unique human REST binding sites are associated with genes involved in innate immunity processes and inflammation signaling which, on the basis of histology and recent public transcriptomic analyses, suggest that these new target genes are repressed in glia. We propose that the increases in REST expression in mid-adulthood presage the beginning of brain aging, and that human REST function has evolved to protect the longevity and function of both neurons and glia in human brain.SIGNIFICANCE STATEMENT The RE1 Silencing Transcription Factor (REST) repressor has served historically as a model for gene regulation during mouse neurogenesis. Recent studies of REST have also suggested a conserved role for REST repressor function across lower species during aging. However, direct genome-wide studies for REST have been lacking for human brain. Here, we perform the first genome-wide analysis of REST binding in both human and mouse hippocampus. The majority of REST-occupied genes in human hippocampus are distinct from those in mouse. Further, the REST-associated genes unique to human hippocampus represent a new set related to innate immunity and inflammation, where their gene dysregulation has been implicated in aging-related neuropathology, such as Alzheimer's disease.
Collapse
|
4
|
Hansen J, von Melchner H, Wurst W. Mutant non-coding RNA resource in mouse embryonic stem cells. Dis Model Mech 2021; 14:14/2/dmm047803. [PMID: 33729986 PMCID: PMC7875499 DOI: 10.1242/dmm.047803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
Gene trapping is a high-throughput approach that has been used to introduce insertional mutations into the genome of mouse embryonic stem (ES) cells. It is performed with generic gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA sequence tag for the rapid identification of the disrupted gene. Large-scale international efforts assembled a gene trap library of 566,554 ES cell lines with single gene trap integrations distributed throughout the genome. Here, we re-investigated this unique library and identified mutations in 2202 non-coding RNA (ncRNA) genes, in addition to mutations in 12,078 distinct protein-coding genes. Moreover, we found certain types of gene trap vectors preferentially integrating into genes expressing specific long non-coding RNA (lncRNA) biotypes. Together with all other gene-trapped ES cell lines, lncRNA gene-trapped ES cell lines are readily available for functional in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jens Hansen
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Harald von Melchner
- Department of Molecular Hematology, University Hospital Frankfurt, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany .,Technische Universität München-Weihenstephan, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, D-81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, D-81377 München, Germany
| |
Collapse
|
5
|
Coku A, McClellan SA, Van Buren E, Back JB, Hazlett LD, Xu S. The miR-183/96/182 Cluster Regulates the Functions of Corneal Resident Macrophages. Immunohorizons 2020; 4:729-744. [PMID: 33208381 PMCID: PMC7891884 DOI: 10.4049/immunohorizons.2000091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident macrophages (ResMϕ) play important roles in the normal development and physiological functions as well as tissue repair and immune/inflammatory response to both internal and external insults. In cornea, ResMϕ are critical to the homeostasis and maintenance, wound healing, ocular immune privilege, and immune/inflammatory response to injury and microbial infection. However, the roles of microRNAs in corneal ResMϕ are utterly unknown. Previously, we demonstrated that the conserved miR-183/96/182 cluster (miR-183/96/182) plays important roles in sensory neurons and subgroups of both innate and adaptive immune cells and modulates corneal response to bacterial infection. In this study, we provide direct evidence that the mouse corneal ResMϕ constitutively produce both IL-17f and IL-10. This function is regulated by miR-183/96/182 through targeting Runx1 and Maf, key transcriptional regulators for IL-17f and IL-10 expression, respectively. In addition, we show that miR-183/96/182 has a negative feedback regulation on the TLR4 pathway in mouse corneal ResMϕ. Furthermore, miR-183/96/182 regulates the number of corneal ResMϕ. Inactivation of miR-183/96/182 in mouse results in more steady-state corneal resident immune cells, including ResMϕ, and leads to a simultaneous early upregulation of innate IL-17f and IL-10 production in the cornea after Pseudomonas aeruginosa infection. Its multiplex regulations on the simultaneous production of IL-17f and IL-10, TLR4 signaling pathway and the number of corneal ResMϕ place miR-183/96/182 in the center of corneal innate immunity, which is key to the homeostasis of the cornea, ocular immune privilege, and the corneal response to microbial infections.
Collapse
Affiliation(s)
- Ardian Coku
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | - Eric Van Buren
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201
| | - Jessica B Back
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| |
Collapse
|
6
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
7
|
Muraleedharan CK, McClellan SA, Ekanayaka SA, Francis R, Zmejkoski A, Hazlett LD, Xu S. The miR-183/96/182 Cluster Regulates Macrophage Functions in Response to Pseudomonas aeruginosa. J Innate Immun 2019; 11:347-358. [PMID: 30625496 DOI: 10.1159/000495472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Macrophages (Mϕ) are an important component of the innate immune system; they play critical roles in the first line of defense to pathogen invasion and modulate adaptive immunity. MicroRNAs (miRNAs) are a newly recognized, important level of gene expression regulation. However, their roles in the regulation of Mϕ and the immune system are still not fully understood. In this report, we provide evidence that the conserved miR-183/96/182 cluster (miR-183/96/182) modulates Mϕ function in their production of reactive nitrogen (RNS) and oxygen species (ROS) and their inflammatory response to Pseudomonas aeruginosa (PA) infection and/or lipopolysaccharide (LPS) treatment. We show that knockdown of miR-183/96/182 results in decreased production of multiple proinflammatory cytokines in response to PA or LPS treatment in Mϕ-like Raw264.7 cells. Consistently, peritoneal Mϕ from miR-183/96/182-knockout versus wild-type mice are less responsive to PA or LPS, although their basal levels of proinflammatory cytokines are increased. In addition, overexpression of miR-183/96/182 results in decreased production of nitrite and ROS in Raw264.7 cells. We also provide evidence that DAP12 and Nox2 are downstream target genes of miR-183/96/182. These data suggest that miR-183/96/182 imposes global regulation on various aspects of Mϕ function through different downstream target genes.
Collapse
Affiliation(s)
- Chithra K Muraleedharan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sandamali A Ekanayaka
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rebecca Francis
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Alex Zmejkoski
- Irvin D. Reed Honors College, Wayne State University, Detroit, Michigan, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA,
| |
Collapse
|
8
|
The microRNA-183/96/182 Cluster is Essential for Stereociliary Bundle Formation and Function of Cochlear Sensory Hair Cells. Sci Rep 2018; 8:18022. [PMID: 30575790 PMCID: PMC6303392 DOI: 10.1038/s41598-018-36894-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
The microRNA (miR)-183/96/182 cluster plays important roles in the development and functions of sensory organs, including the inner ear. Point-mutations in the seed sequence of miR-96 result in non-syndromic hearing loss in both mice and humans. However, the lack of a functionally null mutant has hampered the evaluation of the cluster’s physiological functions. Here we have characterized a loss-of-function mutant mouse model (miR-183CGT/GT), in which the miR-183/96/182 cluster gene is inactivated by a gene-trap (GT) construct. The homozygous mutant mice show profound congenital hearing loss with severe defects in cochlear hair cell (HC) maturation, alignment, hair bundle formation and the checkboard-like pattern of the cochlear sensory epithelia. The stereociliary bundles retain an immature appearance throughout the cochlea at postnatal day (P) 3 and degenerate soon after. The organ of Corti of mutant newborn mice has no functional mechanoelectrical transduction. Several predicted target genes of the miR-183/96/182 cluster that are known to play important roles in HC development and function, including Clic5, Rdx, Ezr, Rac1, Myo1c, Pvrl3 and Sox2, are upregulated in the cochlea. These results suggest that the miR-183/96/182 cluster is essential for stereociliary bundle formation, morphogenesis and function of the cochlear HCs.
Collapse
|
9
|
Lin J, Zheng J, Zhang H, Chen J, Yu Z, Chen C, Xiong Y, Liu T. Cytochrome P450 family proteins as potential biomarkers for ovarian granulosa cell damage in mice with premature ovarian failure. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4236-4246. [PMID: 31949819 PMCID: PMC6962776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/29/2018] [Indexed: 06/10/2023]
Abstract
Premature ovarian failure (POF) is the pathological aging of ovarian tissue. We have previously established a cyclophosphamide-induced mouse POF model and found that cyclophosphamide caused significant damage and apoptosis of mouse ovarian granulosa cells (mOGCs). To systematically explore the molecular biologic evidence of cyclophosphamide-induced mOGC damage at the gene transcription level, RNA-Seqwas used to analyse the differences in mOGC transcriptomes between POF and control (PBS) mice. The sequencing results showed that there were 18765 differential transcription genes between the two groups, of which 192 were significantly up-regulated (log2 [POF/PBS] > 2.0) and 116 were significantly down-regulated (log2 [POF/PBS] < -4.0). Kyoto Encyclopedia of Genes and Genomes analysis found that the neuroactive ligand-receptor interaction pathway was significantly up-regulated and metabolic pathways were significantly down-regulated in the POF group. Gene Ontology analysis showed that the expression of plasma membrane, regulation of transcription and ion binding functions were significantly up-regulated in the POF group, while the expression of cell and cell parts, catalytic activity and single-organism process functions were significantly down-regulated. Finally, protein interaction analysis reveals that in the ovarian steroidogenesis pathway, three Cytochrome P450 family proteins-Cyp1a1, Cyp11a1 and Cyp2u1-interact with Fdx1 to form an interactive network. These three proteins were down-regulated in POF cells, suggesting that they are likely direct regulatory targets of cyclophosphamide. RNA-Seq high-throughput screening analysis demonstrated that cyclophosphamide damage to mOGCs was achieved through its impacts on multiple pathways and on the transcription activities of multiple target genes. Among them, the protein network consisting of the cytochrome P450 family Fdx1, Cyp17a1, Cyp11a1 and Cyp2u1 is a potential new biomarker of mOGC damage in POF in mice.
Collapse
Affiliation(s)
- Jiajia Lin
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Jiajia Zheng
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Hu Zhang
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Jiulin Chen
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Zhihua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Chuan Chen
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Ying Xiong
- Department of Gynaecology and Obestetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, China
- Department of Pathology, Yale UniversitySchool of MedicineNew Haven, USA
| |
Collapse
|
10
|
Chang KT, Guo J, di Ronza A, Sardiello M. Aminode: Identification of Evolutionary Constraints in the Human Proteome. Sci Rep 2018; 8:1357. [PMID: 29358731 PMCID: PMC5778061 DOI: 10.1038/s41598-018-19744-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Evolutionarily constrained regions (ECRs) are a hallmark for sites of critical importance for a protein's structure or function. ECRs can be inferred by comparing the amino acid sequences from multiple protein homologs in the context of the evolutionary relationships that link the analyzed proteins. The compilation and analysis of the datasets required to infer ECRs, however, are time consuming and require skills in coding and bioinformatics, which can limit the use of ECR analysis in the biomedical community. Here, we developed Aminode, a user-friendly webtool for the routine and rapid inference of ECRs. Aminode is pre-loaded with the results of the analysis of the whole human proteome compared with proteomes from 62 additional vertebrate species. Profiles of the relative rates of amino acid substitution and ECR maps of human proteins are available for immediate search and download on the Aminode website. Aminode can also be used for custom analyses of protein families of interest. Interestingly, mapping of known missense variants shows great enrichment of pathogenic variants and depletion of non-pathogenic variants in Aminode-generated ECRs, suggesting that ECR analysis may help evaluate the potential pathogenicity of variants of unknown significance. Aminode is freely available at http://www.aminode.org .
Collapse
Affiliation(s)
- Kevin T Chang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Junyan Guo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Microsoft Corporation, 1 Microsoft Way, Redmond, WA, 98052, USA
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Laurila PP, Soronen J, Kooijman S, Forsström S, Boon MR, Surakka I, Kaiharju E, Coomans CP, Van Den Berg SAA, Autio A, Sarin AP, Kettunen J, Tikkanen E, Manninen T, Metso J, Silvennoinen R, Merikanto K, Ruuth M, Perttilä J, Mäkelä A, Isomi A, Tuomainen AM, Tikka A, Ramadan UA, Seppälä I, Lehtimäki T, Eriksson J, Havulinna A, Jula A, Karhunen PJ, Salomaa V, Perola M, Ehnholm C, Lee-Rueckert M, Van Eck M, Roivainen A, Taskinen MR, Peltonen L, Mervaala E, Jalanko A, Hohtola E, Olkkonen VM, Ripatti S, Kovanen PT, Rensen PCN, Suomalainen A, Jauhiainen M. USF1 deficiency activates brown adipose tissue and improves cardiometabolic health. Sci Transl Med 2016; 8:323ra13. [PMID: 26819196 DOI: 10.1126/scitranslmed.aad0015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
USF1 (upstream stimulatory factor 1) is a transcription factor associated with familial combined hyperlipidemia and coronary artery disease in humans. However, whether USF1 is beneficial or detrimental to cardiometabolic health has not been addressed. By inactivating USF1 in mice, we demonstrate protection against diet-induced dyslipidemia, obesity, insulin resistance, hepatic steatosis, and atherosclerosis. The favorable plasma lipid profile, including increased high-density lipoprotein cholesterol and decreased triglycerides, was coupled with increased energy expenditure due to activation of brown adipose tissue (BAT). Usf1 inactivation directs triglycerides from the circulation to BAT for combustion via a lipoprotein lipase-dependent mechanism, thus enhancing plasma triglyceride clearance. Mice lacking Usf1 displayed increased BAT-facilitated, diet-induced thermogenesis with up-regulation of mitochondrial respiratory chain complexes, as well as increased BAT activity even at thermoneutrality and after BAT sympathectomy. A direct effect of USF1 on BAT activation was demonstrated by an amplified adrenergic response in brown adipocytes after Usf1 silencing, and by augmented norepinephrine-induced thermogenesis in mice lacking Usf1. In humans, individuals carrying SNP (single-nucleotide polymorphism) alleles that reduced USF1 mRNA expression also displayed a beneficial cardiometabolic profile, featuring improved insulin sensitivity, a favorable lipid profile, and reduced atherosclerosis. Our findings identify a new molecular link between lipid metabolism and energy expenditure, and point to the potential of USF1 as a therapeutic target for cardiometabolic disease.
Collapse
Affiliation(s)
- Pirkka-Pekka Laurila
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Department of Medical Genetics, University of Helsinki, Helsinki FI-00014, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland.
| | - Jarkko Soronen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Sander Kooijman
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Saara Forsström
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki FI-00014, Finland
| | - Mariëtte R Boon
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Ida Surakka
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland
| | - Essi Kaiharju
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Claudia P Coomans
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | | | - Anu Autio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku FI-20520, Finland
| | - Antti-Pekka Sarin
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland
| | - Johannes Kettunen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Computational Medicine, Institute of Health Sciences, University of Oulu and Oulu University Hospital, Oulu FI-90014, Finland
| | - Emmi Tikkanen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Hjelt Institute, University of Helsinki, Helsinki FI-00014, Finland
| | - Tuula Manninen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki FI-00014, Finland
| | - Jari Metso
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | | | - Krista Merikanto
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Maija Ruuth
- Wihuri Research Institute, Helsinki FI-00290, Finland
| | - Julia Perttilä
- Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Anne Mäkelä
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Ayaka Isomi
- Hiroshima University, Hiroshima 730-0053, Japan
| | - Anita M Tuomainen
- Institute of Dentistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Anna Tikka
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Usama Abo Ramadan
- Experimental MRI Laboratory, Department of Neurology, Helsinki University Central Hospital, Helsinki FI-00290, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, and Tampere University School of Medicine, Tampere FI-33014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Tampere University School of Medicine, Tampere FI-33014, Finland
| | - Johan Eriksson
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland. Folkhälsan Research Centre, Helsinki FI-00251, Finland. Unit of General Practice, Helsinki University Central Hospital, Helsinki FI-00290, Finland. Department of General Practice and Primary Health Care, University of Helsinki, Helsinki FI-00014, Finland
| | - Aki Havulinna
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland
| | - Antti Jula
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland
| | - Pekka J Karhunen
- Department of Clinical Chemistry, Fimlab Laboratories, and Tampere University School of Medicine, Tampere FI-33014, Finland
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland
| | - Markus Perola
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Christian Ehnholm
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | | | - Miranda Van Eck
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku FI-20520, Finland. Turku Center for Disease Modeling, University of Turku, Turku FI-20520, Finland
| | - Marja-Riitta Taskinen
- Diabetes and Obesity Research Program, University of Helsinki, Helsinki FI-00014, Finland
| | | | - Eero Mervaala
- Institute of Biomedicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Anu Jalanko
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Esa Hohtola
- Department of Genetics and Physiology, University of Oulu, Oulu FI-90014, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Samuli Ripatti
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Hjelt Institute, University of Helsinki, Helsinki FI-00014, Finland. Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Patrick C N Rensen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Anu Suomalainen
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki FI-00014, Finland. Department of Neurology, Helsinki University Central Hospital, Helsinki FI-00290, Finland. Neuroscience Center, University of Helsinki, Helsinki FI-00014, Finland
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland.
| |
Collapse
|
12
|
Muraleedharan CK, McClellan SA, Barrett RP, Li C, Montenegro D, Carion T, Berger E, Hazlett LD, Xu S. Inactivation of the miR-183/96/182 Cluster Decreases the Severity of Pseudomonas aeruginosa-Induced Keratitis. Invest Ophthalmol Vis Sci 2016; 57:1506-17. [PMID: 27035623 PMCID: PMC4819431 DOI: 10.1167/iovs.16-19134] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/20/2016] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The microRNA-183/96/182 cluster (miR-183/96/182) plays important roles in sensory organs. Because the cornea is replete with sensory innervation, we hypothesized that miR-183/96/182 modulates the corneal response to bacterial infection through regulation of neuroimmune interactions. METHODS Eight-week-old miR-183/96/182 knockout (ko) mice and their wild-type littermates (wt) were used. The central cornea of anesthetized mice was scarred and infected with Pseudomonas aeruginosa (PA), strain 19660. Corneal disease was graded at 1, 3, and 5 days postinfection (dpi). Corneal RNA was harvested for quantitative RT-PCR. Polymorphonuclear neutrophils (PMN) were enumerated by myeloperoxidase assays; the number of viable bacteria was determined by plate counts, and ELISA assays were performed to determine cytokine protein levels. A macrophage (Mϕ) cell line and elicited peritoneal PMN were used for in vitro functional assays. RESULTS MicroRNA-183/96/182 is expressed in the cornea, and in Mϕ and PMN of both mice and humans. Inactivation of miR-183/96/182 resulted in decreased corneal nerve density compared with wt mice. Overexpression of miR-183/96/182 in Mϕ decreased, whereas knockdown or inactivation of miR-183/96/182 in Mϕ and PMN increased their capacity for phagocytosis and intracellular killing of PA. In PA-infected corneas, ko mice showed decreased proinflammatory neuropeptides such as substance P and chemoattractant molecules, MIP-2, MCP1, and ICAM1; decreased number of PMN at 1 and 5 dpi; increased viable bacterial load at 1 dpi, but decreased at 5 dpi; and markedly decreased corneal disease. CONCLUSIONS MicroRNA-183/96/182 modulates the corneal response to bacterial infection through its regulation of corneal innervation and innate immunity.
Collapse
Affiliation(s)
- Chithra K. Muraleedharan
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Sharon A. McClellan
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Ronald P. Barrett
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Cui Li
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Daniel Montenegro
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Thomas Carion
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Elizabeth Berger
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Linda D. Hazlett
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| | - Shunbin Xu
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan, United States
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
13
|
Specks J, Nieto-Soler M, Lopez-Contreras AJ, Fernandez-Capetillo O. Modeling the study of DNA damage responses in mice. Methods Mol Biol 2015; 1267:413-37. [PMID: 25636482 DOI: 10.1007/978-1-4939-2297-0_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate aging. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses.
Collapse
Affiliation(s)
- Julia Specks
- Genomic Instability Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro, 3, E-28029, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Spry2 regulates signalling dynamics and terminal bud branching behaviour during lung development. Genet Res (Camb) 2015; 97:e5. [PMID: 25825238 DOI: 10.1017/s0016672315000026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Development of mammalian lung involves reiterative outgrowth and branching of an epithelial tube into the surrounding mesenchymal bed. Each coordinated growth and branching cycle is driven by reciprocal signalling between epithelial and adjacent mesenchymal cells. This signalling network includes FGF, SHH, BMP4 and other pathways. We have characterized lung defects in 36Pub mice carrying a deletion that removes an antagonist of FGF signalling, Spry2. Spry2 deficient mice show an enlarged cystic structure located in the terminus of each lobes. Our study shows that Spry2 deficient lungs have reduced lung branching and the cystic structure forms in the early lung development stage. Furthermore, mice carrying a targeted disruption of Spry2 fail to complement the lung phenotype characterized in 36Pub mice. A Spry2-BAC transgene rescues the defect. Interestingly, cystic structure growth is accompanied by the reduced and spatially disorganized expression of Fgf10 and elevated expression of Shh and Bmp4. Altered signalling balance due to the loss of Spry2 causes a delayed branch cycle and cystic growth. Our data underscores the importance of restricting cellular responsiveness to signalling and highlights the interplay between morphogenesis events and spatial localization of gene expression.
Collapse
|
15
|
New Transgenic Technologies. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Plant homeodomain finger protein 2 promotes bone formation by demethylating and activating Runx2 for osteoblast differentiation. Cell Res 2014; 24:1231-49. [PMID: 25257467 DOI: 10.1038/cr.2014.127] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 07/09/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Plant homeodomain finger protein 2 (PHF2), which contains a plant homeodomain and a Jumonji-C domain, is an epigenetic regulator that demethylates lysine 9 in histone 3 (H3K9me2). On the other hand, runt-related transcription factor 2 (Runx2) plays essential roles in bone development and regeneration. Given previous reports that the PHF2 mutation can cause dwarfism in mice and that PHF2 expression is correlated with that of Runx2 in differentiating thymocytes, we investigated whether PHF2 regulates Runx2-mediated bone formation. Overexpression of PHF2 facilitated bone development in newborn mice, and viral shRNA-mediated knockdown of PHF2 delayed calvarial bone regeneration in adult rats. In primary osteoblasts and C2C12 precursor cells, PHF2 enhances osteoblast differentiation by demethylating Runx2, while suppressor of variegation 3-9 homolog 1 (SUV39H1) inhibits bone formation by methylating it. The PHF2-Runx2 interaction is mediated by the Jumonji-C and Runt domains of the two proteins, respectively. The interaction between Runx2 and osteocalcin promoter is regulated by the methylation status of Runx2, i.e., the interaction is augmented when Runx2 is demethylated. Our results suggest that SUV39H1 and PHF2 reciprocally regulate osteoblast differentiation by modulating Runx2-driven transcription at the post-translational level. This study may provide a theoretical basis for the development of new therapeutic modalities for patients with impaired bone development or delayed fracture healing.
Collapse
|
17
|
Araki M, Nakahara M, Muta M, Itou M, Yanai C, Yamazoe F, Miyake M, Morita A, Araki M, Okamoto Y, Nakagata N, Yoshinobu K, Yamamura KI, Araki K. Database for exchangeable gene trap clones: pathway and gene ontology analysis of exchangeable gene trap clone mouse lines. Dev Growth Differ 2014; 56:161-74. [PMID: 24444128 DOI: 10.1111/dgd.12116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 01/13/2023]
Abstract
Gene trapping in embryonic stem (ES) cells is a proven method for large-scale random insertional mutagenesis in the mouse genome. We have established an exchangeable gene trap system, in which a reporter gene can be exchanged for any other DNA of interest through Cre/mutant lox-mediated recombination. We isolated trap clones, analyzed trapped genes, and constructed the database for Exchangeable Gene Trap Clones (EGTC) [http://egtc.jp]. The number of registered ES cell lines was 1162 on 31 August 2013. We also established 454 mouse lines from trap ES clones and deposited them in the mouse embryo bank at the Center for Animal Resources and Development, Kumamoto University, Japan. The EGTC database is the most extensive academic resource for gene-trap mouse lines. Because we used a promoter-trap strategy, all trapped genes were expressed in ES cells. To understand the general characteristics of the trapped genes in the EGTC library, we used Kyoto Encyclopedia of Genes and Genomes (KEGG) for pathway analysis and found that the EGTC ES clones covered a broad range of pathways. We also used Gene Ontology (GO) classification data provided by Mouse Genome Informatics (MGI) to compare the functional distribution of genes in each GO term between trapped genes in the EGTC mouse lines and total genes annotated in MGI. We found the functional distributions for the trapped genes in the EGTC mouse lines and for the RefSeq genes for the whole mouse genome were similar, indicating that the EGTC mouse lines had trapped a wide range of mouse genes.
Collapse
Affiliation(s)
- Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ding S, Xu T, Wu X. Generation of genetically engineered mice by the piggyBac transposon system. Methods Mol Biol 2014; 1194:171-85. [PMID: 25064103 DOI: 10.1007/978-1-4939-1215-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetically engineered mice (GEM) are invaluable tools not only for understanding mammalian biology but also for modeling human diseases. Here we present protocols to generate GEM with the piggyBac (PB) transposon system. In the first part, we describe a transgenic procedure that co-injects the transgene carried by a PB donor plasmid and a PB transposase (PBase)-expressing helper plasmid into the pronuclei of fertilized eggs. In the second part, we provide a large-scale, cost-effective insertional mutagenesis strategy that remobilizes single-copy PB transposons in the male germ line. Given that PB can transpose in a broad spectrum of eukaryotic hosts, the protocols described here could be adapted for other species in the future.
Collapse
Affiliation(s)
- Sheng Ding
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Biomedical Research Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | | | | |
Collapse
|
19
|
Predescu DN, Bardita C, Tandon R, Predescu SA. Intersectin-1s: an important regulator of cellular and molecular pathways in lung injury. Pulm Circ 2013; 3:478-98. [PMID: 24618535 PMCID: PMC4070809 DOI: 10.1086/674439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe syndromes resulting from the diffuse damage of the pulmonary parenchyma. ALI and ARDS are induced by a plethora of local or systemic insults, leading to the activation of multiple pathways responsible for injury, resolution, and repair or scarring of the lungs. Despite the large efforts aimed at exploring the roles of different pathways in humans and animal models and the great strides made in understanding the pathogenesis of ALI/ARDS, the only viable treatment options are still dependent on ventilator and cardiovascular support. Investigation of the pathophysiological mechanisms responsible for initiation and resolution or advancement toward lung scarring in ALI/ARDS animal models led to a better understanding of the disease's complexity and helped in elucidating the links between ALI and systemic multiorgan failure. Although animal models of ALI/ARDS have pointed out a variety of new ideas for study, there are still limited data regarding the initiating factors, the critical steps in the progression of the disease, and the central mechanisms dictating its resolution or progression to lung scarring. Recent studies link deficiency of intersectin-1s (ITSN-1s), a prosurvival protein of lung endothelial cells, to endothelial barrier dysfunction and pulmonary edema as well as to the repair/recovery from ALI. This review discusses the effects of ITSN-1s deficiency on pulmonary endothelium and its significance in the pathology of ALI/ARDS.
Collapse
Affiliation(s)
- Dan N Predescu
- 1 Department of Pharmacology, Rush University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
20
|
Gene-trap mutagenesis using Mol/MSM-1 embryonic stem cells from MSM/Ms mice. Mamm Genome 2013; 24:228-39. [DOI: 10.1007/s00335-013-9452-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/12/2013] [Indexed: 12/12/2022]
|
21
|
Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci U S A 2013; 110:E507-16. [PMID: 23341629 DOI: 10.1073/pnas.1212655110] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The microRNA-183/96/182 cluster is highly expressed in the retina and other sensory organs. To uncover its in vivo functions in the retina, we generated a knockout mouse model, designated "miR-183C(GT/GT)," using a gene-trap embryonic stem cell clone. We provide evidence that inactivation of the cluster results in early-onset and progressive synaptic defects of the photoreceptors, leading to abnormalities of scotopic and photopic electroretinograms with decreased b-wave amplitude as the primary defect and progressive retinal degeneration. In addition, inactivation of the miR-183/96/182 cluster resulted in global changes in retinal gene expression, with enrichment of genes important for synaptogenesis, synaptic transmission, photoreceptor morphogenesis, and phototransduction, suggesting that the miR-183/96/182 cluster plays important roles in postnatal functional differentiation and synaptic connectivity of photoreceptors.
Collapse
|
22
|
Song G, Li Q, Long Y, Hackett PB, Cui Z. Effective Expression-Independent Gene Trapping and Mutagenesis Mediated by Sleeping Beauty Transposon. J Genet Genomics 2012; 39:503-20. [DOI: 10.1016/j.jgg.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/21/2012] [Accepted: 05/28/2012] [Indexed: 01/12/2023]
|
23
|
Effective gene trapping mediated by Sleeping Beauty transposon. PLoS One 2012; 7:e44123. [PMID: 22952894 PMCID: PMC3432063 DOI: 10.1371/journal.pone.0044123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/30/2012] [Indexed: 01/14/2023] Open
Abstract
Gene trapping is a high-throughput approach to elucidate gene functions by disrupting and recapitulating expression of genes in a target genome. A number of transposon-based gene-trapping systems are developed for mutagenesis in cells and model organisms, but there is still much room for the improvement of their efficiency in gene disruption and mutation. Herein, a gene-trapping system mediated by Sleeping Beauty (SB) transposon was developed by inclusion of three functional cassettes. The mutation cassette can abrogate the splice of trapped genes and terminate their translation. Once an endogenous gene is captured, the finding cassette independently drives the translation of reporter gene in HeLa cells and zebrafish embryos. The efficiency cassette controls the remobilization of integrated traps through inducible expression of SB gene. Analysis of transposon-genome junctions indicate that most of trap cassettes are integrated into an intron without an obvious 3′ bias. The transcription of trapped genes was abrogated by alternative splicing of the mutation cassette. In addition, integrated transposons can be induced to excise from their original insertion sites. Furthermore, the Cre/LoxP system was introduced to delete the efficiency cassette for stabilization of gene interruption and bio-safety. Thus, this gene-trap vector is an alternative and effective tool for the capture and disruption of endogenous genes in vitro and in vivo.
Collapse
|
24
|
Yamaguchi T, Morikawa A, Miyoshi H. Comparison of gene-trapping efficiency between retroviral and lentiviral vectors in mouse embryonic stem cells. Biochem Biophys Res Commun 2012; 425:297-303. [PMID: 22842569 DOI: 10.1016/j.bbrc.2012.07.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Gene trapping is a method of inserting DNA into the genome at random, generating insertional mutations throughout the genome. The efficiency of retroviral gene trapping is not sufficient in part because of a strong preference for retroviral integration near transcription start sites. In contrast, lentiviral vectors strongly favor integration in the entire region of highly active genes, suggesting that lentiviral vectors would improve the efficiency of gene trapping. In this study, we constructed both lentiviral and retroviral gene-trap vectors and analyzed integration sites in mouse embryonic stem (ES) cells. The frequency of false-positive gene-trap events was about 12-fold higher for the retroviral vector compared to the lentiviral vector. Within intragenic regions, most of the retroviral vector integration sites were found in the 5' untranslated region, while the lentiviral vector integrated uniformly throughout transcriptional units. The trapping efficiency of unique genes was significantly higher for the lentiviral vector (~83%) than for the retroviral vector (~51%). Our data demonstrate that the lentiviral vector can trap the active genes more efficiently than the retroviral vector and will facilitate efficient generation of gene-trap libraries not only in ES cells but also in a wide variety of cell lines and primary cells.
Collapse
Affiliation(s)
- Tomoyuki Yamaguchi
- Subteam for Manipulation of Cell Fate, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | |
Collapse
|
25
|
Genetic approaches to targeting multiple PARP genes in a mammalian genome. Methods Mol Biol 2012; 780:349-76. [PMID: 21870271 DOI: 10.1007/978-1-61779-270-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this chapter is to present feasible strategies for producing novel Parp knock out mice as well multiple knock outs utilizing genetrap and specifically gene targeted ES cell clones publically available through international programs such as KOMP and IGTC. Specifically, we first describe general considerations and strategic decisions that precede the generation of knock out mice using these available materials, and an overview over clones relevant to the PARP family is provided. Detailed protocols for splice variant analysis of the gene of interest, to determine what to expect from a given gene trap clone, are presented. Furthermore, we provide a detailed and widely applicable step by step method to fine-map genomic genetrap insertion sites once targeted clones have been obtained. This is a prerequisite for development of feasible genotyping methods that usually have to be developed by the user.
Collapse
|
26
|
Migeotte I, Grego-Bessa J, Anderson KV. Rac1 mediates morphogenetic responses to intercellular signals in the gastrulating mouse embryo. Development 2011; 138:3011-20. [PMID: 21693517 DOI: 10.1242/dev.059766] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The establishment of the mammalian body plan depends on signal-regulated cell migration and adhesion, processes that are controlled by the Rho family of GTPases. Here we use a conditional allele of Rac1, the only Rac gene expressed early in development, to define its roles in the gastrulating mouse embryo. Embryos that lack Rac1 in the epiblast (Rac1Δepi) initiate development normally: the signaling pathways required for gastrulation are active, definitive endoderm and all classes of mesoderm are specified, and the neural plate is formed. After the initiation of gastrulation, Rac1Δepi embryos have an enlarged primitive streak, make only a small amount of paraxial mesoderm, and the lateral anlage of the heart do not fuse at the midline. Because these phenotypes are also seen in Nap1 mutants, we conclude that Rac1 acts upstream of the Nap1/WAVE complex to promote migration of the nascent mesoderm. In addition to migration phenotypes, Rac1Δepi cells fail to adhere to matrix, which leads to extensive cell death. Cell death is largely rescued in Rac1Δepi mutants that are heterozygous for a null mutation in Pten, providing evidence that Rac1 is required to link signals from the basement membrane to activation of the PI3K-Akt pathway in vivo. Surprisingly, the frequency of apoptosis is greater in the anterior half of the embryo, suggesting that cell survival can be promoted either by matrix adhesion or by signals from the posterior primitive streak. Rac1 also has essential roles in morphogenesis of the posterior notochordal plate (the node) and the midline.
Collapse
Affiliation(s)
- Isabelle Migeotte
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
27
|
Hübener J, Vauti F, Funke C, Wolburg H, Ye Y, Schmidt T, Wolburg-Buchholz K, Schmitt I, Gardyan A, Driessen S, Arnold HH, Nguyen HP, Riess O. N-terminal ataxin-3 causes neurological symptoms with inclusions, endoplasmic reticulum stress and ribosomal dislocation. ACTA ACUST UNITED AC 2011; 134:1925-42. [PMID: 21653538 DOI: 10.1093/brain/awr118] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutant ataxin-3 is aberrantly folded and proteolytically cleaved in spinocerebellar ataxia type 3. The C-terminal region of the protein includes a polyglutamine stretch that is expanded in spinocerebellar ataxia type 3. Here, we report on the analysis of an ataxin-3 mutant mouse that has been obtained by gene trap integration. The ataxin-3 fusion protein encompasses 259 N-terminal amino acids including the Josephin domain and an ubiquitin-interacting motif but lacks the C-terminus with the polyglutamine stretch, the valosin-containing protein binding region and part of the ubiquitin-interacting motif 2. Homozygous ataxin-3 mutant mice were viable and showed no apparent anatomical defects at birth. However, at the age of 9 months, homozygous and heterozygous mutant mice revealed significantly altered behaviour and progressing deficits of motor coordination followed by premature death at ∼12 months. At this time, prominent extranuclear protein aggregates and neuronal cell death was found in mutant mice. This was associated with disturbances of the endoplasmic reticulum-mediated unfolded protein response, consistent with the normal role of ataxin-3 in endoplasmic reticulum homeostasis. Thus, the ataxin-3 gene trap model provides evidence for a contribution of the non-polyglutamine containing ataxin-3 N-terminus, which mimics a calpain fragment that has been observed in spinocerebellar ataxia type 3. Consistent with the disease in humans, gene trap mice develop cytoplasmic inclusion bodies and implicate impaired unfolded protein response in the pathogenesis of spinocerebellar ataxia type 3.
Collapse
Affiliation(s)
- Jeannette Hübener
- Department of Medical Genetics, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
High throughput gene trapping and postinsertional modifications of gene trap alleles. Methods 2011; 53:347-55. [DOI: 10.1016/j.ymeth.2010.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/27/2010] [Accepted: 12/31/2010] [Indexed: 11/17/2022] Open
|
29
|
A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS One 2011; 6:e17607. [PMID: 21423608 PMCID: PMC3057978 DOI: 10.1371/journal.pone.0017607] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/30/2011] [Indexed: 01/07/2023] Open
Abstract
Background Hearing impairment is the most common sensory impairment in humans, affecting 1∶1,000 births. We have identified an ENU generated mouse mutant, Mozart, with recessively inherited, non-syndromic progressive hearing loss caused by a mutation in the synaptojanin 2 (Synj2), a central regulatory enzyme in the phosphoinositide-signaling cascade. Methodology/Principal Findings The hearing loss in Mozart is caused by a p.Asn538Lys mutation in the catalytic domain of the inositol polyphosphate 5-phosphatase synaptojanin 2. Within the cochlea, Synj2 mRNA expression was detected in the inner and outer hair cells but not in the spiral ganglion. Synj2N538K mutant protein showed loss of lipid phosphatase activity, and was unable to degrade phosphoinositide signaling molecules. Mutant Mozart mice (Synj2N538K/N538K) exhibited progressive hearing loss and showed signs of hair cell degeneration as early as two weeks of age, with fusion of stereocilia followed by complete loss of hair bundles and ultimately loss of hair cells. No changes in vestibular or neurological function, or other clinical or behavioral manifestations were apparent. Conclusions/Significance Phosphoinositides are membrane associated signaling molecules that regulate many cellular processes including cell death, proliferation, actin polymerization and ion channel activity. These results reveal Synj2 as a critical regulator of hair cell survival that is essential for hair cell maintenance and hearing function.
Collapse
|
30
|
Wefers B, Wurst W, Kühn R. Design and Generation of Gene-Targeting Vectors. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2011; 1:199-211. [PMID: 26068993 DOI: 10.1002/9780470942390.mo100179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit provides an overview of the major types of mutant alleles that can be generated by gene targeting in ES cells. It presents the growing public resources of premade gene targeting vectors, modified ES cells, and mutant mice. General guidelines for the design of targeting vectors are followed by protocols for the construction of vectors to generate knockout (KO), conditional KO, and subtle mutant alleles. Curr. Protoc. Mouse Biol. 1:199-211. © 2011 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Benedikt Wefers
- German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang Wurst
- German Research Center for Environmental Health, Munich, Germany.,Technical University Munich, Munich, Germany.,Max-Planck-Institute of Psychiatry, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Munich, Germany
| | - Ralf Kühn
- German Research Center for Environmental Health, Munich, Germany.,Technical University Munich, Munich, Germany
| |
Collapse
|
31
|
Schucht R, Lydford S, Andzinski L, Zauers J, Cooper J, Hauser H, Wirth D, May T. Rapid establishment of G-protein-coupled receptor-expressing cell lines by site-specific integration. ACTA ACUST UNITED AC 2011; 16:323-31. [PMID: 21335600 DOI: 10.1177/1087057110396371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The establishment of mammalian cell lines reliably expressing G-protein-coupled receptors (GPCRs) can be a tedious and often time-consuming process. A strategy has been developed to allow the rapid production of such cell lines. The first step of this approach was the generation of a specialized master cell line, characterized by optimized stable expression of a membrane-bound reporter protein. In the second step, this reporter gene was exchanged for that of the GPCR of interest by a DNA recombinase "cut-and-paste" engineering step. It has been demonstrated that the resulting GPCR cell lines inherit the advantages of the master cell line, expressing the GPCR in a homogeneous and stable manner. The case studies presented demonstrate the functionality of the established GPCR cell lines, and most important, because of the highly efficient integration event, these recombinant GPCR-expressing cell lines were generated within a timeframe of 2 to 4 weeks. The advantages of this cut-and-paste approach versus other strategies such as Flp-In or Jump-In are compared.
Collapse
Affiliation(s)
- Roland Schucht
- Department of Gene Regulation and Differentiation, HZI-Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The endocytic pathway is involved in activation and inhibition of cellular signaling. Thus, defining the regulatory mechanisms that link endocytosis and cellular signaling is of interest. An emerging link between these processes is a family of proteins called intersectins (ITSNs). These multidomain proteins serve as scaffolds in the assembly of endocytic vesicles and also regulate components of various signaling pathways, including kinases, guanosine triphosphatases, and ubiquitin ligases. This review summarizes research on the role of ITSNs in regulating both endocytic and signal transduction pathways, discusses the link between ITSNs and human disease, and highlights future directions in the study of ITSNs.
Collapse
Affiliation(s)
- John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
33
|
Mammalian polycomb-like Pcl2/Mtf2 is a novel regulatory component of PRC2 that can differentially modulate polycomb activity both at the Hox gene cluster and at Cdkn2a genes. Mol Cell Biol 2010; 31:351-64. [PMID: 21059868 DOI: 10.1128/mcb.00259-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Polycomb group of proteins forms at least two distinct complexes designated the Polycomb repressive complex-1 (PRC1) and PRC2. These complexes cooperate to mediate transcriptional repression of their target genes, including the Hox gene cluster and the Cdkn2a genes. Mammalian Polycomb-like gene Pcl2/Mtf2 is expressed as four different isoforms, and the longest one contains a Tudor domain and two plant homeodomain (PHD) fingers. Pcl2 forms a complex with PRC2 and binds to Hox genes in a PRC2-dependent manner. We show that Pcl2 is a functional component of PRC2 and is required for PRC2-mediated Hox repression. Pcl2, however, exhibits a profound synergistic effect on PRC1-mediated Hox repression, which is not accompanied by major alterations in the local trimethylation of histone H3 at lysine 27 (H3K27me3) or PRC1 deposition. Pcl2 therefore functions in collaboration with both PRC2 and PRC1 to repress Hox gene expression during axial development. Paradoxically, in embryonic fibroblasts, Pcl2 is shown to activate the expression of Cdkn2a and promote cellular senescence, presumably by suppressing the catalytic activity of PRC2 locally. Taken together, we show that Pcl2 differentially regulates Polycomb-mediated repression of Hox and Cdkn2a genes. We therefore propose a novel role for Pcl2 to modify functional engagement of PRC2 and PRC1, which could be modulated by sensing cellular circumstances.
Collapse
|
34
|
Soehn AS, Pham TT, Schaeferhoff K, Floss T, Weisenhorn DMV, Wurst W, Bonin M, Riess O. Periphilin is strongly expressed in the murine nervous system and is indispensable for murine development. Genesis 2010; 47:697-707. [PMID: 19621438 DOI: 10.1002/dvg.20553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Periphilin is involved in multiple processes in vivo. To explore its physiological role from an organismic perspective, we generated mice with a gene trap insertion in the periphilin-1 gene. Based on beta-gal reporter activity, a widespread periphilin expression was evident, especially in the developing somites and limbs, the embryonic nervous system, and the adult brain. In accordance with this broad expression, homozygous deficiency of periphilin was lethal in early embryogenesis. Mice with a heterozygous deficiency did not show any abnormalities of brain morphology and function, neither histologically nor regarding the transcriptome. Interestingly, the reduction of the periphilin-1 gene dosage was compensated by an increased expression of the remaining wild-type allele in the brain. These results point to an indispensable function of periphilin during murine development and an important role in the nervous system, reflected by a strong and tightly regulated expression in the murine brain.
Collapse
Affiliation(s)
- Anne S Soehn
- Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schebelle L, Wolf C, Stribl C, Javaheri T, Schnütgen F, Ettinger A, Ivics Z, Hansen J, Ruiz P, von Melchner H, Wurst W, Floss T. Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FlEx gene traps. Nucleic Acids Res 2010; 38:e106. [PMID: 20139417 PMCID: PMC2875000 DOI: 10.1093/nar/gkq044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recombinase-mediated cassette exchange (RMCE) exploits the possibility to unidirectionally exchange any genetic material flanked by heterotypic recombinase recognition sites (RRS) with target sites in the genome. Due to a limited number of available pre-fabricated target sites, RMCE in mouse embryonic stem (ES) cells has not been tapped to its full potential to date. Here, we introduce a universal system, which allows the targeted insertion of any given transcriptional unit into 85 742 previously annotated retroviral conditional gene trap insertions, representing 7013 independent genes in mouse ES cells, by RMCE. This system can be used to express any given cDNA under the control of endogenous trapped promoters in vivo, as well as for the generation of transposon ‘launch pads’ for chromosomal region-specific ‘Sleeping Beauty’ insertional mutagenesis. Moreover, transcription of the gene-of-interest is only activated upon Cre-recombinase activity, a feature that adds conditionality to this expression system, which is demonstrated in vivo. The use of the RMCE system presented in this work requires one single-cloning step followed by one overnight gateway clonase reaction and subsequent cassette exchange in ES cells with efficiencies of 40% in average.
Collapse
Affiliation(s)
- Laura Schebelle
- Helmholtz Zentrum München, Technische Universität München, Institut für Entwicklungsgenetik, Ingolstädter Landstrasse 1, 85764 München, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Buonomo SBC, Wu Y, Ferguson D, de Lange T. Mammalian Rif1 contributes to replication stress survival and homology-directed repair. ACTA ACUST UNITED AC 2010; 187:385-98. [PMID: 19948482 PMCID: PMC2779251 DOI: 10.1083/jcb.200902039] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rif1, originally recognized for its role at telomeres in budding yeast, has been implicated in a wide variety of cellular processes in mammals, including pluripotency of stem cells, response to double-strand breaks, and breast cancer development. As the molecular function of Rif1 is not known, we examined the consequences of Rif1 deficiency in mouse cells. Rif1 deficiency leads to failure in embryonic development, and conditional deletion of Rif1 from mouse embryo fibroblasts affects S-phase progression, rendering cells hypersensitive to replication poisons. Rif1 deficiency does not alter the activation of the DNA replication checkpoint but rather affects the execution of repair. RNA interference to human Rif1 decreases the efficiency of homology-directed repair (HDR), and Rif1 deficiency results in aberrant aggregates of the HDR factor Rad51. Consistent with a role in S-phase progression, Rif1 accumulates at stalled replication forks, preferentially around pericentromeric heterochromatin. Collectively, these findings reveal a function for Rif1 in the repair of stalled forks by facilitating HDR.
Collapse
Affiliation(s)
- Sara B C Buonomo
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
37
|
Wempe F, De-Zolt S, Koli K, Bangsow T, Parajuli N, Dumitrascu R, Sterner-Kock A, Weissmann N, Keski-Oja J, von Melchner H. Inactivation of sestrin 2 induces TGF-beta signaling and partially rescues pulmonary emphysema in a mouse model of COPD. Dis Model Mech 2010; 3:246-53. [PMID: 20106877 DOI: 10.1242/dmm.004234] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Cigarette smoking has been identified as one of the major risk factors and several predisposing genetic factors have been implicated in the pathogenesis of COPD, including a single nucleotide polymorphism (SNP) in the latent transforming growth factor (TGF)-beta binding protein 4 (Ltbp4)-encoding gene. Consistent with this finding, mice with a null mutation of the short splice variant of Ltbp4 (Ltbp4S) develop pulmonary emphysema that is reminiscent of COPD. Here, we report that the mutational inactivation of the antioxidant protein sestrin 2 (sesn2) partially rescues the emphysema phenotype of Ltbp4S mice and is associated with activation of the TGF-beta and mammalian target of rapamycin (mTOR) signal transduction pathways. The results suggest that sesn2 could be clinically relevant to patients with COPD who might benefit from antagonists of sestrin function.
Collapse
Affiliation(s)
- Frank Wempe
- Department of Molecular Hematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Gene trapping in mouse embryonic stem (ES) cells is an efficient method for the mutagenesis of the mammalian genome. Insertion of a gene trap vector disrupts gene function, reports gene expression, and provides a convenient tag for the identification of the insertion site. The trap vector can be delivered to ES cells by electroporation of a plasmid, by retroviral infection, or by transposon-mediated insertion. Recent developments in trapping technology involve the utilization of site-specific recombination sites, which allow the induced modification of trap alleles in vitro and in vivo. Gene trapping strategies have also been successfully developed to screen for genes that are acting in specific biological pathways. In this chapter, we review different applications of gene trapping, and we provide detailed experimental protocols for gene trapping in ES cells by retroviral and transposon gene trap vectors.
Collapse
Affiliation(s)
- Roland H Friedel
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
39
|
Abstract
Gene trapping is a technology originally developed for the simultaneous identification and mutation of genes by random integration in embryonic stem (ES) cells. While gene trapping was developed before efficient and high-throughput gene targeting, a significant proportion of the publically available mutant ES cell lines and mice were generated through a number of large-scale gene trapping initiatives. Moreover, elements of gene trap vectors continue to be incorporated into gene targeting vectors as a means to increase the efficiency of homologous recombination. Here, we review the current state of gene trapping technology and the applications of specific types of gene trap vector. As a component of this analysis, we consider the behavior of specific vector types both from the perspective of their application and how they can inform our annotation of the mammalian transcriptome. We consider the utility of gene trap vectors as tools for cell-based expression analysis, targeted screening in embryonic differentiation, and for use in cell lines derived from different lineages.
Collapse
Affiliation(s)
- Joshua M Brickman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
40
|
Brown SDM, Wurst W, Kühn R, Hancock JM. The functional annotation of mammalian genomes: the challenge of phenotyping. Annu Rev Genet 2009; 43:305-33. [PMID: 19689210 DOI: 10.1146/annurev-genet-102108-134143] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse is central to the goal of establishing a comprehensive functional annotation of the mammalian genome that will help elucidate various human disease genes and pathways. The mouse offers a unique combination of attributes, including an extensive genetic toolkit that underpins the creation and analysis of models of human disease. An international effort to generate mutations for every gene in the mouse genome is a first and essential step in this endeavor. However, the greater challenge will be the determination of the phenotype of every mutant. Large-scale phenotyping for genome-wide functional annotation presents numerous scientific, infrastructural, logistical, and informatics challenges. These include the use of standardized approaches to phenotyping procedures for the population of unified databases with comparable data sets. The ultimate goal is a comprehensive database of molecular interventions that allows us to create a framework for biological systems analysis in the mouse on which human biology and disease networks can be revealed.
Collapse
Affiliation(s)
- Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom.
| | | | | | | |
Collapse
|
41
|
Floxin, a resource for genetically engineering mouse ESCs. Nat Methods 2009; 7:50-2. [PMID: 19966808 PMCID: PMC2895430 DOI: 10.1038/nmeth.1406] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/12/2009] [Indexed: 11/26/2022]
Abstract
We describe a method for the highly efficient and precise targeted modification of gene trap loci in mouse embryonic stem cells (ESCs). Through the Floxin method, gene trap mutations are reverted and new DNA sequences inserted using Cre recombinase and a shuttle vector, pFloxin. Floxin technology is applicable to the existing collection of 24,149 compatible gene trap cell lines, which should enable the high-throughput modification of many genes in mouse ESCs.
Collapse
|
42
|
Niimi M, Tao L, Lin SH, Yin J, Wu X, Fukui H, Kambayashi J, Ye J, Sun B. Involvement of an alternatively spliced mitochondrial oxodicarboxylate carrier in adipogenesis in 3T3-L1 cells. J Biomed Sci 2009; 16:92. [PMID: 19825180 PMCID: PMC2765418 DOI: 10.1186/1423-0127-16-92] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 10/13/2009] [Indexed: 11/25/2022] Open
Abstract
Background Adipogenesis is a complex process that involves many genes/proteins at different stages of differentiation. In order to identify genes critical for adipogeneis, we took a novel approach based on phenotype change of individual cell, to search for genes with regulatory roles in adipogenesis genome-wide in 3T3-L1 cells. Methods Lentivirus-based inducible random homologous knockdown was used for the screening of functional gene that altered lipid formation in the adipocyte during differentiation. Results In the present study, we reported the identification of an alternatively spliced mitochondrial oxodicarboxylate carrier (ODC), so named ODC-AS. ODC-AS is different from ODC by replacing 22 amino acids with 29 amino acids at the N-terminal. ODC was widely expressed in most tissues in mouse as determined by multi-tissue cDNA panel polymerase chain reaction. However, ODC-AS was only detected in adipose tissue and in iris and sclera-choroid complex of the eye. The expression of ODC-AS in 3T3-L1 was detected after the induction of differentiation, and reached a peak at day 4 and then reduced thereafter, whereas no ODC transcript detected in the cells neither before nor after differentiation. Knocking down of ODC-AS expression by RNA interference led to significant reduction in lipid accumulation as determined by triglyceride measurement and Nile Red staining, as well as adipogenic marker CEBPα, PPARγ, aP2 and CD36. Although both ODC and ODC-AS are expressed in white and brown adipose tissues, only the expression of ODC-AS was down-regulated in brown adipose tissue by cold exposure. Conclusion These results implicate that ODC-AS may promote lipid accumulation during adipocyte differentiation and play an important role in the regulation of lipid metabolism in adipose tissues.
Collapse
Affiliation(s)
- Masashi Niimi
- Otsuka Maryland Medicinal Laboratories, Inc, Rockville, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tsakiridis A, Tzouanacou E, Rahman A, Colby D, Axton R, Chambers I, Wilson V, Forrester L, Brickman JM. Expression-independent gene trap vectors for random and targeted mutagenesis in embryonic stem cells. Nucleic Acids Res 2009; 37:e129. [PMID: 19692586 PMCID: PMC2770648 DOI: 10.1093/nar/gkp640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/13/2009] [Accepted: 07/17/2009] [Indexed: 12/04/2022] Open
Abstract
Promoterless gene trap vectors have been widely used for high-efficiency gene targeting and random mutagenesis in embryonic stem (ES) cells. Unfortunately, such vectors are only effective for genes expressed in ES cells and this has prompted the development of expression-independent vectors. These polyadenylation (poly A) trap vectors employ a splice donor to capture an endogenous gene's polyadenylation sequence and provide transcript stability. However, the spectrum of mutations generated by these vectors appears largely restricted to the last intron of target loci due to nonsense-mediated mRNA decay (NMD) making them unsuitable for gene targeting applications. Here, we present novel poly A trap vectors that overcome the effect of NMD and also employ RNA instability sequences to improve splicing efficiency. The set of random insertions generated with these vectors show a significantly reduced insertional bias and the vectors can be targeted directly to a 5' intron. We also show that this relative positional independence is linked to the human beta-actin promoter and is most likely a result of its transcriptional activity in ES cells. Taken together our data indicate that these vectors are an effective tool for insertional mutagenesis that can be used for either gene trapping or gene targeting.
Collapse
Affiliation(s)
- Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Elena Tzouanacou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Afifah Rahman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Richard Axton
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Lesley Forrester
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Joshua M. Brickman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road and MRC Centre for Regenerative Medicine, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| |
Collapse
|
44
|
Schucht R, Wirth D, May T. Precise regulation of transgene expression level and control of cell physiology. Cell Biol Toxicol 2009; 26:29-42. [DOI: 10.1007/s10565-009-9135-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 08/10/2009] [Indexed: 12/12/2022]
|
45
|
Feng C, Xu W, Zuo Z. Knockout of the regulatory factor X1 gene leads to early embryonic lethality. Biochem Biophys Res Commun 2009; 386:715-7. [PMID: 19559676 DOI: 10.1016/j.bbrc.2009.06.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/21/2009] [Indexed: 11/30/2022]
Abstract
The biological function of regulatory factor X1 (RFX1), the prototype member of the transcription factor RFX family, is not clear. We have used gene trap technique to disrupt the expression of RFX1 in mice. Although, heterozygous RFX1(+/-) mice appear normal and fertile, homozygous RFX1(-/-) embryos died at an early stage (most likely before embryonic day 2.5). Our results indicate that RFX1 regulates expression of genes that are essential for early embryonic development/survival and that RFX1 function can not be compensated by other RFX1 family members.
Collapse
Affiliation(s)
- Chenzhuo Feng
- Department of Anesthesiology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
46
|
Kuzmin A, Jarvi K, Lo K, Spencer L, Chow GYC, Macleod G, Wang Q, Varmuza S. Identification of potentially damaging amino acid substitutions leading to human male infertility. Biol Reprod 2009; 81:319-26. [PMID: 19369647 DOI: 10.1095/biolreprod.109.076000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
There are a number of known genetic alterations found in men with nonobstructive azoospermia, or testicular failure, such as Y microdeletions and cytogenetic abnormalities. However, the etiology of nonobstructive azoospermia is unknown in the majority of men. The aim of this study was to investigate the possibility that unexplained cases of nonobstructive azoospermia are caused by nonsynonymous single-nucleotide polymorphisms (SNPs) in the coding regions of autosomal genes associated with sperm production and fertility. Using a candidate gene approach based on genetics of male infertility in mice, we resequenced nine autosomal genes from 78 infertile men displaying testicular failure using custom-made next-generation resequencing chips. Analysis of the data revealed several novel heterozygous nonsynonymous SNPs in four of nine sequenced genes in 14 of 78 infertile men. Eight SNPs in SBF1, three SNPs in LIMK2, two SNPs in LIPE, and one SNP in TBPL1 were identified. All of the novel mutations were in a heterozygous configuration, suggesting that they may be de novo mutations with dominant negative properties.
Collapse
Affiliation(s)
- Anastasia Kuzmin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev Cell 2009; 16:411-20. [PMID: 19289086 DOI: 10.1016/j.devcel.2009.01.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 12/11/2008] [Accepted: 01/23/2009] [Indexed: 01/07/2023]
Abstract
The Hippo kinase pathway plays a central role in growth regulation and tumor suppression from flies to man. The Hippo/Mst kinase phosphorylates and activates the NDR family kinase Warts/Lats, which phosphorylates and inhibits the transcriptional activator Yorkie/YAP. Current models place the FERM-domain protein Expanded upstream of Hippo kinase in growth control. To understand how Expanded regulates Hippo pathway activity, we used affinity chromatography and mass spectrometry to identify Expanded-binding proteins. Surprisingly we find that Yorkie is the major Expanded-binding protein in Drosophila S2 cells. Expanded binds Yorkie at endogenous levels via WW-domain-PPxY interactions, independently of Yorkie phosphorylation at S168, which is critical for 14-3-3 binding. Expanded relocalizes Yorkie from the nucleus, abrogating its nuclear activity, and it can regulate growth downstream of warts in vivo. These data lead to a new model whereby Expanded functions downstream of Warts, in concert with 14-3-3 proteins to sequester Yorkie in the cytoplasm, inhibiting growth activity of the Hippo pathway.
Collapse
|
48
|
De-Zolt S, Altschmied J, Ruiz P, von Melchner H, Schnütgen F. Gene-trap vectors and mutagenesis. Methods Mol Biol 2009; 530:29-47. [PMID: 19266330 DOI: 10.1007/978-1-59745-471-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Gene trapping can be used to introduce insertional mutations into the genome of mouse embryonic stem cells (ESCs). The method has been adapted for high-throughput use, in an effort to inactivate all genes in the mouse genome. Gene trapping is performed with vectors that simultaneously inactivate and report the expression of the trapped gene and provide a molecular tag for its rapid identification. Gene-trap approaches have been used successfully in the past by both academic and commercial organizations to create libraries of ESC lines harboring mutations in single genes that can be used for making mice. Presently, approximately 70% of the protein-coding genes in the mouse genome have been disrupted by gene-trap insertions. Here we describe the basic methodology used to induce and characterize gene-trap mutations in ESCs.
Collapse
Affiliation(s)
- Silke De-Zolt
- Department of Molecular Hematology, University of Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
49
|
Abstract
Determining gene function by using transgenesis in the mouse has been immensely popular amongst researchers since the introduction of the techniques in the 1980s. However, we are still a long way from knowing the function of the majority of the genes in the genome. It is becoming increasingly accepted that there needs to be a coherent programme of systematic mutation of every protein-coding gene in the mouse genome. The target is therefore to generate approximately 20,000-25,000 gene knockout mouse models. This is an ambitious aim but one which is vital to enhance our understanding of physiology, development and disease. Recently a number of programmes have been established to meet this aim. A particular feature of these large co-ordinated methods for generating genetically modified mice is that they may obviate the need for individual researchers to perform the onerous process of generating the mutant mouse of their gene of interest - in the future we may be able to order our mouse model of interest with the same ease with which we order laboratory reagents and supplies today.
Collapse
|
50
|
Schnütgen F, Hansen J, De-Zolt S, Horn C, Lutz M, Floss T, Wurst W, Noppinger PR, von Melchner H. Enhanced gene trapping in mouse embryonic stem cells. Nucleic Acids Res 2008; 36:e133. [PMID: 18812397 PMCID: PMC2582619 DOI: 10.1093/nar/gkn603] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene trapping is used to introduce insertional mutations into genes of mouse embryonic stem cells (ESCs). It is performed with gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA tag for rapid identification of the disrupted gene. Gene traps have been employed worldwide to assemble libraries of mouse ESC lines harboring mutations in single genes, which can be used to make mutant mice. However, most of the employed gene trap vectors require gene expression for reporting a gene trap event and therefore genes that are poorly expressed may be under-represented in the existing libraries. To address this problem, we have developed a novel class of gene trap vectors that can induce gene expression at insertion sites, thereby bypassing the problem of intrinsic poor expression. We show here that the insertion of the osteopontin enhancer into several conventional gene trap vectors significantly increases the gene trapping efficiency in high-throughput screens and facilitates the recovery of poorly expressed genes.
Collapse
Affiliation(s)
- Frank Schnütgen
- Department of Molecular Hematology, University of Frankfurt Medical School, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|