1
|
Chen Z, Yang Y, Xu S, Shen Z, Tang Y, Lin Y, Huang Q. Dimensional effects of surface morphology and trapped air on mammalian cell adhesion to special wetting surfaces. Regen Biomater 2025; 12:rbaf021. [PMID: 40270576 PMCID: PMC12017620 DOI: 10.1093/rb/rbaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/22/2025] [Accepted: 03/15/2025] [Indexed: 04/25/2025] Open
Abstract
Materials with special wettability have broad biomedical applications, including the control of mammalian cell adhesion and inhibiting biofilm formation. However, limited understanding of mammalian cellular responses to superhydrophobic materials with trapped air restricts their clinical applications. In this study, we fabricated materials with varied nanostructures and wettability, and systematically compared short-term mammalian cellular responses in the presence and absence of trapped air. Our results show that small nanostructures generate small, often invisible air bubbles at the solid-liquid interface when in contact with mammalian cell suspensions. In the presence of these small bubbles, the number of adhered cells was comparable to both the same sample without trapped air and its hydrophilic counterpart, contradicting the intuitive expectations that trapped air would reduce cell adhesion. In contrast, larger nanostructures resulted in visible, hundred-micron-sized air bubbles, which significantly inhibited cell adhesion. This effect was evident when comparing the same superhydrophobic sample with and without trapped air, as well as against hydrophilic counterparts with the same morphology. Further tracking of large air bubbles on the hydrophobic materials revealed that no cells adhered to the areas occupied by hundred-micron-sized air bubbles, while more cells accumulated at the solid-liquid-gas triple line. Hence, this work deepens the understanding of cellular responses to superhydrophobic materials, revealing that material structure size influences the size of trapped air and subsequently dominates cell adhesion.
Collapse
Affiliation(s)
- Zhiwei Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China
| | - Shaohua Xu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China
| | - Zhenyu Shen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yijian Tang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yisheng Lin
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China
| |
Collapse
|
2
|
Chen Y, Gu J, Cui Z, Sun X, Liang Y, Duan C, Li X, Su Z, Zhang B, Chen J, Wang Z. Efficient Fabrication of Human Corneal Stromal Cell Spheroids and Promoting Cell Stemness Based on 3D-Printed Derived PDMS Microwell Platform. Biomolecules 2025; 15:438. [PMID: 40149974 PMCID: PMC11940411 DOI: 10.3390/biom15030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Spherical culture could promote the plasticity and stemness of human corneal stromal cells (hCSCs). Here, we introduce a novel three-dimensional (3D) cell culture system based on a polydimethylsiloxane (PDMS) microwell platform composed of many V-bottom microcavities to generate human corneal stromal cell spheroids and promote cell stemness. We isolated hCSCs from SMILE-derived lenticules and maintained their physiological phenotype by culturing them in a medium supplemented with human corneal stromal extract (hCSE). Utilizing a PDMS microwell platform fabricated through 3D printing technology, we successfully generated 3D corneal stromal cell spheroids (3D-CSC) with uniform size and stable structure, exhibiting increased expression of pluripotency factors, including OCT4, NANOG, SOX2, KLF4, and PAX6. Furthermore, the iPS supernatant of E8-conditioned medium (E8-CM) significantly enhanced the stemness properties of these cells. RNA sequencing and proteomics analyses revealed that 3D-CSCs exhibited superior proliferation, differentiation, cell adhesion, migration, and neurogenesis compared to traditional monolayer cultures, underscoring the role of biophysical cues in promoting hCSCs stemness. In summary, this study presents an effective 3D cell culture platform that mimics the in vivo microenvironment, facilitating the enhancement of stemness properties and providing valuable insights into corneal tissue engineering and regenerative medicine, particularly for treating corneal opacities and diseases.
Collapse
Affiliation(s)
- Yuexi Chen
- The First Clinical Medical College, Jinan University, Guangzhou 510632, China
- Guangzhou Aier Eye Institute, Guangzhou 510071, China
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Jianing Gu
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Zekai Cui
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Xihao Sun
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Yuqin Liang
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Chunwen Duan
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Xiaoxue Li
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Zhanyu Su
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| | - Bo Zhang
- Guangzhou Aier Eye Institute, Guangzhou 510071, China
| | - Jiansu Chen
- The First Clinical Medical College, Jinan University, Guangzhou 510632, China
- Guangzhou Aier Eye Institute, Guangzhou 510071, China
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Zheng Wang
- The First Clinical Medical College, Jinan University, Guangzhou 510632, China
- Guangzhou Aier Eye Institute, Guangzhou 510071, China
- Aier Academy of Ophthalmology, Central South University, Changsha 410015, China
| |
Collapse
|
3
|
Blázquez-Carmona P, Ruiz-Mateos R, Barrasa-Fano J, Shapeti A, Martín-Alfonso JE, Domínguez J, Van Oosterwyck H, Reina-Romo E, Sanz-Herrera JA. Quantitative atlas of collagen hydrogels reveals mesenchymal cancer cell traction adaptation to the matrix nanoarchitecture. Acta Biomater 2024; 185:281-295. [PMID: 38992411 DOI: 10.1016/j.actbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Collagen-based hydrogels are commonly used in mechanobiology to mimic the extracellular matrix. A quantitative analysis of the influence of collagen concentration and properties on the structure and mechanics of the hydrogels is essential for tailored design adjustments for specific in vitro conditions. We combined focused ion beam scanning electron microscopy and rheology to provide a detailed quantitative atlas of the mechanical and nanoscale three-dimensional structural alterations that occur when manipulating different hydrogel's physicochemistry. Moreover, we study the effects of such alterations on the phenotype of breast cancer cells and their mechanical interactions with the extracellular matrix. Regardless of the microenvironment's pore size, porosity or mechanical properties, cancer cells are able to reach a stable mesenchymal-like morphology. Additionally, employing 3D traction force microscopy, a positive correlation between cellular tractions and ECM mechanics is observed up to a critical threshold, beyond which tractions plateau. This suggests that cancer cells in a stable mesenchymal state calibrate their mechanical interactions with the ECM to keep their migration and invasiveness capacities unaltered. STATEMENT OF SIGNIFICANCE: The paper presents a thorough study on the mechanical microenvironment in breast cancer cells during their interaction with collagen based hydrogels of different compositions. The hydrogels' microstructure were obtained using state-of-the-art 3D microscopy, namely focused ion beam-scanning electron microscope (FIB-SEM). FIB-SEM was originally applied in this work to reconstruct complex fibered collagen microstructures within the nanometer range, to obtain key microarchitectural parameters. The mechanical microenvironment of cells was recovered using Traction Force Microscopy (TFM). The obtained results suggest that cells calibrate tractions such that they depend on mechanical, microstructural and physicochemical characteristics of the hydrogels, hence revealing a steric hindrance. We hypothesize that cancer cells studied in this paper tune their mechanical state to keep their migration and invasiveness capacities unaltered.
Collapse
Affiliation(s)
- Pablo Blázquez-Carmona
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Raquel Ruiz-Mateos
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Jorge Barrasa-Fano
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Apeksha Shapeti
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - José Enrique Martín-Alfonso
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva. Avda. de las Fuerzas Armadas s/n, 21007 Huelva, Spain
| | - Jaime Domínguez
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Hans Van Oosterwyck
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain.
| |
Collapse
|
4
|
Rodriguez-Lejarraga P, Martin-Iglesias S, Moneo-Corcuera A, Colom A, Redondo-Morata L, Giannotti MI, Petrenko V, Monleón-Guinot I, Mata M, Silvan U, Lanceros-Mendez S. The surface charge of electroactive materials governs cell behaviour through its effect on protein deposition. Acta Biomater 2024; 184:201-209. [PMID: 38950807 DOI: 10.1016/j.actbio.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. STATEMENT OF SIGNIFICANCE: The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies.
Collapse
Affiliation(s)
| | - Sara Martin-Iglesias
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Andrea Moneo-Corcuera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Adai Colom
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain; Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Campus Universitario, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; CIBER-BBN, ISCIII, 08028 Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 10, 08028 Barcelona, Spain
| | - Viktor Petrenko
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Irene Monleón-Guinot
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Unai Silvan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Zhang Q, Gao S, Li B, Li Q, Li X, Cheng J, Peng Z, Liang J, Zhang K, Hai J, Zhang B. Lithium-Doped Titanium Dioxide-Based Multilayer Hierarchical Structure for Accelerating Nerve-Induced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38663861 PMCID: PMC11082843 DOI: 10.1021/acsami.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Despite considerable advances in artificial bone tissues, the absence of neural network reconstruction in their design often leads to delayed or ineffective bone healing. Hence, we propose a multilayer hierarchical lithium (Li)-doped titanium dioxide structure, constructed through microarc oxidation combined with alkaline heat treatment. This structure can induce the sustained release of Li ions, mimicking the environment of neurogenic osteogenesis characterized by high brain-derived neurotrophic factor (BDNF) expression. During in vitro experiments, the structure enhanced the differentiation of Schwann cells (SCs) and the growth of human umbilical vein endothelial cells (HUVECs) and mouse embryo osteoblast progenitor cells (MC3T3-E1). Additionally, in a coculture system, the SC-conditioned media markedly increased alkaline phosphatase expression and the formation of calcium nodules, demonstrating the excellent potential of the material for nerve-induced bone regeneration. In an in vivo experiment based on a rat distal femoral lesion model, the structure substantially enhanced bone healing by increasing the density of the neural network in the tissue around the implant. In conclusion, this study elucidates the neuromodulatory pathways involved in bone regeneration, providing a promising method for addressing bone deformities.
Collapse
Affiliation(s)
- Qianqian Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Shuting Gao
- Dental
Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| | - Bo Li
- The
Third Affiliated Hospital of AFMU, Air Force
Medical University, Xi’an 710000, China
| | - Qian Li
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xinjie Li
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jingyang Cheng
- Suzhou
Huaxia Stomatological Hospital, Su Zhou 215000, China
| | - Zhenjun Peng
- State
Key Laboratory of Solid Lubrication, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
| | - Jun Liang
- Research
Institute of Interdisciplinary Science, Dongguan University of Technology, Dongguan 523808, China
| | - Kailiang Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jun Hai
- CAS
Key Laboratory of Chemistry of Northwestern Plant Resources and Key
Laboratory of Natural Medicine of Gansu Province, Chinese Academy
of Sciences, Lanzhou Institute of Chemical
Physics, Lanzhou 730000, China
| | - Baoping Zhang
- School
(Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Cheng Y, Pang SW. Biointerfaces with ultrathin patterns for directional control of cell migration. J Nanobiotechnology 2024; 22:158. [PMID: 38589901 PMCID: PMC11000378 DOI: 10.1186/s12951-024-02418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
In the context of wound healing and tissue regeneration, precise control of cell migration direction is deemed crucial. To address this challenge, polydimethylsiloxane (PDMS) platforms with patterned 10 nm thick TiOx in arrowhead shape were designed and fabricated. Remarkably, without tall sidewall constraints, MC3T3-E1 cells seeded on these platforms were constrained to migrate along the tips of the arrowheads, as the cells were guided by the asymmetrical arrowhead tips which provided large contact areas. To the best of our knowledge, this is the first study demonstrating the use of thin TiOx arrowhead pattern in combination with a cell-repellent PDMS surface to provide guided cell migration unidirectionally without tall sidewall constraints. Additionally, high-resolution fluorescence imaging revealed that the asymmetrical distribution of focal adhesions, triggered by the patterned TiOx arrowheads with arm lengths of 10, 20, and 35 μm, promoted cell adhesion and protrusion along the arrowhead tip direction, resulting in unidirectional cell migration. These findings have important implications for the design of biointerfaces with ultrathin patterns to precisely control cell migration. Furthermore, microelectrodes were integrated with the patterned TiOx arrowheads to enable dynamic monitoring of cell migration using impedance measurement. This microfluidic device integrated with thin layer of guiding pattern and microelectrodes allows simultaneous control of directional cell migration and characterization of the cell movement of individual MC3T3-E1 cells, offering great potential for the development of biosensors for single-cell monitoring.
Collapse
Grants
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Bai Y, Zheng X, Zhong X, Cui Q, Zhang S, Wen X, Heng BC, He S, Shen Y, Zhang J, Wei Y, Deng X, Zhang X. Manipulation of Heterogeneous Surface Electric Potential Promotes Osteogenesis by Strengthening RGD Peptide Binding and Cellular Mechanosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209769. [PMID: 36934418 DOI: 10.1002/adma.202209769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/12/2023] [Indexed: 06/16/2023]
Abstract
The heterogeneity of extracellular matrix (ECM) topology, stiffness, and architecture is a key factor modulating cellular behavior and osteogenesis. However, the effects of heterogeneous ECM electric potential at the micro- and nanoscale on osteogenesis remain to be elucidated. Here, the heterogeneous distribution of surface potential is established by incorporating ferroelectric BaTiO3 nanofibers (BTNF) into poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix based on phase-field and first-principles simulation. By optimizing the aspect ratios of BTNF fillers, the anisotropic distribution of surface potential on BTNF/P(VDF-TrFE) nanocomposite membranes can be achieved by strong spontaneous electric polarization of BTNF fillers. These results indicate that heterogeneous surface potential distribution leads to a meshwork pattern of fibronectin (FN) aggregation, which increased FN-III7-10 (FN fragment) focal flexibility and anchor points as predicted by molecular dynamics simulation. Furthermore, integrin clustering, focal adhesion formation, cell spreading, and adhesion are enhanced sequentially. Increased traction of actin fibers amplifies mechanotransduction by promoting nuclear translocation of YAP/Runx2, which enhances osteogenesis in vitro and bone regeneration in vivo. The work thus provides fundamental insights into the biological effects of surface potential heterogeneity at the micro- and nanoscale on osteogenesis, and also develops a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.
Collapse
Affiliation(s)
- Yunyang Bai
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xiaona Zheng
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xianwei Zhong
- The School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qun Cui
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shuan Zhang
- The School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiufang Wen
- The School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shan He
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, P. R. China
| | - Yang Shen
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinxing Zhang
- Department of Physics, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yan Wei
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuliang Deng
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuehui Zhang
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
8
|
Durán-Rey D, Brito-Pereira R, Ribeiro C, Ribeiro S, Sánchez-Margallo JA, Crisóstomo V, Irastorza I, Silván U, Lanceros-Méndez S, Sánchez-Margallo FM. Development of Silk Fibroin Scaffolds for Vascular Repair. Biomacromolecules 2023; 24:1121-1130. [PMID: 36754364 PMCID: PMC10016106 DOI: 10.1021/acs.biomac.2c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Indexed: 02/10/2023]
Abstract
Silk fibroin (SF) is a biocompatible natural protein with excellent mechanical characteristics. SF-based biomaterials can be structured using a number of techniques, allowing the tuning of materials for specific biomedical applications. In this study, SF films, porous membranes, and electrospun membranes were produced using solvent-casting, salt-leaching, and electrospinning methodologies, respectively. SF-based materials were subjected to physicochemical and biological characterizations to determine their suitability for tissue regeneration applications. Mechanical analysis showed stress-strain curves of brittle materials in films and porous membranes, while electrospun membranes featured stress-strain curves typical of ductile materials. All samples showed similar chemical composition, melting transition, hydrophobic behavior, and low cytotoxicity levels, regardless of their architecture. Finally, all of the SF-based materials promote the proliferation of human umbilical vein endothelial cells (HUVECs). These findings demonstrate the different relationship between HUVEC behavior and the SF sample's topography, which can be taken advantage of for the design of vascular implants.
Collapse
Affiliation(s)
- David Durán-Rey
- Jesús
Usón Minimally Invasive Surgery Centre, Cáceres 10004, Spain
| | - Ricardo Brito-Pereira
- CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, 4710-057 Braga/Guimarães, Portugal
- CF−UM-UP−Physics
Centre of Minho and Porto Universities and LaPMET−Laboratory
of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- IB-S,
Institute of Science and Innovation for Bio-Sustainability, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- CF−UM-UP−Physics
Centre of Minho and Porto Universities and LaPMET−Laboratory
of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Sylvie Ribeiro
- CF−UM-UP−Physics
Centre of Minho and Porto Universities and LaPMET−Laboratory
of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Juan A. Sánchez-Margallo
- Jesús
Usón Minimally Invasive Surgery Centre, Cáceres 10004, Spain
- RICORS-TERAV
Network, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Verónica Crisóstomo
- Jesús
Usón Minimally Invasive Surgery Centre, Cáceres 10004, Spain
- Centro
de
Investigación Biomédica en Red de Enfermedades Cardiovasculares
(CIBERCV), Instituto de Salud Carlos III, Madrid 28029, Spain
- RICORS-TERAV
Network, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Igor Irastorza
- CF−UM-UP−Physics
Centre of Minho and Porto Universities and LaPMET−Laboratory
of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- Cell
Biology and Histology Department, Faculty
of Medicine, Leioa 48940, Spain
| | - Unai Silván
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, Leioa 48940, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Senentxu Lanceros-Méndez
- CF−UM-UP−Physics
Centre of Minho and Porto Universities and LaPMET−Laboratory
of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, Leioa 48940, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| | - Francisco M. Sánchez-Margallo
- Jesús
Usón Minimally Invasive Surgery Centre, Cáceres 10004, Spain
- Centro
de
Investigación Biomédica en Red de Enfermedades Cardiovasculares
(CIBERCV), Instituto de Salud Carlos III, Madrid 28029, Spain
- RICORS-TERAV
Network, Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
9
|
Huang D, Li Y, Ma Z, Lin H, Zhu X, Xiao Y, Zhang X. Collagen hydrogel viscoelasticity regulates MSC chondrogenesis in a ROCK-dependent manner. SCIENCE ADVANCES 2023; 9:eade9497. [PMID: 36763657 PMCID: PMC9916999 DOI: 10.1126/sciadv.ade9497] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Mesenchymal stem cell (MSC) chondrogenesis in three-dimensional (3D) culture involves dynamic changes in cytoskeleton architecture during mesenchymal condensation before morphogenesis. However, the mechanism linking dynamic mechanical properties of matrix to cytoskeletal changes during chondrogenesis remains unclear. Here, we investigated how viscoelasticity, a time-dependent mechanical property of collagen hydrogel, coordinates MSC cytoskeleton changes at different stages of chondrogenesis. The viscoelasticity of collagen hydrogel was modulated by controlling the gelling process without chemical cross-linking. In slower-relaxing hydrogels, although a disordered cortical actin promoted early chondrogenic differentiation, persistent myosin hyperactivation resulted in Rho-associated kinase (ROCK)-dependent apoptosis. Meanwhile, faster-relaxing hydrogels promoted cell-matrix interactions and eventually facilitated long-term chondrogenesis with mitigated myosin hyperactivation and cell apoptosis, similar to the effect of ROCK inhibitors. The current work not only reveals how matrix viscoelasticity coordinates MSC chondrogenesis and survival in a ROCK-dependent manner but also highlights viscoelasticity as a design parameter for biomaterials for chondrogenic 3D culture.
Collapse
|
10
|
Cheng Y, Pang SW. Effects of nanopillars and surface coating on dynamic traction force. MICROSYSTEMS & NANOENGINEERING 2023; 9:6. [PMID: 36620393 PMCID: PMC9814462 DOI: 10.1038/s41378-022-00473-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The extracellular matrix serves as structural support for cells and provides biophysical and biochemical cues for cell migration. Topography, material, and surface energy can regulate cell migration behaviors. Here, the responses of MC3T3-E1 cells, including migration speed, morphology, and spreading on various platform surfaces, were investigated. Polydimethylsiloxane (PDMS) micropost sensing platforms with nanopillars, silicon oxide, and titanium oxide on top of the microposts were fabricated, and the dynamic cell traction force during migration was monitored. The relationships between various platform surfaces, migration behaviors, and cell traction forces were studied. Compared with the flat PDMS surface, cells on silicon oxide and titanium oxide surfaces showed reduced mobility and less elongation. On the other hand, cells on the nanopillar surface showed more elongation and a higher migration speed than cells on silicon oxide and titanium oxide surfaces. MC3T3-E1 cells on microposts with nanopillars exerted a larger traction force than those on flat PDMS microposts and had more filopodia and long protrusions. Understanding the relationships between platform surface condition, migration behavior, and cell traction force can potentially lead to better control of cell migration in biomaterials capable of promoting tissue repair and regeneration.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Stella W. Pang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Blache U, Ford EM, Ha B, Rijns L, Chaudhuri O, Dankers PY, Kloxin AM, Snedeker JG, Gentleman E. Engineered hydrogels for mechanobiology. NATURE REVIEWS. METHODS PRIMERS 2022; 2:98. [PMID: 37461429 PMCID: PMC7614763 DOI: 10.1038/s43586-022-00179-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 07/20/2023]
Abstract
Cells' local mechanical environment can be as important in guiding cellular responses as many well-characterized biochemical cues. Hydrogels that mimic the native extracellular matrix can provide these mechanical cues to encapsulated cells, allowing for the study of their impact on cellular behaviours. Moreover, by harnessing cellular responses to mechanical cues, hydrogels can be used to create tissues in vitro for regenerative medicine applications and for disease modelling. This Primer outlines the importance and challenges of creating hydrogels that mimic the mechanical and biological properties of the native extracellular matrix. The design of hydrogels for mechanobiology studies is discussed, including appropriate choice of cross-linking chemistry and strategies to tailor hydrogel mechanical cues. Techniques for characterizing hydrogels are explained, highlighting methods used to analyze cell behaviour. Example applications for studying fundamental mechanobiological processes and regenerative therapies are provided, along with a discussion of the limitations of hydrogels as mimetics of the native extracellular matrix. The article ends with an outlook for the field, focusing on emerging technologies that will enable new insights into mechanobiology and its role in tissue homeostasis and disease.
Collapse
Affiliation(s)
- Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology and Fraunhofer Cluster of Excellence for Immune-Mediated Disease, Leipzig, Germany
| | - Eden M. Ford
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
| | - Byunghang Ha
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Laura Rijns
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Patricia Y.W. Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
- Department of Material Science and Engineering, University of Delaware, DE, USA
| | - Jess G. Snedeker
- University Hospital Balgrist and ETH Zurich, Zurich, Switzerland
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
12
|
Jensen MJ, Claussen AD, Higgins T, Vielman-Quevedo R, Mostaert B, Xu L, Kirk J, Hansen MR. Cochlear implant material effects on inflammatory cell function and foreign body response. Hear Res 2022; 426:108597. [PMID: 35963812 PMCID: PMC10875706 DOI: 10.1016/j.heares.2022.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The objectives of this study were to assess the effects of cochlear implant (CI) biomaterials on the function of macrophages and fibroblasts, two key mediators of the foreign body response (FBR) and to determine how these materials influence fibrous tissue growth and new bone formation within the cochlea. METHODS Macrophages and fibroblasts were cultured on polydimethylsiloxane (PDMS) and platinum substrates and human CI electrodes in vitro. Cell count, cell proliferation, cytokine production, and cell adhesion were measured. CI electrodes were implanted into murine cochleae for three weeks without electrical stimulation. Implanted cochleae were harvested for 3D X-ray microscopy with the CI left in-situ. The location of new bone growth within the scala tympani (ST) with reference to different portions of the implant (PDMS vs platinum) was quantified. RESULTS Cell counts of macrophages and fibroblasts were significantly higher on platinum substrates and platinum contacts of CI electrodes. Fibroblast proliferation was greater on platinum relative to PDMS, and cells grown on platinum formed more/larger focal adhesions. 3D X-ray microscopy showed neo-ossification in the peri‑implant areas of the ST. Volumetric quantification of neo-ossification showed a trend toward greater bone formation adjacent to the platinum electrodes compared to areas opposite or away from the platinum electrode bearing surfaces. CONCLUSIONS Fibrotic reactions are biomaterial specific, as demonstrated by the differences in cell adhesion, proliferation, and fibrosis on platinum and PDMS. The inflammatory reaction to platinum contacts on CI electrodes likely contributes to fibrosis to a greater degree than PDMS, and platinum contacts may influence the deposition of new bone, as demonstrated in the in vivo data. This information can potentially be used to influence the design of future generations of neural prostheses.
Collapse
Affiliation(s)
- Megan J Jensen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, United States
| | - Alexander D Claussen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, United States
| | - Timon Higgins
- Carver College of Medicine, Iowa City, IA, United States
| | - Rene Vielman-Quevedo
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, United States
| | - Brian Mostaert
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, United States
| | - Linjing Xu
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, United States
| | | | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, United States; Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States.
| |
Collapse
|
13
|
Verisqa F, Cha JR, Nguyen L, Kim HW, Knowles JC. Digital Light Processing 3D Printing of Gyroid Scaffold with Isosorbide-Based Photopolymer for Bone Tissue Engineering. Biomolecules 2022; 12:1692. [PMID: 36421706 PMCID: PMC9687763 DOI: 10.3390/biom12111692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 09/28/2023] Open
Abstract
As one of the most transplanted tissues of the human body, bone has varying architectures, depending on its anatomical location. Therefore, bone defects ideally require bone substitutes with a similar structure and adequate strength comparable to native bones. Light-based three-dimensional (3D) printing methods allow the fabrication of biomimetic scaffolds with high resolution and mechanical properties that exceed the result of commonly used extrusion-based printing. Digital light processing (DLP) is known for its faster and more accurate printing than other 3D printing approaches. However, the development of biocompatible resins for light-based 3D printing is not as rapid as that of bio-inks for extrusion-based printing. In this study, we developed CSMA-2, a photopolymer based on Isosorbide, a renewable sugar derivative monomer. The CSMA-2 showed suitable rheological properties for DLP printing. Gyroid scaffolds with high resolution were successfully printed. The 3D-printed scaffolds also had a compressive modulus within the range of a human cancellous bone modulus. Human adipose-derived stem cells remained viable for up to 21 days of incubation on the scaffolds. A calcium deposition from the cells was also found on the scaffolds. The stem cells expressed osteogenic markers such as RUNX2, OCN, and OPN. These results indicated that the scaffolds supported the osteogenic differentiation of the progenitor cells. In summary, CSMA-2 is a promising material for 3D printing techniques with high resolution that allow the fabrication of complex biomimetic scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Fiona Verisqa
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
| | - Jae-Ryung Cha
- Department of Chemistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Linh Nguyen
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2PF, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
14
|
Fontelo R, da Costa DS, Reis RL, Novoa-Carballal R, Pashkuleva I. Block copolymer nanopatterns affect cell spreading: Stem versus cancer bone cells. Colloids Surf B Biointerfaces 2022; 219:112774. [PMID: 36067682 DOI: 10.1016/j.colsurfb.2022.112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
Bone healing after a tumor removal can be promoted by biomaterials that enhance the bone regeneration and prevent the tumor relapse. Herein, we obtained several nanopatterns by self-assembly of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) with different molecular weights and investigated the adhesion and morphology of human bone marrow mesenchymal stem cells (BMMSC) and osteosarcoma cell line (SaOS-2) on these patterns aiming to identify topography and chemistry that promote bone healing. We analyzed > 2000 cells per experimental condition using imaging software and different morphometric descriptors, namely area, perimeter, aspect ratio, circularity, surface/area, and fractal dimension of cellular contour (FDC). The obtained data were used as inputs for principal component analysis, which showed distinct response of BMMSC and SaOS-2 to the surface topography and chemistry. Among the studied substrates, micellar nanopatterns assembled from the copolymer with high molecular weight promote the adhesion and spreading of BMMSC and have an opposite effect on SaOS-2. This nanopattern is thus beneficial for bone regeneration after injury or pathology, e.g. bone fracture or tumor removal.
Collapse
Affiliation(s)
- R Fontelo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - D Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R Novoa-Carballal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - I Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
15
|
Durán-Rey D, Brito-Pereira R, Ribeiro C, Ribeiro S, Sánchez-Margallo JA, Crisóstomo V, Irastorza I, Silván U, Lanceros-Méndez S, Sánchez-Margallo FM. Development and evaluation of different electroactive poly(vinylidene fluoride) architectures for endothelial cell culture. Front Bioeng Biotechnol 2022; 10:1044667. [PMID: 36338140 PMCID: PMC9626752 DOI: 10.3389/fbioe.2022.1044667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022] Open
Abstract
Tissue engineering (TE) aims to develop structures that improve or even replace the biological functions of tissues and organs. Mechanical properties, physical-chemical characteristics, biocompatibility, and biological performance of the materials are essential factors for their applicability in TE. Poly(vinylidene fluoride) (PVDF) is a thermoplastic polymer that exhibits good mechanical properties, high biocompatibility and excellent thermal properties. However, PVDF structuring, and the corresponding processing methods used for its preparation are known to significantly influence these characteristics. In this study, doctor blade, salt-leaching, and electrospinning processing methods were used to produce PVDF-based structures in the form of films, porous membranes, and fiber scaffolds, respectively. These PVDF scaffolds were subjected to a variety of characterizations and analyses, including physicochemical analysis, contact angle measurement, cytotoxicity assessment and cell proliferation. All prepared PVDF scaffolds are characterized by a mechanical response typical of ductile materials. PVDF films displayed mostly vibration modes for the a-phase, while the remaining PVDF samples were characterized by a higher content of electroactive β-phase due the low temperature solvent evaporation during processing. No significant variations have been observed between the different PVDF membranes with respect to the melting transition. In addition, all analysed PVDF samples present a hydrophobic behavior. On the other hand, cytotoxicity assays confirm that cell viability is maintained independently of the architecture and processing method. Finally, all the PVDF samples promote human umbilical vein endothelial cells (HUVECs) proliferation, being higher on the PVDF film and electrospun randomly-oriented membranes. These findings demonstrated the importance of PVDF topography on HUVEC behavior, which can be used for the design of vascular implants.
Collapse
Affiliation(s)
- David Durán-Rey
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Ricardo Brito-Pereira
- CMEMS-UMinho, University of Minho, Guimarães, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, Portugal
- CF-UM-UP, Physics Centre of Minho and Porto Universities, University of Minho—Campus de Gualtar, Braga, Portugal
- IB-S Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Clarisse Ribeiro
- CF-UM-UP, Physics Centre of Minho and Porto Universities, University of Minho—Campus de Gualtar, Braga, Portugal
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| | - Sylvie Ribeiro
- CF-UM-UP, Physics Centre of Minho and Porto Universities, University of Minho—Campus de Gualtar, Braga, Portugal
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| | - Juan A. Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- RICORS-TERAV Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Verónica Crisóstomo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- RICORS-TERAV Network, Instituto de Salud Carlos III, Madrid, Spain
| | - Igor Irastorza
- CF-UM-UP, Physics Centre of Minho and Porto Universities, University of Minho—Campus de Gualtar, Braga, Portugal
- Cell Biology and Histology Department, Faculty of Medicine, Leioa, Spain
| | - Unai Silván
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco M. Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- RICORS-TERAV Network, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Francisco M. Sánchez-Margallo,
| |
Collapse
|
16
|
Nakanishi J, Yamamoto S. Static and photoresponsive dynamic materials to dissect physical regulation of cellular functions. Biomater Sci 2022; 10:6116-6134. [PMID: 36111810 DOI: 10.1039/d2bm00789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in mechanobiology has highlighted the importance of physical cues, such as mechanics, geometry (size), topography, and porosity, in the determination of cellular activities and fates, in addition to biochemical factors derived from their surroundings. In this review, we will first provide an overview of how such fundamental insights are identified by synchronizing the hierarchical nature of biological systems and static materials with tunable physical cues. Thereafter, we will explain the photoresponsive dynamic biomaterials to dissect the spatiotemporal aspects of the dependence of biological functions on physical cues.
Collapse
Affiliation(s)
- Jun Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, Japan.,Graduate School of Advanced Engineering, Tokyo University of Science, Japan
| | - Shota Yamamoto
- Research Center for Functional Materials, National Institute for Materials Science, Japan. .,Graduate School of Arts and Sciences, The University of Tokyo, Japan
| |
Collapse
|
17
|
Koo Y, Kim GH. Bioprinted hASC-laden collagen/HA constructs with meringue-like macro/micropores. Bioeng Transl Med 2022; 7:e10330. [PMID: 36176624 PMCID: PMC9472008 DOI: 10.1002/btm2.10330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Extrusion-based bioprinting is one of the most effective methods for fabricating cell-laden mesh structures. However, insufficient cellular activities within the printed cylindrical cell-matrix blocks, inducing low cell-to-cell interactions due to the disturbance of the matrix hydrogel, remain to be addressed. Hence, various sacrificial materials or void-forming methods have been used; however, most of them cannot solve the problem completely or require complicated fabricating procedures. Herein, we suggest a bioprinted cell-laden collagen/hydroxyapatite (HA) construct comprising meringue-like porous cell-laden structures to enhance osteogenic activity. A porous bioink is generated using a culinary process, i.e., the whipping method, and the whipping conditions, such as the material concentration, time, and speed, are selected appropriately. The constructs fabricated using the meringue-like bioink with MG63 cells and human adipose stem cells exhibit outstanding metabolic and osteogenic activities owing to the synergistic effects of the efficient cell-to-cell interactions and HA stimulation released from the porous structure. The in vitro cellular responses indicate that the meringue-like collagen bioink for achieving an extremely porous cell-laden construct can be a highly promising cell-laden material for various tissue regeneration applications.
Collapse
Affiliation(s)
- YoungWon Koo
- Department of Biomechatronic Engineering, College of Biotechnology and BioengineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Geun Hyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and BioengineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Biomedical Institute for Convergence at SKKU (BICS)Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
18
|
Missirlis D, Heckmann L, Haraszti T, Spatz JP. Fibronectin anchoring to viscoelastic poly(dimethylsiloxane) elastomers controls fibroblast mechanosensing and directional motility. Biomaterials 2022; 287:121646. [PMID: 35785752 DOI: 10.1016/j.biomaterials.2022.121646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
The established link between deregulated tissue mechanics and various pathological states calls for the elucidation of the processes through which cells interrogate and interpret the mechanical properties of their microenvironment. In this work, we demonstrate that changes in the presentation of the extracellular matrix protein fibronectin on the surface of viscoelastic silicone elastomers have an overarching effect on cell mechanosensing, that is independent of bulk mechanics. Reduction of surface hydrophilicity resulted in altered fibronectin adsorption strength as monitored using atomic force microscopy imaging and pulling experiments. Consequently, primary human fibroblasts were able to remodel the fibronectin coating, adopt a polarized phenotype and migrate directionally even on soft elastomers, that otherwise were not able to resist the applied traction forces. The findings presented here provide valuable insight on how cellular forces are regulated by ligand presentation and used by cells to probe their mechanical environment, and have implications on biomaterial design for cell guidance.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany.
| | - Lara Heckmann
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, Postal Address: Forkenbeckstr. 50, D-52056, Aachen, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany; Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University, Postal Address: INF 253, D-69120, Heidelberg, Germany
| |
Collapse
|
19
|
Malcor JD, Mallein-Gerin F. Biomaterial functionalization with triple-helical peptides for tissue engineering. Acta Biomater 2022; 148:1-21. [PMID: 35675889 DOI: 10.1016/j.actbio.2022.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
In the growing field of tissue engineering, providing cells in biomaterials with the adequate biological cues represents an increasingly important challenge. Yet, biomaterials with excellent mechanical properties often are often biologically inert to many cell types. To address this issue, researchers resort to functionalization, i.e. the surface modification of a biomaterial with active molecules or substances. Functionalization notably aims to replicate the native cellular microenvironment provided by the extracellular matrix, and in particular by collagen, its major component. As our understanding of biological processes regulating cell behaviour increases, functionalization with biomolecules binding cell surface receptors constitutes a promising strategy. Amongst these, triple-helical peptides (THPs) that reproduce the architectural and biological properties of collagen are especially attractive. Indeed, THPs containing binding sites from the native collagen sequence have successfully been used to guide cell response by establishing cell-biomaterial interactions. Notably, the GFOGER motif recognising the collagen-binding integrins is extensively employed as a cell adhesive peptide. In biomaterials, THPs efficiently improved cell adhesion, differentiation and function on biomaterials designed for tissue repair (especially for bone, cartilage, tendon and heart), vascular graft fabrication, wound dressing, drug delivery or immunomodulation. This review describes the key characteristics of THPs, their effect on cells when combined to biomaterials and their strong potential as biomimetic tools for regenerative medicine. STATEMENT OF SIGNIFICANCE: This review article describes how triple-helical peptides constitute efficient tools to improve cell-biomaterial interactions in tissue engineering. Triple helical peptides are bioactive molecules that mimic the architectural and biological properties of collagen. They have been successfully used to specifically recognize cell-surface receptors and provide cells seeded on biomaterials with controlled biological cues. Functionalization with triple-helical peptides has enabled researchers to improve cell function for regenerative medicine applications, such as tissue repair. However, despite encouraging results, this approach remains limited and under-exploited, and most functionalization strategies reported in the literature rely on biomolecules that are unable to address collagen-binding receptors. This review will assist researchers in selecting the correct tools to functionalize biomaterials in efforts to guide cellular response.
Collapse
Affiliation(s)
- Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France.
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France
| |
Collapse
|
20
|
Schmitt PR, Dwyer KD, Coulombe KLK. Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2461-2480. [PMID: 35623101 DOI: 10.1021/acsabm.2c00174] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite numerous advances in treatments for cardiovascular disease, heart failure (HF) remains the leading cause of death worldwide. A significant factor contributing to the progression of cardiovascular diseases into HF is the loss of functioning cardiomyocytes. The recent growth in the field of cardiac tissue engineering has the potential to not only reduce the downstream effects of injured tissues on heart function and longevity but also re-engineer cardiac function through regeneration of contractile tissue. One leading strategy to accomplish this is via a cellularized patch that can be surgically implanted onto a diseased heart. A key area of this field is the use of tissue scaffolds to recapitulate the mechanical and structural environment of the native heart and thus promote engineered myocardium contractility and function. While the strong mechanical properties and anisotropic structural organization of the native heart can be largely attributed to a robust extracellular matrix, similar strength and organization has proven to be difficult to achieve in cultured tissues. Polycaprolactone (PCL) is an emerging contender to fill these gaps in fabricating scaffolds that mimic the mechanics and structure of the native heart. In the field of cardiovascular engineering, PCL has recently begun to be studied as a scaffold for regenerating the myocardium due to its facile fabrication, desirable mechanical, chemical, and biocompatible properties, and perhaps most importantly, biodegradability, which make it suitable for regenerating and re-engineering function to the heart after disease or injury. This review focuses on the application of PCL as a scaffold specifically in myocardium repair and regeneration and outlines current fabrication approaches, properties, and possibilities of PCL incorporation into engineered myocardium, as well as provides suggestions for future directions and a roadmap toward clinical translation of this technology.
Collapse
Affiliation(s)
- Phillip R Schmitt
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kiera D Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
21
|
Olmedo-Moreno L, Aguilera Y, Baliña-Sánchez C, Martín-Montalvo A, Capilla-González V. Heterogeneity of In Vitro Expanded Mesenchymal Stromal Cells and Strategies to Improve Their Therapeutic Actions. Pharmaceutics 2022; 14:1112. [PMID: 35631698 PMCID: PMC9146397 DOI: 10.3390/pharmaceutics14051112] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Beneficial properties of mesenchymal stromal cells (MSCs) have prompted their use in preclinical and clinical research. Accumulating evidence has been provided for the therapeutic effects of MSCs in several pathologies, including neurodegenerative diseases, myocardial infarction, skin problems, liver disorders and cancer, among others. Although MSCs are found in multiple tissues, the number of MSCs is low, making in vitro expansion a required step before MSC application. However, culture-expanded MSCs exhibit notable differences in terms of cell morphology, physiology and function, which decisively contribute to MSC heterogeneity. The changes induced in MSCs during in vitro expansion may account for the variability in the results obtained in different MSC-based therapy studies, including those using MSCs as living drug delivery systems. This review dissects the different changes that occur in culture-expanded MSCs and how these modifications alter their therapeutic properties after transplantation. Furthermore, we discuss the current strategies developed to improve the beneficial effects of MSCs for successful clinical implementation, as well as potential therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, 41092 Seville, Spain; (L.O.-M.); (Y.A.); (C.B.-S.); (A.M.-M.)
| |
Collapse
|
22
|
Zancla A, Mozetic P, Orsini M, Forte G, Rainer A. A primer to traction force microscopy. J Biol Chem 2022; 298:101867. [PMID: 35351517 PMCID: PMC9092999 DOI: 10.1016/j.jbc.2022.101867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Traction force microscopy (TFM) has emerged as a versatile technique for the measurement of single-cell-generated forces. TFM has gained wide use among mechanobiology laboratories, and several variants of the original methodology have been proposed. However, issues related to the experimental setup and, most importantly, data analysis of cell traction datasets may restrain the adoption of TFM by a wider community. In this review, we summarize the state of the art in TFM-related research, with a focus on the analytical methods underlying data analysis. We aim to provide the reader with a friendly compendium underlying the potential of TFM and emphasizing the methodological framework required for a thorough understanding of experimental data. We also compile a list of data analytics tools freely available to the scientific community for the furtherance of knowledge on this powerful technique.
Collapse
Affiliation(s)
- Andrea Zancla
- Department of Engineering, Università degli Studi Roma Tre, Rome, Italy; Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy; Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Monica Orsini
- Department of Engineering, Università degli Studi Roma Tre, Rome, Italy
| | - Giancarlo Forte
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, Czechia.
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy; Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy.
| |
Collapse
|
23
|
Dhahri W, Sadikov Valdman T, Wilkinson D, Pereira E, Ceylan E, Andharia N, Qiang B, Masoudpour H, Wulkan F, Quesnel E, Jiang W, Funakoshi S, Mazine A, Gomez-Garcia MJ, Latifi N, Jiang Y, Huszti E, Simmons CA, Keller G, Laflamme MA. In Vitro Matured Human Pluripotent Stem Cell-derived Cardiomyocytes Form Grafts With Enhanced Structure and Function in Injured Hearts. Circulation 2022; 145:1412-1426. [PMID: 35089805 DOI: 10.1161/circulationaha.121.053563] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have tremendous promise for application in cardiac regeneration, but their translational potential is limited by an immature phenotype. We hypothesized that large-scale manufacturing of mature hPSC-CMs could be achieved via culture on polydimethylsiloxane (PDMS) lined roller bottles and that the transplantation of these cells would mediate better structural and functional outcomes than with conventional immature hPSC-CM populations. METHODS We comprehensively phenotyped hPSC-CMs after in vitro maturation for 20 and 40 days on either PDMS or standard tissue culture plastic (TCP) substrates. All hPSC-CMs were generated using a transgenic hPSC line that stably expressed a voltage-sensitive fluorescent reporter to facilitate in vitro and in vivo electrophysiological studies, and cardiomyocyte populations were also analyzed in vitro by immunocytochemistry, ultrastructure and fluorescent calcium imaging, as well as bulk and single-cell transcriptomics. We next compared outcomes after the transplantation of these populations into a guinea pig model of myocardial infarction (MI) using endpoints including histology, optical mapping of graft- and host-derived action potentials, echocardiography, and telemetric electrocardiographic (ECG) monitoring. RESULTS We demonstrated the economic generation of >1x108 mature hPSC-CMs per PDMS-lined roller bottle. Compared to their counterparts generated on TCP substrates, PDMS-matured hPSC-CMs exhibited increased cardiac gene expression and more mature structural and functional properties in vitro. More importantly, intra-cardiac grafts formed with PDMS-matured myocytes showed greatly enhanced structure and alignment, better host-graft electromechanical integration, less pro-arrhythmic behavior, and greater beneficial effects on contractile function. CONCLUSIONS In summary, we describe practical methods for the scaled generation of mature hPSC-CMs and provide the first evidence that the transplantation of more mature cardiomyocytes yields better outcomes in vivo.
Collapse
Affiliation(s)
- Wahiba Dhahri
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | - Eylül Ceylan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Naaz Andharia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Hassan Masoudpour
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Fanny Wulkan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Elya Quesnel
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Wenlei Jiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Amine Mazine
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - M Juliana Gomez-Garcia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Neda Latifi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yidi Jiang
- Biostatistics Research Unit, University Health Network, Toronto, ON, Canada
| | - Ella Huszti
- Biostatistics Research Unit, University Health Network, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Boghdady CM, Kalashnikov N, Mok S, McCaffrey L, Moraes C. Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales. APL Bioeng 2021; 5:041501. [PMID: 34632250 PMCID: PMC8487350 DOI: 10.1063/5.0046093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-generated forces play a foundational role in tissue dynamics and homeostasis and are critically important in several biological processes, including cell migration, wound healing, morphogenesis, and cancer metastasis. Quantifying such forces in vivo is technically challenging and requires novel strategies that capture mechanical information across molecular, cellular, and tissue length scales, while allowing these studies to be performed in physiologically realistic biological models. Advanced biomaterials can be designed to non-destructively measure these stresses in vitro, and here, we review mechanical characterizations and force-sensing biomaterial-based technologies to provide insight into the mechanical nature of tissue processes. We specifically and uniquely focus on the use of these techniques to identify characteristics of cell and tissue "tensegrity:" the hierarchical and modular interplay between tension and compression that provide biological tissues with remarkable mechanical properties and behaviors. Based on these observed patterns, we highlight and discuss the emerging role of tensegrity at multiple length scales in tissue dynamics from homeostasis, to morphogenesis, to pathological dysfunction.
Collapse
Affiliation(s)
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | | | | |
Collapse
|
25
|
Ammanamanchi M, Maurer M, Hayenga HN. Inflammation Drives Stiffness Mediated Uptake of Lipoproteins in Primary Human Macrophages and Foam Cell Proliferation. Ann Biomed Eng 2021; 49:3425-3437. [PMID: 34734362 PMCID: PMC8678330 DOI: 10.1007/s10439-021-02881-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Macrophage to foam cell transition and their accumulation in the arterial intima are the key events that trigger atherosclerosis, a multifactorial inflammatory disease. Previous studies have linked arterial stiffness and cardiovascular disease and have highlighted the use of arterial stiffness as a potential early-stage marker. Yet the relationship between arterial stiffness and atherosclerosis in terms of macrophage function is poorly understood. Thus, it is pertinent to understand the mechanobiology of macrophages to clarify their role in plaque advancement. We explore how substrate stiffness affects proliferation of macrophages and foam cells, traction forces exerted by macrophages and uptake of native and oxidized low-density lipoproteins. We demonstrate that stiffness influences foam cell proliferation under both naïve and inflammatory conditions. Naïve foam cells proliferated faster on the 4 kPa polyacrylamide gel and glass whereas under inflammatory conditions, maximum proliferation was recorded on glass. Macrophage and foam cell traction forces were positively correlated to the substrate stiffness. Furthermore, the influence of stiffness was demonstrated on the uptake of lipoproteins on macrophages treated with lipopolysaccharide + interferon gamma. Cells on softer 1 kPa substrates had a significantly higher uptake of low-density lipoproteins and oxidized low-density lipoproteins compared to stiffer substrates. The results herein indicate that macrophage function is modulated by stiffness and help better understand ways in which macrophages and foam cells could contribute to the development and progression of atherosclerotic plaque.
Collapse
Affiliation(s)
- Manasvini Ammanamanchi
- Department of Biomedical Engineering, University of Texas at Dallas, BSB 12.826, 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Melanie Maurer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Heather N Hayenga
- Department of Biomedical Engineering, University of Texas at Dallas, BSB 12.826, 800 W Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
26
|
Lekka M, Gnanachandran K, Kubiak A, Zieliński T, Zemła J. Traction force microscopy - Measuring the forces exerted by cells. Micron 2021; 150:103138. [PMID: 34416532 DOI: 10.1016/j.micron.2021.103138] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Cells generate mechanical forces (traction forces, TFs) while interacting with the extracellular matrix or neighbouring cells. Forces are generated by both cells and extracellular matrix (ECM) and transmitted within the cell-ECM or cell-cell contacts involving focal adhesions or adherens junctions. Within more than two decades, substantial progress has been achieved in techniques that measure TFs. One of the techniques is traction force microscopy (TFM). This review discusses the TFM and its advances in measuring TFs exerted by cells (single cells and multicellular systems) at cell-ECM and cell-cell junctional intracellular interfaces. The answers to how cells sense, adapt and respond to mechanical forces unravel their role in controlling and regulating cell behaviour in normal and pathological conditions.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland.
| | | | - Andrzej Kubiak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland
| | - Tomasz Zieliński
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland
| | - Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland
| |
Collapse
|
27
|
Munoz M, El-Khoury A, Eren Cimenci C, Gonzalez-Gomez M, Hunter RA, Lomboni D, Variola F, Rotstein BH, Vono LLR, Rossi LM, Edwards AM, Alarcon EI. Riboflavin Surface Modification of Poly(vinyl chloride) for Light-Triggered Control of Bacterial Biofilm and Virus Inactivation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32251-32262. [PMID: 34181389 DOI: 10.1021/acsami.1c08042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Poly(vinyl chloride) (PVC) is the most used biomedical polymer worldwide. PVC is a stable and chemically inert polymer. However, microorganisms can colonize PVC producing biomedical device-associated infections. While surface modifications of PVC can help improve the antimicrobial and antiviral properties, the chemically inert nature of PVC makes those modifications challenging and potentially toxic. In this work, we modified the PVC surface using a derivative riboflavin molecule that was chemically tethered to a plasma-treated PVC surface. Upon a low dosage of blue light, the riboflavin tethered to the PVC surface became photochemically activated, allowing for Pseudomonas aeruginosa bacterial biofilm and lentiviral in situ eradication.
Collapse
Affiliation(s)
- Marcelo Munoz
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7, Canada
| | - Antony El-Khoury
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7, Canada
| | - Cagla Eren Cimenci
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mayte Gonzalez-Gomez
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7, Canada
| | - Robert A Hunter
- Ottawa-Carleton Institute for Biomedical Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - David Lomboni
- Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Benjamin H Rotstein
- Molecular Imaging Probes and Radiochemistry Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y4W7, Canada
| | - Lucas L R Vono
- Institute of Chemistry, University of São Paulo, USP, São Paulo, SP 05508-000, Brazil
| | - Liane M Rossi
- Institute of Chemistry, University of São Paulo, USP, São Paulo, SP 05508-000, Brazil
| | - Ana Maria Edwards
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine University of Ottawa, Ottawa, Ontario K1H8M5, Canada
| |
Collapse
|
28
|
Metavarayuth K, Villarreal E, Wang H, Wang Q, Hw, Qw, Mk, Ev, Mk, Mk, Hw, Qw, Mk, Hw, Qw. Surface topography and free energy regulate osteogenesis of stem cells: effects of shape-controlled gold nanoparticles. BIOMATERIALS TRANSLATIONAL 2021; 2:165-173. [PMID: 35836962 PMCID: PMC9255781 DOI: 10.12336/biomatertransl.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 01/16/2023]
Abstract
The surface free energy of a biomaterial plays an important role in the early stages of cell-biomaterial interactions, profoundly influencing protein adsorption, interfacial water accessibility, and cell attachment on the biomaterial surface. Although multiple approaches have been developed to engineer the surface free energy of biomaterials, systematically tuning their surface free energy without altering other physicochemical properties remains challenging. In this study, we constructed an array of chemically-equivalent surfaces with comparable apparent roughness through assembly of gold nanoparticles adopting various geometrically-distinct shapes but all capped with the same surface ligand, (1-hexadecyl)trimethylammonium chloride, on cell culture substrates. We found that bone marrow stem cells exhibited distinct osteogenic differentiation behaviours when interacting with different types of substrates comprising shape-controlled gold nanoparticles. Our results reveal that bone marrow stem cells are capable of sensing differences in the nanoscale topographical features, which underscores the role of the surface free energy of nanostructured biomaterials in regulating cell responses. The study was approved by Institutional Animal Care and Use Committee, School of Medicine, University of South Carolina.
Collapse
|
29
|
Santos Morais D, Azenha Rodrigues M, Lopes C, Vaz F, Grenho L, Helena Fernandes M, Miranda Guedes R, Ascensão Lopes M. Bioactive and biopassive treatment of poly(ethylene terephthalate) multifilament textile yarns to improve/prevent fibroblast viability. J Biomed Mater Res B Appl Biomater 2021; 109:2213-2226. [PMID: 34037321 DOI: 10.1002/jbm.b.34882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 12/23/2022]
Abstract
To modulate the physicochemical features of poly(ethylene terephthalate) (PET) multifilaments surface composing a complex textile structure (core and shell system), intended to improve upon current implants for high extension injuries of the Achilles tendon or even for its total replacement, two surface treatments with different purposes (bioactive and biopassive) were studied. The first treatment is based on amino groups grafting using ethylenediamine molecules to be applied in the structure core to improve cell adhesion and proliferation. The other treatment relates to a polytetrafluoroethylene (PTFE) coating to be applied in the structure shell to decrease its coefficient of friction and avoid adhesions. Both treatments were optimized to reach their purposed goals without harming the tensile properties of PET yarns, which were evaluated by static tensile tests. The resazurin assay and scanning electron microscopy analysis showed that the purposed goals related to fibroblast adhesion were achieved for both treatments and in the case of PTFE coating, the abrasion resistance was also improved according to the yarn-on-yarn abrasion tests.
Collapse
Affiliation(s)
- Diana Santos Morais
- LAQV-REQUIMTE, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.,INEGI-Instituto de Engenharia Mecânica e Gestão Industrial, Departmento de Engenharia Mecânica DEMec-FEUP, Porto, Portugal
| | - Miguel Azenha Rodrigues
- LAQV-REQUIMTE, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Cláudia Lopes
- Centro de Física, Universidade do Minho, Braga, Portugal
| | - Filipe Vaz
- Centro de Física, Universidade do Minho, Braga, Portugal
| | - Liliana Grenho
- LAQV-REQUIMTE, Faculdade de Medicina Dentária, Universidade do Porto (FMDUP), Rua Dr. Manuel Pereira da Silva, Porto, Portugal
| | - Maria Helena Fernandes
- LAQV-REQUIMTE, Faculdade de Medicina Dentária, Universidade do Porto (FMDUP), Rua Dr. Manuel Pereira da Silva, Porto, Portugal
| | - Rui Miranda Guedes
- INEGI-Instituto de Engenharia Mecânica e Gestão Industrial, Departmento de Engenharia Mecânica DEMec-FEUP, Porto, Portugal.,Departamento de Engenharia Mecânica Faculdade de Engenharia, Universidade do Porto, Rua Dr.Roberto Frias, Porto, Portugal
| | - Maria Ascensão Lopes
- LAQV-REQUIMTE, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Priyadarshani J, Roy T, Das S, Chakraborty S. Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology. ACS Biomater Sci Eng 2021; 7:1263-1277. [PMID: 33555875 DOI: 10.1021/acsbiomaterials.1c00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several disease conditions, such as cancer metastasis and atherosclerosis, are deeply connected with the complex biophysical phenomena taking place in the complicated architecture of the tiny blood vessels in human circulatory systems. Traditionally, these diseases have been probed by devising various animal models, which are otherwise constrained by ethical considerations as well as limited predictive capabilities. Development of an engineered network-on-a-chip, which replicates not only the functional aspects of the blood-carrying microvessels of human bodies, but also its geometrical complexity and hierarchical microstructure, is therefore central to the evaluation of organ-assist devices and disease models for therapeutic assessment. Overcoming the constraints of reported resource-intensive fabrication techniques, here, we report a facile, simple yet niche combination of surface engineering and microfabrication strategy to devise a highly ordered hierarchical microtubular network embedded within a polydimethylsiloxane (PDMS) slab for dynamic cell culture on a chip, with a vision of addressing the exclusive aspects of the vascular transport processes under medically relevant paradigms. The design consists of hierarchical complexity ranging from capillaries (∼80 μm) to large arteries (∼390 μm) and a simultaneous tuning of the interfacial material chemistry. The fluid flow behavior is characterized numerically within the hierarchical network, and a confluent endothelial layer is realized on the inner wall of microfluidic device. We further explore the efficacy of the device as a vascular deposition assay of circulatory tumor cells (MG-63 osteosarcoma cells) present in whole blood. The proposed paradigm of mimicking an in vitro vascular network in a low-cost paradigm holds further potential for probing cellular dynamics as well as offering critical insights into various vascular transport processes.
Collapse
Affiliation(s)
- Jyotsana Priyadarshani
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
32
|
Shinde A, Illath K, Gupta P, Shinde P, Lim KT, Nagai M, Santra TS. A Review of Single-Cell Adhesion Force Kinetics and Applications. Cells 2021; 10:577. [PMID: 33808043 PMCID: PMC8000588 DOI: 10.3390/cells10030577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cells exert, sense, and respond to the different physical forces through diverse mechanisms and translating them into biochemical signals. The adhesion of cells is crucial in various developmental functions, such as to maintain tissue morphogenesis and homeostasis and activate critical signaling pathways regulating survival, migration, gene expression, and differentiation. More importantly, any mutations of adhesion receptors can lead to developmental disorders and diseases. Thus, it is essential to understand the regulation of cell adhesion during development and its contribution to various conditions with the help of quantitative methods. The techniques involved in offering different functionalities such as surface imaging to detect forces present at the cell-matrix and deliver quantitative parameters will help characterize the changes for various diseases. Here, we have briefly reviewed single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques. This is used to functionalize from the measurement of cellular deformability to the quantification of the interaction forces generated by a cell and exerted on its surroundings at single-cell with attachment and detachment events. The adhesive force measurement for single-cell microorganisms and single-molecules is emphasized as well. This focused review should be useful in laying out experiments which would bring the method to a broader range of research in the future.
Collapse
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-Si, Gangwon-Do 24341, Korea;
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| |
Collapse
|
33
|
Naqvi SM, McNamara LM. Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:597661. [PMID: 33381498 PMCID: PMC7767888 DOI: 10.3389/fbioe.2020.597661] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanobiology has underpinned many scientific advances in understanding how biophysical and biomechanical cues regulate cell behavior by identifying mechanosensitive proteins and specific signaling pathways within the cell that govern the production of proteins necessary for cell-based tissue regeneration. It is now evident that biophysical and biomechanical stimuli are as crucial for regulating stem cell behavior as biochemical stimuli. Despite this, the influence of the biophysical and biomechanical environment presented by biomaterials is less widely accounted for in stem cell-based tissue regeneration studies. This Review focuses on key studies in the field of stem cell mechanobiology, which have uncovered how matrix properties of biomaterial substrates and 3D scaffolds regulate stem cell migration, self-renewal, proliferation and differentiation, and activation of specific biological responses. First, we provide a primer of stem cell biology and mechanobiology in isolation. This is followed by a critical review of key experimental and computational studies, which have unveiled critical information regarding the importance of the biophysical and biomechanical cues for stem cell biology. This review aims to provide an informed understanding of the intrinsic role that physical and mechanical stimulation play in regulating stem cell behavior so that researchers may design strategies that recapitulate the critical cues and develop effective regenerative medicine approaches.
Collapse
Affiliation(s)
- S M Naqvi
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - L M McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
34
|
Hu J, Miszuk JM, Stein KM, Sun H. Nanoclay Promotes Mouse Cranial Bone Regeneration Mainly through Modulating Drug Binding and Sustained Release. APPLIED MATERIALS TODAY 2020; 21:100860. [PMID: 33225042 PMCID: PMC7673671 DOI: 10.1016/j.apmt.2020.100860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoclay (Nanosilicates, NS) is appearing as an intriguing 2D nanomaterial for bone tissue engineering with multiple proposed functions, e.g., intrinsic osteoinductivity, improving mechanical properties, and drug release capacity. However, the mechanism of NS for in vivo bone regeneration has been hardly defined so far. This knowledge gap will significantly affect the design/application of NS-based biomaterials. To determine the role of NS in osteoblastic differentiation and bone formation, we used the mouse calvarial-derived pre-osteoblasts (MC3T3-E1) and a clinically-relevant mouse cranial bone defect model. Instead of a hydrogel, we prepared biomimetic 3D gelatin nanofibrous scaffolds (GF) and NS-blended composite scaffolds (GF/NS) to determine the essential role of NS in critical low-dose (0.5 μg per scaffold) of BMP2-induced cranial bone regeneration. In contrast to "osteoinductivity", our data indicated that NS could enable single-dose of BMP2, promoting significant osteoblastic differentiation while multiple-dose of BMP2 (without NS) was required to achieve similar efficacy. Moreover, our release study revealed that direct binding to NS in GF scaffolds provided stronger protection to BMP2 and sustained release compared to GF/NS composite scaffolds. Consistently, our in vivo data indicated that only BMP2/NS direct binding treatment was able to repair the large mouse cranial bone defects after 6 weeks of transplantation while neither BMP2, NS alone, nor BMP2 released from GF/NS scaffolds was sufficient to induce significant cranial bone defect repair. Therefore, we concluded that direct nanoclay-drug binding enabled sustained release is the most critical contribution to the significantly improved bone regeneration compared to other possible mechanisms based on our study.
Collapse
Affiliation(s)
- Jue Hu
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Jacob M. Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Kyle M. Stein
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Corresponding Authors: Professor Hongli Sun, Ph.D., Department of Oral and Maxillofacial Surgery, Iowa Institute for Oral Health Research, N405 DSB, College of Dentistry, 801 Newton Road, The University of Iowa, Iowa City, IA 52242, Tel: 319-335-1217,
| |
Collapse
|
35
|
Akther F, Yakob SB, Nguyen NT, Ta HT. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. BIOSENSORS 2020; 10:E182. [PMID: 33228050 PMCID: PMC7699314 DOI: 10.3390/bios10110182] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic lab-on-a-chip cell culture techniques have been gaining popularity by offering the possibility of reducing the amount of samples and reagents and greater control over cellular microenvironment. Polydimethylsiloxane (PDMS) is the commonly used polymer for microfluidic cell culture devices because of the cheap and easy fabrication techniques, non-toxicity, biocompatibility, high gas permeability, and optical transparency. However, the intrinsic hydrophobic nature of PDMS makes cell seeding challenging when applied on PDMS surface. The hydrophobicity of the PDMS surface also allows the non-specific absorption/adsorption of small molecules and biomolecules that might affect the cellular behaviour and functions. Hydrophilic modification of PDMS surface is indispensable for successful cell seeding. This review collates different techniques with their advantages and disadvantages that have been used to improve PDMS hydrophilicity to facilitate endothelial cells seeding in PDMS devices.
Collapse
Affiliation(s)
- Fahima Akther
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
| | - Shazwani Binte Yakob
- School of Pharmacy, the University of Queensland, Brisbane, QLD 4102, Australia;
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
36
|
Bertrand AA, Malapati SH, Yamaguchi DT, Lee JC. The Intersection of Mechanotransduction and Regenerative Osteogenic Materials. Adv Healthc Mater 2020; 9:e2000709. [PMID: 32940024 PMCID: PMC7864218 DOI: 10.1002/adhm.202000709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Indexed: 12/23/2022]
Abstract
Mechanical signals play a central role in cell fate determination and differentiation in both physiologic and pathologic circumstances. Such signals may be delivered using materials to generate discrete microenvironments for the purposes of tissue regeneration and have garnered increasing attention in recent years. Unlike the addition of progenitor cells or growth factors, delivery of a microenvironment is particularly attractive in that it may reduce the known untoward consequences of the former two strategies, such as excessive proliferation and potential malignant transformation. Additionally, the ability to spatially modulate the fabrication of materials allows for the creation of multiple microenvironments, particularly attractive for regenerating complex tissues. While many regenerative materials have been developed and tested for augmentation of specific cellular responses, the intersection between cell biology and material interactions have been difficult to dissect due to the complexity of both physical and chemical interactions. Specifically, modulating materials to target individual signaling pathways is an avenue of interdisciplinary research that may lead to a more effective method of optimizing regenerative materials. In this work, the aim is to summarize the major mechanotransduction pathways for osteogenic differentiation and to consolidate the known materials and material properties that activate such pathways.
Collapse
Affiliation(s)
- Anthony A. Bertrand
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Sri Harshini Malapati
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Dean T. Yamaguchi
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
- UCLA Molecular Biology Institute, Los Angeles, California
| |
Collapse
|
37
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
38
|
Hur SS, Jeong JH, Ban MJ, Park JH, Yoon JK, Hwang Y. Traction force microscopy for understanding cellular mechanotransduction. BMB Rep 2020. [PMID: 31964473 PMCID: PMC7061206 DOI: 10.5483/bmbrep.2020.53.2.308] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under physiological and pathological conditions, mechanical forces generated from cells themselves or transmitted from extracellular matrix (ECM) through focal adhesions (FAs) and adherens junctions (AJs) are known to play a significant role in regulating various cell behaviors. Substantial progresses have been made in the field of mechanobiology towards novel methods to understand how cells are able to sense and adapt to these mechanical forces over the years. To address these issues, this review will discuss recent advancements of traction force microscopy (TFM), intracellular force microscopy (IFM), and monolayer stress microscopy (MSM) to measure multiple aspects of cellular forces exerted by cells at cell-ECM and cell-cell junctional intracellular interfaces. We will also highlight how these methods can elucidate the roles of mechanical forces at interfaces of cell-cell/cell-ECM in regulating various cellular functions. [BMB Reports 2020; 53(2): 74-81].
Collapse
Affiliation(s)
- Sung Sik Hur
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| | - Myung Jin Ban
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
39
|
Schoenenberger AD, Tempfer H, Lehner C, Egloff J, Mauracher M, Bird A, Widmer J, Maniura-Weber K, Fucentese SF, Traweger A, Silvan U, Snedeker JG. Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in vivo. Biomaterials 2020; 249:120034. [PMID: 32315865 DOI: 10.1016/j.biomaterials.2020.120034] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022]
Abstract
Appropriate macrophage response to an implanted biomaterial is crucial for successful tissue healing outcomes. In this work we investigated how intrinsic topological cues from electrospun biomaterials and extrinsic mechanical loads cooperate to guide macrophage activation and macrophage-tendon fibroblast cross-talk. We performed a series of in vitro and in vivo experiments using aligned or randomly oriented polycaprolactone nanofiber substrates in both mechanically loaded and unloaded conditions. Across all experiments a disorganized biomaterial fiber topography was alone sufficient to promote a pro-inflammatory signature in macrophages, tendon fibroblasts, and tendon tissue. Extrinsic mechanical loading was found to strongly regulate the character of this signature by reducing pro-inflammatory markers both in vitro and in vivo. We observed that macrophages generally displayed a stronger response to biophysical cues than tendon fibroblasts, with dominant effects of cross-talk between these cell types observed in mechanical co-culture models. Collectively our data suggest that macrophages play a potentially important role as mechanosensory cells in tendon repair, and provide insight into how biological response might be therapeutically modulated by rational biomaterial designs that address the biomechanical niche of recruited cells.
Collapse
Affiliation(s)
- Angelina D Schoenenberger
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury & Tissue Regeneration Center Salzburg, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christine Lehner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury & Tissue Regeneration Center Salzburg, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jasmin Egloff
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Marita Mauracher
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Anna Bird
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jonas Widmer
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Katharina Maniura-Weber
- Biointerfaces, Empa, Swiss Federal Laboratories for Material Science and Technology, St. Gallen, Switzerland
| | - Sandro F Fucentese
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury & Tissue Regeneration Center Salzburg, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Unai Silvan
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
40
|
He Q, Liao Y, Zhang J, Yao X, Zhou W, Hong Y, Ouyang H. "All-in-One" Gel System for Whole Procedure of Stem-Cell Amplification and Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906539. [PMID: 32141227 DOI: 10.1002/smll.201906539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Microsphere (MS)-based systems provides great advantages for cell expansion and transplantation due to their high surface-to-volume ratio and biomimetic environment. However, a MS-based system that includes cell attachment, proliferation, passage, harvest, cryopreservation, and tissue engineering together has not been realized yet. An "all-in-one" gel MS-based system is established for human adipose-derived mesenchymal stem cells (hADSCs), realizing real 3D culture with enhanced expansion efficiency and simplified serial cell culture operations, and construction of macrotissues with uniform cell distribution and specific function. A 3D digital light-processing technology is developed to fabricate gel MSs in an effective way. The printed MSs present a suitable environment with rough surface architecture and the mechanical properties of soft tissues, leading to high cell viability, attachment, proliferation, activity, and differentiation potential. Further, convenient standard operation procedures, including cell passage, detachment, and cryopreservation, are established for cell culture on the gel MSs. Finally, hADSCs-loaded gel MSs form macrotissues through a "bottom-up" approach, which demonstrates the potential applications for tissue engineering. These findings exhibit the feasibility and beauty of "all-in-one" stem cell culture and tissue engineering system.
Collapse
Affiliation(s)
- Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Youguo Liao
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
| | - Jingwei Zhang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xudong Yao
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenyan Zhou
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi Hong
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
41
|
Makhija EP, Espinosa-Hoyos D, Jagielska A, Van Vliet KJ. Mechanical regulation of oligodendrocyte biology. Neurosci Lett 2020; 717:134673. [PMID: 31838017 PMCID: PMC12023767 DOI: 10.1016/j.neulet.2019.134673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocytes (OL) are a subset of glial cells in the central nervous system (CNS) comprising the brain and spinal cord. The CNS environment is defined by complex biochemical and biophysical cues during development and response to injury or disease. In the last decade, significant progress has been made in understanding some of the key biophysical factors in the CNS that modulate OL biology, including their key role in myelination of neurons. Taken together, those studies offer translational implications for remyelination therapies, pharmacological research, identification of novel drug targets, and improvements in methods to generate human oligodendrocyte progenitor cells (OPCs) and OLs from donor stem cells in vitro. This review summarizes current knowledge of how various physical and mechanical cues affect OL biology and its implications for disease, therapeutic approaches, and generation of human OPCs and OLs.
Collapse
Affiliation(s)
- Ekta P Makhija
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore
| | - Daniela Espinosa-Hoyos
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Anna Jagielska
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| | - Krystyn J Van Vliet
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| |
Collapse
|
42
|
Dlamini M, Kennedy TE, Juncker D. Combinatorial nanodot stripe assay to systematically study cell haptotaxis. MICROSYSTEMS & NANOENGINEERING 2020; 6:114. [PMID: 33365138 PMCID: PMC7735170 DOI: 10.1038/s41378-020-00223-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/13/2020] [Indexed: 05/09/2023]
Abstract
Haptotaxis is critical to cell guidance and development and has been studied in vitro using either gradients or stripe assays that present a binary choice between full and zero coverage of a protein cue. However, stripes offer only a choice between extremes, while for gradients, cell receptor saturation, migration history, and directional persistence confound the interpretation of cellular responses. Here, we introduce nanodot stripe assays (NSAs) formed by adjacent stripes of nanodot arrays with different surface coverage. Twenty-one pairwise combinations were designed using 0, 1, 3, 10, 30, 44 and 100% stripes and were patterned with 200 × 200, 400 × 400 or 800 × 800 nm2 nanodots. We studied the migration choices of C2C12 myoblasts that express neogenin on NSAs (and three-step gradients) of netrin-1. The reference surface between the nanodots was backfilled with a mixture of polyethylene glycol and poly-d-lysine to minimize nonspecific cell response. Unexpectedly, cell response was independent of nanodot size. Relative to a 0% stripe, cells increasingly chose the high-density stripe with up to ~90% of cells on stripes with 10% coverage and higher. Cell preference for higher vs. lower netrin-1 coverage was observed only for coverage ratios >2.3, with cell preference plateauing at ~80% for ratios ≥4. The combinatorial NSA enables quantitative studies of cell haptotaxis over the full range of surface coverages and ratios and provides a means to elucidate haptotactic mechanisms.
Collapse
Affiliation(s)
- Mcolisi Dlamini
- Biomedical Engineering Department, McGill University, 3775 University Street, Montréal, QC H3A 2B4 Canada
- McGill Genome Centre, 740 Dr. Penfield Avenue, Montréal, QC H3A 0G1 Canada
- McGill Program in Neuroengineering, Montréal, QC Canada
| | - Timothy E. Kennedy
- McGill Program in Neuroengineering, Montréal, QC Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montréal, QC H3A 2B4 Canada
| | - David Juncker
- Biomedical Engineering Department, McGill University, 3775 University Street, Montréal, QC H3A 2B4 Canada
- McGill Genome Centre, 740 Dr. Penfield Avenue, Montréal, QC H3A 0G1 Canada
- McGill Program in Neuroengineering, Montréal, QC Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montréal, QC H3A 2B4 Canada
| |
Collapse
|
43
|
Chen M, Zhao F, Li Y, Wang M, Chen X, Lei B. 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110153. [PMID: 31753368 DOI: 10.1016/j.msec.2019.110153] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 01/04/2023]
Abstract
Three dimensional (3D) printed porous bioactive glass nanoparticles scaffolds (BGNS) exhibit excellent bone integration and bone regeneration capacities, but the early rapid ion release, brittle mechanical properties and lack of functions limit their application. In this work, photoluminescent biomimetic elastomeric BGNS were fabricated by directly assembling poly(citrate-siloxane) (PCS) on the surface of BGNS (BGNS@PCS). The morphologies, mechanical behavior, photoluminescent ability, ions release, biomineralization activity, biocompatibility and osteogenic properties of BGNS@PCS were evaluated in detail. The results indicated that BGNS@PCS presented superior elasticity and outstanding compressive strength compared with BGNS. The controlled release of the Si and Ca ions in BGNS@PCS was achieved and enhanced biomineralization ability was also observed. In addition, the modified scaffolds have the photoluminescent ability which has the potential application for bioimaging. BGNS@PCS could significantly promote cells attachment, proliferation and enhance osteogenic differentiation of mouse bone marrow stromal cells (BMSCs). Therefore, the BGNS@PCS with the multifunctional properties including elastomeric surface, enhanced photoluminescent, controlled ions release and biomineralization, reinforced osteogenic activity, would be a promising candidate for bone tissue regeneration. This study probably provides a novel strategy to design biomimetic elastomeric bioceramic scaffolds for hard tissue regeneration.
Collapse
Affiliation(s)
- Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Fujian Zhao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yannan Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Xiaofeng Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
44
|
Fu J, Liu X, Tan L, Cui Z, Liang Y, Li Z, Zhu S, Zheng Y, Kwok Yeung KW, Chu PK, Wu S. Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation. Acta Biomater 2020; 101:152-167. [PMID: 31678738 DOI: 10.1016/j.actbio.2019.10.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
Abstract
Growing evidence suggests that the physical microenvironment can guide cell fate. However, cells sense cues from the adjacent physical microenvironment over a limited distance. In the present study, murine mesenchymal stem cells (MSCs) and murine preosteoblastic cells (MC3T3-E1) behaviors are regulated by the cell-material interface using ordered-micro and disordered-nano patterned structures on Ti implants. The optimal bone formation structure is a stable wave (horizontal direction: ridge, 2.7 µm; grooves, 5.3 µm; and vertical direction: distance, 700 µm) with the appropriate density of nano-branches (6.0 per µm2). The repeated waves provide cells with directional guidance, and the disordered branches influence cell geometry by providing different spacing and density nanostructure. And micro-nano patterned structure can provide biophysical cues to direct cell phenotype development, including cell size, shape, and orientation, to influence cellular processes including survival, growth, and differentiation. Thus, the overlaid isotropic and anisotropic cues, ordered-micro and disordered-nano patterned structures, could transfer further and alter cell shape and induce nuclear orientation by activating Wnt/β-catenin signaling to promote integrin α5, integrin β1, cadherin 2, Runx2, Opn, and Ocn. That canonical Wnt signaling inhibitor dickkopf1 further demonstrates osteogenic differentiation induced by ordered-micro and disordered-nano patterned structures, which is related to Wnt/β-catenin signaling. Our findings show the role of ordered microstructures and disordered nanostructures in modulating stem cell differentiation with potential medical applications. STATEMENT OF SIGNIFICANCE: It remains a challenge to modify poor osteogenic and osteoconductive properties of titanium alloy bases on the inherent poverty of titanium. We demonstrate that ordered microtopography and disordered nano topography pattern structure could lead to osteogenic differentiation in vitro and bone regeneration in vivo. Furthermore, the pattern structure is created through selective laser melting and alkali heat. And the structure only takes advantage of titanium itself and does not bring in active film, such as hydroxyapatite. On the other hand, we find that cell shape and orientation show angle-orientation tendency due to the polarity, which involves with mechanical signal created via patterned structure. Meanwhile, the Wnt/Ca2+ signaling pathway is activated.
Collapse
Affiliation(s)
- Jieni Fu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Lei Tan
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Yanqin Liang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shuilin Wu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
45
|
Saidova AA, Vorobjev IA. Lineage Commitment, Signaling Pathways, and the Cytoskeleton Systems in Mesenchymal Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:13-25. [PMID: 31663422 DOI: 10.1089/ten.teb.2019.0250] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) from adult tissues are promising candidates for personalized cell therapy and tissue engineering. Significant progress was achieved in our understanding of the regulation of MSCs proliferation and differentiation by different cues during the past years. Proliferation and differentiation of MSCs are sensitive to the extracellular matrix (ECM) properties, physical cues, and chemical signaling. Sheath stress, matrix stiffness, surface adhesiveness, and micro- and nanotopography define cell shape and dictate lineage commitment of MSCs even in the absence of specific chemical signals. We discuss mechanotransduction as the major route from ECM through the cytoskeleton toward signaling pathways and gene expression. All components of the cytoskeleton from primary cilium and focal adhesions (FAs) to actin, microtubules (MTs), and intermediate filaments (IFs) are involved in the mechanotransduction. Differentiation of MSCs is regulated via the complex network of interrelated signaling pathways, including RhoA/ROCK, Akt/Erk, and YAP/TAZ effectors of Hippo pathway. These pathways could be regulated both by chemical and mechanical stimuli. Attenuation of these pathways in MSCs results in specific changes in FAs and actin cytoskeleton. Besides, differentiation of MSCs affects MTs and IFs. Recent findings highlight the role of intranuclear actin in the regulation of transcription factors in response to mechanical environmental stimuli. Alterations of cytoskeletal components reflect the MSC senescence state and their migratory capacity. In this review, we discuss the relationships between the molecular interactions in signaling pathways and morphological response of cytoskeletal components and reveal the complex interrelations between cytoskeleton systems and signaling pathways during lineage commitment of MSCs. Impact Statement This review describes the complex network of relationships between mechanical and biochemical stimuli in mesenchymal stem cells (MSC) and their balance which defines the morphological changes of cell shape due to rearrangement of cytoskeletal systems during lineage commitment of MSCs.
Collapse
Affiliation(s)
- Aleena A Saidova
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.,Center of Experimental Embryology and Reproductive Biotechnology, Moscow, Russia
| | - Ivan A Vorobjev
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Biology, School of Science and Humanities and National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
46
|
Horvath AN, Holenstein CN, Silvan U, Snedeker JG. The Protein Mat(ters)-Revealing the Biologically Relevant Mechanical Contribution of Collagen- and Fibronectin-Coated Micropatterns. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41791-41798. [PMID: 31589401 DOI: 10.1021/acsami.9b12430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding cell-material interactions requires accurate characterization of the substrate mechanics, which are generally measured by indentation-type atomic force microscopy. To facilitate cell-substrate interaction, model extracellular matrix coatings are used although their tensile mechanical properties are generally unknown. In this study, beyond standard compressive stiffness estimation, we performed a novel tensile mechanical characterization of collagen- and fibronectin-micropatterned polyacrylamide hydrogels. We further demonstrate the impact of the protein mat on the tensile stiffness characterization of adherent cells. To our knowledge, our study is the first to uncover direction-dependent mechanical behavior of the protein coatings and to demonstrate that it affects cellular response relative to substrate mechanics.
Collapse
Affiliation(s)
- Aron N Horvath
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| | - Claude N Holenstein
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| | - Unai Silvan
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| | - Jess G Snedeker
- Biomechanics Laboratory , University Hospital Balgrist, University of Zurich , 8008 Zurich , Switzerland
- Institute for Biomechanics , ETH Zurich , 8008 Zurich , Switzerland
| |
Collapse
|
47
|
Frauenlob M, King DR, Guo H, Ishihara S, Tsuda M, Kurokawa T, Haga H, Tanaka S, Gong JP. Modulation and Characterization of the Double Network Hydrogel Surface-Bulk Transition. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Daniel R. King
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Honglei Guo
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Seiichiro Ishihara
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Masumi Tsuda
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Takayuki Kurokawa
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hisashi Haga
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Tanaka
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
48
|
Zhang J, Yang H, Abali BE, Li M, Xia Y, Haag R. Dynamic Mechanics-Modulated Hydrogels to Regulate the Differentiation of Stem-Cell Spheroids in Soft Microniches and Modeling of the Nonlinear Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901920. [PMID: 31183958 DOI: 10.1002/smll.201901920] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Indexed: 05/06/2023]
Abstract
Although mechanisms of how physical forces convert into biochemical signals are increasingly understood, it is still unknown how soft cues guide cell behavior. Herein, it is shown that the commitment and differentiation of encapsulating human mesenchymal stem cell (hMSC) spheroids in thermosensitive 3D hydrogels are simply altered by interpenetrating poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (NIPAM-HEMA) nanogel to a gelatin methacryloyl (GelMA) network. This cell-laden hydrogel provides dynamic mechanics with covalent crosslinking coordinated reversible physical networks, which can regulate hMSCs in situ by reversibly stiffening soft niches via multicyclic temperature changes from 25 to 37 °C. The spreading of hMSC spheroids in the hydrogel is strongly dependent on myosin-dependent traction stress with dynamic mechanical stimuli through focal adhesion kinase (FAK) signaling. Notably, the dynamic microenvironment gradually influences the expression and distribution from the basal to apical side of nuclear lamin A/C and increases the Yes-associated protein (YAP) nuclear localization with cycles, which ultimately favors hMSCs undergoing osteogenesis (but not adipogenesis) in the soft microniche. Moreover, it is demonstrated that the viscoelastic behavior of the soft microniche can be guided by temperature through a nonlinear model. These findings highlight the central roles of the dynamic relationship between the biomechanical signals and mechanosensitive transcriptional regulators in cellular mechanosensing.
Collapse
Affiliation(s)
- Jianguang Zhang
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Hua Yang
- Institute of Mechanics, Chair of Continuum Mechanics and Constitutive Theory, Technische Universität Berlin, Einsteinufer 5, 10587, Berlin, Germany
| | - Bilen Emek Abali
- Institute of Mechanics, Chair of Continuum Mechanics and Constitutive Theory, Technische Universität Berlin, Einsteinufer 5, 10587, Berlin, Germany
| | - Mingjun Li
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Yi Xia
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
49
|
Portone A, Sciancalepore AG, Melle G, Netti GS, Greco G, Persano L, Gesualdo L, Pisignano D. Quasi-3D morphology and modulation of focal adhesions of human adult stem cells through combinatorial concave elastomeric surfaces with varied stiffness. SOFT MATTER 2019; 15:5154-5162. [PMID: 31192342 DOI: 10.1039/c9sm00481e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In vivo cell niches are complex architectures that provide a wide range of biochemical and mechanical stimuli to control cell behavior and fate. With the aim to provide in vitro microenvironments mimicking physiological niches, microstructured substrates have been exploited to support cell adhesion and to control cell shape as well as three dimensional morphology. At variance with previous methods, we propose a simple and rapid protein subtractive soft lithographic method to obtain microstructured polydimethylsiloxane substrates for studying stem cell adhesion and growth. The shape of adult renal stem cells and nuclei is found to depend predominantly on micropatterning of elastomeric surfaces and only weakly on the substrate mechanical properties. Differently, focal adhesions in their shape and density but not in their alignment mainly depend on the elastomer stiffness almost regardless of microscale topography. Local surface topography with concave microgeometry enhancing adhesion drives stem cells in a quasi-three dimensional configuration where stiffness might significantly steer mechanosensing as highlighted by focal adhesion properties.
Collapse
Affiliation(s)
- A Portone
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cellular organization of three germ layer cells on different types of noncovalent functionalized graphene substrates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109729. [PMID: 31349510 DOI: 10.1016/j.msec.2019.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Graphene and its derivatives have seen a rapid rise in interest as promising biomaterials especially in the field of tissue engineering, regenerative medicine, and cell biology of late. Despite its proven potential in numerous biological applications, information regarding the relationship between the different forms of graphene and cell lineages is still lacking partly due to its topical emergence in cellular studies. Herein, we explore the biocompatibility of four types of graphene substrates (chemical vapor deposition grown graphene, mechanically exfoliated graphene, chemically exfoliated graphene oxide, and reduced graphene oxide) with three types of somatic cells (keratinocytes, hepatocytes, endothelial cells) derived from the three germ layers in relation to cell adhesion, proliferation, morphology, and gene expression. The results revealed exceptional cell adhesion for all tested groups but enhanced proliferation and cytoskeletal interconnectivity in graphene oxide and reduced graphene oxide substrates. We were unable to detect any adverse effects in gene expression and survivability during a week of culture. We further show topographic changes to graphene substrates under fetal bovine serum adsorption to better illustrate the actual microenvironment of inhabitant cells. This study highlights the extraordinary synergy between graphene and somatic cells, suggesting the discretionary use of extracellular matrix components for in vitro cultivation.
Collapse
|