1
|
Pfister S, Rabl J, Wiegand T, Mattei S, Malär AA, Lecoq L, Seitz S, Bartenschlager R, Böckmann A, Nassal M, Boehringer D, Meier BH. Structural conservation of HBV-like capsid proteins over hundreds of millions of years despite the shift from non-enveloped to enveloped life-style. Nat Commun 2023; 14:1574. [PMID: 36949039 PMCID: PMC10033635 DOI: 10.1038/s41467-023-37068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
The discovery of nackednaviruses provided new insight into the evolutionary history of the hepatitis B virus (HBV): The common ancestor of HBV and nackednaviruses was non-enveloped and while HBV acquired an envelope during evolution, nackednaviruses remained non-enveloped. We report the capsid structure of the African cichlid nackednavirus (ACNDV), determined by cryo-EM at 3.7 Å resolution. This enables direct comparison with the known capsid structures of HBV and duck HBV, prototypic representatives of the mammalian and avian lineages of the enveloped Hepadnaviridae, respectively. The sequence identity with HBV is 24% and both the ACNDV capsid protein fold and the capsid architecture are very similar to those of the Hepadnaviridae and HBV in particular. Acquisition of the hepadnaviral envelope was thus not accompanied by a major change in capsid structure. Dynamic residues at the spike tip are tentatively assigned by solid-state NMR, while the C-terminal domain is invisible due to dynamics. Solid-state NMR characterization of the capsid structure reveals few conformational differences between the quasi-equivalent subunits of the ACNDV capsid and an overall higher capsid structural disorder compared to HBV. Despite these differences, the capsids of ACNDV and HBV are structurally highly similar despite the 400 million years since their separation.
Collapse
Affiliation(s)
- Sara Pfister
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Julius Rabl
- Cryo-EM Knowledge hub, ETH Zurich, 8093, Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Simone Mattei
- EMBL Imaging Centre, European Molecular Biology Laboratory, EMBL Heidelberg, 69117, Heidelberg, Germany
| | | | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, Université de Lyon, 69367, Lyon, France
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Ralf Bartenschlager
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS, Université de Lyon, 69367, Lyon, France.
| | - Michael Nassal
- Department of Medicine II / Molecular Biology, University of Freiburg, Freiburg im Breisgau, Germany.
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
2
|
Dao Thi VL, Wu X, Belote RL, Andreo U, Takacs CN, Fernandez JP, Vale-Silva LA, Prallet S, Decker CC, Fu RM, Qu B, Uryu K, Molina H, Saeed M, Steinmann E, Urban S, Singaraja RR, Schneider WM, Simon SM, Rice CM. Stem cell-derived polarized hepatocytes. Nat Commun 2020; 11:1677. [PMID: 32245952 PMCID: PMC7125181 DOI: 10.1038/s41467-020-15337-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
Human stem cell-derived hepatocyte-like cells (HLCs) offer an attractive platform to study liver biology. Despite their numerous advantages, HLCs lack critical in vivo characteristics, including cell polarity. Here, we report a stem cell differentiation protocol that uses transwell filters to generate columnar polarized HLCs with clearly defined basolateral and apical membranes separated by tight junctions. We show that polarized HLCs secrete cargo directionally: Albumin, urea, and lipoproteins are secreted basolaterally, whereas bile acids are secreted apically. Further, we show that enterically transmitted hepatitis E virus (HEV) progeny particles are secreted basolaterally as quasi-enveloped particles and apically as naked virions, recapitulating essential steps of the natural infectious cycle in vivo. We also provide proof-of-concept that polarized HLCs can be used for pharmacokinetic and drug-drug interaction studies. This novel system provides a powerful tool to study hepatocyte biology, disease mechanisms, genetic variation, and drug metabolism in a more physiologically relevant setting.
Collapse
Affiliation(s)
- Viet Loan Dao Thi
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany.
| | - Xianfang Wu
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
| | - Rachel L Belote
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84105, USA
| | - Ursula Andreo
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Constantin N Takacs
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
- Department of Molecular, Cellular and Developmental Biology, Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Joseph P Fernandez
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Luis Andre Vale-Silva
- Department of Biology, New York University, New York, NY, USA
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, BIOQUANT, IPMB, University of Heidelberg, Heidelberg, Germany
| | - Sarah Prallet
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Charlotte C Decker
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Rebecca M Fu
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Bingqian Qu
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany
| | - Kunihiro Uryu
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Urban
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany
| | - Roshni R Singaraja
- A*STAR (Agency for Science, Technology and Research) Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - William M Schneider
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
3
|
Haqshenas G, Doerig C. Targeting of host cell receptor tyrosine kinases by intracellular pathogens. Sci Signal 2019; 12:12/599/eaau9894. [PMID: 31530732 DOI: 10.1126/scisignal.aau9894] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intracellular pathogens use complex and tightly regulated processes to enter host cells. Upon initial interactions with signaling proteins at the surface of target cells, intracellular microbes activate and co-opt specific host signaling pathways that mediate cell surface-cytosol communications to facilitate pathogen internalization. Here, we discuss the roles of host receptor tyrosine kinases (RTKs) in the establishment of productive infections by major intracellular pathogens. We evaluate the gaps in the current understanding of this process and propose a comprehensive approach for assessing the role of host cell signaling in the biology of intracellular microorganisms and viruses. We also discuss RTK-targeting strategies for the treatment of various infections.
Collapse
Affiliation(s)
- Gholamreza Haqshenas
- Infection and Immunity, Monash Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Christian Doerig
- Infection and Immunity, Monash Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia. .,Centre for Chronic Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
4
|
Cifuente JO, Moratorio G. Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Front Cell Infect Microbiol 2019; 9:283. [PMID: 31482072 PMCID: PMC6710328 DOI: 10.3389/fcimb.2019.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Picornaviruses constitute one of the most relevant viral groups according to their impact on human and animal health. Etiologic agents of a broad spectrum of illnesses with a clinical presentation that ranges from asymptomatic to fatal disease, they have been the cause of uncountable epidemics throughout history. Picornaviruses are small naked RNA-positive single-stranded viruses that include some of the most important pillars in the development of virology, comprising poliovirus, rhinovirus, and hepatitis A virus. Picornavirus infectious particles use the fecal-oral or respiratory routes as primary modes of transmission. In this regard, successful viral spread relies on the capability of viral capsids to (i) shelter the viral genome, (ii) display molecular determinants for cell receptor recognition, (iii) facilitate efficient genome delivery, and (iv) escape from the immune system. Importantly, picornaviruses display a substantial amount of genetic variability driven by both mutation and recombination. Therefore, the outcome of their replication results in the emergence of a genetically diverse cloud of individuals presenting phenotypic variance. The host humoral response against the capsid protein represents the most active immune pressure and primary weapon to control the infection. Since the preservation of the capsid function is deeply rooted in the virus evolutionary dynamics, here we review the current structural evidence focused on capsid antibody evasion mechanisms from that perspective.
Collapse
Affiliation(s)
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
5
|
Robinson M, Schor S, Barouch-Bentov R, Einav S. Viral journeys on the intracellular highways. Cell Mol Life Sci 2018; 75:3693-3714. [PMID: 30043139 PMCID: PMC6151136 DOI: 10.1007/s00018-018-2882-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus-host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanford Schor
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|