1
|
Cai YD, Liu X, Chow GK, Hidalgo S, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of Clock transcript mediates the response of circadian clocks to temperature changes. Proc Natl Acad Sci U S A 2024; 121:e2410680121. [PMID: 39630861 PMCID: PMC11648895 DOI: 10.1073/pnas.2410680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although Clock (Clk) gene encodes the critical activator of circadian gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. Here, we observed that Clk transcripts undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative Clk transcript, hereinafter termed Clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is deleted in CLK-cold protein. We demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing transcriptional activity of CLK. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature likely due to higher amounts of CLK-cold isoforms that lack S13 residue. Finally, we showed that PER promotes CK1α-dependent phosphorylation of CLK(S13), supporting kinase-scaffolding role of repressor proteins as a conserved feature in the regulation of eukaryotic circadian clocks. This study provides insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Xianhui Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu215123, China
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| |
Collapse
|
2
|
Biondi G, McCormick G, Fernandez MP. The Drosophila circadian clock gene cycle controls the development of clock neurons. PLoS Genet 2024; 20:e1011441. [PMID: 39432537 PMCID: PMC11527286 DOI: 10.1371/journal.pgen.1011441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/31/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Daily behavioral and physiological rhythms are controlled by the brain's circadian timekeeping system, a synchronized network of neurons that maintains endogenous molecular oscillations. These oscillations are based on transcriptional feedback loops of clock genes, which in Drosophila include the transcriptional activators Clock (Clk) and cycle (cyc). While the mechanisms underlying this molecular clock are very well characterized, the roles that the core clock genes play in neuronal physiology and development are much less understood. The Drosophila timekeeping center is composed of ~150 clock neurons, among which the four small ventral lateral neurons (sLNvs) are the most dominant pacemakers under constant conditions. Here, we show that downregulating the clock gene cyc specifically in the Pdf-expressing neurons leads to decreased fasciculation both in larval and adult brains. This effect is due to a developmental role of cyc, as both knocking down cyc or expressing a dominant negative form of cyc exclusively during development lead to defasciculation phenotypes in adult clock neurons. Clk downregulation also leads to developmental effects on sLNv morphology. Our results reveal a non-circadian role for cyc, shedding light on the additional functions of circadian clock genes in the development of the nervous system.
Collapse
Affiliation(s)
- Grace Biondi
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
| | - Gina McCormick
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
| | - Maria P. Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York, New York, United States of America
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, United States of America
| |
Collapse
|
3
|
Cai YD, Chow GK, Hidalgo S, Liu X, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of clock transcript mediates the response of circadian clocks to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593646. [PMID: 38766142 PMCID: PMC11100826 DOI: 10.1101/2024.05.10.593646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations and temperature compensation are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although clock (clk) gene encodes the critical activator of clock gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. We therefore sought to investigate whether clk exhibits AS in response to temperature and the functional changes of the differentially spliced transcripts. We observed that clk transcripts indeed undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative clk transcript, hereinafter termed clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is among the four amino acids deleted in CLK-cold protein. Using a combination of transgenic fly, tissue culture, and in vitro experiments, we demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing CLK occupancy at clock gene promoters. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature, which can be explained by the higher amounts of CLK-cold isoforms that lack S13 residue. This study provides new insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
4
|
Ma D, Ojha P, Yu AD, Araujo MS, Luo W, Keefer E, Díaz MM, Wu M, Joiner WJ, Abruzzi KC, Rosbash M. Timeless noncoding DNA contains cell-type preferential enhancers important for proper Drosophila circadian regulation. Proc Natl Acad Sci U S A 2024; 121:e2321338121. [PMID: 38568969 PMCID: PMC11009632 DOI: 10.1073/pnas.2321338121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.
Collapse
Affiliation(s)
- Dingbang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
| | - Pranav Ojha
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Albert D. Yu
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Maisa S. Araujo
- Laboratory of Entomology, Fiocruz Rondônia and Programa de Pós-Graduação em Biologia Experimental/Programa Nacional de Pós-Doutorado, Federal University Foundation of Rondônia, Porto Velho76801-974, Brazil
| | - Weifei Luo
- Guangxi Academy of Sciences, Nanning530003, China
| | - Evelyn Keefer
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Madelen M. Díaz
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL33136
| | - Meilin Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA92093
| | - William J. Joiner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
| | - Katharine C. Abruzzi
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Michael Rosbash
- HHMI, Brandeis University, Waltham, MA02453
- Department of Biology, Brandeis University, Waltham, MA02453
| |
Collapse
|
5
|
Zhang H, Zhou Z, Guo J. The Function, Regulation, and Mechanism of Protein Turnover in Circadian Systems in Neurospora and Other Species. Int J Mol Sci 2024; 25:2574. [PMID: 38473819 DOI: 10.3390/ijms25052574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian clocks drive a large array of physiological and behavioral activities. At the molecular level, circadian clocks are composed of positive and negative elements that form core oscillators generating the basic circadian rhythms. Over the course of the circadian period, circadian negative proteins undergo progressive hyperphosphorylation and eventually degrade, and their stability is finely controlled by complex post-translational pathways, including protein modifications, genetic codon preference, protein-protein interactions, chaperon-dependent conformation maintenance, degradation, etc. The effects of phosphorylation on the stability of circadian clock proteins are crucial for precisely determining protein function and turnover, and it has been proposed that the phosphorylation of core circadian clock proteins is tightly correlated with the circadian period. Nonetheless, recent studies have challenged this view. In this review, we summarize the research progress regarding the function, regulation, and mechanism of protein stability in the circadian clock systems of multiple model organisms, with an emphasis on Neurospora crassa, in which circadian mechanisms have been extensively investigated. Elucidation of the highly complex and dynamic regulation of protein stability in circadian clock networks would greatly benefit the integrated understanding of the function, regulation, and mechanism of protein stability in a wide spectrum of other biological processes.
Collapse
Affiliation(s)
- Haoran Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengxuan Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhu Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Liu T, Zhu Q, Kai Y, Bingham T, Wang S, Cha HJ, Mehta S, Schlaeger TM, Yuan GC, Orkin SH. Matrin3 mediates differentiation through stabilizing chromatin loop-domain interactions and YY1 mediated enhancer-promoter interactions. Nat Commun 2024; 15:1274. [PMID: 38341433 PMCID: PMC10858947 DOI: 10.1038/s41467-024-45386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Although emerging evidence indicates that alterations in proteins within nuclear compartments elicit changes in chromosomal architecture and differentiation, the underlying mechanisms are not well understood. Here we investigate the direct role of the abundant nuclear complex protein Matrin3 (Matr3) in chromatin architecture and development in the context of myogenesis. Using an acute targeted protein degradation platform (dTAG-Matr3), we reveal the dynamics of development-related chromatin reorganization. High-throughput chromosome conformation capture (Hi-C) experiments revealed substantial chromatin loop rearrangements soon after Matr3 depletion. Notably, YY1 binding was detected, accompanied by the emergence of novel YY1-mediated enhancer-promoter loops, which occurred concurrently with changes in histone modifications and chromatin-level binding patterns. Changes in chromatin occupancy by Matr3 also correlated with these alterations. Overall, our results suggest that Matr3 mediates differentiation through stabilizing chromatin accessibility and chromatin loop-domain interactions, and highlight a conserved and direct role for Matr3 in maintenance of chromosomal architecture.
Collapse
Affiliation(s)
- Tianxin Liu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Qian Zhu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lester Sue Smith Breast Center, Department of Human Molecular Genetics, Baylor College of Medicine, 1 Moursund St, Houston, TX, 77030, USA
| | - Yan Kai
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor Bingham
- Stem Cell Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stacy Wang
- Lester Sue Smith Breast Center, Department of Human Molecular Genetics, Baylor College of Medicine, 1 Moursund St, Houston, TX, 77030, USA
| | - Hye Ji Cha
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, 31116, South Korea
| | - Stuti Mehta
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Lin Z, Green EW, Webster SG, Hastings MH, Wilcockson DC, Kyriacou CP. The circadian clock gene bmal1 is necessary for co-ordinated circatidal rhythms in the marine isopod Eurydice pulchra (Leach). PLoS Genet 2023; 19:e1011011. [PMID: 37856540 PMCID: PMC10617734 DOI: 10.1371/journal.pgen.1011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/31/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
Circadian clocks in terrestrial animals are encoded by molecular feedback loops involving the negative regulators PERIOD, TIMELESS or CRYPTOCHROME2 and positive transcription factors CLOCK and BMAL1/CYCLE. The molecular basis of circatidal (~12.4 hour) or other lunar-mediated cycles (~15 day, ~29 day), widely expressed in coastal organisms, is unknown. Disrupting circadian clockworks does not appear to affect lunar-based rhythms in several organisms that inhabit the shoreline suggesting a molecular independence of the two cycles. Nevertheless, pharmacological inhibition of casein kinase 1 (CK1) that targets PERIOD stability in mammals and flies, affects both circadian and circatidal phenotypes in Eurydice pulchra (Ep), the speckled sea-louse. Here we show that these drug inhibitors of CK1 also affect the phosphorylation of EpCLK and EpBMAL1 and disrupt EpCLK-BMAL1-mediated transcription in Drosophila S2 cells, revealing a potential link between these two positive circadian regulators and circatidal behaviour. We therefore performed dsRNAi knockdown of Epbmal1 as well as the major negative regulator in Eurydice, Epcry2 in animals taken from the wild. Epcry2 and Epbmal1 knockdown disrupted Eurydice's circadian phenotypes of chromatophore dispersion, tim mRNA cycling and the circadian modulation of circatidal swimming, as expected. However, circatidal behaviour was particularly sensitive to Epbmal1 knockdown with consistent effects on the power, amplitude and rhythmicity of the circatidal swimming cycle. Thus, three Eurydice negative circadian regulators, EpCRY2, in addition to EpPER and EpTIM (from a previous study), do not appear to be required for the expression of robust circatidal behaviour, in contrast to the positive regulator EpBMAL1. We suggest a neurogenetic model whereby the positive circadian regulators EpBMAL1-CLK are shared between circadian and circatidal mechanisms in Eurydice but circatidal rhythms require a novel, as yet unknown negative regulator.
Collapse
Affiliation(s)
- Zhang Lin
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Edward W. Green
- German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Simon G. Webster
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | | | - David C. Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | |
Collapse
|
8
|
Patop IL, Anduaga AM, Bussi IL, Ceriani MF, Kadener S. Organismal landscape of clock cells and circadian gene expression in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542009. [PMID: 37292867 PMCID: PMC10245886 DOI: 10.1101/2023.05.23.542009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Circadian rhythms time physiological and behavioral processes to 24-hour cycles. It is generally assumed that most cells contain self-sustained circadian clocks that drive circadian rhythms in gene expression that ultimately generating circadian rhythms in physiology. While those clocks supposedly act cell autonomously, current work suggests that in Drosophila some of them can be adjusted by the brain circadian pacemaker through neuropeptides, like the Pigment Dispersing Factor (PDF). Despite these findings and the ample knowledge of the molecular clockwork, it is still unknown how circadian gene expression in Drosophila is achieved across the body. Results Here, we used single-cell and bulk RNAseq data to identify cells within the fly that express core-clock components. Surprisingly, we found that less than a third of the cell types in the fly express core-clock genes. Moreover, we identified Lamina wild field (Lawf) and Ponx-neuro positive (Poxn) neurons as putative new circadian neurons. In addition, we found several cell types that do not express core clock components but are highly enriched for cyclically expressed mRNAs. Strikingly, these cell types express the PDF receptor (Pdfr), suggesting that PDF drives rhythmic gene expression in many cell types in flies. Other cell types express both core circadian clock components and Pdfr, suggesting that in these cells, PDF regulates the phase of rhythmic gene expression. Conclusions Together, our data suggest three different mechanisms generate cyclic daily gene expression in cells and tissues: canonical endogenous canonical molecular clock, PDF signaling-driven expression, or a combination of both.
Collapse
Affiliation(s)
- Ines L. Patop
- Biology Department, Brandeis University, Waltham, MA, 02454, USA
| | | | - Ivana L. Bussi
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | - M. Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
9
|
Ukita Y, Okumura M, Chihara T. Ubiquitin proteasome system in circadian rhythm and sleep homeostasis: Lessons from Drosophila. Genes Cells 2022; 27:381-391. [PMID: 35438236 PMCID: PMC9322287 DOI: 10.1111/gtc.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Sleep is regulated by two main processes: the circadian clock and sleep homeostasis. Circadian rhythms have been well studied at the molecular level. In the Drosophila circadian clock neurons, the core clock proteins are precisely regulated by post-translational modifications and degraded via the ubiquitin-proteasome system (UPS). Sleep homeostasis, however, is less understood; nevertheless, recent reports suggest that proteasome-mediated degradation of core clock proteins or synaptic proteins contributes to the regulation of sleep amount. Here, we review the molecular mechanism of the UPS and summarize the role of protein degradation in the regulation of circadian clock and homeostatic sleep in Drosophila. Moreover, we discuss the potential interaction between circadian clock and homeostatic sleep regulation with a prime focus on E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yumiko Ukita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Yu CW, Wu YC, Liao VHC. Early developmental nanoplastics exposure disturbs circadian rhythms associated with stress resistance decline and modulated by DAF-16 and PRDX-2 in C. elegans. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127091. [PMID: 34488090 DOI: 10.1016/j.jhazmat.2021.127091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Plastics pollution is an emerging environmental problem and nanoplastics (NPs) toxicity has received great concern. This study investigated whether early developmental exposure to polystyrene NPs influence the circadian rhythms and the possible underlying mechanisms in C. elegans. We show that early developmental NPs exposure disturbs circadian rhythms in C. elegans and ASH neurons and G protein-coupled receptor kinase (GRK-2) are involved in the level of chemotaxis response. A higher bioconcentration factor in entrained worms was observed, suggesting that circadian interference results in increased NPs bioaccumulation in C. elegans. In addition, we show that reactive oxygen species produced by NPs exposure and peroxiredoxin-2 (PRDX-2) are related to the disturbed circadian rhythms. We further show that the NPs-induced circadian rhythms disruption is associated with stress resistance decline and modulated by transcription DAF-16/FOXO signaling. Because circadian rhythms are found in most living organisms and the fact that DAF-16 and PRDX-2 are evolutionarily conserved, our findings suggest a possible negative impact of NPs on circadian rhythms and stress resistance in higher organisms including humans.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan.
| |
Collapse
|
11
|
Wirianto M, Yang J, Kim E, Gao S, Paudel KR, Choi JM, Choe J, Gloston GF, Ademoji P, Parakramaweera R, Jin J, Esser KA, Jung SY, Geng YJ, Lee HK, Chen Z, Yoo SH. The GSK-3β-FBXL21 Axis Contributes to Circadian TCAP Degradation and Skeletal Muscle Function. Cell Rep 2021; 32:108140. [PMID: 32937135 PMCID: PMC8299398 DOI: 10.1016/j.celrep.2020.108140] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/04/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
FBXL21 is a clock-controlled E3 ligase modulating circadian periodicity via subcellular-specific CRYPTOCHROME degradation. How FBXL21 regulates tissue-specific circadian physiology and what mechanism operates upstream is poorly understood. Here we report the sarcomere component TCAP as a cytoplasmic substrate of FBXL21. FBXL21 interacts with TCAP in a circadian manner antiphasic to TCAP accumulation in skeletal muscle, and circadian TCAP oscillation is disrupted in Psttm mice with an Fbxl21 hypomorph mutation. GSK-3β phosphorylates FBXL21 and TCAP to activate FBXL21-mediated, phosphodegron-dependent TCAP degradation. GSK-3β inhibition or knockdown diminishes FBXL21-Cul1 complex formation and delays FBXL21-mediated TCAP degradation. Finally, Psttm mice show significant skeletal muscle defects, including impaired fiber size, exercise tolerance, grip strength, and response to glucocorticoid-induced atrophy, in conjunction with cardiac dysfunction. These data highlight a circadian regulatory pathway where a GSK-3β-FBXL21 functional axis controls TCAP degradation via SCF complex formation and regulates skeletal muscle function. Wirianto et al. find that the circadian E3 ligase FBXL21 drives rhythmic degradation of the sarcomeric protein TCAP in skeletal muscle. GSK-3β co-phosphorylates FBXL21 and TCAP and promotes SCF complex formation and phosphodegron-dependent TCAP turnover. Psttm mice, expressing a hypomorphic Fbxl21 mutant, show dysregulated TCAP degradation and impaired muscle function.
Collapse
Affiliation(s)
- Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Jiah Yang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Song Gao
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Keshav Raj Paudel
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Jong Min Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeehwan Choe
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Gabrielle F Gloston
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Precious Ademoji
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Randika Parakramaweera
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Jianping Jin
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, The University of Florida College of Medicine, Gainesville, FL 32610-0274, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yong-Jian Geng
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
12
|
Gunawardhana KL, Rivas GBS, Caster C, Hardin PE. Crosstalk between vrille transcripts, proteins, and regulatory elements controlling circadian rhythms and development in Drosophila. iScience 2020; 24:101893. [PMID: 33364582 PMCID: PMC7753146 DOI: 10.1016/j.isci.2020.101893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 02/09/2023] Open
Abstract
The vrille (vri) gene encodes a transcriptional repressor required for Drosophila development as well as circadian behavior in adults. Alternate first exons produce vri transcripts predicted to produce a short VRI isoform during development and long VRI in adults. A vri mutant (vriΔ679) lacking long VRI transcripts is viable, confirming that short VRI is sufficient for developmental functions, yet behavioral rhythms in vriΔ679 flies persist, showing that short VRI is sufficient for clock output. E-box regulatory elements that drive rhythmic long VRI transcript expression are required for developmental expression of short VRI transcripts. Surprisingly, long VRI transcripts primarily produce short VRI in adults, apparently due to a poor Kozak sequence context, demonstrating that short VRI drives circadian behavior. Thus, E-box-driven long VRI transcripts primarily control circadian rhythms via short VRI, whereas the same E-boxes drive short VRI transcripts that control developmental functions using short VRI. vri-E mRNA is sufficient for Drosophila development and circadian behavior E-boxes upstream of the vri-ADF promoter are required for Drosophila development vri-ADF mRNAs primarily produce short VRI protein rather than long VRI protein Short VRI protein primarily controls Drosophila development and circadian behavior
Collapse
Affiliation(s)
- Kushan L Gunawardhana
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| | - Gustavo B S Rivas
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| | - Courtney Caster
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Mahesh G, Rivas GBS, Caster C, Ost EB, Amunugama R, Jones R, Allen DL, Hardin PE. Proteomic analysis of Drosophila CLOCK complexes identifies rhythmic interactions with SAGA and Tip60 complex component NIPPED-A. Sci Rep 2020; 10:17951. [PMID: 33087840 PMCID: PMC7578830 DOI: 10.1038/s41598-020-75009-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks keep time via ~ 24 h transcriptional feedback loops. In Drosophila, CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors are feedback loop components whose transcriptional status varies over a circadian cycle. Although changes in the state of activators and repressors has been characterized, how their status is translated to transcriptional activity is not understood. We used mass spectrometry to identify proteins that interact with GFP-tagged CLK (GFP-CLK) in fly heads at different times of day. Many expected and novel interacting proteins were detected, of which several interacted rhythmically and were potential regulators of protein levels, activity or transcriptional output. Genes encoding these proteins were tested to determine if they altered circadian behavior via RNAi knockdown in clock cells. The NIPPED-A protein, a scaffold for the SAGA and Tip60 histone modifying complexes, interacts with GFP-CLK as transcription is activated, and reducing Nipped-A expression lengthens circadian period. RNAi analysis of other SAGA complex components shows that the SAGA histone deubiquitination (DUB) module lengthened period similarly to Nipped-A RNAi knockdown and weakened rhythmicity, whereas reducing Tip60 HAT expression drastically weakened rhythmicity. These results suggest that CLK-CYC binds NIPPED-A early in the day to promote transcription through SAGA DUB and Tip60 HAT activity.
Collapse
Affiliation(s)
- Guruswamy Mahesh
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Gustavo B S Rivas
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Courtney Caster
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Evan B Ost
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Xie J, Wang D, Ling S, Yang G, Yang Y, Chen W. High-Salt Diet Causes Sleep Fragmentation in Young Drosophila Through Circadian Rhythm and Dopaminergic Systems. Front Neurosci 2019; 13:1271. [PMID: 31849585 PMCID: PMC6895215 DOI: 10.3389/fnins.2019.01271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Salt (sodium chloride) is an essential dietary requirement, but excessive consumption has long-term adverse consequences. A high-salt diet (HSD) increases the risk of chronic diseases such as cardiovascular conditions and diabetes and is also associated with poor sleep quality. Little is known, however, about the neural circuit mechanisms that mediate HSD-induced sleep changes. In this study, we sought to identify the effects of HSD on the sleep and related neural circuit mechanisms of Drosophila. Strikingly, we found that HSD causes young Drosophila to exhibit a fragmented sleep phenotype similar to that of normal aging individuals. Importantly, we further showed that HSD slightly impairs circadian rhythms and that the HSD-induced sleep changes are dependent on the circadian rhythm system. In addition, we demonstrated that HSD-induced sleep changes are dopaminergic-system dependent. Together, these results provide insight into how elevated salt in the diet can affect sleep quality.
Collapse
Affiliation(s)
- Jiayu Xie
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Danfeng Wang
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengan Ling
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Guang Yang
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yufeng Yang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
15
|
CK1α Collaborates with DOUBLETIME to Regulate PERIOD Function in the Drosophila Circadian Clock. J Neurosci 2018; 38:10631-10643. [PMID: 30373768 DOI: 10.1523/jneurosci.0871-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/05/2018] [Accepted: 10/21/2018] [Indexed: 11/21/2022] Open
Abstract
The animal circadian timing system interprets environmental time cues and internal metabolic status to orchestrate circadian rhythms of physiology, allowing animals to perform necessary tasks in a time-of-day-dependent manner. Normal progression of circadian rhythms is dependent on the daily cycling of core transcriptional factors that make up cell-autonomous molecular oscillators. In Drosophila, PERIOD (PER), TIMELESS (TIM), CLOCK (CLK), and CYCLE (CYC) are core clock proteins that function in a transcriptional-translational feedback mechanism to regulate the circadian transcriptome. Posttranslational modifications of core clock proteins provide precise temporal control over when they are active as regulators of clock-controlled genes. In particular, phosphorylation is a key regulatory mechanism that dictates the subcellular localization, stability, and transcriptional activity of clock proteins. Previously, casein kinase 1α (CK1α) has been identified as a kinase that phosphorylates mammalian PER1 and modulates its stability, but the mechanisms by which it modulates PER protein stability is still unclear. Using Drosophila as a model, we show that CK1α has an overall function of speeding up PER metabolism and is required to maintain the 24 h period of circadian rhythms. Our results indicate that CK1α collaborates with the key clock kinase DOUBLETIME (DBT) in both the cytoplasm and the nucleus to regulate the timing of PER-dependent repression of the circadian transcriptome. Specifically, we observe that CK1α promotes PER nuclear localization by antagonizing the activity of DBT to inhibit PER nuclear translocation. Furthermore, CK1α enhances DBT-dependent PER phosphorylation and degradation once PER moves into the nucleus.SIGNIFICANCE STATEMENT Circadian clocks are endogenous timers that integrate environmental signals to impose temporal control over organismal physiology over the 24 h day/night cycle. To maintain the 24 h period length of circadian clocks and to ensure that circadian rhythms are in synchrony with the external environment, key proteins that make up the molecular oscillator are extensively regulated by phosphorylation to ensure that they perform proper time-of-day-specific functions. Casein kinase 1α (CK1α) has previously been identified as a kinase that phosphorylates mammalian PERIOD (PER) proteins to promote their degradation, but the mechanism by which it modulates PER stability is unclear. In this study, we characterize the mechanisms by which CK1α interacts with DOUBLETIME (DBT) to achieve the overall function of speeding up PER metabolism and to ensure proper time-keeping.
Collapse
|