1
|
Bhusal D, Wije Munige S, Peng Z, Yang Z. Exploring Single-Probe Single-Cell Mass Spectrometry: Current Trends and Future Directions. Anal Chem 2025; 97:4750-4762. [PMID: 39999987 PMCID: PMC11912137 DOI: 10.1021/acs.analchem.4c06824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
The Single-probe single-cell mass spectrometry (SCMS) is an innovative analytical technique designed for metabolomic profiling, offering a miniaturized, multifunctional device capable of direct coupling to mass spectrometers. It is an ambient technique leveraging microscale sampling and nanoelectrospray ionization (nanoESI), enabling the analysis of cells in their native environments without the need for extensive sample preparation. Due to its miniaturized design and versatility, this device allows for applications in diverse research areas, including single-cell metabolomics, quantification of target molecules in single cell, MS imaging (MSI) of tissue sections, and investigation of extracellular molecules in live single spheroids. This review explores recent advancements in Single-probe-based techniques and their applications, emphasizing their potential utility in advancing MS methodologies in microscale bioanalysis.
Collapse
Affiliation(s)
- Deepti Bhusal
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shakya Wije Munige
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
2
|
Luo N, Jiao Y, Ling J, Li Z, Zhang W, Zhao J, Li Y, Mao Z, Li H, Xie B. Synergistic Effect of Two Peptaibols from Biocontrol Fungus Trichoderma longibrachiatum Strain 40418 on CO-Induced Plant Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20763-20774. [PMID: 39271247 DOI: 10.1021/acs.jafc.4c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Trichoderma longibrachiatum is a filamentous fungus used as a biological control agent against different plant diseases. The multifunctional secondary metabolites synthesized by Trichoderma, called peptaibols, have emerged as key elicitors in plant innate immunity. This study obtained a high-quality genome sequence for the T. longibrachiatum strain 40418 and identified two peptaibol biosynthetic gene clusters using knockout techniques. The two gene cluster products were confirmed as trilongin AIV a (11-residue) and trilongin BI (20-residue) using liquid chromatography coupled with tandem mass spectrometry. Further investigations revealed that these peptaibols induce plant resistance to Pseudomonas syringae pv tomato (Pst) DC3000 infection while triggering plant immunity and cell death. Notably, the two peptaibols exhibit synergistic effects in plant-microbe signaling interactions, with trilongin BI having a predominant role. Moreover, the induction of tomato resistance against Meloidogyne incognita showed similarly promising results.
Collapse
Affiliation(s)
- Ning Luo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Jiao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 653003, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zeyu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenwen Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixia Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Center for Biosafety, Chinese Academy of Inspection and Quarantine, Sanya 572024, China
| |
Collapse
|
3
|
Liang X, Yang JF, Huang ZH, Ma X, Yan Y, Qi SH. New Antibacterial Peptaibiotics against Plant and Fish Pathogens from the Deep-Sea-Derived Fungus Simplicillium obclavatum EIODSF 020. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6402-6413. [PMID: 38491989 DOI: 10.1021/acs.jafc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Bacterial diseases could severely harm agricultural production. To develop new antibacterial agents, the secondary metabolites of a deep-sea-derived fungus Simplicillium obclavatum EIODSF 020 with antibacterial activities against plant and fish pathogens were investigated by a bioassay-guided approach, which led to the isolation of 11 new peptaibiotics, simplicpeptaibs A-K (1-11). They contain 16-19 residues, including β-alanine, tyrosine, or tyrosine O-sulfate, that were rarely present in peptaibiotics. Their structures were elucidated by spectroscopic analyses (NMR, HRMS, HRMS2, and ECD) and Marfey's method. The primary and secondary structures of novel sulfated peptaibiotic 9 were reconfirmed by single-crystal X-ray diffraction analysis. Genome sequencing of S. obclavatum EIODSF 020 allowed the detection of a gene cluster encoding two individual NRPSs (totally containing 19 modules) that was closely related to simplicpeptaib biosynthesis. Antibacterial investigations of 1-11 together with the previously isolated linear and cyclic peptides from this strain suggested the antibacterial property of this fungus was attributed to the peptaibiotics and cyclic lipopeptides. Among them, compounds 4, 6, 7, and 9 showed significant activity against the tobacco pathogen Ralstonia solanacearum or tilapia pathogens Streptococcus iniae and Streptococcus agalactiae. The antibacterial activity of 6 against R. solanacearum could be enhanced by the addition of 1% NaCl. The structure-bioactivity relationship of simplicpeptaibs was discussed.
Collapse
Affiliation(s)
- Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jia-Fan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yan Yan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
4
|
Du L, Haldar S, King JB, Mattes AO, Srivastava S, Wendt KL, You J, Cunningham C, Cichewicz RH. Persephacin Is a Broad-Spectrum Antifungal Aureobasidin Metabolite That Overcomes Intrinsic Resistance in Aspergillus fumigatus. JOURNAL OF NATURAL PRODUCTS 2023; 86:1980-1993. [PMID: 37523665 DOI: 10.1021/acs.jnatprod.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Fungi pose a persistent threat to humankind with worrying indications that emerging and re-emerging pathogens (e.g., Candida auris, Coccidioides spp., drug-resistant Aspergilli, and more) exhibit resistance to the limited number of approved antifungals. To address this problem, our team is exploring endophytic fungi as a resource for the discovery of new antifungal natural products. The rationale behind this decision is based on evidence that endophytes engage with plants in mutualistic relationships wherein some fungi actively participate by producing chemical defense measures that suppress pathogenic microorganisms. To improve the odds of bioactive metabolite discovery, we developed a new hands-free laser-cutting system capable of generating >50 plant samples per minute that, in turn, enabled our team to prepare and screen large numbers of endophytic fungi. One of the fungal isolates obtained in this way was identified as an Elsinoë sp. that produced a unique aureobasidin analogue, persephacin (1). Some distinctive features of 1 are the absence of both phenylalanine residues combined with the incorporation of a novel amino acid residue, persephanine (9). Compound 1 exhibits potent antifungal effects against a large number of pathogenic yeast (including several clinical C. auris strains), as well as phylogenetically diverse filamentous fungi (e.g., Aspergillus fumigatus). In an ex vivo eye infection model, compound 1 outperformed standard-of-care treatments demonstrating the ability to suppress fluconazole-resistant Candida albicans and A. fumigatus at a concentration (0.1% solution) well below the clinically recommended levels used for fluconazole and natamycin (2% and 5% solutions, respectively). In 3D tissue models for acute dermal and ocular safety, 1 was found to be nontoxic and nonirritating at concentrations required to elicit antifungal activity. Natural product 1 appears to be a promising candidate for further investigation as a broad-spectrum antifungal capable of controlling a range of pathogens that negatively impact human, animal, and plant health.
Collapse
Affiliation(s)
- Lin Du
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Saikat Haldar
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jarrod B King
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Allison O Mattes
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shikha Srivastava
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jianlan You
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chad Cunningham
- Electronics & Instrument Shop, Department of Physics and Astronomy, Nielsen Hall, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
5
|
Jagels A, Adpressa DA, Kaweesa EN, McCauley M, Philmus B, Strother JA, Loesgen S. Metabolomics-Guided Discovery, Isolation, Structure Elucidation, and Bioactivity of Myropeptins C-E from Myrothecium inundatum. JOURNAL OF NATURAL PRODUCTS 2023; 86:1723-1735. [PMID: 37411007 PMCID: PMC11809660 DOI: 10.1021/acs.jnatprod.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The saprotrophic filamentous fungus Myrothecium inundatum represents a chemically underexplored ascomycete with a high number of putative biosynthetic gene clusters in its genome. Here, we present new linear lipopeptides from nongenetic gene activation experiments using nutrient and salt variations. Metabolomics studies revealed four myropeptins, and structural analyses by NMR, HRMS, Marfey's analysis, and ECD assessment for their helical properties established their absolute configuration. A myropeptin biosynthetic gene cluster in the genome was identified. The myropeptins exhibit general nonspecific toxicity against all cancer cell lines in the NCI-60 panel, larval zebrafish with EC50 concentrations of 5-30 μM, and pathogenic bacteria and fungi (MICs of 4-32 μg/mL against multidrug-resistant S. aureus and C. auris). In vitro hemolysis, cell viability, and ionophore assays indicate that the myropeptins target mitochondrial and cellular membranes, inducing cell depolarization and cell death. The toxic activity is modulated by the length of the lipid side chain, which provides valuable insight into their structure-activity relationships.
Collapse
Affiliation(s)
- Annika Jagels
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, United States
| | | | - Elizabeth N Kaweesa
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, United States
| | - Mark McCauley
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - James A Strother
- Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, United States
| | - Sandra Loesgen
- Department of Chemistry, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, United States
| |
Collapse
|
6
|
Morehouse NJ, Flewelling AJ, Liu DY, Cavanagh H, Linington RG, Johnson JA, Gray CA. Tolypocaibols: Antibacterial Lipopeptaibols from a Tolypocladium sp. Endophyte of the Marine Macroalga Spongomorpha arcta. JOURNAL OF NATURAL PRODUCTS 2023; 86:1529-1535. [PMID: 37313957 DOI: 10.1021/acs.jnatprod.3c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two new lipopeptaibols, tolypocaibols A (1) and B (2), and the mixed NRPS-polyketide-shikimate natural product maximiscin [(P/M)-3)] were isolated from a Tolypocladium sp. fungal endophyte of the marine alga Spongomorpha arcta. Analysis of NMR and mass spectrometry data revealed the amino acid sequences of the lipopeptaibols, which both comprise 11 residues with a valinol C-terminus and a decanoyl acyl chain at the N-terminus. The configuration of the amino acids was determined by Marfey's analysis. Tolypocaibols A (1) and B (2) showed moderate, selective inhibition against Gram-positive and acid-fast bacterial strains, while maximiscin [(P/M)-3)] showed moderate, broad-spectrum antibiotic activity.
Collapse
Affiliation(s)
- Nicholas J Morehouse
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
| | - Andrew J Flewelling
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hannah Cavanagh
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - John A Johnson
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
| | - Christopher A Gray
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
7
|
Alfaro-Vargas P, Bastos-Salas A, Muñoz-Arrieta R, Pereira-Reyes R, Redondo-Solano M, Fernández J, Mora-Villalobos A, López-Gómez JP. Peptaibol Production and Characterization from Trichoderma asperellum and Their Action as Biofungicide. J Fungi (Basel) 2022; 8:1037. [PMID: 36294602 PMCID: PMC9605287 DOI: 10.3390/jof8101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Peptaibols (Paib), are a class of biologically active peptides isolated from soil, fungi and molds, which have interesting properties as antimicrobial agents. Paib production was optimized in flasks by adding sucrose as a carbon source, 2-aminoisobutyric acid (Aib) as an additive amino acid, and F. oxysporum cell debris as an elicitor. Paib were purified, sequenced and identified by High-performance liquid chromatography (HPLC)coupled to mass spectrometry. Afterward, a Paib extract was obtained from the optimized fermentations. The biological activity of these extracts was evaluated using in vitro and in vivo methods. The extract inhibited the growth of specific plant pathogens, and it showed inhibition rates similar to those from commercially available fungicides. Growth inhibition rates were 92.2, 74.2, 58.4 and 36.2% against Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria alternata and Fusarium oxysporum, respectively. Furthermore, the antifungal activity was tested in tomatoes inoculated with A. alternata, the incidence of the disease in tomatoes treated with the extract was 0%, while the untreated fruit showed a 92.5% incidence of infection Scanning electron microscopy images showed structural differences between the fungi treated with or without Paib. The most visual alterations were sunk and shriveled morphology in spores, while the hyphae appeared to be fractured, rough and dehydrated.
Collapse
Affiliation(s)
- Pamela Alfaro-Vargas
- National Center for Biotechnological Innovations, National Center for High Technology, San Jose 1174-1200, Costa Rica
| | - Alisson Bastos-Salas
- National Center for Biotechnological Innovations, National Center for High Technology, San Jose 1174-1200, Costa Rica
- Faculty of Microbiology, University of Costa Rica, Rodrigo Facio University City, San Jose 11501-2060, Costa Rica
| | - Rodrigo Muñoz-Arrieta
- National Center for Biotechnological Innovations, National Center for High Technology, San Jose 1174-1200, Costa Rica
| | - Reinaldo Pereira-Reyes
- National Nanotechnology Laboratory, National Center for High Technology, San Jose 1174-1200, Costa Rica
| | - Mauricio Redondo-Solano
- Research Center for Tropical Diseases (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Faculty of Microbiology, University of Costa Rica, Rodrigo Facio University City, San Jose 11501-2060, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Faculty of Microbiology, University of Costa Rica, San Jose 11501-2060, Costa Rica
| | - Aníbal Mora-Villalobos
- National Center for Biotechnological Innovations, National Center for High Technology, San Jose 1174-1200, Costa Rica
| | - José Pablo López-Gómez
- National Center for Biotechnological Innovations, National Center for High Technology, San Jose 1174-1200, Costa Rica
- Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany
| |
Collapse
|
8
|
Hou X, Sun R, Feng Y, Zhang R, Zhu T, Che Q, Zhang G, Li D. Peptaibols: Diversity, bioactivity, and biosynthesis. ENGINEERING MICROBIOLOGY 2022; 2:100026. [PMID: 39629030 PMCID: PMC11610996 DOI: 10.1016/j.engmic.2022.100026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/06/2024]
Abstract
Peptaibols are a large family of linear, amphipathic polypeptides consisting of 5-20 amino acid residues generated from the fungal nonribosomal peptide synthetase (NRPS) pathway. With a relatively high content of non-proteinogenic amino acids such as α-aminoisobutyrate (Aib) and isovaline (Iva) in the skeleton, peptaibols exhibit a wide range of biological activities, including anti-microbial, cytotoxic, and neuroleptic effects. With five peptaibols brought to market for use as biocontrol agents, this class of peptides has received increasing attention from both biochemists and pharmacologists. In this review, we summarized the progress made in structural characterization, elucidation of biosynthetic pathways, and investigation of biosynthesis elucidation and bioactivities, to promote further efforts to develop peptaibols as pharmaceuticals.
Collapse
Affiliation(s)
- Xuewen Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ruonan Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yanyan Feng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Runfang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Tehan R, Blount RR, Goold RL, Mattos DR, Spatafora NR, Tabima JF, Gazis R, Wang C, Ishmael JE, Spatafora JW, McPhail KL. Tolypocladamide H and the Proposed Tolypocladamide NRPS in Tolypocladium Species. JOURNAL OF NATURAL PRODUCTS 2022; 85:1363-1373. [PMID: 35500108 PMCID: PMC9150700 DOI: 10.1021/acs.jnatprod.2c00153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 05/04/2023]
Abstract
The genome of entomopathogenic fungus Tolypocladium inflatum Gams encodes 43 putative biosynthetic gene clusters for specialized metabolites, although genotype-phenotype linkages have been reported only for the cyclosporins and fumonisins. T. inflatum was cultured in defined minimal media, supplemented with or without one of nine different amino acids. Acquisition of LC-MS/MS data for molecular networking and manual analysis facilitated annotation of putative known and unknown metabolites. These data led us to target a family of peptaibols and guided the isolation and purification of tolypocladamide H (1), which showed modest antibacterial activity and toxicity to mammalian cells at micromolar concentrations. HRMS/MS, NMR, and advanced Marfey's analysis were used to assign the structure of 1 as a peptaibol containing 4-[(E)-2-butenyl]-4-methyl-l-threonine (Bmt), a hallmark structural motif of the cyclosporins. LC-MS detection of homologous tolypocladamide metabolites and phylogenomic analyses of peptaibol biosynthetic genes in other cultured Tolypocladium species allowed assignment of a putative tolypocladamide nonribosomal peptide synthetase gene.
Collapse
Affiliation(s)
- Richard
M. Tehan
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Rheannon R. Blount
- Department
of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ryan L. Goold
- Department
of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Daphne R. Mattos
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Nicolas R. Spatafora
- Department
of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Javier F. Tabima
- Department
of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, United States
- Department
of Biology, Clark University, Worcester, Massachusetts 01610, United States
| | - Romina Gazis
- Department
of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead, Florida 33031, United States
| | - Chengshu Wang
- Key
Laboratory of Insect Developmental and Evolutionary Biology, CAS Center
for Excellence in Molecular Plant Sciences, Shanghai Institute of
Plant Physiology and Ecology, Chinese Academy
of Sciences, Shanghai 200032, People’s Republic
of China
| | - Jane E. Ishmael
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joseph W. Spatafora
- Department
of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kerry L. McPhail
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
10
|
Lam YTH, Ricardo MG, Rennert R, Frolov A, Porzel A, Brandt W, Stark P, Westermann B, Arnold N. Rare Glutamic Acid Methyl Ester Peptaibols from Sepedonium ampullosporum Damon KSH 534 Exhibit Promising Antifungal and Anticancer Activity. Int J Mol Sci 2021; 22:ijms222312718. [PMID: 34884518 PMCID: PMC8657771 DOI: 10.3390/ijms222312718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 01/29/2023] Open
Abstract
Fungal species of genus Sepedonium are rich sources of diverse secondary metabolites (e.g., alkaloids, peptaibols), which exhibit variable biological activities. Herein, two new peptaibols, named ampullosporin F (1) and ampullosporin G (2), together with five known compounds, ampullosporin A (3), peptaibolin (4), chrysosporide (5), c(Trp-Ser) (6) and c(Trp-Ala) (7), have been isolated from the culture of Sepedonium ampullosporum Damon strain KSH534. The structures of 1 and 2 were elucidated based on ESI-HRMSn experiments and intense 1D and 2D NMR analyses. The sequence of ampullosporin F (1) was determined to be Ac-Trp1-Ala2-Aib3-Aib4-Leu5-Aib6-Gln7-Aib8-Aib9-Aib10-GluOMe11-Leu12-Aib13-Gln14-Leuol15, while ampullosporin G (2) differs from 1 by exchanging the position of Gln7 with GluOMe11. Furthermore, the total synthesis of 1 and 2 was carried out on solid-phase to confirm the absolute configuration of all chiral amino acids as L. In addition, ampullosporin F (1) and G (2) showed significant antifungal activity against B. cinerea and P. infestans, but were inactive against S. tritici. Cell viability assays using human prostate (PC-3) and colorectal (HT-29) cancer cells confirmed potent anticancer activities of 1 and 2. Furthermore, a molecular docking study was performed in silico as an attempt to explain the structure-activity correlation of the characteristic ampullosporins (1–3).
Collapse
Affiliation(s)
- Yen T. H. Lam
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Organic Chemistry, Faculty of Chemistry, Hanoi National University of Education, Hanoi 100000, Vietnam
| | - Manuel G. Ricardo
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Biochemistry, Faculty of Biology, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Pauline Stark
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Correspondence: ; Tel.: +49-345-5582-1310
| |
Collapse
|
11
|
Wu G, Dentinger BTM, Nielson JR, Peterson RT, Winter JM. Emerimicins V-X, 15-Residue Peptaibols Discovered from an Acremonium sp. through Integrated Genomic and Chemical Approaches. JOURNAL OF NATURAL PRODUCTS 2021; 84:1113-1126. [PMID: 33617244 DOI: 10.1021/acs.jnatprod.0c01186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fermentation of Acremonium tubakii W. Gams isolated from a soil sample collected from the University of Utah led to the isolation and characterization of six new linear pentadecapeptides, emerimicins V-X (1-6). Peptaibols containing 15-residues are quite rare, with only 22 reported. Genome mining and bioinformatic analysis were used to identify the emerimicin 60 kbp eme biosynthetic cluster harboring a single 16-module hybrid polyketide-nonribosomal peptide synthetase. A detailed bioinformatic investigation of the corresponding 15 adenylation domains, combined with 1D and 2D NMR experiments, LC-MS/MS data, and advanced Marfey's method, allowed for the elucidation and absolute configuration of all proteinogenic and nonproteinogenic amino acid residues in 1-6. As some peptaibols possess cytotoxic activity, a zebrafish embryotoxicity assay was used to evaluate the toxicity of the six emerimicins and showed that emerimicin V (1) and VI (2) exhibit the most potent activity. Additionally, out of the six emerimicins, 1 displayed modest activity against Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium with MIC values of 64, 32, and 64 μg/mL, respectively.
Collapse
Affiliation(s)
- Guangwei Wu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bryn T M Dentinger
- Natural History Museum of Utah & School of Biological Sciences, University of Utah, Salt Lake City, Utah 84108, United States
| | - Jason R Nielson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jaclyn M Winter
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Lee JW, Collins JE, Wendt KL, Chakrabarti D, Cichewicz RH. Leveraging Peptaibol Biosynthetic Promiscuity for Next-Generation Antiplasmodial Therapeutics. JOURNAL OF NATURAL PRODUCTS 2021; 84:503-517. [PMID: 33565879 PMCID: PMC7941592 DOI: 10.1021/acs.jnatprod.0c01370] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Malaria remains a worldwide threat, afflicting over 200 million people each year. The emergence of drug resistance against existing therapeutics threatens to destabilize global efforts aimed at controlling Plasmodium spp. parasites, which is expected to leave vast portions of humanity unprotected against the disease. To address this need, systematic testing of a fungal natural product extract library assembled through the University of Oklahoma Citizen Science Soil Collection Program has generated an initial set of bioactive extracts that exhibit potent antiplasmodial activity (EC50 < 0.30 μg/mL) and low levels of toxicity against human cells (less than 50% reduction in HepG2 growth at 25 μg/mL). Analysis of the two top-performing extracts from Trichoderma sp. and Hypocrea sp. isolates revealed both contained chemically diverse assemblages of putative peptaibol-like compounds that were responsible for their antiplasmodial actions. Purification and structure determination efforts yielded 30 new peptaibols and lipopeptaibols (1-14 and 28-43), along with 22 known metabolites (15-27 and 44-52). While several compounds displayed promising activity profiles, one of the new metabolites, harzianin NPDG I (14), stood out from the others due to its noteworthy potency (EC50 = 0.10 μM against multi-drug-resistant P. falciparum line Dd2) and absence of gross toxicity toward HepG2 at the highest concentrations tested (HepG2 EC50 > 25 μM, selectivity index > 250). The unique chemodiversity afforded by these fungal isolates serves to unlock new opportunities for translating peptaibols into a bioactive scaffold worthy of further development.
Collapse
Affiliation(s)
| | | | - Karen L. Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Debopam Chakrabarti
- Corresponding Authors: Robert H. Cichewicz – Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States; ; Debopam Chakrabarti – Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States;
| | - Robert H. Cichewicz
- Corresponding Authors: Robert H. Cichewicz – Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States; ; Debopam Chakrabarti – Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States;
| |
Collapse
|
13
|
Sphaerostilbellins, New Antimicrobial Aminolipopeptide Peptaibiotics from Sphaerostilbella toxica. Biomolecules 2020; 10:biom10101371. [PMID: 32993102 PMCID: PMC7600149 DOI: 10.3390/biom10101371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Sphaerostilbella toxica is a mycoparasitic fungus that can be found parasitizing wood-decay basidiomycetes in the southern USA. Organic solvent extracts of fermented strains of S. toxica exhibited potent antimicrobial activity, including potent growth inhibition of human pathogenic yeasts Candida albicans and Cryptococcus neoformans, the respiratory pathogenic fungus Aspergillus fumigatus, and the Gram-positive bacterium Staphylococcus aureus. Bioassay-guided separations led to the purification and structure elucidation of new peptaibiotics designated as sphaerostilbellins A and B. Their structures were established mainly by analysis of NMR and HRMS data, verification of amino acid composition by Marfey's method, and by comparison with published data of known compounds. They incorporate intriguing structural features, including an N-terminal 2-methyl-3-oxo-tetradecanoyl (MOTDA) residue and a C-terminal putrescine residue. The minimal inhibitory concentrations for sphaerostilbellins A and B were measured as 2 μM each for C. neoformans, 1 μM each for A. fumigatus, and 4 and 2 μM, respectively, for C. albicans. Murine macrophage cells were unaffected at these concentrations.
Collapse
|
14
|
Brückner H, Degenkolb T. Sequences of Tolypins, Insecticidal Efrapeptin-Type Peptaibiotics from Species of the Fungal Genus Tolypocladium. Chem Biodivers 2020; 17:e2000276. [PMID: 32573986 DOI: 10.1002/cbdv.202000276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022]
Abstract
A peptide mixture named tolypin, originally isolated from species of the fungal genus Tolypocladium, was structurally characterised and sequences compared to those reported for efrapeptins isolated from strains of Tolypocladium inflatum. Chiral amino acid analysis, direct infusion, and online HPLC electrospray ionization tandem mass spectrometry provided composition, molecular weights of peptides, and series of diagnostic fragment ions. Sequences deduced from ESI-MS revealed that tolypins C-G are identical to efrapeptins C-G. The results were corroborated by ESI-MS and HPLC of an authentic efrapeptin sample from Eli Lilly Research Laboratories (USA). Comparison of the HPLC elution profiles of efrapeptin and tolypin indicated a pronounced microheterogeneity of the former. A high-resolution HPLC of authentic efrapeptin has not been published before. Close relationship and partial identity of sequences of tolypins and efrapeptins, which had previously been postulated, were definitely proven. The geographical origin of the two most important T. inflatum strains used for sequencing of efrapeptins/tolypins could unambiguously be clarified. A new minor compound, designated tolypin H1, was sequenced. High proportions of helicogenic Aib (α-aminoisobutyric acid) and l-isovaline, N-terminal acetyl-l-pipecolic acid and the unusual, amide-bound C-terminal residue, named (S)-2-amino-1-(1,5-diazabicyclo[4.3.0]non-5-ene-5-ylium)-4-methylpentane corresponding to 1-[(2S)-2-amino-4-methylpentyl]-2,3,4,6,7,8-hexahydropyrrolo[1,2-a]pyrimidin-1-ium, define these peptides as linear, cationic peptaibiotics.
Collapse
Affiliation(s)
- Hans Brückner
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, DE, 35392 Giessen, Germany
| | - Thomas Degenkolb
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, DE, 35392 Giessen, Germany.,Present address: Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute of Insect Biotechnology, Department of Applied Entomology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, DE, 35392 Giessen, Germany
| |
Collapse
|
15
|
Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides. Int J Mol Sci 2020; 21:ijms21082700. [PMID: 32295042 PMCID: PMC7215618 DOI: 10.3390/ijms21082700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Reliable values of the solid-state NMR (SSNMR) parameters together with precise structural data specific for a given amino acid site in an oligopeptide are needed for the proper interpretation of measurements aiming at an understanding of oligopeptides' function. The periodic density functional theory (DFT)-based computations of geometries and SSNMR chemical shielding tensors (CSTs) of solids are shown to be accurate enough to support the SSNMR investigations of suitably chosen models of oriented samples of oligopeptides. This finding is based on a thorough comparison between the DFT and experimental data for a set of tripeptides with both 13Cα and 15Namid CSTs available from the single-crystal SSNMR measurements and covering the three most common secondary structural elements of polypeptides. Thus, the ground is laid for a quantitative description of local spectral parameters of crystalline oligopeptides, as demonstrated for the backbone 15Namid nuclei of samarosporin I, which is a pentadecapeptide (composed of five classical and ten nonproteinogenic amino acids) featuring a strong antimicrobial activity.
Collapse
|
16
|
Brückner H, Fox S, Degenkolb T. Sequences of Acretocins, Peptaibiotics Containing the Rare 1-Aminocyclopropanecarboxylic Acid, from Acremonium crotocinigenum CBS 217.70. Chem Biodivers 2019; 16:e1900276. [PMID: 31336036 DOI: 10.1002/cbdv.201900276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Hans Brückner
- Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Stefan Fox
- Institute of Chemistry, Department of Bioinorganic Chemistry, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Thomas Degenkolb
- Interdisciplinary Research Center for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.,Present address: Institute of Insect Biotechnology, Department of Applied Entomology, IFZ, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen, Germany
| |
Collapse
|
17
|
Hu J, Lou Y, Wu F. Improved Intracellular Delivery of Polyarginine Peptides with Cargoes. J Phys Chem B 2019; 123:2636-2644. [PMID: 30830784 DOI: 10.1021/acs.jpcb.8b10483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complementary to endocytosis, cell-penetrating peptides (CPPs) at high concentrations can penetrate the cell membrane in a direct way, which further makes CPPs popular candidates for delivering therapeutic or diagnostic agents. Although featured as rapid uptake, the translocation efficiency and potential toxicity of the direct penetration are usually affected by cargoes, which is still unclear. Here, using coarse-grained molecular dynamics simulations, we show that the polyarginine (R8) peptides penetrate the membrane through a water pore in the membrane, and the transmembrane efficiency is improved by conjugating to small nanoparticles (NPs) with proper linkers. It can be attributed to both the extension of the lifetime of the water pore by the NPs and outward diffusion of negative lipids in the asymmetry membrane, which induces the surrounding R8-NP conjugates to the water pore before it is closed. The translocation efficiency is closely related to the length of the linkers, and it gets the maximum value when the length of the linkers is around half of the membrane thickness. Overlong linkers not only decrease the transmembrane efficiency because of the blockage of NPs in the water pore but may also cause cytotoxicity because of the unclosed water pore. The results provide insights into the internalization of CPPs and facilitate the design of CPP and drug conjugates with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Juanmei Hu
- Key Laboratory of Optical Field Manipulation & Center for Optoelectronics Materials and Devices of Zhejiang Province, Department of Physics , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Yimin Lou
- Key Laboratory of Optical Field Manipulation & Center for Optoelectronics Materials and Devices of Zhejiang Province, Department of Physics , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Fengmin Wu
- Key Laboratory of Optical Field Manipulation & Center for Optoelectronics Materials and Devices of Zhejiang Province, Department of Physics , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| |
Collapse
|
18
|
A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol 2019; 15:161-168. [PMID: 30617293 PMCID: PMC6339573 DOI: 10.1038/s41589-018-0193-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022]
Abstract
Bacteria harbor an immense, untapped trove of novel secondary metabolites in the form of ‘silent’ biosynthetic gene clusters (BGCs). These can be identified bioinformatically but are not expressed under normal laboratory growth conditions. Methods to access their products would dramatically expand our pool of bioactive compounds. We report a universal high-throughput method for activating silent BGCs in diverse microorganisms. Our approach relies on elicitor screening to induce the secondary metabolome of a given strain and imaging mass spectrometry to visualize the resulting metabolomes in response to ~500 conditions. Because it does not require challenging genetic, cloning, or culturing procedures, it can be used with both sequenced and unsequenced bacteria. We demonstrate the power of the approach by applying it to diverse bacteria and report the discovery of nine cryptic metabolites with potentially therapeutic bioactivities, including a new glycopeptide chemotype with potent inhibitory activity against a pathogenic virus.
Collapse
|
19
|
Das S, Ben Haj Salah K, Djibo M, Inguimbert N. Peptaibols as a model for the insertions of chemical modifications. Arch Biochem Biophys 2018; 658:16-30. [DOI: 10.1016/j.abb.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
20
|
Czernek J, Brus J. Theoretical investigations into the variability of the 15N solid-state NMR parameters within an antimicrobial peptide ampullosporin A. Physiol Res 2018; 67:S349-S356. [PMID: 30379555 DOI: 10.33549/physiolres.933976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The solid-state NMR measurements play an indispensable role in studies of interactions between biological membranes and peptaibols, which are amphipathic oligopeptides with a high abundance of alpha-aminobutyric acid (Aib). The solid-state NMR investigations are important in establishing the molecular models of the pore forming and antimicrobial properties of peptaibols, but rely on certain simplifications. Some of the underlying assumptions concern the parameters describing the 15N NMR chemical shielding tensor (CST) of the amide nitrogens in Aib and in conventional amino acids. Here the density functional theory (DFT) based calculations were applied to the known crystal structure of one of peptaibols, Ampullosporin A, in order to explicitly describe the variation of the 15N NMR parameters within its backbone. Based on the DFT computational data it was possible to verify the validity of the assumptions previously made about the differences between Aib and other amino acids in the isotropic part of the CST. Also the trends in the magnitudes and orientations of the anisotropic components of the CST, as revealed by the DFT calculations of the full periodic structure of Ampullosporin A, were thoroughly analyzed, and may be employed in future studies of peptaibols.
Collapse
Affiliation(s)
- J Czernek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Praha 6, Czech Republic.
| | | |
Collapse
|
21
|
Lichtenstein BR, Höcker B. Engineering an AB 5 Protein Carrier. Sci Rep 2018; 8:12643. [PMID: 30139944 PMCID: PMC6107655 DOI: 10.1038/s41598-018-30910-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022] Open
Abstract
The promise of biologic therapeutics is hindered by the challenge to deliver their activity to biochemically relevant sites within diseased cells. The favourable application of the natural protein carriers of the AB5 toxin family to this challenge has been restricted owing to still unresolved requirements for assembling non-native cargo into carrier complexes. Here, we clarify the properties of fusion peptides which allow co-assembly of a selected fluorescent protein cargo with the non-toxic B subunit of a heat-labile enterotoxin. We establish the influence of sequence length, sequence identity and secondary structure of these linking domains on the assembly and disassembly of the complexes. Through our engineering framework we identify several non-native, reduced length fusion sequences that robustly assemble with the native carriers, maintain their ability to deliver protein cargo to cells, and demonstrate substantially refined in vitro properties. Constructs based upon these sequences should prove directly applicable to a variety of protein delivery challenges, and the described design framework should find immediate application to other members of the AB5 protein carrier family.
Collapse
Affiliation(s)
- Bruce R Lichtenstein
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany. .,Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany.
| | - Birte Höcker
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany. .,Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany.
| |
Collapse
|