1
|
Schavemaker PE, Lynch M. Quantifying the evolutionary paths to endomembranes. Cell Rep 2025; 44:115533. [PMID: 40198222 PMCID: PMC12124869 DOI: 10.1016/j.celrep.2025.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/15/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Eukaryotes exhibit a complex and dynamic internal meshwork of membranes-the endomembrane system-used to insert membrane proteins and ingest food. Verbal models explaining the origin of endomembranes abound, but quantitative considerations of fitness are lacking. Drawing on quantitative data on endomembranes allows for the derivation of two biologically grounded analytical models of endomembrane evolution that quantify organismal fitness: (1) vesicle-based uptake of small nutrient molecules, pinocytosis, and (2) vesicle-based insertion of membrane proteins, proto-endoplasmic reticulum. Surprisingly, pinocytosis of small-molecule nutrients does not provide a net fitness gain under biologically sensible parameter ranges, explaining why pinocytosis is primarily used for protein uptake in contemporary organisms. The proto-endoplasmic reticulum does provide net fitness gains, making it the more likely candidate for initiating the endomembrane system. With modifications, the approach developed here can be used more generally to understand the present-day endomembrane system and illuminate the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Paul E Schavemaker
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA.
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature 2024; 633:295-305. [PMID: 39261613 DOI: 10.1038/s41586-024-07677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Julian Vosseberg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jolien J E van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kassiani Panagiotou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Krishnan N, Csiszár V, Móri TF, Garay J. Genesis of ectosymbiotic features based on commensalistic syntrophy. Sci Rep 2024; 14:1366. [PMID: 38228651 DOI: 10.1038/s41598-023-47211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024] Open
Abstract
The symbiogenetic origin of eukaryotes with mitochondria is considered a major evolutionary transition. The initial interactions and conditions of symbiosis, along with the phylogenetic affinity of the host, are widely debated. Here, we focus on a possible evolutionary path toward an association of individuals of two species based on unidirectional syntrophy. With the backing of a theoretical model, we hypothesize that the first step in the evolution of such symbiosis could be the appearance of a linking structure on the symbiont's membrane, using which it forms an ectocommensalism with its host. We consider a commensalistic model based on the syntrophy hypothesis in the framework of coevolutionary dynamics and mutant invasion into a monomorphic resident system (evolutionary substitution). We investigate the ecological and evolutionary stability of the consortium (or symbiotic merger), with vertical transmissions playing a crucial role. The impact of the 'effectiveness of vertical transmission' on the dynamics is also analyzed. We find that the transmission of symbionts and the additional costs incurred by the mutant determine the conditions of fixation of the consortia. Additionally, we observe that small and highly metabolically active symbionts are likely to form the consortia.
Collapse
Affiliation(s)
- Nandakishor Krishnan
- HUN-REN Centre for Ecological Research, Institute of Evolution, Konkoly-Thege M. Út 29-33, Budapest, 1121, Hungary.
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| | - Villő Csiszár
- Department of Probability Theory and Statistics, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Tamás F Móri
- HUN-REN Alfréd Rényi Institute of Mathematics, Reáltanoda U. 13-15, Budapest, 1053, Hungary
| | - József Garay
- HUN-REN Centre for Ecological Research, Institute of Evolution, Konkoly-Thege M. Út 29-33, Budapest, 1121, Hungary
| |
Collapse
|
5
|
Boza G, Barabás G, Scheuring I, Zachar I. Eco-evolutionary modelling of microbial syntrophy indicates the robustness of cross-feeding over cross-facilitation. Sci Rep 2023; 13:907. [PMID: 36650168 PMCID: PMC9845244 DOI: 10.1038/s41598-023-27421-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Syntrophic cooperation among prokaryotes is ubiquitous and diverse. It relies on unilateral or mutual aid that may be both catalytic and metabolic in nature. Hypotheses of eukaryotic origins claim that mitochondrial endosymbiosis emerged from mutually beneficial syntrophy of archaeal and bacterial partners. However, there are no other examples of prokaryotic syntrophy leading to endosymbiosis. One potential reason is that when externalized products become public goods, they incite social conflict due to selfish mutants that may undermine any mutualistic interactions. To rigorously evaluate these arguments, here we construct a general mathematical framework of the ecology and evolution of different types of syntrophic partnerships. We do so both in a general microbial and in a eukaryogenetic context. Studying the case where partners cross-feed on each other's self-inhibiting waste, we show that cooperative partnerships will eventually dominate over selfish mutants. By contrast, systems where producers actively secrete enzymes that cross-facilitate their partners' resource consumption are not robust against cheaters over evolutionary time. We conclude that cross-facilitation is unlikely to provide an adequate syntrophic origin for endosymbiosis, but that cross-feeding mutualisms may indeed have played that role.
Collapse
Affiliation(s)
- G Boza
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
- ASA Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Centre for Social Sciences, Budapest, Hungary
| | - G Barabás
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
- Division of Ecological and Environmental Modeling, Linköping University, Linköping, Sweden
| | - I Scheuring
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
| | - I Zachar
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary.
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary.
- Parmenides Foundation, Centre for the Conceptual Foundation of Science, Pullach Im Isartal, Germany.
| |
Collapse
|
6
|
Raval PK, Garg SG, Gould SB. Endosymbiotic selective pressure at the origin of eukaryotic cell biology. eLife 2022; 11:e81033. [PMID: 36355038 PMCID: PMC9648965 DOI: 10.7554/elife.81033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The dichotomy that separates prokaryotic from eukaryotic cells runs deep. The transition from pro- to eukaryote evolution is poorly understood due to a lack of reliable intermediate forms and definitions regarding the nature of the first host that could no longer be considered a prokaryote, the first eukaryotic common ancestor, FECA. The last eukaryotic common ancestor, LECA, was a complex cell that united all traits characterising eukaryotic biology including a mitochondrion. The role of the endosymbiotic organelle in this radical transition towards complex life forms is, however, sometimes questioned. In particular the discovery of the asgard archaea has stimulated discussions regarding the pre-endosymbiotic complexity of FECA. Here we review differences and similarities among models that view eukaryotic traits as isolated coincidental events in asgard archaeal evolution or, on the contrary, as a result of and in response to endosymbiosis. Inspecting eukaryotic traits from the perspective of the endosymbiont uncovers that eukaryotic cell biology can be explained as having evolved as a solution to housing a semi-autonomous organelle and why the addition of another endosymbiont, the plastid, added no extra compartments. Mitochondria provided the selective pressures for the origin (and continued maintenance) of eukaryotic cell complexity. Moreover, they also provided the energetic benefit throughout eukaryogenesis for evolving thousands of gene families unique to eukaryotes. Hence, a synthesis of the current data lets us conclude that traits such as the Golgi apparatus, the nucleus, autophagosomes, and meiosis and sex evolved as a response to the selective pressures an endosymbiont imposes.
Collapse
Affiliation(s)
- Parth K Raval
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| | - Sriram G Garg
- Evolutionary Biochemistry Group, Max-Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| |
Collapse
|
7
|
|
8
|
Zachar I, Boza G. The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.798045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic pair or community is so rare. We review the field of metabolic communities to identify potential evolutionary trajectories that may lead to a transition. Community properties, like joint metabolic capacity, functional profile, guild composition, assembly and interaction patterns are important concepts that may not only persist stably but according to thought-provoking theories, may provide the heritable information at a higher level of selection. We explore these ideas, relating to concepts of multilevel selection and of informational replication, to assess their relevance in the debate whether microbial communities may inherit community-level information or not.
Collapse
|
9
|
Pre-hunt charade as the cradle of human musicality. Behav Brain Sci 2021; 44:e114. [PMID: 34588024 DOI: 10.1017/s0140525x20001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human language and human music are both unique communication systems that evolved in the human lineage. Here, I propose that they share the same root, they evolved from an ancestral communication system yet to be described in detail. I suggest that pre-hunt charade was this shared root, which helped organize and coordinate the hunt of early hominins.
Collapse
|
10
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
11
|
Knopp M, Stockhorst S, van der Giezen M, Garg SG, Gould SB. The Asgard Archaeal-Unique Contribution to Protein Families of the Eukaryotic Common Ancestor Was 0.3. Genome Biol Evol 2021; 13:6248096. [PMID: 33892498 PMCID: PMC8220308 DOI: 10.1093/gbe/evab085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
The identification of the asgard archaea has fueled speculations regarding the nature of the archaeal host in eukaryogenesis and its level of complexity prior to endosymbiosis. Here, we analyzed the coding capacity of 150 eukaryotes, 1,000 bacteria, and 226 archaea, including the only cultured member of the asgard archaea. Clustering methods that consistently recover endosymbiotic contributions to eukaryotic genomes recover an asgard archaeal-unique contribution of a mere 0.3% to protein families present in the last eukaryotic common ancestor, while simultaneously suggesting that this group's diversity rivals that of all other archaea combined. The number of homologs shared exclusively between asgard archaea and eukaryotes is only 27 on average. This tiny asgard archaeal-unique contribution to the root of eukaryotic protein families questions claims that archaea evolved complexity prior to eukaryogenesis. Genomic and cellular complexity remains a eukaryote-specific feature and is best understood as the archaeal host's solution to housing an endosymbiont.
Collapse
Affiliation(s)
- Michael Knopp
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | - Simon Stockhorst
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
12
|
Hoang KL, Gerardo NM, Morran LT. Association with a novel protective microbe facilitates host adaptation to a stressful environment. Evol Lett 2021; 5:118-129. [PMID: 33868708 PMCID: PMC8045907 DOI: 10.1002/evl3.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Protective symbionts can allow hosts to occupy otherwise uninhabitable niches. Despite the importance of symbionts in host evolution, we know little about how these associations arise. Encountering a microbe that can improve host fitness in a stressful environment may favor persistent interactions with that microbe, potentially facilitating a long-term association. The bacterium Bacillus subtilis protects Caenorhabditis elegans nematodes from heat shock by increasing host fecundity compared to the nonprotective Escherichia coli. In this study, we ask how the protection provided by the bacterium affects the host's evolutionary trajectory. Because of the stark fitness contrast between hosts heat shocked on B. subtilis versus E. coli, we tested whether the protection conferred by the bacteria could increase the rate of host adaptation to a stressful environment. We passaged nematodes on B. subtilis or E. coli, under heat stress or standard conditions for 20 host generations of selection. When assayed under heat stress, we found that hosts exhibited the greatest fitness increase when evolved with B. subtilis under stress compared to when evolved with E. coli or under standard (nonstressful) conditions. Furthermore, despite not directly selecting for increased B. subtilis fitness, we found that hosts evolved to harbor more B. subtilis as they adapted to heat stress. Our findings demonstrate that the context under which hosts evolve is important for the evolution of beneficial associations and that protective microbes can facilitate host adaptation to stress. In turn, such host adaptation can benefit the microbe.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
- Department of ZoologyUniversity of OxfordOxfordOX1 3SZUnited Kingdom
| | | | - Levi T. Morran
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
| |
Collapse
|
13
|
The ambiguity of the basic terms related to eukaryotes and the more consistent etymology based on eukaryotic signatures in Asgard archaea. Biosystems 2020; 197:104178. [DOI: 10.1016/j.biosystems.2020.104178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022]
|
14
|
Zachar I, Boza G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell Mol Life Sci 2020; 77:3503-3523. [PMID: 32008087 PMCID: PMC7452879 DOI: 10.1007/s00018-020-03462-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Endosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endosymbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote-prokaryote endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precarious to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multiple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to prokaryote-prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial interactions based on dependence, physical proximity, cost-benefit budget, and the types of benefits, investments, and controls. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based on modern mitochondria-host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy.
Collapse
Affiliation(s)
- István Zachar
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049, Munich, Germany.
| | - Gergely Boza
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
| |
Collapse
|
15
|
Abstract
That Bacteria, Archaea and Eukarya (eukaryotes) represent three separate domains of Life, no one having evolved from within any other, has been taken as fact for three decades. Recent work shows this to be untrue. Eukarya arose from well within Archaea and are specifically related to newly discovered archaeal species with eukaryote-like features.
Collapse
Affiliation(s)
- W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
16
|
Wedell N. Selfish genes and sexual selection: the impact of genomic parasites on host reproduction. J Zool (1987) 2020. [DOI: 10.1111/jzo.12780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- N. Wedell
- Biosciences University of Exeter, Penryn Campus Penryn UK
| |
Collapse
|
17
|
Hoang KL, Morran LT, Gerardo NM. Can a Symbiont (Also) Be Food? Front Microbiol 2019; 10:2539. [PMID: 31787946 PMCID: PMC6854002 DOI: 10.3389/fmicb.2019.02539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kim L Hoang
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA, United States
| | - Levi T Morran
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA, United States
| | - Nicole M Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
18
|
Madreiter‐Sokolowski CT, Ramadani‐Muja J, Ziomek G, Burgstaller S, Bischof H, Koshenov Z, Gottschalk B, Malli R, Graier WF. Tracking intra- and inter-organelle signaling of mitochondria. FEBS J 2019; 286:4378-4401. [PMID: 31661602 PMCID: PMC6899612 DOI: 10.1111/febs.15103] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria are as highly specialized organelles and masters of the cellular energy metabolism in a constant and dynamic interplay with their cellular environment, providing adenosine triphosphate, buffering Ca2+ and fundamentally contributing to various signaling pathways. Hence, such broad field of action within eukaryotic cells requires a high level of structural and functional adaptation. Therefore, mitochondria are constantly moving and undergoing fusion and fission processes, changing their shape and their interaction with other organelles. Moreover, mitochondrial activity gets fine-tuned by intra- and interorganelle H+ , K+ , Na+ , and Ca2+ signaling. In this review, we provide an up-to-date overview on mitochondrial strategies to adapt and respond to, as well as affect, their cellular environment. We also present cutting-edge technologies used to track and investigate subcellular signaling, essential to the understanding of various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Corina T. Madreiter‐Sokolowski
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
- Department of Health Sciences and TechnologyETH ZurichSchwerzenbachSwitzerland
| | - Jeta Ramadani‐Muja
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Gabriela Ziomek
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Zhanat Koshenov
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
- BioTechMedGrazAustria
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center, Molecular Biology and BiochemistryMedical University of GrazAustria
- BioTechMedGrazAustria
| |
Collapse
|
19
|
Zimorski V, Mentel M, Tielens AGM, Martin WF. Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radic Biol Med 2019; 140:279-294. [PMID: 30935869 PMCID: PMC6856725 DOI: 10.1016/j.freeradbiomed.2019.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Eukaryotes arose about 1.6 billion years ago, at a time when oxygen levels were still very low on Earth, both in the atmosphere and in the ocean. According to newer geochemical data, oxygen rose to approximately its present atmospheric levels very late in evolution, perhaps as late as the origin of land plants (only about 450 million years ago). It is therefore natural that many lineages of eukaryotes harbor, and use, enzymes for oxygen-independent energy metabolism. This paper provides a concise overview of anaerobic energy metabolism in eukaryotes with a focus on anaerobic energy metabolism in mitochondria. We also address the widespread assumption that oxygen improves the overall energetic state of a cell. While it is true that ATP yield from glucose or amino acids is increased in the presence of oxygen, it is also true that the synthesis of biomass costs thirteen times more energy per cell in the presence of oxygen than in anoxic conditions. This is because in the reaction of cellular biomass with O2, the equilibrium lies very far on the side of CO2. The absence of oxygen offers energetic benefits of the same magnitude as the presence of oxygen. Anaerobic and low oxygen environments are ancient. During evolution, some eukaryotes have specialized to life in permanently oxic environments (life on land), other eukaryotes have remained specialized to low oxygen habitats. We suggest that the Km of mitochondrial cytochrome c oxidase of 0.1-10 μM for O2, which corresponds to about 0.04%-4% (avg. 0.4%) of present atmospheric O2 levels, reflects environmental O2 concentrations that existed at the time that the eukaryotes arose.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 851 04, Bratislava, Slovakia.
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
20
|
Czégel D, Zachar I, Szathmáry E. Multilevel selection as Bayesian inference, major transitions in individuality as structure learning. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190202. [PMID: 31598234 PMCID: PMC6731722 DOI: 10.1098/rsos.190202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Complexity of life forms on the Earth has increased tremendously, primarily driven by subsequent evolutionary transitions in individuality, a mechanism in which units formerly being capable of independent replication combine to form higher-level evolutionary units. Although this process has been likened to the recursive combination of pre-adapted sub-solutions in the framework of learning theory, no general mathematical formalization of this analogy has been provided yet. Here we show, building on former results connecting replicator dynamics and Bayesian update, that (i) evolution of a hierarchical population under multilevel selection is equivalent to Bayesian inference in hierarchical Bayesian models and (ii) evolutionary transitions in individuality, driven by synergistic fitness interactions, is equivalent to learning the structure of hierarchical models via Bayesian model comparison. These correspondences support a learning theory-oriented narrative of evolutionary complexification: the complexity and depth of the hierarchical structure of individuality mirror the amount and complexity of data that have been integrated about the environment through the course of evolutionary history.
Collapse
Affiliation(s)
- Dániel Czégel
- MTA Centre for Ecological Research, Evolutionary Systems Research Group, Hungarian Academy of Sciences, 8237 Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, 1117 Budapest, Hungary
- Parmenides Foundation, Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - István Zachar
- MTA Centre for Ecological Research, Evolutionary Systems Research Group, Hungarian Academy of Sciences, 8237 Tihany, Hungary
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Eötvös University, 1117 Budapest, Hungary
- Parmenides Foundation, Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany
| | - Eörs Szathmáry
- MTA Centre for Ecological Research, Evolutionary Systems Research Group, Hungarian Academy of Sciences, 8237 Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, 1117 Budapest, Hungary
- Parmenides Foundation, Center for the Conceptual Foundations of Science, 82049 Pullach/Munich, Germany
| |
Collapse
|
21
|
Petrov AS, Wood EC, Bernier CR, Norris AM, Brown A, Amunts A. Structural Patching Fosters Divergence of Mitochondrial Ribosomes. Mol Biol Evol 2019; 36:207-219. [PMID: 30517740 PMCID: PMC6367999 DOI: 10.1093/molbev/msy221] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial ribosomes (mitoribosomes) are essential components of all mitochondria that synthesize proteins encoded by the mitochondrial genome. Unlike other ribosomes, mitoribosomes are highly variable across species. The basis for this diversity is not known. Here, we examine the composition and evolutionary history of mitoribosomes across the phylogenetic tree by combining three-dimensional structural information with a comparative analysis of the secondary structures of mitochondrial rRNAs (mt-rRNAs) and available proteomic data. We generate a map of the acquisition of structural variation and reconstruct the fundamental stages that shaped the evolution of the mitoribosomal large subunit and led to this diversity. Our analysis suggests a critical role for ablation and expansion of rapidly evolving mt-rRNA. These changes cause structural instabilities that are “patched” by the acquisition of pre-existing compensatory elements, thus providing opportunities for rapid evolution. This mechanism underlies the incorporation of mt-tRNA into the central protuberance of the mammalian mitoribosome, and the altered path of the polypeptide exit tunnel of the yeast mitoribosome. We propose that since the toolkits of elements utilized for structural patching differ between mitochondria of different species, it fosters the growing divergence of mitoribosomes.
Collapse
Affiliation(s)
- Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Elizabeth C Wood
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Chad R Bernier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Ashlyn M Norris
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol 2019; 4:1138-1148. [DOI: 10.1038/s41564-019-0406-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/08/2019] [Indexed: 11/08/2022]
|
23
|
Sleep NH. Geological and Geochemical Constraints on the Origin and Evolution of Life. ASTROBIOLOGY 2018; 18:1199-1219. [PMID: 30124324 DOI: 10.1089/ast.2017.1778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The traditional tree of life from molecular biology with last universal common ancestor (LUCA) branching into bacteria and archaea (though fuzzy) is likely formally valid enough to be a basis for discussion of geological processes on the early Earth. Biologists infer likely properties of nodal organisms within the tree and, hence, the environment they inhabited. Geologists both vet tenuous trees and putative origin of life scenarios for geological and ecological reasonability and conversely infer geological information from trees. The latter approach is valuable as geologists have only weakly constrained the time when the Earth became habitable and the later time when life actually existed to the long interval between ∼4.5 and ∼3.85 Ga where no intact surface rocks are known. With regard to vetting, origin and early evolution hypotheses from molecular biology have recently centered on serpentinite settings in marine and alternatively land settings that are exposed to ultraviolet sunlight. The existence of these niches on the Hadean Earth is virtually certain. With regard to inferring geological environment from genomics, nodes on the tree of life can arise from true bottlenecks implied by the marine serpentinite origin scenario and by asteroid impact. Innovation of a very useful trait through a threshold allows the successful organism to quickly become very abundant and later root a large clade. The origin of life itself, that is, the initial Darwinian ancestor, the bacterial and archaeal roots as free-living cellular organisms that independently escaped hydrothermal chimneys above marine serpentinite or alternatively from shallow pore-water environments on land, the Selabacteria root with anoxygenic photosynthesis, and the Terrabacteria root colonizing land are attractive examples that predate the geological record. Conversely, geological reasoning presents likely events for appraisal by biologists. Asteroid impacts may have produced bottlenecks by decimating life. Thermophile roots of bacteria and archaea as well as a thermophile LUCA are attractive.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University , Stanford, California
| |
Collapse
|
24
|
Dacks JB, Field MC. Evolutionary origins and specialisation of membrane transport. Curr Opin Cell Biol 2018; 53:70-76. [PMID: 29929066 PMCID: PMC6141808 DOI: 10.1016/j.ceb.2018.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/09/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023]
Abstract
From unicellular protists to the largest megafauna and flora, all eukaryotes depend upon the organelles and processes of the intracellular membrane trafficking system. Well-defined machinery selectively packages and delivers material between endomembrane organelles and imports and exports material from the cell surface. This process underlies intracellular compartmentalization and facilitates myriad processes that define eukaryotic biology. Membrane trafficking is a landmark in the origins of the eukaryotic cell and recent work has begun to unravel how the revolution in cellular structure occurred.
Collapse
Affiliation(s)
- Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
25
|
Reply to Garg and Martin: The mechanism works. Proc Natl Acad Sci U S A 2018; 115:E4545-E4546. [PMID: 29724859 DOI: 10.1073/pnas.1805021115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
|