1
|
Wakikawa Y, Ikoma T. Triplet pair dynamics of singlet fission in orthorhombic polycrystalline powder of rubrene as revealed by magnetoluminescence. J Chem Phys 2025; 162:124710. [PMID: 40135615 DOI: 10.1063/5.0251084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Singlet fission, which may increase the energy conversion efficiency of solar cells, proceeds via multiple spin levels of a triplet pair. To clarify the spin-related elementary processes of the triplet pair, we measured the magnetoluminescence effect of the fluorescence of rubrene, in the form of orthorhombic polycrystalline powder, in the range of ±300 mT at room temperature. Model simulations using the density matrix method were performed to elucidate how the features of the magnetoluminescence effect depend on the triplet pair dynamics. Simulations of the observed field dependence of the magnetoluminescence effect revealed an anisotropy of 1:100 for the two-dimensional hopping of triplet excitons forming a triplet pair in the ab plane, for which the exchange interaction depends on the separation distance between the two triplet excitons. The effective lifetime of the spin-correlated triplet pair responsible for the magnetoluminescence effect is estimated to be 2.2 ns.
Collapse
Affiliation(s)
- Yusuke Wakikawa
- Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Tadaaki Ikoma
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
- Center for Coordination of Research Facilities, Institute for Research Administration, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
2
|
Sun Y, Monteverde M, Derkach V, Anthony JE, Chepelianskii AD. Cascade of Multiexciton States Generated by Singlet Fission. J Phys Chem Lett 2024; 15:12098-12104. [PMID: 39602171 DOI: 10.1021/acs.jpclett.4c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Identifying multiexciton states generated from singlet fission is key to understanding the carrier multiplication process, which presents a strategy for improving the efficiency of photovoltaics and bioimaging. Broadband optically detected magnetic resonance (ODMR) is a sensitive technique to detect multiexciton states. Here, we report a dominant species a weakly exchange coupled triplet pair located on adjacent molecules oriented by nearly 90° (V2) under intense light excitation, contrasting to the π-stacked triplet pair under low excitation intensity. The weakly coupled species model precisely reproduces the intricate spin transitions in the Hilbert space of the triplet pair. Combining the magneto-photoluminescence and high-magnetic-field ODMR, we also identify a strongly exchange-coupled state of three triplet excitons formed by photoexcited V2, which manifests through the magnetic-field-induced level crossings between its quintet and triplet manifolds. Our findings demonstrate the microscopic picture of different multiexciton states and the possible transitions among them during exciton fission, which provide insight for the further molecular designs for fission materials.
Collapse
Affiliation(s)
- Yan Sun
- LPS, Université Paris-Saclay, CNRS, UMR 8502, F-91405 Orsay, France
| | - M Monteverde
- LPS, Université Paris-Saclay, CNRS, UMR 8502, F-91405 Orsay, France
| | - V Derkach
- O. Ya. Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Academician Proskury Street, Kharkov 61085, Ukraine
| | - J E Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | | |
Collapse
|
3
|
Goldthwaite WT, Lambertson E, Gragg M, Windemuller D, Anthony JE, Zuehlsdorff TJ, Ostroverkhova O. Morphology- and crystal packing-dependent singlet fission and photodegradation in functionalized tetracene crystals and films. J Chem Phys 2024; 161:194712. [PMID: 39569690 DOI: 10.1063/5.0234494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Singlet fission (SF) is a charge carrier multiplication process that has potential for improving the performance of (opto)electronic devices from the conversion of one singlet exciton S1 into two triplet excitons T1 via a spin-entangled triplet pair state 1(TT). This process depends highly on molecular packing and morphology, both for the generation and dissociation of 1(TT) states. Many benchmark SF materials, such as acenes, are also prone to photodegradation reactions, such as endoperoxide (EPO) formation and photodimerization, which inhibit realization of SF devices. In this paper, we compare functionalized tetracenes R-Tc with two packing motifs: "slip-stack" packing in R = TES, TMS, and tBu and "gamma" packing in R = TBDMS to determine the effects of morphology on SF as well as on photodegradation using a combination of temperature and magnetic field dependent spectroscopy, kinetic modeling, and time-dependent density functional theory. We find that both "slip-stack" and "gamma" packing support SF with high T1 yield at room temperature (up to 191% and 181%, respectively), but "slip-stack" is considerably more advantageous at low temperatures (<150 K). In addition, each packing structure has a distinct emissive relaxation pathway competitive to SF, while the states involved in the SF itself are dark. The "gamma" packing has superior photostability, both in regards to EPO formation and photodimerization. The results indicate that the trade-off between SF efficiency and photostability can be overcome with material design, emphasize the importance of considering both photophysical and photochemical properties, and inform efforts to develop optimal SF materials for (opto)electronic applications.
Collapse
Affiliation(s)
| | - Evan Lambertson
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Madalyn Gragg
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Dean Windemuller
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40511, USA
| | - John E Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40511, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
4
|
Wilhelmer R, Diez M, Krondorfer JK, Hauser AW. Molecular Pseudorotation in Phthalocyanines as a Tool for Magnetic Field Control at the Nanoscale. J Am Chem Soc 2024; 146:14620-14632. [PMID: 38743819 PMCID: PMC11140746 DOI: 10.1021/jacs.4c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Metal phthalocyanines, a highly versatile class of aromatic, planar, macrocyclic molecules with a chelated central metal ion, are topical objects of ongoing research and particularly interesting due to their magnetic properties. However, while the current focus lies almost exclusively on spin-Zeeman-related effects, the high symmetry of the molecule and its circular shape suggests the exploitation of light-induced excitation of 2-fold degenerate vibrational states in order to generate, switch, and manipulate magnetic fields at the nanoscale. The underlying mechanism is a molecular pseudorotation that can be triggered by infrared pulses and gives rise to a quantized, small, but controllable magnetic dipole moment. We investigate the optical stimulation of vibrationally induced molecular magnetism and estimate changes in the magnetic shielding constants for confirmation by future experiments.
Collapse
Affiliation(s)
- Raphael Wilhelmer
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Matthias Diez
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Johannes K Krondorfer
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | - Andreas W Hauser
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| |
Collapse
|
5
|
Kim J, Teo HT, Hong Y, Cha H, Kim W, Chi C, Kim D. Elucidating Singlet-Fission-Born Multiexciton Dynamics via Molecular Engineering: A Dilution Principle Extended to Quintet Triplet Pair. J Am Chem Soc 2024; 146:10833-10846. [PMID: 38578848 DOI: 10.1021/jacs.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Multiexciton in singlet exciton fission represents a critical quantum state with significant implications for both solar cell applications and quantum information science. Two distinct fields of interest explore contrasting phenomena associated with the geminate triplet pair: one focusing on the persistence of long-lived correlation and the other emphasizing efficient decorrelation. Despite the pivotal nature of multiexciton processes, a comprehensive understanding of their dependence on the structural and spin properties of materials is currently lacking in experimental realizations. To address this gap in knowledge, molecular engineering was employed to modify the TIPS-tetracene structures, enabling an investigation of the structure-property relationships in spin-related multiexciton processes. In lieu of the time-resolved electron paramagnetic resonance technique, two time-resolved magneto-optical spectroscopies were implemented for quantitative analysis of spin-dependent multiexciton dynamics. The utilization of absorption and fluorescence signals as complementary optical readouts, in the presence of a magnetic field, provided crucial insights into geminate triplet pair dynamics. These insights encompassed the duration of multiexciton correlation and the involvement of the spin state in multiexciton decorrelation. Furthermore, simulations based on our kinetic models suggested a role for quintet dilution in multiexciton dynamics, surpassing the singlet dilution principle established by the Merrifield model. The integration of intricate model structures and time-resolved magneto-optical spectroscopies served to explicitly elucidate the interplay between structural and spin properties in multiexciton processes. This comprehensive approach not only contributes to the fundamental understanding of these processes but also aligns with and reinforces previous experimental studies of solid states and theoretical assessments.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
6
|
Majdecki M, Hsu CH, Wang CH, Shi EHC, Zakrocka M, Wei YC, Chen BH, Lu CH, Yang SD, Chou PT, Gaweł P. Singlet Fission in a New Series of Systematically Designed Through-space Coupled Tetracene Oligomers. Angew Chem Int Ed Engl 2024; 63:e202401103. [PMID: 38412017 DOI: 10.1002/anie.202401103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
Singlet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon-based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through-space coupling, making it a relevant model for solid-state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short-lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through-space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology-compatible SF systems for applications in photovoltaics.
Collapse
Affiliation(s)
- Maciej Majdecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Hsing Wang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Emily Hsue-Chi Shi
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Magdalena Zakrocka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Przemysław Gaweł
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
7
|
Yamauchi A, Tanaka K, Fuki M, Fujiwara S, Kimizuka N, Ryu T, Saigo M, Onda K, Kusumoto R, Ueno N, Sato H, Kobori Y, Miyata K, Yanai N. Room-temperature quantum coherence of entangled multiexcitons in a metal-organic framework. SCIENCE ADVANCES 2024; 10:eadi3147. [PMID: 38170775 PMCID: PMC10775993 DOI: 10.1126/sciadv.adi3147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Singlet fission can generate an exchange-coupled quintet triplet pair state 5TT, which could lead to the realization of quantum computing and quantum sensing using entangled multiple qubits even at room temperature. However, the observation of the quantum coherence of 5TT has been limited to cryogenic temperatures, and the fundamental question is what kind of material design will enable its room-temperature quantum coherence. Here, we show that the quantum coherence of singlet fission-derived 5TT in a chromophore-integrated metal-organic framework can be over hundred nanoseconds at room temperature. The suppressed motion of the chromophores in ordered domains within the metal-organic framework leads to the enough fluctuation of the exchange interaction necessary for 5TT generation but, at the same time, does not cause severe 5TT decoherence. Furthermore, the phase and amplitude of quantum beating depend on the molecular motion, opening the way to room-temperature molecular quantum computing based on multiple quantum gate control.
Collapse
Affiliation(s)
- Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kentaro Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Saiya Fujiwara
- RIKEN, RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Ryu
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Saigo
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Onda
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryota Kusumoto
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nami Ueno
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kiyoshi Miyata
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Steer RP. Prospects for useful fission from singlet states higher than S 1 in aggregated organic chromophores. Phys Chem Chem Phys 2023; 25:23384-23394. [PMID: 37646175 DOI: 10.1039/d3cp03201a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The few known reports and the likely prospects of finding new efficient routes to exciton fission from higher excited singlet states, Sn (n > 1), are reviewed. Aggregates of molecules that have large S2-S1 electronic energy spacings and/or emit measurable "contra-Kasha" emission may offer further opportunities. Among these, electronically excited molecular systems that exhibit known efficient (T1 + T1) triplet-triplet annihilation producing S2 could exhibit efficient singlet fission in aggregates when appropriately substituted to meet the necessary energy requirements. The potential problem of loss of triplet excitons via 2T1 → Tn>1 + S0 triplet-triplet annihilation following (S2 + S0) singlet fission is addressed. Aggregates of substituted azulenes and aliphatic thiones and dithiones are particularly attractive and are discussed in detail.
Collapse
Affiliation(s)
- Ronald P Steer
- Department of Chemistry University of Saskatchewan Saskatoon, SK, S7N5C9, Canada.
| |
Collapse
|
9
|
Sutherland G, Pidgeon JP, Lee HKH, Proctor MS, Hitchcock A, Wang S, Chekulaev D, Tsoi WC, Johnson MP, Hunter CN, Clark J. Twisted Carotenoids Do Not Support Efficient Intramolecular Singlet Fission in the Orange Carotenoid Protein. J Phys Chem Lett 2023; 14:6135-6142. [PMID: 37364284 PMCID: PMC10331831 DOI: 10.1021/acs.jpclett.3c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Singlet exciton fission is the spin-allowed generation of two triplet electronic excited states from a singlet state. Intramolecular singlet fission has been suggested to occur on individual carotenoid molecules within protein complexes provided that the conjugated backbone is twisted out of plane. However, this hypothesis has been forwarded only in protein complexes containing multiple carotenoids and bacteriochlorophylls in close contact. To test the hypothesis on twisted carotenoids in a "minimal" one-carotenoid system, we study the orange carotenoid protein (OCP). OCP exists in two forms: in its orange form (OCPo), the single bound carotenoid is twisted, whereas in its red form (OCPr), the carotenoid is planar. To enable room-temperature spectroscopy on canthaxanthin-binding OCPo and OCPr without laser-induced photoconversion, we trap them in a trehalose glass. Using transient absorption spectroscopy, we show that there is no evidence of long-lived triplet generation through intramolecular singlet fission despite the canthaxanthin twist in OCPo.
Collapse
Affiliation(s)
- George
A. Sutherland
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - James P. Pidgeon
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Harrison Ka Hin Lee
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA1 8EN, U.K.
| | - Matthew S. Proctor
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Andrew Hitchcock
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Shuangqing Wang
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Dimitri Chekulaev
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.
| | - Wing Chung Tsoi
- SPECIFIC,
Faculty of Science and Engineering, Swansea
University, Swansea SA1 8EN, U.K.
| | - Matthew P. Johnson
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K.
| | - Jenny Clark
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| |
Collapse
|
10
|
Matsuoka R, Kimura S, Miura T, Ikoma T, Kusamoto T. Single-Molecule Magnetoluminescence from a Spatially Confined Persistent Diradical Emitter. J Am Chem Soc 2023. [PMID: 37311307 DOI: 10.1021/jacs.3c01076] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Luminescent radicals are an emerging class of materials that exhibit unique photofunctions not found in closed-shell molecules due to their open-shell electronic structure. Particularly promising are photofunctions in which radical's spin and luminescence are correlated; for example, when a magnetic field can affect luminescence (i.e., magnetoluminescence, ML). These photofunctions could be useful in the new science of spin photonics. However, previous observations of ML in radicals have been limited to systems in which radicals are randomly doped in host crystals or polymerized through metal complexation. This study shows that a covalently linked luminescent radical dimer (diradical) can exhibit ML as a single-molecular property. This facilitates detailed elucidation of the requirements for and mechanisms of ML in radicals and can aid the rational design of ML-active radicals based on synthetic chemistry.
Collapse
Affiliation(s)
- Ryota Matsuoka
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Shojiro Kimura
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science, Niigata University, Niigata, 950-2181, Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
11
|
Tait CE, Krzyaniak MD, Stoll S. Computational tools for the simulation and analysis of spin-polarized EPR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107410. [PMID: 36870248 DOI: 10.1016/j.jmr.2023.107410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The EPR spectra of paramagnetic species induced by photoexcitation typically exhibit enhanced absorptive and emissive features resulting from sublevel populations that differ from thermal equilibrium. The populations and the resulting spin polarization of the spectra are dictated by the selectivity of the photophysical process generating the observed state. Simulation of the spin-polarized EPR spectra is crucial in the characterization of both the dynamics of formation of the photoexcited state as well as its electronic and structural properties. EasySpin, the simulation toolbox for EPR spectroscopy, now includes extended support for the simulation of the EPR spectra of spin-polarized states of arbitrary spin multiplicity and formed by a variety of different mechanisms, including photoexcited triplet states populated by intersystem crossing, charge recombination or spin polarization transfer, spin-correlated radical pairs created by photoinduced electron transfer, triplet pairs formed by singlet fission and multiplet states arising from photoexcitation in systems containing chromophores and stable radicals. In this paper, we highlight EasySpin's capabilities for the simulation of spin-polarized EPR spectra on the basis of illustrative examples from the literature in a variety of fields ranging across chemistry, biology, material science and quantum information science.
Collapse
Affiliation(s)
- Claudia E Tait
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston 60208, IL, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, 98195, WA, United States
| |
Collapse
|
12
|
Panjwani NA, Behrends J. Framing fusion and fission. NATURE MATERIALS 2022; 21:1221-1222. [PMID: 36284237 DOI: 10.1038/s41563-022-01387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Naitik A Panjwani
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Jan Behrends
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Ha DG, Wan R, Kim CA, Lin TA, Yang L, Van Voorhis T, Baldo MA, Dincă M. Exchange controlled triplet fusion in metal-organic frameworks. NATURE MATERIALS 2022; 21:1275-1281. [PMID: 36202994 PMCID: PMC9622415 DOI: 10.1038/s41563-022-01368-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/16/2022] [Indexed: 05/28/2023]
Abstract
Triplet-fusion-based photon upconversion holds promise for a wide range of applications, from photovoltaics to bioimaging. The efficiency of triplet fusion, however, is fundamentally limited in conventional molecular and polymeric systems by its spin dependence. Here, we show that the inherent tailorability of metal-organic frameworks (MOFs), combined with their highly porous but ordered structure, minimizes intertriplet exchange coupling and engineers effective spin mixing between singlet and quintet triplet-triplet pair states. We demonstrate singlet-quintet coupling in a pyrene-based MOF, NU-1000. An anomalous magnetic field effect is observed from NU-1000 corresponding to an induced resonance between singlet and quintet states that yields an increased fusion rate at room temperature under a relatively low applied magnetic field of 0.14 T. Our results suggest that MOFs offer particular promise for engineering the spin dynamics of multiexcitonic processes and improving their upconversion performance.
Collapse
Affiliation(s)
- Dong-Gwang Ha
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ruomeng Wan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Changhae Andrew Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ting-An Lin
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luming Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc A Baldo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
14
|
Yago T, Tashiro M, Hasegawa K, Gohdo M, Tsuchiya S, Ikoma T, Wakasa M. Triplet-Triplet Annihilation via the Triplet Channel in Crystalline 9,10-Diphenylanthracene. J Phys Chem Lett 2022; 13:8768-8774. [PMID: 36102694 DOI: 10.1021/acs.jpclett.2c01839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Delayed fluorescence resulting from triplet-triplet annihilation in crystalline 9,10-diphenylanthracene was observed by means of steady-state fluorescence measurements under magnetic fields of ≤10 T. At five specific magnetic fields, four peaks and one dip in the magnetic field dependence of fluorescence intensity were observed, proving that exchange-coupled triplet pairs were generated in the course of triplet-triplet annihilation. The dip was in the opposite direction predicted for singlet channel triplet-triplet annihilation. Further analysis using the stochastic Liouville equation confirmed that the closest exchange-coupled triplet pair in crystalline 9,10-diphenylanthracene is quenched via both triplet channel and singlet channel triplet-triplet annihilation.
Collapse
Affiliation(s)
- Tomoaki Yago
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Manami Tashiro
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Kiichi Hasegawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masao Gohdo
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibarakai, Osaka 567-0047, Japan
| | - Syuta Tsuchiya
- Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Nishi-Ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Nishi-Ku, Niigata 950-2181, Japan
| | - Masanobu Wakasa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
15
|
Rugg BK, Smyser KE, Fluegel B, Chang CH, Thorley KJ, Parkin S, Anthony JE, Eaves JD, Johnson JC. Triplet-pair spin signatures from macroscopically aligned heteroacenes in an oriented single crystal. Proc Natl Acad Sci U S A 2022; 119:e2201879119. [PMID: 35858318 PMCID: PMC9303990 DOI: 10.1073/pnas.2201879119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/27/2022] [Indexed: 01/16/2023] Open
Abstract
The photo-driven process of singlet fission generates coupled triplet pairs (TT) with fundamentally intriguing and potentially useful properties. The quintet 5TT0 sublevel is particularly interesting for quantum information because it is highly entangled, is addressable with microwave pulses, and could be detected using optical techniques. Previous theoretical work on a model Hamiltonian and nonadiabatic transition theory, called the JDE model, has determined that this sublevel can be selectively populated if certain conditions are met. Among the most challenging, the molecules within the dimer undergoing singlet fission must have their principal magnetic axes parallel to one another and to an applied Zeeman field. Here, we present time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy of a single crystal sample of a tetracenethiophene compound featuring arrays of dimers aligned in this manner, which were mounted so that the orientation of the field relative to the molecular axes could be controlled. The observed spin sublevel populations in the paired TT and unpaired (T+T) triplets are consistent with predictions from the JDE model, including preferential 5TT0 formation at z ‖ B0, with one caveat-two 5TT spin sublevels have little to no population. This may be due to crossings between the 5TT and 3TT manifolds in the field range investigated by TR-EPR, consistent with the intertriplet exchange energy determined by monitoring photoluminescence at varying magnetic fields.
Collapse
Affiliation(s)
- Brandon K. Rugg
- Chemistry and Nanosciences Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Kori E. Smyser
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Brian Fluegel
- Chemistry and Nanosciences Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Christopher H. Chang
- Chemistry and Nanosciences Center, National Renewable Energy Laboratory, Golden, CO 80401
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Karl J. Thorley
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506
| | - John E. Anthony
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511
- Department of Chemistry, University of Kentucky, Lexington, KY 40506
| | - Joel D. Eaves
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Justin C. Johnson
- Chemistry and Nanosciences Center, National Renewable Energy Laboratory, Golden, CO 80401
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
16
|
|
17
|
Jacobberger RM, Qiu Y, Williams ML, Krzyaniak MD, Wasielewski MR. Using Molecular Design to Enhance the Coherence Time of Quintet Multiexcitons Generated by Singlet Fission in Single Crystals. J Am Chem Soc 2022; 144:2276-2283. [PMID: 35099963 DOI: 10.1021/jacs.1c12414] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiexciton quintet states, 5(TT), photogenerated in organic semiconductors using singlet fission (SF), consist of four quantum entangled spins, promising to enable new applications in quantum information science. However, the factors that determine the spin coherence of these states remain underexplored. Here, we engineer the packing of tetracene molecules within single crystals of 5,12-bis(tricyclohexylsilylethynyl)tetracene (TCHS-tetracene) to demonstrate a 5(TT) state that exhibits promising spin qubit properties, including a coherence time, T2, = 3 μs at 10 K, a population lifetime, Tpop, = 130 μs at 5 K, and stability even at room temperature. The single-crystal platform also enables global alignment of the spins and, consequently, individual addressability of the spin-sublevel transitions. Decoherence mechanisms, including exciton diffusion, electronic dipolar coupling, and nuclear hyperfine interactions, are elucidated, providing design principles for increasing T2 and the operational temperature of 5(TT). By dynamically decoupling 5(TT) from the surrounding spin bath, T2 = 10 μs is achieved. These results demonstrate the viability of harnessing singlet fission to initiate multiple electron spins in a well-defined quantum state for next-generation molecular-based quantum technologies.
Collapse
Affiliation(s)
- Robert M Jacobberger
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Malik L Williams
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| |
Collapse
|
18
|
Bossanyi DG, Sasaki Y, Wang S, Chekulaev D, Kimizuka N, Yanai N, Clark J. Spin Statistics for Triplet-Triplet Annihilation Upconversion: Exchange Coupling, Intermolecular Orientation, and Reverse Intersystem Crossing. JACS AU 2021; 1:2188-2201. [PMID: 34977890 PMCID: PMC8715495 DOI: 10.1021/jacsau.1c00322] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 06/14/2023]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has great potential to significantly improve the light harvesting capabilities of photovoltaic cells and is also sought after for biomedical applications. Many factors combine to influence the overall efficiency of TTA-UC, the most fundamental of which is the spin statistical factor, η, that gives the probability that a bright singlet state is formed from a pair of annihilating triplet states. The value of η is also critical in determining the contribution of TTA to the overall efficiency of organic light-emitting diodes. Using solid rubrene as a model system, we reiterate why experimentally measured magnetic field effects prove that annihilating triplets first form weakly exchange-coupled triplet-pair states. This is contrary to conventional discussions of TTA-UC that implicitly assume strong exchange coupling, and we show that it has profound implications for the spin statistical factor η. For example, variations in intermolecular orientation tune η from to through spin mixing of the triplet-pair wave functions. Because the fate of spin-1 triplet-pair states is particularly crucial in determining η, we investigate it in rubrene using pump-push-probe spectroscopy and find additional evidence for the recently reported high-level reverse intersystem crossing channel. We incorporate all of these factors into an updated model framework with which to understand the spin statistics of TTA-UC and use it to rationalize the differences in reported values of η among different common annihilator systems. We suggest that harnessing high-level reverse intersystem crossing channels in new annihilator molecules may be a highly promising strategy to exceed any spin statistical limit.
Collapse
Affiliation(s)
- David G. Bossanyi
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Yoichi Sasaki
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shuangqing Wang
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Dimitri Chekulaev
- Department
of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Nobuo Kimizuka
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jenny Clark
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| |
Collapse
|
19
|
Wang Z, Liu H, Xie X, Zhang C, Wang R, Chen L, Xu Y, Ma H, Fang W, Yao Y, Sang H, Wang X, Li X, Xiao M. Free-triplet generation with improved efficiency in tetracene oligomers through spatially separated triplet pair states. Nat Chem 2021; 13:559-567. [PMID: 33833447 DOI: 10.1038/s41557-021-00665-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Singlet fission (SF) can potentially boost the efficiency of solar energy conversion by converting a singlet exciton (S1) into two free triplets (T1 + T1) through an intermediate state of a correlated triplet pair (TT). Although efficient TT generation has been recently realized in many intramolecular SF materials, their potential applications have been hindered by the poor efficiency of TT dissociation. Here we demonstrate that this can be overcome by employing a spatially separated 1(T…T) state with weak intertriplet coupling in tetracene oligomers with three or more chromophores. By using transient magneto-optical spectroscopic methods, we show that free-triplet generation can be markedly enhanced through the SF pathway that involves the spatially separated 1(T…T) state rather than the pathway mediated by the spatially adjacent TT state, leading to a marked improvement in free-triplet generation with an efficiency increase from 21% for the dimer to 85% (124%) for the trimer (tetramer).
Collapse
Affiliation(s)
- Zhiwei Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Heyuan Liu
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Xiaoyu Xie
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Weihai Fang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.,Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Department of Chemistry, Beijing Normal University, Beijing, China
| | - Yao Yao
- Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China
| | - Hai Sang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiyou Li
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, China.
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. .,Department of Physics, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
20
|
Budden PJ, Weiss LR, Müller M, Panjwani NA, Dowland S, Allardice JR, Ganschow M, Freudenberg J, Behrends J, Bunz UHF, Friend RH. Singlet exciton fission in a modified acene with improved stability and high photoluminescence yield. Nat Commun 2021; 12:1527. [PMID: 33750774 PMCID: PMC7943798 DOI: 10.1038/s41467-021-21719-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
We report a fully efficient singlet exciton fission material with high ambient chemical stability. 10,21-Bis(triisopropylsilylethynyl)tetrabenzo[a,c,l,n]pentacene (TTBP) combines an acene core with triphenylene wings that protect the formal pentacene from chemical degradation. The electronic energy levels position singlet exciton fission to be endothermic, similar to tetracene despite the triphenylenes. TTBP exhibits rapid early time singlet fission with quantitative yield of triplet pairs within 100 ps followed by thermally activated separation to free triplet excitons over 65 ns. TTBP exhibits high photoluminescence quantum efficiency, close to 100% when dilute and 20% for solid films, arising from triplet-triplet annihilation. In using such a system for exciton multiplication in a solar cell, maximum thermodynamic performance requires radiative decay of the triplet population, observed here as emission from the singlet formed by recombination of triplet pairs. Combining chemical stabilisation with efficient endothermic fission provides a promising avenue towards singlet fission materials for use in photovoltaics. Designing optimised molecules for singlet fission is crucial to improve the efficiency of solar cells beyond its theoretical limit. Here, the authors investigate pentacene derivative TTBP, which exhibits high stability and luminescence yield, and find it highly suitable for exciton multiplication purposes.
Collapse
Affiliation(s)
- Peter J Budden
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Leah R Weiss
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, UK.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Matthias Müller
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg, Germany
| | - Naitik A Panjwani
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
| | - Simon Dowland
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Jesse R Allardice
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Michael Ganschow
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg, Germany
| | - Jan Behrends
- Berlin Joint EPR Lab, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg, Germany.
| | - Richard H Friend
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge, UK.
| |
Collapse
|
21
|
Abstract
Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.
Collapse
Affiliation(s)
- Tobias Ullrich
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department für Chemie und Pharmazie, Egerlandstr. 1-3, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
22
|
Ribson RD, Choi G, Hadt RG, Agapie T. Controlling Singlet Fission with Coordination Chemistry-Induced Assembly of Dipyridyl Pyrrole Bipentacenes. ACS CENTRAL SCIENCE 2020; 6:2088-2096. [PMID: 33274285 PMCID: PMC7706079 DOI: 10.1021/acscentsci.0c01044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 05/28/2023]
Abstract
Singlet fission has the potential to surpass current efficiency limits in next-generation photovoltaics and to find use in quantum information science. Despite the demonstration of singlet fission in various materials, there is still a great need for fundamental design principles that allow for tuning of photophysical parameters, including the rate of fission and triplet lifetimes. Here, we describe the synthesis and photophysical characterization of a novel bipentacene dipyridyl pyrrole (HDPP-Pent) and its Li- and K-coordinated derivatives. HDPP-Pent undergoes singlet fission at roughly 50% efficiency (τSF = 730 ps), whereas coordination in the Li complex induces significant structural changes to generate a dimer, resulting in a 7-fold rate increase (τSF = 100 ps) and more efficient singlet fission with virtually no sacrifice in triplet lifetime. We thus illustrate novel design principles to produce favorable singlet fission properties, wherein through-space control can be achieved via coordination chemistry-induced multipentacene assembly.
Collapse
Affiliation(s)
- Ryan D. Ribson
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Gyeongshin Choi
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Taffet EJ, Beljonne D, Scholes GD. Overlap-Driven Splitting of Triplet Pairs in Singlet Fission. J Am Chem Soc 2020; 142:20040-20047. [PMID: 33190497 DOI: 10.1021/jacs.0c09276] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We analyze correlated-triplet-pair (TT) singlet-fission intermediates toward two-triplet separation (T...T) using spin-state-averaged density matrix renormalization group electronic-structure calculations. Specifically, we compare the triplet-triplet exchange (J) for tetracene dimers, bipentacene, a subunit of the benzodithiophene-thiophene dioxide polymer, and a carotenoid (neurosporene). Exchange-split energy gaps of J and 3J separate a singlet from a triplet and a singlet from a quintet, respectively. We draw two new insights: (a) the canonical tetracene singlet-fission unit cell supports precisely three low-lying TT intermediates with order-of-magnitude differences in J, and (b) the separable TT intermediate in carotenoids emanates from a pair of excitations to the second triplet state. Therefore, unlike with tetracenes, carotenoid fission requires above-gap excitations. In all cases, the distinguishability of the molecular triplets-that is, the extent of orbital overlap-determines the splitting within the spin manifold of TT states. Consequently, J represents a spectroscopic observable that distnguishes the resemblance between TT intermediates and the T...T product.
Collapse
Affiliation(s)
- Elliot J Taffet
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - David Beljonne
- Department of Chemistry, University of Mons, 7000 Mons, Belgium
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
24
|
Walwark DJ, Grey JK. Steady-State Fluorescence Signatures of Intramolecular Singlet Fission from Stochastic Predictions. J Phys Chem A 2020; 124:8918-8930. [PMID: 33052044 DOI: 10.1021/acs.jpca.0c06966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advent of new multichromophoric systems capable of undergoing efficient intramolecular singlet fission (iSF) has greatly expanded the range of possible motifs for multiexciton generation approaches for organic light energy harvesting materials. Transient absorption (TA) spectroscopic probes are typically used to characterize singlet fission processes that may place limitations on sensitivity and time resolution on scales comparable to the full lifespan of spin-forbidden triplets and interactions. Here, we investigate the ability of fluorescence-based spectroscopic probes to detect iSF activity in isolated dyads based on large substituted conjugated acenes (e.g., tetracene and pentacene derivatives). Photophysical models are simulated from several iSF-active dyad systems reported in the literature using a stochastic approach to assess the sensitivity of steady-state fluorescence to the presence of triplet excitons. The results demonstrate large fluctuations in expected fluorescence yields with varying excitation rate constants for systems with ΦiSF > 0.5 (assuming weak interchromophore coupling). Exciton-exciton interactions are also investigated, and we further demonstrate how treating iSF dyads stochastically (i.e., finite number of chromophores) accentuates dependences of photophysical yields with excitation rates. Last, our approach reveals the potential ability of single molecule level fluorescence spectroscopy to detect iSF activity that can aid efforts to design and optimize candidate iSF systems.
Collapse
Affiliation(s)
- David J Walwark
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - John K Grey
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
25
|
Yunusova KM, Bayliss SL, Chanelière T, Derkach V, Anthony JE, Chepelianskii AD, Weiss LR. Spin Fine Structure Reveals Biexciton Geometry in an Organic Semiconductor. PHYSICAL REVIEW LETTERS 2020; 125:097402. [PMID: 32915607 DOI: 10.1103/physrevlett.125.097402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
In organic semiconductors, biexcitons are key intermediates in carrier multiplication and exciton annihilation. Their local geometry governs their electronic properties and yet has been challenging to determine. Here, we access the structure of the recently discovered S=2 quintet biexciton state in an organic semiconductor using broadband optically detected magnetic resonance. We correlate the experimentally extracted spin structure with the molecular crystal geometry to identify the specific molecular pairings on which biexciton states reside.
Collapse
Affiliation(s)
- K M Yunusova
- LPS, University Paris-Sud, CNRS, UMR 8502, F-91405 Orsay, France
| | - S L Bayliss
- LPS, University Paris-Sud, CNRS, UMR 8502, F-91405 Orsay, France
| | - T Chanelière
- Laboratoire Aimé Cotton, CNRS, University Paris-Sud, ENS-Cachan, Université Paris-Saclay, 91405 Orsay, France
- University Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - V Derkach
- O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine 12, Academika Proskury Street, Kharkov 61085, Ukraine
| | - J E Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | - L R Weiss
- Cavendish Laboratory, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
26
|
Ring currents modulate optoelectronic properties of aromatic chromophores at 25 T. Proc Natl Acad Sci U S A 2020; 117:11289-11298. [PMID: 32385159 DOI: 10.1073/pnas.1918148117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The properties of organic molecules can be influenced by magnetic fields, and these magnetic field effects are diverse. They range from inducing nuclear Zeeman splitting for structural determination in NMR spectroscopy to polaron Zeeman splitting organic spintronics and organic magnetoresistance. A pervasive magnetic field effect on an aromatic molecule is the aromatic ring current, which can be thought of as an induction of a circular current of π-electrons upon the application of a magnetic field perpendicular to the π-system of the molecule. While in NMR spectroscopy the effects of ring currents on the chemical shifts of nearby protons are relatively well understood, and even predictable, the consequences of these modified electronic states on the spectroscopy of molecules has remained unknown. In this work, we find that photophysical properties of model phthalocyanine compounds and their aggregates display clear magnetic field dependences up to 25 T, with the aggregates showing more drastic magnetic field sensitivities depending on the intermolecular interactions with the amplification of ring currents in stacked aggregates. These observations are consistent with ring currents measured in NMR spectroscopy and simulated in time-dependent density functional theory calculations of magnetic field-dependent phthalocyanine monomer and dimer absorption spectra. We propose that ring currents in organic semiconductors, which commonly comprise aromatic moieties, may present new opportunities for the understanding and exploitation of combined optical, electronic, and magnetic properties.
Collapse
|
27
|
Taffet EJ, Fassioli F, Toa ZSD, Beljonne D, Scholes GD. Uncovering dark multichromophoric states in Peridinin-Chlorophyll-Protein. J R Soc Interface 2020; 17:20190736. [PMID: 32183641 PMCID: PMC7115236 DOI: 10.1098/rsif.2019.0736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
It has long been recognized that visible light harvesting in Peridinin-Chlorophyll-Protein is driven by the interplay between the bright (S2) and dark (S1) states of peridinin (carotenoid), along with the lowest-lying bright (Qy) and dark (Qx) states of chlorophyll-a. Here, we analyse a chromophore cluster in the crystal structure of Peridinin-Chlorophyll-Protein, in particular, a peridinin-peridinin and a peridinin-chlorophyll-a dimer, and present quantum chemical evidence for excited states that exist beyond the confines of single peridinin and chlorophyll chromophores. These dark multichromophoric states, emanating from the intermolecular packing native to Peridinin-Chlorophyll-Protein, include a correlated triplet pair comprising neighbouring peridinin excitations and a charge-transfer interaction between peridinin and the adjacent chlorophyll-a. We surmise that such dark multichromophoric states may explain two spectral mysteries in light-harvesting pigments: the sub-200-fs singlet fission observed in carotenoid aggregates, and the sub-200-fs chlorophyll-a hole generation in Peridinin-Chlorophyll-Protein.
Collapse
Affiliation(s)
- Elliot J. Taffet
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08540, USA
- Department of Chemistry, University of Mons, 7000 Mons, Belgium
| | - Francesca Fassioli
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08540, USA
- SISSA – Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Zi S. D. Toa
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - David Beljonne
- Department of Chemistry, University of Mons, 7000 Mons, Belgium
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08540, USA
| |
Collapse
|
28
|
Yago T. Low magnetic field effects on triplet pair annihilations at canonical orientations. J Chem Phys 2019; 151:214501. [PMID: 31822079 DOI: 10.1063/1.5127904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using the density operator formalism, a simple analytical model is developed to study low magnetic field effects on triplet pair annihilations in organic solids. Analysis is restricted to canonical orientations where two identical triplet molecules have the same orientation and the direction of the external magnetic field is parallel to one of the principle axes of the dipolar coupling tensor for a triplet. The analytical solution reveals that the low magnetic field effect in the triplet pair arises from the anisotropic dipole-dipole coupling in a triplet. In the presence of the dipole-dipole coupling, the spin quantization axis for each triplet gradually changes with the increase of the external magnetic field from zero field to high field. The low magnetic field effect reaches a maximum when the Zeeman splitting between the spin states matches a dipole-dipole coupling component orthogonal to the external magnetic field direction. The result is also discussed with the low magnetic field effect in the radical pair with one isotropic hyperfine coupling.
Collapse
Affiliation(s)
- T Yago
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
29
|
Polak D, Jayaprakash R, Lyons TP, Martínez-Martínez LÁ, Leventis A, Fallon KJ, Coulthard H, Bossanyi DG, Georgiou K, Petty Ii AJ, Anthony J, Bronstein H, Yuen-Zhou J, Tartakovskii AI, Clark J, Musser AJ. Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities. Chem Sci 2019; 11:343-354. [PMID: 32190258 PMCID: PMC7067247 DOI: 10.1039/c9sc04950a] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023] Open
Abstract
Exciton-polaritons are quasiparticles with mixed photon and exciton character with the potential to modify chemical properties of materials. Here, they are used to provide dark, high-spin triplet-pair states a new pathway to emit light.
Exciton-polaritons are quasiparticles with mixed photon and exciton character that demonstrate rich quantum phenomena, novel optoelectronic devices and the potential to modify chemical properties of materials. Organic materials are of current interest as active materials for their ability to sustain exciton-polaritons even at room temperature. However, within organic optoelectronic devices, it is often the ‘dark’ spin-1 triplet excitons that dominate operation. These triplets have been largely ignored in treatments of polaritons, which instead only consider the role of states that directly and strongly interact with light. Here we demonstrate that these ‘dark’ states can also play a major role in polariton dynamics, observing polariton population transferred directly from the triplet manifold via triplet–triplet annihilation. The process leads to polariton emission that is longer-lived (>μs) even than exciton emission in bare films. This enhancement is directly linked to spin-2 triplet-pair states, which are formed in films and microcavities by singlet fission or triplet–triplet annihilation. Such high-spin multiexciton states are generally non-emissive and cannot directly couple to light, yet the formation of polaritons creates for them entirely new radiative decay pathways. This is possible due to weak mixing between singlet and triplet-pair manifolds, which – in the strong coupling regime – enables direct interaction between the bright polariton states and those that are formally non-emissive. Our observations offer the enticing possibility of using polaritons to harvest or manipulate population from states that are formally dark.
Collapse
Affiliation(s)
- Daniel Polak
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , UK .
| | - Rahul Jayaprakash
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , UK .
| | - Thomas P Lyons
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , UK .
| | - Luis Á Martínez-Martínez
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , USA
| | - Anastasia Leventis
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Kealan J Fallon
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Harriet Coulthard
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , UK .
| | - David G Bossanyi
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , UK .
| | - Kyriacos Georgiou
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , UK .
| | - Anthony J Petty Ii
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , UK .
| | - John Anthony
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , USA
| | - Hugo Bronstein
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , USA
| | - Alexander I Tartakovskii
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , UK .
| | - Jenny Clark
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , UK .
| | - Andrew J Musser
- Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road , Sheffield S3 7RH , UK . .,Department of Chemistry and Biochemistry , Cornell University , Ithaca , New York 14853 , USA .
| |
Collapse
|
30
|
Felter K, Grozema FC. Singlet Fission in Crystalline Organic Materials: Recent Insights and Future Directions. J Phys Chem Lett 2019; 10:7208-7214. [PMID: 31689105 PMCID: PMC6875870 DOI: 10.1021/acs.jpclett.9b00754] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/05/2019] [Indexed: 05/20/2023]
Abstract
Singlet fission (SF) involves the conversion of one excited singlet state into two lower excited triplet states and has received considerable renewed attention over the past decade. This Perspective highlights recent developments and emerging concepts of SF in solid-state crystalline materials. Recent experiments showed the crucial role of vibrational modes in speeding up SF, and theoretical modeling has started to define an optimal energetic landscape and intermolecular orientation of chromophores for highly efficient singlet fission. A critical analysis of these developments leads to directions for future research to eventually find singlet fission chromophores with excellent optoelectronic properties.
Collapse
Affiliation(s)
- Kevin
M. Felter
- Optoelectronic Materials
Section, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HS Delft, The Netherlands
| | - Ferdinand C. Grozema
- Optoelectronic Materials
Section, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HS Delft, The Netherlands
| |
Collapse
|
31
|
Wang Z, Zhang C, Wang R, Wang G, Wang X, Xiao M. Weakly coupled triplet pair states probed by quantum beating in delayed fluorescence in tetracene crystals. J Chem Phys 2019; 151:134309. [DOI: 10.1063/1.5110188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhiwei Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Guodong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
32
|
Sanders SN, Pun AB, Parenti KR, Kumarasamy E, Yablon LM, Sfeir MY, Campos LM. Understanding the Bound Triplet-Pair State in Singlet Fission. Chem 2019. [DOI: 10.1016/j.chempr.2019.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Abstract
Entanglement of states is one of the most surprising and counterintuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic semiconductor materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which consists of a pair of localized triplet excitons coupled into an overall spin-0, -1, or -2 configuration. The most widely analyzed of these is the spin-0 pair, denoted 1(TT), which was initially invoked in the 1960s to explain delayed fluorescence in acene films. It is considered an essential gateway state for triplet-triplet annihilation and the reverse process, singlet fission, enabling interconversion between one singlet and two triplet excitons without any change in overall spin. This state has returned to the forefront of organic materials research in recent years, thanks both to its central role in the resurgent field of singlet fission and to its implication in a host of exotic new photophysical behaviors. Here we review the properties of triplet-pair states, from first principles to recent experimental results.
Collapse
Affiliation(s)
- Andrew J Musser
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom; ,
| | - Jenny Clark
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom; ,
| |
Collapse
|
34
|
Ye C, Gray V, Mårtensson J, Börjesson K. Annihilation Versus Excimer Formation by the Triplet Pair in Triplet-Triplet Annihilation Photon Upconversion. J Am Chem Soc 2019; 141:9578-9584. [PMID: 31131601 PMCID: PMC6608582 DOI: 10.1021/jacs.9b02302] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The triplet pair is the key functional unit in triplet-triplet annihilation photon upconversion. The same molecular properties that stabilize the triplet pair also allow dimers to form on the singlet energy surface, creating an unwanted energy relaxation pathway. Here we show that excimer formation most likely is a consequence of a triplet dimer formed before the annihilation event. Polarity-dependent studies were performed to elucidate how to promote wanted emission pathways over excimer formation. Furthermore, we show that the yield of triplet-triplet annihilation is increased in higher-viscosity solvents. The results will bring new insights in how to increase the upconversion efficiency and how to avoid energy-loss channels.
Collapse
Affiliation(s)
- Chen Ye
- Department of Chemistry and Molecular Biology , University of Gothenburg , Kemigården 4 , Gothenburg , Sweden
| | - Victor Gray
- Department of Chemical and Biological Engineering/Organic Chemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden.,Department of Chemistry-Ångström Laboratory , Uppsala University , Box 523, 751 20 Uppsala , Sweden.,Department of Physics, Cavendish Laboratory , University of Cambridge , 19 JJ Thompson Avenue , Cambridge CB3 0HE , U.K
| | - Jerker Mårtensson
- Department of Chemical and Biological Engineering/Organic Chemistry , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology , University of Gothenburg , Kemigården 4 , Gothenburg , Sweden
| |
Collapse
|
35
|
Quintet-triplet mixing determines the fate of the multiexciton state produced by singlet fission in a terrylenediimide dimer at room temperature. Proc Natl Acad Sci U S A 2019; 116:8178-8183. [PMID: 30948629 DOI: 10.1073/pnas.1820932116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Singlet fission (SF) is a photophysical process in which one of two adjacent organic molecules absorbs a single photon, resulting in rapid formation of a correlated triplet pair (T1T1) state whose spin dynamics influence the successful generation of uncorrelated triplets (T1). Femtosecond transient visible and near-infrared absorption spectroscopy of a linear terrylene-3,4:11,12-bis(dicarboximide) dimer (TDI2), in which the two TDI molecules are directly linked at one of their imide positions, reveals ultrafast formation of the (T1T1) state. The spin dynamics of the (T1T1) state and the processes leading to uncoupled triplets (T1) were studied at room temperature for TDI2 aligned in 4-cyano-4'-pentylbiphenyl (5CB), a nematic liquid crystal. Time-resolved electron paramagnetic resonance spectroscopy shows that the (T1T1) state has mixed 5(T1T1) and 3(T1T1) character at room temperature. This mixing is magnetic field dependent, resulting in a maximum triplet yield at ∼200 mT. The accessibility of the 3(T1T1) state opens a pathway for triplet-triplet annihilation that produces a single uncorrelated T1 state. The presence of the 5(T1T1) state at room temperature and its relationship with the 1(T1T1) and 3(T1T1) states emphasize that understanding the relationship among different (T1T1) spin states is critical for ensuring high-yield T1 formation from singlet fission.
Collapse
|