1
|
Lv KJ, Yu SZ, Wang Y, Zhang SR, Li WY, Hou J, Tan DL, Guo H, Hou YZ. Cancer-associated fibroblasts promote the progression and chemoresistance of HCC by inducing IGF-1. Cell Signal 2024; 124:111378. [PMID: 39241901 DOI: 10.1016/j.cellsig.2024.111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Crosstalk between cancer-associated fibroblasts (CAFs) and tumour cells plays a critical role in multiple cancers, including hepatocellular carcinoma (HCC). CAFs contribute to tumorigenesis by secreting growth factors, modifying the extracellular matrix, supporting angiogenesis, and suppressing antitumor immune responses. However, effect and mechanism of CAF-mediated promotion of hepatocellular carcinoma cells are still unclear. In study, we demonstrated CAFs promoted the proliferation and inhibited the apoptosis of HCC cells by secreting interleukin-6 (IL-6), which induced autocrine insulin-like growth factor-1 (IGF-1) in HCC. IGF-1 promoted the progression and chemoresistance of HCC. IGF-1 receptor (IGF-1R) inhibitor NT157 abrogated the effect of CAF-derived IL-6 and autocrine IGF-1 on HCC. Mechanistic studies revealed that NT157 decreased IL-6-induced IGF-1 expression by inhibiting STAT3 phosphorylation and led to IRS-1 degradation, which mediated the proliferation of tumour by activating AKT signalling in ERK-dependent manner. Inhibition of IGF-1R also enhanced the therapeutic effect of sorafenib on HCC, especially chemoresistant tumours. STATEMENT OF SIGNIFICANCE: Our study showed IL-6-IGF-1 axis played crucial roles in the crosstalk between HCC and CAFs, providing NT157 inhibited of STAT3 and IGF-1R as a new targeted therapy in combination with sorafenib.
Collapse
Affiliation(s)
- Ke-Jia Lv
- Phase I clinical trial research ward, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Si-Zhe Yu
- Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, PR China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xian Jiaotong University, China
| | - Shi-Rong Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wen-Yuan Li
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jia Hou
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - De-Li Tan
- Phase I clinical trial research ward, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Hui Guo
- Phase I clinical trial research ward, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yu-Zhu Hou
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi 710061, China.
| |
Collapse
|
2
|
McDonald CA, Langlois RA. Long Story Short: Understanding Isoform-Specific Expression of FAM13A. Am J Respir Cell Mol Biol 2024; 71:257-258. [PMID: 38696272 PMCID: PMC11376243 DOI: 10.1165/rcmb.2024-0166ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Affiliation(s)
- Cera A McDonald
- Department of Microbiology and Immunology University of Minnesota Minneapolis, Minnesota
| | - Ryan A Langlois
- Department of Microbiology and Immunology University of Minnesota Minneapolis, Minnesota
| |
Collapse
|
3
|
Xu R, Dai Y, Zheng X, Yan Y, He Z, Zhang H, Li H, Chen W. Thromboxane A 2-TP axis promotes adipose tissue macrophages M1 polarization leading to insulin resistance in obesity. Biochem Pharmacol 2023; 210:115465. [PMID: 36849064 DOI: 10.1016/j.bcp.2023.115465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Aberrant arachidonic acid metabolism has been implicated in multiple pathophysiological conditions, and the downstream prostanoids levels are associated with adipocyte dysfunction in obesity. However, the role of thromboxane A2 (TXA2) in obesity remains unclear. We observed that TXA2, through its receptor TP, is a candidate mediator in obesity and metabolic disorders. Obese mice with upregulated TXA2 biosynthesis (TBXAS1) and TXA2 receptor (TP) expression in caused insulin resistance and macrophage M1 polarization in white adipose tissue (WAT), which can be prevented by treatment with aspirin. Mechanistically, the activation of TXA2-TP signaling axis leads to accumulation of protein kinase Cɛ (PKCɛ), thereby enhancing free fat acid (FFA) induced Toll-like receptor4 (TLR4) proinflammatory macrophage activation and the tumor necrosis factor-a (TNF-a) production in adipose tissues. Importantly, TP knockout mice reduced the accumulation of proinflammatory macrophages and adipocyte hypertrophy in WAT. Thus, our findings demonstrate that TXA2-TP axis plays a crucial role in obesity-induced adipose macrophage dysfunction, and rational targeting TXA2 pathway may improve obesity and its associated metabolic disorders in future. In this work, we establish previously unknown role of TXA2-TP axis in WAT. These findings might provide new insight into the molecular pathogenesis of insulin resistance, and indicate rational targeting TXA2 pathway to improve obesity and its associated metabolic disorders in future.
Collapse
Affiliation(s)
- Ruijie Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufeng Dai
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongheng Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhao He
- School of Medicine, Shandong University, Wenhua West Rd. Lixia District, Jinan, Shandong 250012, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haitao Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Exploratory integrated analysis of circulating exosomal miRNA and tissue mRNA related to long-term physical activity for more than 25 years: a bioinformatics study. Eur J Appl Physiol 2023. [PMID: 36867245 DOI: 10.1007/s00421-023-05165-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Physical activity exerts various positive effects on both physical and mental health. Although the comprehensive expression profiles of each microRNA (miRNA) or messenger RNA (mRNA) related to physical activity have already been reported, the association between miRNA and mRNA remains unclear. Here, the integrated study was conducted to comprehensively explore the potential miRNA-mRNA relationships related to long-term physical activity over 25 years. Genome-wide public deposited mRNA expression data of adipose tissue (GSE20536) from six same-sex twin pairs (no information regarding gender) and of skeletal muscle tissue (GSE20319) from ten same-sex twin pairs (four female twin pairs) were used, and differentially expressed mRNAs (DEMs) related to discordant leisure-time physical activity for 30 years were identified using GEO2R. Overlapped mRNAs between DEMs and predicted possible target mRNAs, based on a previous study and TargetScan tool, were then identified and used as long-term physical activity-related mRNAs targeted by miRNAs. In adipose tissue, 36 mRNAs and 42 mRNAs were identified as upregulated or downregulated DEMs, respectively. Based on the results of the overlapped analysis between DEMs and predicted possible target mRNAs targeted by miRNAs, 15 upregulated mRNAs, including NDRG4, FAM13A, ST3GAL6, and AFF1, and 10 downregulated mRNAs, including RPL14, LBP, and GLRX, were identified. In muscle tissue, three downregulated mRNAs overlapped with the predicted target mRNAs targeted by miRNAs. Fifteen upregulated mRNAs in adipose tissue showed a tendency to enrich in "Cardiovascular" in GAD_DISEASE_CLASS category. Potential miRNA-mRNA relationships related to long-term physical activity over 25 years were identified through bioinformatics analysis.
Collapse
|
5
|
James C, Pemberton JM, Navarro P, Knott S. The impact of SNP density on quantitative genetic analyses of body size traits in a wild population of Soay sheep. Ecol Evol 2022; 12:e9639. [PMID: 36532132 PMCID: PMC9750819 DOI: 10.1002/ece3.9639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Understanding the genetic architecture underpinning quantitative traits in wild populations is pivotal to understanding the processes behind trait evolution. The 'animal model' is a popular method for estimating quantitative genetic parameters such as heritability and genetic correlation and involves fitting an estimate of relatedness between individuals in the study population. Genotypes at genome-wide markers can be used to estimate relatedness; however, relatedness estimates vary with marker density, potentially affecting results. Increasing density of markers is also expected to increase the power to detect quantitative trait loci (QTL). In order to understand how the density of genetic markers affects the results of quantitative genetic analyses, we estimated heritability and performed genome-wide association studies (GWAS) on five body size traits in an unmanaged population of Soay sheep using two different SNP densities: a dataset of 37,037 genotyped SNPs and an imputed dataset of 417,373 SNPs. Heritability estimates did not differ between the two SNP densities, but the high-density imputed SNP dataset revealed four new SNP-trait associations that were not found with the lower density dataset, as well as confirming all previously-found QTL. We also demonstrated that fitting fixed and random effects in the same step as performing GWAS is a more powerful approach than pre-correcting for covariates in a separate model.
Collapse
Affiliation(s)
- Caelinn James
- Institute of Ecology and EvolutionSchool of Biological SciencesThe University of EdinburghEdinburghScotland
| | - Josephine M. Pemberton
- Institute of Ecology and EvolutionSchool of Biological SciencesThe University of EdinburghEdinburghScotland
| | - Pau Navarro
- MRC Human Genetics UnitInstitute of Genetics and CancerThe University of EdinburghEdinburghScotland
| | - Sara Knott
- Institute of Ecology and EvolutionSchool of Biological SciencesThe University of EdinburghEdinburghScotland
| |
Collapse
|
6
|
Zhang X, Li TY, Xiao HM, Ehrlich KC, Shen H, Deng HW, Ehrlich M. Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs. Int J Mol Sci 2022; 23:1271. [PMID: 35163195 PMCID: PMC8836216 DOI: 10.3390/ijms23031271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Concern about rising rates of obesity has prompted searches for obesity-related single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS). Identifying plausible regulatory SNPs is very difficult partially because of linkage disequilibrium. We used an unusual epigenomic and transcriptomic analysis of obesity GWAS-derived SNPs in adipose versus heterologous tissues. From 50 GWAS and 121,064 expanded SNPs, we prioritized 47 potential causal regulatory SNPs (Tier-1 SNPs) for 14 gene loci. A detailed examination of seven loci revealed that four (CABLES1, PC, PEMT, and FAM13A) had Tier-1 SNPs positioned so that they could regulate use of alternative transcription start sites, resulting in different polypeptides being generated or different amounts of an intronic microRNA gene being expressed. HOXA11 and long noncoding RNA gene RP11-392O17.1 had Tier-1 SNPs in their 3' or promoter region, respectively, and strong preferences for expression in subcutaneous versus visceral adipose tissue. ZBED3-AS1 had two intragenic Tier-1 SNPs, each of which could contribute to mediating obesity risk through modulating long-distance chromatin interactions. Our approach not only revealed especially credible novel regulatory SNPs, but also helped evaluate previously highlighted obesity GWAS SNPs that were candidates for transcription regulation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Tian-Ying Li
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Kenneth C. Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
- Tulane Cancer Center and Hayward Genetics Center, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Liang C, Wang G, Raza SHA, Wang X, Li B, Zhang W, Zan L. FAM13A promotes proliferation of bovine preadipocytes by targeting Hypoxia-Inducible factor-1 signaling pathway. Adipocyte 2021; 10:546-557. [PMID: 34672860 PMCID: PMC8547837 DOI: 10.1080/21623945.2021.1986327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The family with sequence similarity 13 member A (FAM13A) gene has been discovered in recent years and is related to metabolism. In this study, the function of FAM13A in precursor adipocyte proliferation in Qinchuan cattle was investigated using fluorescence quantitative polymerase chain reaction (PCR), western blotting, 5-ethynyl-2'-deoxyuridine staining, and other tests. FAM13A promoted precursor adipocyte proliferation. To determine the pathway FAM13A was involved in, transcriptome sequencing, fluorescence quantitative PCR, western blotting, and other tests were used, which identified the hypoxia inducible factor-1 (HIF-1) signalling pathway. Finally, cobalt chloride, a chemical mimic of hypoxia, was used to treat precursor adipocytes. mRNA and protein levels of FAM13A were significantly increased after hypoxia. Thus, FAM13A promoted bovine precursor adipocyte proliferation by inhibiting the HIF-1 signalling pathway, whereas chemically induced hypoxia negatively regulated FAM13A expression, regulating cell proliferation.
Collapse
Affiliation(s)
- Chengcheng Liang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Guohua Wang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | | | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
8
|
Wang E, Zhang Y, Ding R, Wang X, Zhang S, Li X. miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia. Mol Med Rep 2021; 25:27. [PMID: 34821370 PMCID: PMC8630822 DOI: 10.3892/mmr.2021.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Aplastic anemia (AA) is a bone marrow failure syndrome with high morbidity and mortality. Bone marrow (BM)-mesenchymal stem cells (MSCs) are the main components of the BM microenvironment, and dysregulation of BM-MSC adipogenic differentiation is a pathologic hallmark of AA. MicroRNAs (miRNAs/miRs) are crucial regulators of multiple pathological processes such as AA. However, the role of miR-30a-5p in the modulation of BM-MSC adipogenic differentiation in AA remains unclear. The present study aimed to explore the effect of miR-30a-5p on AA BM-MSC adipogenic differentiation and the underlying mechanism. The levels of miR-30a-5p expression and family with sequence similarity 13, member A (FAM13A) mRNA expression in BM-MSCs were quantified using reverse transcription-quantitative (RT-q) PCR. The mRNA expression levels of adipogenesis-associated factors [fatty acid-binding protein 4 (FABP4), lipoprotein lipase (LPL), perilipin-1 (PLIN1), peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)] were analyzed using RT-qPCR. Lipid droplet accumulation was evaluated using Oil Red O staining in BM-MSCs. The interaction between miR-30a-5p and the FAM13A 3′-untranslated region was identified by TargetScan, and a dual-luciferase reporter assay was used to confirm the interaction. The expression levels of FAM13A and Wnt/β-catenin pathway-related proteins were examined via western blotting. The results showed that miR-30a-5p expression levels were significantly elevated in BM-MSCs from patients with AA compared with those in control subjects (iron deficiency anemia). miR-30a-5p expression levels were also significantly increased in adipose-induced BM-MSCs in a time-dependent manner. miR-30a-5p significantly promoted AA BM-MSC adipogenic differentiation, and significantly enhanced the mRNA expression levels of FABP4, LPL, PLIN1, PPARγ and C/EBPα as well as lipid droplet accumulation. miR-30a-5p was also demonstrated to target FAM13A in AA BM-MSCs. FAM13A significantly reduced BM-MSC adipogenic differentiation by activating the Wnt/β-catenin signaling pathway. In conclusion, miR-30a-5p was demonstrated to serve a role in AA BM-MSC adipogenic differentiation by targeting the FAM13A/Wnt/β-catenin signaling pathway. These findings suggest that miR-30a-5p may be a therapeutic target for AA.
Collapse
Affiliation(s)
- Enbo Wang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Yunyan Zhang
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Rongmei Ding
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Xiaohua Wang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Shumin Zhang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Xinghua Li
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| |
Collapse
|
9
|
Porro S, Genchi VA, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Dysmetabolic adipose tissue in obesity: morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects. J Endocrinol Invest 2021; 44:921-941. [PMID: 33145726 DOI: 10.1007/s40618-020-01446-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
The way by which subcutaneous adipose tissue (SAT) expands and undergoes remodeling by storing excess lipids through expansion of adipocytes (hypertrophy) or recruitment of new precursor cells (hyperplasia) impacts the risk of developing cardiometabolic and respiratory diseases. In unhealthy obese subjects, insulin resistance, type 2 diabetes, hypertension, and obstructive sleep apnoea are typically associated with pathologic SAT remodeling characterized by adipocyte hypertrophy, as well as chronic inflammation, hypoxia, increased visceral adipose tissue (VAT), and fatty liver. In contrast, metabolically healthy obese individuals are generally associated with SAT development characterized by the presence of smaller and numerous mature adipocytes, and a lower degree of VAT inflammation and ectopic fat accumulation. The remodeling of SAT and VAT is under genetic regulation and influenced by inherent depot-specific differences of adipose tissue-derived stem cells (ASCs). ASCs have multiple functions such as cell renewal, adipogenic capacity, and angiogenic properties, and secrete a variety of bioactive molecules involved in vascular and extracellular matrix remodeling. Understanding the mechanisms regulating the proliferative and adipogenic capacity of ASCs from SAT and VAT in response to excess calorie intake has become a focus of interest over recent decades. Here, we summarize current knowledge about the biological mechanisms able to foster or impair the recruitment and adipogenic differentiation of ASCs during SAT and VAT development, which regulate body fat distribution and favorable or unfavorable metabolic responses.
Collapse
Affiliation(s)
- S Porro
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
10
|
Huang LO, Rauch A, Mazzaferro E, Preuss M, Carobbio S, Bayrak CS, Chami N, Wang Z, Schick UM, Yang N, Itan Y, Vidal-Puig A, den Hoed M, Mandrup S, Kilpeläinen TO, Loos RJF. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat Metab 2021; 3:228-243. [PMID: 33619380 DOI: 10.1038/s42255-021-00346-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023]
Abstract
Obesity is a major risk factor for cardiometabolic diseases. Nevertheless, a substantial proportion of individuals with obesity do not suffer cardiometabolic comorbidities. The mechanisms that uncouple adiposity from its cardiometabolic complications are not fully understood. Here, we identify 62 loci of which the same allele is significantly associated with both higher adiposity and lower cardiometabolic risk. Functional analyses show that the 62 loci are enriched for genes expressed in adipose tissue, and for regulatory variants that influence nearby genes that affect adipocyte differentiation. Genes prioritized in each locus support a key role of fat distribution (FAM13A, IRS1 and PPARG) and adipocyte function (ALDH2, CCDC92, DNAH10, ESR1, FAM13A, MTOR, PIK3R1 and VEGFB). Several additional mechanisms are involved as well, such as insulin-glucose signalling (ADCY5, ARAP1, CREBBP, FAM13A, MTOR, PEPD, RAC1 and SH2B3), energy expenditure and fatty acid oxidation (IGF2BP2), browning of white adipose tissue (CSK, VEGFA, VEGFB and SLC22A3) and inflammation (SH2B3, DAGLB and ADCY9). Some of these genes may represent therapeutic targets to reduce cardiometabolic risk linked to excess adiposity.
Collapse
Affiliation(s)
- Lam O Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Alexander Rauch
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Molecular Endocrinology & Stem Cell Research Unit, Department of Endocrinology and Metabolism, Odense University Hospital and Steno Diabetes Center Odense and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Eugenia Mazzaferro
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Stefania Carobbio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Cigdem S Bayrak
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Nancy Yang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Marcel den Hoed
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Susanne Mandrup
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA.
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA.
| |
Collapse
|
11
|
Adhikara IM, Yagi K, Mayasari DS, Suzuki Y, Ikeda K, Ryanto GRT, Sasaki N, Rikitake Y, Nadanaka S, Kitagawa H, Miyata O, Igarashi M, Hirata KI, Emoto N. Chondroitin Sulfate N-acetylgalactosaminyltransferase-2 Impacts Foam Cell Formation and Atherosclerosis by Altering Macrophage Glycosaminoglycan Chain. Arterioscler Thromb Vasc Biol 2021; 41:1076-1091. [PMID: 33504177 DOI: 10.1161/atvbaha.120.315789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Chondroitin sulfate proteoglycans are the primary constituents of the macrophage glycosaminoglycan and extracellular microenvironment. To examine their potential role in atherogenesis, we investigated the biological importance of one of the chondroitin sulfate glycosaminoglycan biosynthesis gene, ChGn-2 (chondroitin sulfate N-acetylgalactosaminyltransferase-2), in macrophage foam cell formation. Approach and Results: ChGn-2-deficient mice showed decreased and shortened glycosaminoglycans. ChGn-2-/-/LDLr-/- (low-density lipoprotein receptor) mice generated less atherosclerotic plaque after being fed with Western diet despite exhibiting a metabolic phenotype similar to that of the ChGn-2+/+/LDLr-/- littermates. We demonstrated that in macrophages, ChGn-2 expression was upregulated in the presence of oxLDL (oxidized LDL), and glycosaminoglycan was substantially increased. Foam cell formation was significantly altered by ChGn-2 in both mouse peritoneal macrophages and the RAW264.7 macrophage cell line. Mechanistically, ChGn-2 enhanced oxLDL binding on the cell surface, and as a consequence, CD36-an important macrophage membrane scavenger receptor-was differentially regulated. CONCLUSIONS ChGn-2 alteration on macrophages conceivably influences LDL accumulation and subsequently accelerates plaque formation. These results collectively suggest that ChGn-2 is a novel therapeutic target amenable to clinical translation in the future. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Imam Manggalya Adhikara
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| | - Keiko Yagi
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan
| | - Dyah Samti Mayasari
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| | - Yoko Suzuki
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan
| | - Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics (N.S., Y.R.), Kobe Pharmaceutical University, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics (N.S., Y.R.), Kobe Pharmaceutical University, Japan
| | - Satomi Nadanaka
- Laboratory of Biochemistry (S.N., H.K.), Kobe Pharmaceutical University, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry (S.N., H.K.), Kobe Pharmaceutical University, Japan
| | - Okiko Miyata
- Laboratory of Medicinal Chemistry (O.M.), Kobe Pharmaceutical University, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Japan (M.I.)
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| |
Collapse
|
12
|
Ryanto GRT, Yorifuji K, Ikeda K, Emoto N. Chondroitin sulfate mediates liver responses to injury induced by dual endothelin receptor inhibition. Can J Physiol Pharmacol 2020; 98:618-624. [PMID: 32315540 DOI: 10.1139/cjpp-2019-0649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although dual endothelin receptor antagonists (ERAs) show great promise for treating various conditions, their propensity to induce liver injury limits their clinical usage. Inflammation and fibrosis are important processes in liver responses to injury and it has been suggested that they and dual ERA-induced liver injury are mediated by the proteoglycan component chondroitin sulfate (CS), which is synthesized by CHST3 and CHST13. In this study, we investigated whether dual ER inhibition in the liver could alter CHST3 and CHST13 expression and thus CS production and whether liver CS content could prevent inflammatory and fibrosis responses after liver injury. We observed increased CHST3 and CHST13 expression after liver injury in bile duct ligated mice and histologically confirmed abundant CS deposition in the injured liver. Moreover, treating Hep3B cells with a dual ERA mimic significantly increased CHST3 and CHST13 expression, inflammatory cytokine levels, and glycosaminoglycan deposition. Furthermore, pro-inflammatory and pro-fibrotic markers were observed after dual ERA treatment, while treatment with CS-degrading chondroitinase ABC was able to successfully reverse these phenotypes. These observations suggest that CHST3- and CHST13-induced CS production can mediate liver injury responses caused by dual ER inhibition and thus could be an alternative pathway for treating ERA-induced liver injury.
Collapse
Affiliation(s)
- Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| | - Kennosuke Yorifuji
- The Shinko Institute for Medical Research, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
- Department of Pharmacy, Shinko Hospital, 1-4-47, Wakinohama, Chuo, Kobe 651-0072, Japan
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 650-0017, Japan
| |
Collapse
|
13
|
Lin X, Liou YH, Li Y, Gong L, Li Y, Hao Y, Pham B, Xu S, Jiang Z, Li L, Peng Y, Qiao D, Lin H, Liu P, Wei W, Zhang G, Lee CH, Zhou X. FAM13A Represses AMPK Activity and Regulates Hepatic Glucose and Lipid Metabolism. iScience 2020; 23:100928. [PMID: 32151973 PMCID: PMC7063182 DOI: 10.1016/j.isci.2020.100928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity commonly co-exists with fatty liver disease with increasing health burden worldwide. Family with Sequence Similarity 13, Member A (FAM13A) has been associated with lipid levels and fat mass by genome-wide association studies (GWAS). However, the function of FAM13A in maintaining metabolic homeostasis in vivo remains unclear. Here, we demonstrated that rs2276936 in this locus has allelic-enhancer activity in massively parallel reporter assays (MPRA) and reporter assay. The DNA region containing rs2276936 regulates expression of endogenous FAM13A in HepG2 cells. In vivo, Fam13a-/- mice are protected from high-fat diet (HFD)-induced fatty liver accompanied by increased insulin sensitivity and reduced glucose production in liver. Mechanistically, loss of Fam13a led to the activation of AMP-activated protein kinase (AMPK) and increased mitochondrial respiration in primary hepatocytes. These findings demonstrate that FAM13A mediates obesity-related dysregulation of lipid and glucose homeostasis. Targeting FAM13A might be a promising treatment of obesity and fatty liver disease.
Collapse
Affiliation(s)
- Xin Lin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Yae-Huei Liou
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yujun Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Lu Gong
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuan Hao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Pham
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shuang Xu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhiqiang Jiang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lijia Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yifan Peng
- Department of Chemical and Biological Engineering, Tufts University, Boston, MA 02155, USA
| | - Dandi Qiao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina, Chapel Hill, NC 27514, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Guo Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Fathzadeh M, Li J, Rao A, Cook N, Chennamsetty I, Seldin M, Zhou X, Sangwung P, Gloudemans MJ, Keller M, Attie A, Yang J, Wabitsch M, Carcamo-Orive I, Tada Y, Lusis AJ, Shin MK, Molony CM, McLaughlin T, Reaven G, Montgomery SB, Reilly D, Quertermous T, Ingelsson E, Knowles JW. FAM13A affects body fat distribution and adipocyte function. Nat Commun 2020; 11:1465. [PMID: 32193374 PMCID: PMC7081215 DOI: 10.1038/s41467-020-15291-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic variation in the FAM13A (Family with Sequence Similarity 13 Member A) locus has been associated with several glycemic and metabolic traits in genome-wide association studies (GWAS). Here, we demonstrate that in humans, FAM13A alleles are associated with increased FAM13A expression in subcutaneous adipose tissue (SAT) and an insulin resistance-related phenotype (e.g. higher waist-to-hip ratio and fasting insulin levels, but lower body fat). In human adipocyte models, knockdown of FAM13A in preadipocytes accelerates adipocyte differentiation. In mice, Fam13a knockout (KO) have a lower visceral to subcutaneous fat (VAT/SAT) ratio after high-fat diet challenge, in comparison to their wild-type counterparts. Subcutaneous adipocytes in KO mice show a size distribution shift toward an increased number of smaller adipocytes, along with an improved adipogenic potential. Our results indicate that GWAS-associated variants within the FAM13A locus alter adipose FAM13A expression, which in turn, regulates adipocyte differentiation and contribute to changes in body fat distribution.
Collapse
Affiliation(s)
- Mohsen Fathzadeh
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jiehan Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Abhiram Rao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Bioengineering Department, School of Engineering and Medicine, Stanford, CA, USA
| | - Naomi Cook
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Indumathi Chennamsetty
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Marcus Seldin
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Xiang Zhou
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Panjamaporn Sangwung
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | | | - Mark Keller
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Allan Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Ivan Carcamo-Orive
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Yuko Tada
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Myung Kyun Shin
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Cliona M Molony
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Tracey McLaughlin
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald Reaven
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Stephen B Montgomery
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, California, CA, USA
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, California, CA, USA
| | - Dermot Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Rinastiti P, Ikeda K, Rahardini EP, Miyagawa K, Tamada N, Kuribayashi Y, Hirata KI, Emoto N. Loss of family with sequence similarity 13, member A exacerbates pulmonary hypertension through accelerating endothelial-to-mesenchymal transition. PLoS One 2020; 15:e0226049. [PMID: 32053709 PMCID: PMC7018082 DOI: 10.1371/journal.pone.0226049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension is a progressive lung disease with poor prognosis due to the consequent right heart ventricular failure. Pulmonary artery remodeling and dysfunction are culprits for pathologically increased pulmonary arterial pressure, but their underlying molecular mechanisms remain to be elucidated. Previous genome-wide association studies revealed a significant correlation between the genetic locus of family with sequence similarity 13, member A (FAM13A) and various lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis; however whether FAM13A is also involved in the pathogenesis of pulmonary hypertension remained unknown. Here, we identified a significant role of FAM13A in the development of pulmonary hypertension. FAM13A expression was reduced in the lungs of mice with hypoxia-induced pulmonary hypertension. We identified that FAM13A was expressed in lung vasculatures, especially in endothelial cells. Genetic loss of FAM13A exacerbated pulmonary hypertension in mice exposed to chronic hypoxia in association with deteriorated pulmonary artery remodeling. Mechanistically, FAM13A decelerated endothelial-to-mesenchymal transition potentially by inhibiting β-catenin signaling in pulmonary artery endothelial cells. Our data revealed a protective role of FAM13A in the development of pulmonary hypertension, and therefore increasing and/or preserving FAM13A expression in pulmonary artery endothelial cells is an attractive therapeutic strategy for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Pranindya Rinastiti
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- * E-mail:
| | - Elda Putri Rahardini
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuya Miyagawa
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Tamada
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuko Kuribayashi
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Ken-ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
16
|
Barinda AJ, Ikeda K, Nugroho DB, Wardhana DA, Sasaki N, Honda S, Urata R, Matoba S, Hirata KI, Emoto N. Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype. Nat Commun 2020; 11:481. [PMID: 31980643 PMCID: PMC6981212 DOI: 10.1038/s41467-020-14387-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
Vascular senescence is thought to play a crucial role in an ageing-associated decline of organ functions; however, whether vascular senescence is causally implicated in age-related disease remains unclear. Here we show that endothelial cell (EC) senescence induces metabolic disorders through the senescence-associated secretory phenotype. Senescence-messaging secretomes from senescent ECs induced a senescence-like state and reduced insulin receptor substrate-1 in adipocytes, which thereby impaired insulin signaling. We generated EC-specific progeroid mice that overexpressed the dominant negative form of telomeric repeat-binding factor 2 under the control of the Tie2 promoter. EC-specific progeria impaired systemic metabolic health in mice in association with adipose tissue dysfunction even while consuming normal chow. Notably, shared circulation with EC-specific progeroid mice by parabiosis sufficiently transmitted the metabolic disorders into wild-type recipient mice. Our data provides direct evidence that EC senescence impairs systemic metabolic health, and thus establishes EC senescence as a bona fide risk for age-related metabolic disease.
Collapse
Affiliation(s)
- Agian Jeffilano Barinda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.,Department of Pharmacology and Therapeutic, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta, 10430, Indonesia
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.
| | - Dhite Bayu Nugroho
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Donytra Arby Wardhana
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Sakiko Honda
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Ryota Urata
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, 6500017, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, 6500017, Japan
| |
Collapse
|
17
|
RAHARDINI ELDAPUTRI, IKEDA KOJI, NUGROHO DHITEBAYU, HIRATA KENICHI, EMOTO NORIAKI. Loss of Family with Sequence Similarity 13, Member A Exacerbates Pulmonary Fibrosis Potentially by Promoting Epithelial to Mesenchymal Transition. THE KOBE JOURNAL OF MEDICAL SCIENCES 2020; 65:E100-E109. [PMID: 32029695 PMCID: PMC7012324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease with poor prognosis due to limited clinical treatment options. IPF is characterized by the augmented deposition of extracellular matrix driven by myofibroblasts, and the epithelial-mesenchymal transition (EMT) has been known to play an essential role in the mechanism of pulmonary fibrosis. Previous genome-wide association study identified Fam13a as one of genes that showed genetic link with IPF and chronic obstructive pulmonary disease. Here, we analyzed the role of Fam13a in the pathogenesis of pulmonary fibrosis using Fam13a-deficient mice. We found that Fam13a was down-regulated in mouse lungs of bleomycin-induced pulmonary fibrosis model. Of note, genetic deletion of Fam13a exacerbated the lung fibrosis induced by bleomycin in association with enhanced EMT in mice. Moreover, silencing of Fam13a accelerated EMT induced by TGF-β and TNF-α in alveolar epithelial cells, accompanied by increased active β-catenin and its nuclear accumulation. Our data revealed a crucial role of Fam13a in the development of pulmonary fibrosis potentially through inhibiting EMT, and thus Fam13a has a therapeutic potential in the treatment of IPF.
Collapse
Affiliation(s)
- ELDA PUTRI RAHARDINI
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 6500017, Japan
| | - KOJI IKEDA
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - DHITE BAYU NUGROHO
- Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Jl.Farmako Sekip Utara,Yogyakarta 55281, Indonesia
| | - KEN-ICHI HIRATA
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 6500017, Japan
| | - NORIAKI EMOTO
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe 6500017, Japan
| |
Collapse
|
18
|
Liang C, Li A, Raza SHA, Khan R, Wang X, Wang S, Wang G, Zhang Y, Zan L. The Molecular Characteristics of the FAM13A Gene and the Role of Transcription Factors ACSL1 and ASCL2 in Its Core Promoter Region. Genes (Basel) 2019; 10:genes10120981. [PMID: 31795267 PMCID: PMC6947481 DOI: 10.3390/genes10120981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
The gene family with sequence similarity 13 member A (FAM13A) has recently been identified as a marker gene in insulin sensitivity and lipolysis. In this study, we first analyzed the expression patterns of this gene in different tissues of adult cattle and then constructed a phylogenetic tree based on the FAM13A amino acid sequence. This showed that subcutaneous adipose tissue had the highest expression in all tissues except lung tissue. Then we summarized the gene structure. The promoter region sequence of the gene was successfully amplified, and the -241/+54 region has been identified as the core promoter region. The core promoter region was determined by the unidirectional deletion of the 5' flanking promoter region of the FAM13A gene. Based on the bioinformatics analysis, we examined the dual luciferase activity of the vector constructed by the mutation site, and the transcription factors ACSL1 and ASCL2 were found as transcriptional regulators of FAM13A. Moreover, electrophoretic mobility shift assay (EMSA) further validated the regulatory role of ACSL1 and ASCL2 in the regulation of FAM13A. ACSL1 and ASCL2 were finally identified as activating transcription factors. Our results provide a basis for the function of the FAM13A gene in bovine adipocytes in order to improve the deposition of fat deposition in beef cattle muscle.
Collapse
Affiliation(s)
- Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Guohua Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (C.L.); (A.L.); (S.H.A.R.); (R.K.); (X.W.); (S.W.); (G.W.); (Y.Z.)
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
- Correspondence: ; Tel.: +86-2987-091-923
| |
Collapse
|
19
|
Ji Y, Yiorkas AM, Frau F, Mook-Kanamori D, Staiger H, Thomas EL, Atabaki-Pasdar N, Campbell A, Tyrrell J, Jones SE, Beaumont RN, Wood AR, Tuke MA, Ruth KS, Mahajan A, Murray A, Freathy RM, Weedon MN, Hattersley AT, Hayward C, Machann J, Häring HU, Franks P, de Mutsert R, Pearson E, Stefan N, Frayling TM, Allebrandt KV, Bell JD, Blakemore AI, Yaghootkar H. Genome-Wide and Abdominal MRI Data Provide Evidence That a Genetically Determined Favorable Adiposity Phenotype Is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease, and Hypertension. Diabetes 2019; 68:207-219. [PMID: 30352878 DOI: 10.2337/db18-0708] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022]
Abstract
Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such favorable adiposity alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined MRI data with genome-wide association studies of body fat percentage (%) and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity but a favorable metabolic profile. Consistent with previous studies, individuals carrying more favorable adiposity alleles had higher body fat % and higher BMI but lower risk of type 2 diabetes, heart disease, and hypertension. These individuals also had higher subcutaneous fat but lower liver fat and a lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14, and IRS1, whereas the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified favorable adiposity alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglycerides in metabolically low-risk depots.
Collapse
Affiliation(s)
- Yingjie Ji
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Andrianos M Yiorkas
- Section of Investigative Medicine, Imperial College London, London, U.K
- Department of Life Sciences, Brunel University London, Uxbridge, U.K
| | - Francesca Frau
- Translational Medicine and Early Development, TMED Translational Informatics, Sanofi, Frankfurt am Main, Germany
| | - Dennis Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Naeimeh Atabaki-Pasdar
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Archie Campbell
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, U.K
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, U.K
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Samuel E Jones
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Robin N Beaumont
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Marcus A Tuke
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Rachel M Freathy
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, U.K
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Paul Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ewan Pearson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital, Dundee, U.K
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K
| | - Karla V Allebrandt
- Translational Medicine and Early Development, TMED Translational Informatics, Sanofi, Frankfurt am Main, Germany
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Alexandra I Blakemore
- Section of Investigative Medicine, Imperial College London, London, U.K
- Department of Life Sciences, Brunel University London, Uxbridge, U.K
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, U.K.
| |
Collapse
|
20
|
Tang J, Zhou H, Sahay K, Xu W, Yang J, Zhang W, Chen W. Obesity-associated family with sequence similarity 13, member A (FAM13A) is dispensable for adipose development and insulin sensitivity. Int J Obes (Lond) 2018; 43:1269-1280. [PMID: 30301961 PMCID: PMC6456441 DOI: 10.1038/s41366-018-0222-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 11/28/2022]
Abstract
Background Obesity and its associated morbidities represent the major and most rapidly expanding world-wide health epidemic. Recent genome-wide association studies (GWAS) reveal that single nucleotide polymorphism (SNP) variant in the Family with Sequence Similarity 13, Member A (FAM13A) gene is strongly associated with waist–hip ratio (WHR) with adjustment for body mass index (BMI) (WHRadjBMI). However, the function of FAM13A in adipose development and obesity remains largely uncharacterized. Methods The expression of FAM13A in adipose tissue depots were investigated using lean, genetic obese and high fat diet-induced obese (DIO) animal models and during adipocyte differentiation. Stromal vascular cells (SVCs) or 3T3-L1 cells with gain and loss of function of FAM13A were used to determine the involvement of FAM13A in regulating adipocyte differentiation. Adipose development and metabolic homeostasis in Fam13a−/− mice were characterized under normal chow and high fat diet feeding. Results Murine FAM13A expression was nutritionally regulated and dramatically reduced in epididymal and subcutaneous fat in genetic and diet-induced obesity. Its expression was enriched in mature adipocytes and significantly upregulated during murine and human adipogenesis potentially through a peroxisome proliferator-activated receptor-gamma (PPARγ)-dependent mechanism. However, Fam13a−/− mice only exhibited a tendency of higher adiposity and were not protected from DIO and insulin resistance. While Fam13a−/− SVCs maintained normal adipogenesis, overexpression of FAM13A in 3T3-L1 preadipocytes downregulated β-catenin signaling and rendered preadipocytes more susceptible to apoptosis. Moreover, FAM13A overexpression largely blocked adipogenesis induced by a standard hormone cocktail, but adipogenesis can be partially rescued by the addition of PPARγ agonist pioglitazone at an early stage of differentiation. Conclusions Our results suggest that FAM13A is dispensable for adipose development and insulin sensitivity. Yet the expression of FAM13A needs to be tightly controlled in adipose precursor cells for their proper survival and downstream adipogenesis. These data provide novel insights into the link between FAM13A and obesity.
Collapse
Affiliation(s)
- Jiazhen Tang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hongyi Zhou
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Khushboo Sahay
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Wenqiong Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
21
|
Nugroho DB, Ikeda K, Kajimoto K, Hirata KI, Emoto N. Activation of neuregulin-4 in adipocytes improves metabolic health by enhancing adipose tissue angiogenesis. Biochem Biophys Res Commun 2018; 504:427-433. [DOI: 10.1016/j.bbrc.2018.08.197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/16/2023]
|
22
|
Neuregulin-4 is an angiogenic factor that is critically involved in the maintenance of adipose tissue vasculature. Biochem Biophys Res Commun 2018; 503:378-384. [DOI: 10.1016/j.bbrc.2018.06.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 01/30/2023]
|