1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Qu N, Daoud A, Kechele DO, Cleary CE, Múnera JO. Differentiation of human pluripotent stem cells into urothelial organoids via transient activation of WNT signaling. iScience 2025; 28:112398. [PMID: 40322079 PMCID: PMC12049843 DOI: 10.1016/j.isci.2025.112398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/15/2024] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The cloaca is a transient structure that forms in the terminal hindgut giving rise to the rectum dorsally and the urogenital sinus ventrally. Similarly, human hindgut cultures derived from human pluripotent stem cells generate human colonic organoids (HCOs) which also contain co-developing urothelial tissue. In this study, our goal was to identify pathways involved in cloacal patterning and apply this to human hindgut cultures. RNA sequencing (RNA-seq) data comparing dorsal versus ventral cloaca in e10.5 mice revealed that WNT signaling was elevated in the ventral versus dorsal cloaca. Inhibition of WNT signaling in hindgut cultures maintained their differentiation toward colonic organoids. WNT activation promoted differentiation toward human urothelial organoids (HUOs). HUOs contained developmental stage specific cell types present in mammalian urothelial tissue including co-developing mesenchyme. Therefore, HUOs offer a powerful in vitro model for dissecting the regulatory pathways that control the dynamic emergence of stage specific cell types within the human urothelium.
Collapse
Affiliation(s)
- Na Qu
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Abdelkader Daoud
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel O. Kechele
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | - Cassie E. Cleary
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jorge O. Múnera
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Yang R, Wang S, Li Z, Yin C, Huang W, Huang W. Patient-derived organoid co-culture systems as next-generation models for bladder cancer stem cell research. Cancer Lett 2025; 625:217793. [PMID: 40368172 DOI: 10.1016/j.canlet.2025.217793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/10/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
Three-dimensional patient-derived organoids (PDOs) have emerged as a powerful model for investigating the molecular and cellular mechanisms underlying bladder cancer, particularly in the context of cancer stem cells (CSCs) and drug screening. However, a significant limitation of conventional PDOs is the absence of tumor microenvironment (TME), which includes critical stromal, immune and microbial components that influence tumor behavior and treatment response. In this review, we provide a comprehensive overview of the recent advancements in PDO co-culture systems designed to integrate TME elements. Additionally, we emphasize the role of biomedical engineering technologies, such as 3D bioprinting and organoids-on-a-chip, in enhancing the physiological relevance of these models. Furthermore, we explore how bladder PDO co-culture systems are applied in research on bladder CSC characterization, evolution and treatment responses. Finally, we discuss future directions for improving PDO systems to achieve more accurate preclinical modeling and drug discovery.
Collapse
Affiliation(s)
- Ruici Yang
- Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shanzhao Wang
- Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center, Shenzhen University, Shenzhen 518060, China
| | - Zhichao Li
- Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center, Shenzhen University, Shenzhen 518060, China
| | - Cong Yin
- Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center, Shenzhen University, Shenzhen 518060, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiren Huang
- Medical Innovation Technology Transformation Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Institute for Advanced Study, Synthetic Biology Research Center, International Cancer Center, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
4
|
Hamada A, Kita Y, Sakatani T, Nakamura K, Takada H, Ikeuchi R, Koike S, Masuda N, Murakami K, Sano T, Goto T, Saito R, Teramoto Y, Fujimoto M, Hatano N, Kamada M, Ogawa O, Kobayashi T. PTEN loss drives p53 LOH and immune evasion in a novel urothelial organoid model harboring p53 missense mutations. Oncogene 2025; 44:1336-1349. [PMID: 39987272 PMCID: PMC12052601 DOI: 10.1038/s41388-025-03311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/15/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Despite missense mutation accounts for over 60% of p53 alterations while homozygous deletion (HOM) for only 5% or less in advanced bladder cancer cases, most of the previously reported mouse models are deficient of p53. Accordingly, few studies have addressed the mechanisms of missense mutation occurrence and its functional advantage over HOM in bladder cancer development. Organoids derived from Krt5-expressing mouse urothelium (K5-mUrorganoid) demonstrated the crucial role of Pten loss in driving loss of wild-type allele of Trp53 (Trp53R172H/LOH), which conferred tumorigenic ability to K5-mUrorganoid in athymic mice. These tumors recapitulated the histological and genetic characteristics of the human basal-squamous subtype bladder cancer. Both Trp53R172H/Δ; PtenΔ/Δ and Trp53Δ/Δ; PtenΔ/Δ K5-mUrorganoids formed tumors in athymic mice, whereas only Trp53R172H/Δ; PtenΔ/Δ K5-mUrorganoid formed tumors even when directly inoculated in immunocompetent syngeneic mice. The absence of wild-type Trp53 was associated with upregulation of proliferative signaling, and the presence of a mutant Trp53 allele was associated with immune-excluded microenvironment. This study highlights the functional significance of p53 mutant LOH in bladder carcinogenesis conferring several hallmarks of cancer such as sustaining proliferative signaling and avoiding immune destruction, thus provides a novel immunocompetent mouse model of urothelial carcinoma harboring p53 mutations as a novel tool for cancer immunology research.
Collapse
Affiliation(s)
- Akihiro Hamada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Kita
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Sakatani
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Nakamura
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Takada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Ikeuchi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuhei Koike
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiko Masuda
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Kaoru Murakami
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Sano
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryoichi Saito
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Teramoto
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Narumi Hatano
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mayumi Kamada
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Urology, Otsu Red Cross Hospital, Shiga, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
5
|
Lu X, Hu C, Duan L, Chen K, Hao H, He Y. Establishment of matched bladder cancer PDX and PDX-derived organoid model and evaluation of anti-tumor efficacy of abemaciclib. Clin Transl Oncol 2025; 27:2207-2219. [PMID: 39436622 DOI: 10.1007/s12094-024-03666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Bladder cancer is one of the most common malignancies of the urinary system and there's a significant unmet need for new effective therapeutics for bladder cancer. The limited number of available models to study malignant bladder tumors is one of the obstructions in developing bladder cancer therapeutics. Patient-derived xenograft (PDX) and organoid (PDO) models are more representatives of human cancer than cell lines and cell line-derived xenograft (CDX) and are likely to be more promising and efficient in predicting drug response and finding new therapeutics. METHODS Three pairs of patient-derived xenograft (PDX) models of bladder cancer and their corresponding PDX-derived organoids (PDXOs) were successfully established. These models were utilized to assess the efficacy of abemaciclib. The sensitivity of the drug was determined through the Cell Counting Kit-8 (CCK8) assay in PDXO cultures, corroborated by the EdU incorporation assay. Additionally, the in vivo tumor growth was monitored in the matched PDX models. RESULTS In vitro PDXO cultures and in vivo PDX tumor models consistently demonstrated that abemaciclib had varying degrees of inhibitory effects across different bladder cancer (BC) patients. Notably, our study further revealed that treatment with abemaciclib significantly modified the expression patterns of CyclinD1/CDK4. This was achieved by not only diminishing their expression levels but also by shifting their expression from a membrane-associated localization to the nucleus. CONCLUSION Our research provided compelling evidence attesting to the reliability and potential of PDX and PDXO models in the realm of precision medicine. These models are instrumental in identifying patients who are likely to respond favorably to a specific drug treatment.
Collapse
Affiliation(s)
- Xiongbing Lu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Chao Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Lingxing Duan
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Ke Chen
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Yuanqiao He
- Center of Laboratory Animal Science, Nanchang University, Nanchang, 330031, China.
- Jiangxi Province Key Laboratory of Laboratory Animal, Nanchang, 330031, China.
- Nanchang Royo Biotech Co, Ltd., Nanchang, 330000, China.
| |
Collapse
|
6
|
Liu C, Shi C, Wang S, Qi R, Gu W, Yu F, Zhang G, Qiu F. Bridging the gap: how patient-derived lung cancer organoids are transforming personalized medicine. Front Cell Dev Biol 2025; 13:1554268. [PMID: 40302940 PMCID: PMC12037501 DOI: 10.3389/fcell.2025.1554268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Lung cancer is a major malignancy that poses a significant threat to human health, with its complex pathogenesis and molecular characteristics presenting substantial challenges for treatment. Traditional two-dimensional cell cultures and animal models are limited in their ability to accurately replicate the characteristics of different lung cancer patients, thereby hindering research on disease mechanisms and treatment strategies. The development of organoid technology has enabled the growth of patient-derived tumor cells in three-dimensional cultures, which can stably preserve the tumor's tissue morphology, genomic features, and drug response. There have been significant advancements in the field of patient-derived lung cancer organoids (PDLCOs), challenges remain in the reproducibility and standardization of PDLCOs models due to variations in specimen sources, subsequent processing techniques, culture medium formulations, and Matrigel batches. This review summarizes the cultivation and validation processes of PDLCOs and explores their clinical applications in personalized treatment, drug screening after resistance, PDLCOs biobanks construction, and drug development. Additionally, the integration of PDLCOs with cutting-edge technologies in various fields, such as tumor assembloid techniques, artificial intelligence, organoid-on-a-chip, 3D bioprinting, gene editing, and single-cell RNA sequencing, has greatly expanded their clinical potential. This review, incorporating the latest research developments in PDLCOs, provides an overview of their cultivation, clinical applications, and interdisciplinary integration, while also addressing the prospects and challenges of PDLCOs in precision medicine for lung cancer.
Collapse
Affiliation(s)
- Chaoxing Liu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Shi
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Siya Wang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rong Qi
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weiguo Gu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Yu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guohua Zhang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Qiu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Zhao H, Ho VWS, Liu K, Chen X, Wu H, Chiu PKF, Chan LY, Yuen SKK, Leung DKW, Liu AQ, Wong CHM, Ko ICH, Ng CF, Wu D, Teoh JYC. Organoid models in bladder cancer: From bench to bedside? Bladder Cancer 2025; 11:23523735251330404. [PMID: 40296875 PMCID: PMC12033766 DOI: 10.1177/23523735251330404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/07/2025] [Indexed: 04/30/2025]
Abstract
Background Bladder cancer (BC), one of the most prevalent and aggressive urological malignancies, poses significant challenges in diagnosis, treatment, and recurrence management. Patient-derived organoid provides new directions for the precision diagnosis and treatment of bladder cancer. Objective To make a comprehensive summary of the current bladder cancer organoid studies. Methods A comprehensive database search was conducted to provide an in-depth overview of the current state of bladder cancer organoid models, with a focus on their applications in basic research, clinical translation, and therapeutic discovery. Results We summarized the current bladder cancer organoid studies, highlighting their advantages, such as genetic fidelity and high-throughput drug screening capabilities. Additionally, we also address the challenges, including their limited representation of the tumour microenvironment and technical complexity. Finally, we discuss future directions, including the integration of immunotherapy, the development of co-culture systems, and the exploration of non-invasive sampling methods and organoid-on-chip systems. Conclusions Traditional pre-clinical models have inherent limitations in mimicking the complexity of human tumours. The emergence of organoid technology has offered a groundbreaking approach to address this challenge, providing an innovative tool for studying tumour biology, genetic alterations, drug screening, and personalized medicine in bladder cancer.
Collapse
Affiliation(s)
- Hongda Zhao
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Vincy Wing Sze Ho
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kang Liu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xuan Chen
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hongwei Wu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Peter Ka-Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu-Yan Chan
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Steffi Kar-Kei Yuen
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - David Ka-Wai Leung
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Alex Qinyang Liu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris Ho-Ming Wong
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Ivan Ching-Ho Ko
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dinglan Wu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeremy Yuen-Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- Department of Urology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Zhao H, Lin N, Ho VWS, Liu K, Chen X, Wu H, Chiu PK, Huang L, Dantes Z, Wong K, Chau H, Ko IC, Wong CH, Leung DK, Yuen SK, Wu D, Ding X, Ng CF, Teoh JY. Patient-Derived Bladder Cancer Organoids as a Valuable Tool for Understanding Tumor Biology and Developing Personalized Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414558. [PMID: 39921252 PMCID: PMC11967763 DOI: 10.1002/advs.202414558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Indexed: 02/10/2025]
Abstract
Bladder cancer (BC) is a heterogeneous disease with high recurrence rates and variable treatment responses. To address these clinical challenges, the world's first bladder cancer patient-derived organoids (PDOs) biobank is established based on an Asian population. Thirty-six BC-PDOs are generated from 56 patients and demonstrated that the BC-PDOs can replicate the histological and genomic features of parental tumors. Drug screening tests are conducted with a broad spectrum of conventional chemotherapeutic and targeted therapy drugs and identified differential drug sensitivities among the BC-PDOs. These in vitro results are consistently supported by the PDO xenograft animal studies and patients' clinical treatment outcomes, thereby verifying the predictive power of PDOs for drug responses in BC patients. By analyzing the genetic profiles of the PDOs, specific driver genes that correlate with drug sensitivity to two stand-of-care chemotherapeutics, cisplatin, and gemcitabine, are identified. Additionally, the practicality of PDOs in investigating the tumor microenvironment has been demonstrated. This study underscores the utility of PDOs in advancing the understanding of bladder cancer and the development of personalized therapeutic strategies. The BC-PDOs biobank provides an ideal preclinical platform for supporting the development of personalized treatment strategies for BC patients. This study also provides insights into the potential mechanisms of drug resistance, paves the way for subsequent region-specific research, and demonstrates the possibility of using PDO-related models to direct future research in developing drugs targeting tumor microenvironments.
Collapse
Affiliation(s)
- Hongda Zhao
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Na Lin
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacaoSAR999078China
| | - Vincy Wing Sze Ho
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Kang Liu
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Xuan Chen
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Hongwei Wu
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
| | - Peter Ka‐Fung Chiu
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
| | - Linda Huang
- Invitrocue Hong Kong LtdHong KongSAR999077China
| | | | - Ka‐Leung Wong
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Ho‐Fai Chau
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Ivan Ching‐Ho Ko
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
| | - Chris Ho‐Ming Wong
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
| | - David Ka‐Wai Leung
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
| | - Steffi Kar‐Kei Yuen
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
| | - Dinglan Wu
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
| | - Xiaofan Ding
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacaoSAR999078China
| | - Chi Fai Ng
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
| | - Jeremy Yuen‐Chun Teoh
- S.H. Ho Urology CentreDepartment of SurgeryThe Chinese University of Hong KongHong Kong999077China
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong999077China
- Department of UrologyMedical University of ViennaVienna1090Austria
| |
Collapse
|
9
|
Mukhare R, Gandhi KA, Kadam A, Raja A, Singh A, Madhav M, Chaubal R, Pandey S, Gupta S. Integration of Organoids With CRISPR Screens: A Narrative Review. Biol Cell 2025; 117:e70006. [PMID: 40223602 PMCID: PMC11995251 DOI: 10.1111/boc.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Organoids represent a significant advancement in disease modeling, demonstrated by their capacity to mimic the physiological/pathological structure and functional characteristics of the native tissue. Recently CRISPR/Cas9 technology has emerged as a powerful tool in combination with organoids for the development of novel therapies in preclinical settings. This review explores the current literature on applications of pooled CRISPR screening in organoids and the emerging role of these models in understanding cancer. We highlight the evolution of genome-wide CRISPR gRNA library screens in organoids, noting their increasing adoption in the field over the past decade. Noteworthy studies utilizing these screens to investigate oncogenic vulnerabilities and developmental pathways in various organoid systems are discussed. Despite the promise organoids hold, challenges such as standardization, reproducibility, and the complexity of data interpretation remain. The review also addresses the ideas of assessing tumor organoids (tumoroids) against established cancer hallmarks and the potential of studying intercellular cooperation within these models. Ultimately, we propose that organoids, particularly when personalized for patient-specific applications, could revolutionize drug screening and therapeutic approaches, minimizing the reliance on traditional animal models and enhancing the precision of clinical interventions.
Collapse
Affiliation(s)
- Rushikesh Mukhare
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Training School ComplexHomi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| | - Khushboo A. Gandhi
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Anushree Kadam
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Aishwarya Raja
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Training School ComplexHomi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| | - Ankita Singh
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Mrudula Madhav
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Rohan Chaubal
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Training School ComplexHomi Bhabha National InstituteMumbaiMaharashtraIndia
- Department of Surgical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| | - Shwetali Pandey
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
| | - Sudeep Gupta
- Clinical Genomics and Hypoxia Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in CancerTata Memorial CentreNavi MumbaiMaharashtraIndia
- Department of Medical OncologyTata Memorial Hospital, Tata Memorial CentreMumbaiMaharashtraIndia
| |
Collapse
|
10
|
Scholtes MP, Akbarzadeh M, Galaras A, Nakauma-Gonzáles JA, Bazrafshan A, Solanki V, Torenvliet B, Beikmohammadi L, Lozovanu V, Romal S, Moulos P, Vavouraki N, Kan TW, Algoe M, van Royen ME, Sacchetti A, van den Bosch TPP, Eussen B, de Klein A, van Leenders GJLH, Boormans JL, Hatzis P, Palstra RJ, Zuiverloon TCM, Mahmoudi T. Integrative analysis of patient-derived tumoroids and ex vivo organoid modelling of ARID1A loss in bladder cancer reveals therapeutic molecular targets. Cancer Lett 2025; 614:217506. [PMID: 39892702 DOI: 10.1016/j.canlet.2025.217506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Somatic mutations in ARID1A (AT-rich interactive domain-containing protein 1A) are present in approximately 25 % of bladder cancers (BC) and are associated with poor prognosis. With a view to discover effective treatment options for ARID1A-deficient BC patients, we set out to identify targetable effectors dysregulated consequent to ARID1A deficiency. Integrative analyses of ARID1A depletion in normal organoids and data mining in publicly available datasets revealed upregulation of DNA repair and cell cycle-associated genes consequent to loss of ARID1A and identified CHEK1 (Checkpoint kinase 1) and chromosomal passenger complex member BIRC5 (Baculoviral IAP Repeat Containing 5) as therapeutically drug-able candidate molecular effectors. Ex vivo treatment of patient-derived BC tumoroids with clinically advanced small molecule inhibitors targeting CHEK1 or BIRC5 was associated with increased DNA damage signalling and apoptosis, and selectively induced cell death in tumoroids lacking ARID1A protein expression. Thus, integrating public datasets with patient-derived organoid modelling and ex-vivo drug testing can uncover key molecular effectors and mechanisms of oncogenic transformation, potentially leading to novel therapeutic strategies. Our data point to ARID1A protein expression as a suitable candidate biomarker for the selection of BC patients responsive to therapies targeting BIRC5 and CHEK1.
Collapse
Affiliation(s)
- Mathijs P Scholtes
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maryam Akbarzadeh
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandros Galaras
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - J Alberto Nakauma-Gonzáles
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ameneh Bazrafshan
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vandana Solanki
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bram Torenvliet
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Valeria Lozovanu
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Shahla Romal
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nikoleta Vavouraki
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands
| | - Tsung Wai Kan
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mahesh Algoe
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrea Sacchetti
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bert Eussen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands
| | - Robert-Jan Palstra
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Deltourbe LG, Durand M, Costas A, Ingersoll MA. A bladder blueprint to build better models for understanding homeostasis and disease. Nat Rev Urol 2025:10.1038/s41585-025-01013-x. [PMID: 40140722 DOI: 10.1038/s41585-025-01013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
The bladder is a complex organ that can be affected by various pathologies, such as cancer or infection. It has a specific tissue structure composed of many different cell types and layers, including urothelial and endothelial cells but also a muscle layer controlling stretch and contraction to void urine. The bladder has constitutive and induced immune responses to infection or damage and harbours a microbiome. Each of these features can be influenced by factors including age and biological sex, which makes modelling homeostasis and disease in the bladder complex and challenging. To model diseases that affect the bladder, mouse models are an invaluable tool to understand the bladder in situ. However, stark differences exist between mice and humans, and so mouse models of human disease have limitations. Thus, models that more closely approximate human physiology would be expected to contribute to improved understanding of bladder biology. As technology advances, improvements in model development and creation of 3D bladder structures are enabling scientists to recapitulate essential aspects of human bladder physiology to gain increased understanding of bladder homeostasis and diseases.
Collapse
Affiliation(s)
- Léa G Deltourbe
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin and Department of Immunology, Institut Pasteur, Paris, France
| | - Méline Durand
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin and Department of Immunology, Institut Pasteur, Paris, France
| | - Ariana Costas
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin and Department of Immunology, Institut Pasteur, Paris, France
- Australian Institute for Microbiology and Infection, University of Technology Sydney, ULTIMO, Sydney, Australia
| | - Molly A Ingersoll
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin and Department of Immunology, Institut Pasteur, Paris, France.
| |
Collapse
|
12
|
Wang X, Lee D, Xu H, Sui Y, Meisenhelder J, Hunter T. PIN1 Prolyl Isomerase Promotes Initiation and Progression of Bladder Cancer through the SREBP2-Mediated Cholesterol Biosynthesis Pathway. Cancer Discov 2025; 15:633-655. [PMID: 39808064 PMCID: PMC11875963 DOI: 10.1158/2159-8290.cd-24-0866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
SIGNIFICANCE This study provides deeper insights into the regulatory role of the phospho-dependent prolyl isomerase PIN1 in bladder cancer. The identification of the link between PIN1 and SREBP2-mediated transcription and cholesterol biosynthesis offers the potential for developing novel therapeutic strategies for bladder cancer.
Collapse
Affiliation(s)
- Xue Wang
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Derrick Lee
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Haibo Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yuan Sui
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
13
|
Sisakht MM, Gholizadeh F, Hekmatirad S, Mahmoudi T, Montazeri S, Sharifi L, Daemi H, Romal S, Yazdi MH, Faramarzi MA, Shahverdi AR, Hamidieh AA. Cost-reduction strategy to culture patient derived bladder tumor organoids. Sci Rep 2025; 15:4223. [PMID: 39905065 PMCID: PMC11794879 DOI: 10.1038/s41598-025-87509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Organoids as self-organized structure derived from stem cells can recapitulate the function of an organ in miniature form which have developed great potential for clinical translation, drug screening and personalized medicine. Nevertheless, the majority of patient-derived organoids (PDOs) are currently being cultured in the basement membrane matrices (BMMs), which are constrained by xenogeneic origin, batch-to-batch variability, cost, and complexity. Besides, organoid culture relies on biochemical signals provided by various growth factors in the composition of medium. We propose sodium alginate hydrogel scaffold in addition to the fibroblast conditioned medium (FCM)-enriched culture medium that is inexpensive and easily amenable to clinical applications for the culture of bladder cancer PDOs. PDOs grown in sodium alginate and FCM based medium have proliferation potential, growth rate, and gene expression that are similar to PDOs cultured in BME. According to the results, sodium alginate has substantial mechanical properties and reduces variance in early passage bladder tumor organoid cultures collected from patients. Furthermore, using FCM based medium as an alternative solution to eliminate some essential growth factors can be considered, especially for low-resource situation and develop cost effective tumor organoids.
Collapse
Affiliation(s)
- Mahsa Mollapour Sisakht
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine innovation center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Gholizadeh
- Stem Cell and Regenerative Medicine innovation center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hekmatirad
- Stem Cell and Regenerative Medicine innovation center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Saeed Montazeri
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahla Romal
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mohammad Hosein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
De Ieso ML, Aldoghachi AF, Tilley WD, Dwyer AR. Are androgen receptor agonists a treatment option in bladder cancer? J Steroid Biochem Mol Biol 2025; 245:106623. [PMID: 39306143 DOI: 10.1016/j.jsbmb.2024.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/27/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Sex-related differences in bladder cancer incidence and progression infer a role for sex hormones and their cognate receptors in this disease. In part due to the oncogenic role of androgen receptor signaling in prostate cancer, the focus of most preclinical and clinical research to-date has been on the potential pro-tumorigenic action of androgens in urothelial cancers. However, clinical studies of androgen receptor antagonism have yielded minimal success. In this review, we explore the tumor suppressor role of androgen receptor in bladder cancer and discuss how it might be harnessed therapeutically.
Collapse
Affiliation(s)
- Michael L De Ieso
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Ahmed Faris Aldoghachi
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Amy R Dwyer
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
15
|
Taurin S, Alzahrani R, Aloraibi S, Ashi L, Alharmi R, Hassani N. Patient-derived tumor organoids: A preclinical platform for personalized cancer therapy. Transl Oncol 2025; 51:102226. [PMID: 39622151 DOI: 10.1016/j.tranon.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/11/2024] Open
Abstract
Patient-derived tumor organoids (PDTOs) represent a significant advancement in cancer research and personalized medicine. These organoids, derived from various cancer types, have shown the ability to retain the genetic and molecular characteristics of the original tumors, allowing for the detailed study of tumor biology and drug responses on an individual basis. The success rates of establishing PDTOs vary widely and are influenced by factors such as cancer type, tissue quality, and media composition. Furthermore, the dynamic nature of organoid cultures may also lead to unique molecular characteristics that deviate from the original tumors, affecting their interpretation in clinical settings without the implementation of rigorous validation and establishment of standardized protocols. Recent studies have supported the correlation between PDTOs and the corresponding patient response. Although these studies involved a small number of patients, they promoted the integration of PDTOs in observational and interventional clinical trials to advance translational cancer therapies.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain.
| | - Reem Alzahrani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Sahar Aloraibi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Layal Ashi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Rawan Alharmi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Noora Hassani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
16
|
Wang N, Pachai MR, Li D, Lee CJ, Warda S, Khudoynazarova MN, Cho WH, Xie G, Shah SR, Yao L, Qian C, Wong EWP, Yan J, Tomas FV, Hu W, Kuo F, Gao SP, Luo J, Smith AE, Han M, Gao D, Ge K, Yu H, Chandarlapaty S, Iyer GV, Rosenberg JE, Solit DB, Al-Ahmadie HA, Chi P, Chen Y. Loss of Kmt2c or Kmt2d primes urothelium for tumorigenesis and redistributes KMT2A-menin to bivalent promoters. Nat Genet 2025; 57:165-179. [PMID: 39806204 PMCID: PMC11735410 DOI: 10.1038/s41588-024-02015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2024] [Indexed: 01/16/2025]
Abstract
Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation. Kmt2c/d knockout further led to KMT2A-menin redistribution from KMT2D localized enhancers to CpG-high and bivalent promoters, resulting in derepression of signal-induced immediate early genes. Therapeutically, Kmt2c/d knockout upregulated epidermal growth factor receptor signaling and conferred vulnerability to epidermal growth factor receptor inhibitors. Together, our data posit that functional loss of Kmt2c/d licenses a molecular 'field effect' priming histologically normal urothelium for oncogenic transformation and presents therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohini R Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cindy J Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Woo Hyun Cho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guojia Xie
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sagar R Shah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Li Yao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Cheng Qian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elissa W P Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Yan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fanny V Tomas
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sizhi P Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiaqian Luo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alison E Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming Han
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Gopakumar V Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hikmat A Al-Ahmadie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
17
|
Tucci FA, Pennisi R, Rigiracciolo DC, Filippone MG, Bonfanti R, Romeo F, Freddi S, Guerrera E, Soriani C, Rodighiero S, Gunby RH, Jodice G, Sanguedolce F, Renne G, Fusco N, Di Fiore PP, Pruneri G, Bertalot G, Musi G, Vago G, Tosoni D, Pece S. Loss of NUMB drives aggressive bladder cancer via a RHOA/ROCK/YAP signaling axis. Nat Commun 2024; 15:10378. [PMID: 39627202 PMCID: PMC11615365 DOI: 10.1038/s41467-024-54246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Advances in bladder cancer (BCa) treatment have been hampered by the lack of predictive biomarkers and targeted therapies. Here, we demonstrate that loss of the tumor suppressor NUMB promotes aggressive bladder tumorigenesis and worsens disease outcomes. Retrospective cohort studies show that NUMB-loss correlates with poor prognosis in post-cystectomy muscle-invasive BCa patients and increased risk of muscle invasion progression in non-muscle invasive BCa patients. In mouse models, targeted Numb ablation induces spontaneous tumorigenesis and sensitizes the urothelium to carcinogenic insults, accelerating tumor onset and progression. Integrative transcriptomic and functional analyses in mouse and human BCa models reveal that upregulation of YAP transcriptional activity via a RHOA/ROCK-dependent pathway is a hallmark of NUMB-deficient BCa. Pharmacological or genetic inhibition of this molecular pathway selectively inhibits proliferation and invasion of NUMB-deficient BCa cells in 3D-Matrigel organoids. Thus, NUMB-loss could serve as a biomarker for identifying high-risk patients who may benefit from targeted anti-RHOA/ROCK/YAP therapies.
Collapse
Grants
- IG 23049 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG 23060 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- MIUR-PRIN2017 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- MIUR/PRIN2020 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 5x1000 funds Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente Ministero della Salute (Ministry of Health, Italy)
- RF-2016-02361540 Ministero della Salute (Ministry of Health, Italy)
- RF-2021-12373957 Ministero della Salute (Ministry of Health, Italy)
- Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
- F A Tucci
- European Institute of Oncology IRCCS, Milan, Italy
- School of Pathology, University of Milan, Milan, Italy
| | - R Pennisi
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - D C Rigiracciolo
- European Institute of Oncology IRCCS, Milan, Italy
- IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - M G Filippone
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - R Bonfanti
- European Institute of Oncology IRCCS, Milan, Italy
| | - F Romeo
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - S Freddi
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - E Guerrera
- European Institute of Oncology IRCCS, Milan, Italy
| | - C Soriani
- European Institute of Oncology IRCCS, Milan, Italy
| | - S Rodighiero
- European Institute of Oncology IRCCS, Milan, Italy
| | - R H Gunby
- European Institute of Oncology IRCCS, Milan, Italy
| | - G Jodice
- European Institute of Oncology IRCCS, Milan, Italy
| | - F Sanguedolce
- Department of Pathology, University of Foggia, Foggia, Italy
| | - G Renne
- European Institute of Oncology IRCCS, Milan, Italy
| | - N Fusco
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - P P Di Fiore
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - G Pruneri
- School of Pathology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G Bertalot
- Department of Anatomy and Pathological Histology, APSS, Trento, Italy
- Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy
| | - G Musi
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - G Vago
- School of Pathology, University of Milan, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - D Tosoni
- European Institute of Oncology IRCCS, Milan, Italy.
| | - S Pece
- European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
18
|
Huang W, Xu Z, Li S, Zhou J, Zhao B. Living Biobanks of Organoids: Valuable Resource for Translational Research. Biopreserv Biobank 2024; 22:543-549. [PMID: 38959173 PMCID: PMC11656124 DOI: 10.1089/bio.2023.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
The emergence of organoids is considered a revolutionary model, changing the landscape of traditional translational research. These three-dimensional miniatures of human organs or tissues, cultivated from stem cells or biospecimens obtained from patients, faithfully replicate the structural and functional characteristics of specific target organs or tissues. In this extensive review, we explore the profound impact of organoids and assess the current state of living organoid biobanks, which are essential repositories for cryopreserving organoids derived from a variety of diseases. These resources hold significant value for translational research. We delve into the diverse origins of organoids, the underlying technologies, and their roles in recapitulating human development, disease modeling, as well as their potential applications in the pharmaceutical field. With a particular emphasis on biobanking organoids for prospective applications, we discuss how these advancements expedite the transition from bench to bedside translational research, thereby fostering personalized medicine and enriching our comprehension of human health.
Collapse
Affiliation(s)
- Wenqing Huang
- Department of Central Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Republic of China
| | - Zhaoting Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, Republic of China
| | - Shuang Li
- Department of Central Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Republic of China
| | - Junmei Zhou
- Department of Central Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Republic of China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, Republic of China
| |
Collapse
|
19
|
Melzer MK, Ma Y, Lindenmayer J, Morgenstern C, Wezel F, Zengerling F, Günes C, Gaisa NT, Kleger A, Bolenz C. Prospective pharmacotyping of urothelial carcinoma organoids for drug sensitivity prediction - feasibility and real world experience. Exp Hematol Oncol 2024; 13:112. [PMID: 39533373 PMCID: PMC11558855 DOI: 10.1186/s40164-024-00579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Urothelial carcinoma (UC) of the urinary bladder has significant challenges in treatment due to its diverse genetic landscape and variable response to systemic therapy. In recent years, patient-derived organoids (PDOs) emerged as a novel tool to model primary tumors with higher resemblance than conventional 2D cell culture approaches. However, the potential of organoids to predict therapy response in a clinical setting remains to be evaluated. This study explores the clinical feasibility of PDOs for pharmacotyping in UC. Initially, we subjected tumor tissue specimens from 50 patients undergoing transurethral resection or radical cystectomy to organoid propagation, of whom 19 (38%) yielded PDOs suitable for drug sensitivity assessment. Notably, whole transcriptome-based analysis indicated that PDOs may show phenotypes distinct from their parental tumor tissue. Pharmacotyping within a clinically relevant timeframe [mean of 35.44 and 55 days for non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC), respectively] was achieved. Drug sensitivity analyses revealed marked differences between NMIBC and MIBC, with MIBC-derived organoids demonstrating higher chemosensitivity toward clinically relevant drugs. A case study correlating organoid response with patient treatment outcome illustrated the complexity of predicting chemotherapy efficacy, especially considering the rapid acquisition of drug resistance. We propose a workflow of prospective organoid-based pharmacotyping in UC, enabling further translational research and integration of this approach into clinical practice.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Department of Urology, Ulm University Hospital, Ulm, Germany.
- Institute for Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany.
| | - Yanchun Ma
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | | | - Clara Morgenstern
- Department of Urology, Ulm University Hospital, Ulm, Germany
- Institute for Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | | | - Cagatay Günes
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | | | - Alexander Kleger
- Institute for Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany.
- Core Facility Organoids, Ulm University, Ulm, Germany.
- Section for Interdisciplinary Pancreatology, Clinic for Internal Medicine I, Ulm University Hospital, Ulm, Germany.
| | | |
Collapse
|
20
|
Tong L, Cui W, Zhang B, Fonseca P, Zhao Q, Zhang P, Xu B, Zhang Q, Li Z, Seashore-Ludlow B, Yang Y, Si L, Lundqvist A. Patient-derived organoids in precision cancer medicine. MED 2024; 5:1351-1377. [PMID: 39341206 DOI: 10.1016/j.medj.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Organoids are three-dimensional (3D) cultures, normally derived from stem cells, that replicate the complex structure and function of human tissues. They offer a physiologically relevant model to address important questions in cancer research. The generation of patient-derived organoids (PDOs) from various human cancers allows for deeper insights into tumor heterogeneity and spatial organization. Additionally, interrogating non-tumor stromal cells increases the relevance in studying the tumor microenvironment, thereby enhancing the relevance of PDOs in personalized medicine. PDOs mark a significant advancement in cancer research and patient care, signifying a shift toward more innovative and patient-centric approaches. This review covers aspects of PDO cultures to address the modeling of the tumor microenvironment, including extracellular matrices, air-liquid interface and microfluidic cultures, and organ-on-chip. Specifically, the role of PDOs as preclinical models in gene editing, molecular profiling, drug testing, and biomarker discovery and their potential for guiding personalized treatment in clinical practice are discussed.
Collapse
Affiliation(s)
- Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Weiyingqi Cui
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Boya Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Pedro Fonseca
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qian Zhao
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Ping Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Beibei Xu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qisi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Monjaras-Avila CU, Luque-Badillo AC, Bacon JVM, Wyatt AW, So A, Chavez-Munoz C. A novel approach to engineering three-dimensional bladder tumor models for drug testing. Sci Rep 2024; 14:26883. [PMID: 39506094 PMCID: PMC11542063 DOI: 10.1038/s41598-024-78440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
Bladder cancer (BCa) poses a significant health challenge, particularly affecting men with higher incidence and mortality rates. Addressing the need for improved predictive models in BCa treatment, this study introduces an innovative 3D in vitro patient-derived bladder cancer tumor model, utilizing decellularized pig bladders as scaffolds. Traditional 2D cell cultures, insufficient in replicating tumor microenvironments, have driven the development of sophisticated 3D models. The study successfully achieved pig bladder decellularization through multiple cycles of immersion in salt solutions, resulting in notable macroscopic and histological changes. This process confirmed the removal of cellular components while preserving the native extracellular matrix (ECM). Quantitative analysis demonstrated the efficacy of decellularization, with a remarkable reduction in DNA concentration, signifying the removal of over 95% of cellular material. In the development of the in vitro bladder cancer model, muscle invasive bladder cancer patients' cells were cultured within decellularized pig bladders, yielding a three-dimensional cancer model. Optimal results were attained using an air-liquid interface technique, with cells injected directly into the scaffold at three distinct time points. Histological evaluations showcased characteristics resembling in vivo tumors derived from bladder cancer patients' cells. To demonstrate the 3D cancer model's effectiveness as a drug screening platform, the study treated it with Cisplatin (Cis), Gemcitabine (Gem), and a combination of both drugs. Comprehensive cell viability assays and histological analyses illustrated changes in cell survival and proliferation. The model exhibited promising correlations with clinical outcomes, boasting an 83.3% reliability rate in predicting treatment responses. Comparison with traditional 2D cultures and spheroids underscored the 3D model's superiority in reliability, with an 83.3% predictive capacity compared to 50% for spheroids and 33.3% for 2D culture. Acknowledging limitations, such as the absence of immune and stromal components, the study suggests avenues for future improvements. In conclusion, this innovative 3D bladder cancer model, combining decellularization and patient-derived cells, marks a significant advancement in preclinical drug testing. Its potential for predicting treatment outcomes and capturing patient-specific responses opens new avenues for personalized medicine in bladder cancer therapeutics. Future refinements and validations with larger patient cohorts hold promise for revolutionizing BCa research and treatment strategies.
Collapse
Affiliation(s)
- C U Monjaras-Avila
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - A C Luque-Badillo
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - J V M Bacon
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - A W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - A So
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - C Chavez-Munoz
- Department of Medicine, Faculty of Medicine, University of British Columbia, H.B. 2660 Oak Street, Vancouver, BC, V6H3Z6, Canada.
| |
Collapse
|
22
|
Merrill NM, Kaffenberger SD, Bao L, Vandecan N, Goo L, Apfel A, Cheng X, Qin Z, Liu CJ, Bankhead A, Wang Y, Kathawate V, Tudrick L, Serhan HA, Farah Z, Ellimoottil C, Hafez KS, Herrel LA, Montgomery JS, Morgan TM, Salami SS, Weizer AZ, Ulintz PJ, Day ML, Soellner MB, Palmbos PL, Merajver SD, Udager AM. Integrative Drug Screening and Multiomic Characterization of Patient-derived Bladder Cancer Organoids Reveal Novel Molecular Correlates of Gemcitabine Response. Eur Urol 2024; 86:434-444. [PMID: 39155193 DOI: 10.1016/j.eururo.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND AND OBJECTIVE Predicting response to therapy for each patient's tumor is critical to improving long-term outcomes for muscle-invasive bladder cancer. This study aims to establish ex vivo bladder cancer patient-derived organoid (PDO) models that are representative of patients' tumors and determine the potential efficacy of standard of care and curated experimental therapies. METHODS Tumor material was collected prospectively from consented bladder cancer patients to generate short-term PDO models, which were screened against a panel of clinically relevant drugs in ex vivo three-dimensional culture. Multiomic profiling was utilized to validate the PDO models, establish the molecular characteristics of each tumor, and identify potential biomarkers of drug response. Gene expression (GEX) patterns between paired primary tissue and PDO samples were assessed using Spearman's rank correlation coefficients. Molecular correlates of therapy response were identified using Pearson correlation coefficients and Kruskal-Wallis tests with Dunn's post hoc pairwise comparison testing. KEY FINDINGS AND LIMITATIONS A total of 106 tumors were collected from 97 patients, with 65 samples yielding sufficient material for complete multiomic molecular characterization and PDO screening with six to 32 drugs/combinations. Short-term PDOs faithfully represent the tumor molecular characteristics, maintain diverse cell types, and avoid shifts in GEX-based subtyping that accompany long-term PDO cultures. Utilizing an integrative approach, novel correlations between ex vivo drug responses and genomic alterations, GEX, and protein expression were identified, including a multiomic signature of gemcitabine response. The positive predictive value of ex vivo drug responses and the novel multiomic gemcitabine response signature need to be validated in future studies. CONCLUSIONS AND CLINICAL IMPLICATIONS Short-term PDO cultures retain the molecular characteristics of tumor tissue and avoid shifts in expression-based subtyping that have plagued long-term cultures. Integration of multiomic profiling and ex vivo drug screening data identifies potential predictive biomarkers, including a novel signature of gemcitabine response. PATIENT SUMMARY Better models are needed to predict patient response to therapy in bladder cancer. We developed a platform that uses short-term culture to best mimic each patient's tumor and assess potential sensitivity to therapeutics.
Collapse
Affiliation(s)
- Nathan M Merrill
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Liwei Bao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Laura Goo
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Athena Apfel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xu Cheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhaoping Qin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chia-Jen Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yin Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Varun Kathawate
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lila Tudrick
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Habib A Serhan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zackariah Farah
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chad Ellimoottil
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Khaled S Hafez
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Lindsey A Herrel
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey S Montgomery
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Simpa S Salami
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Alon Z Weizer
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Peter J Ulintz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark L Day
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | | | - Phillip L Palmbos
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sofia D Merajver
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Aaron M Udager
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Guo Z, Li Z, Wang J, Jiang H, Wang X, Sun Y, Huang W. Modeling bladder cancer in the laboratory: Insights from patient-derived organoids. Biochim Biophys Acta Rev Cancer 2024; 1879:189199. [PMID: 39419296 DOI: 10.1016/j.bbcan.2024.189199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Bladder cancer (BCa) is the most common malignant tumor of the urinary system. Current treatments often have poor efficacy and carry a high risk of recurrence and progression due to the lack of consideration of tumor heterogeneity. Patient-derived organoids (PDOs) are three-dimensional tissue cultures that preserve tumor heterogeneity and clinical relevance better than cancer cell lines. Moreover, PDOs are more cost-effective and efficient to cultivate compared to patient-derived tumor xenografts, while closely mirroring the tissue and genetic characteristics of their source tissues. The development of PDOs involves critical steps such as sample selection and processing, culture medium optimization, matrix selection, and improvements in culture methods. This review summarizes the methodologies for generating PDOs from patients with BCa and discusses the current advancements in drug sensitivity testing, immunotherapy, living biobanks, drug screening, and mechanistic studies, highlighting their role in advancing personalized medicine.
Collapse
Affiliation(s)
- Zikai Guo
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China
| | - Zhichao Li
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China
| | - Jia Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China
| | - Hongxiao Jiang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China; Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xu Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei 230061, China
| | - Yangyang Sun
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
24
|
Liu X, Han X, Wei S, Zhang C. Case report: Patient-derived organoids promoting personalized treatment in invasive urothelial carcinoma. Front Oncol 2024; 14:1424677. [PMID: 39555454 PMCID: PMC11563985 DOI: 10.3389/fonc.2024.1424677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024] Open
Abstract
Tumor organoids, an in-vitro three-dimensional model, possess high potential for investigating tumor biology and treatment response and have been demonstrated more appropriate for drug assessment than two-dimensional cultures. Herein, we described two cases of invasive high-grade urothelial carcinoma who underwent radical cystectomy successfully following use of patient-derived organoids (PDOs) for drug screening to inform therapeutic decisions. In these two cases, the PDOs cultured by biopsy tissues were both sensitive to the combination of gemcitabine and cisplatin. After neoadjuvant chemotherapy (NAC) with gemcitabine and cisplatin, the patients responded well, and radical cystectomy was performed successfully. No recurrence or metastasis was observed within 6 months after surgery. This small case series suggests that the patient-derived urothelial carcinoma organoids contribute to optimizing NAC options to guide personalized treatment and improve the survival outcomes.
Collapse
Affiliation(s)
- Xun Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xuebing Han
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Shuqing Wei
- Department of General Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
25
|
Vasiliadou I, Cattaneo C, Chan PYK, Henley-Smith R, Gregson-Williams H, Collins L, Wojewodka G, Guerrero-Urbano T, Jeannon JP, Connor S, Davis J, Pasto A, Mustapha R, Ng T, Kong A. Correlation of the treatment sensitivity of patient-derived organoids with treatment outcomes in patients with head and neck cancer (SOTO): protocol for a prospective observational study. BMJ Open 2024; 14:e084176. [PMID: 39389599 PMCID: PMC11474813 DOI: 10.1136/bmjopen-2024-084176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Organoids have been successfully used in several areas of cancer research and large living biobanks of patient-derived organoids (PDOs) have been developed from various malignancies. The characteristics of the original tumour tissue such as mutation signatures, phenotype and genetic diversity are well preserved in organoids, thus showing promising results for the use of this model in translational research. In this study, we aim to assess whether we can generate PDOs from head and neck squamous cell carcinoma (HNSCC) samples and whether PDOs can be used to predict treatment sensitivity in HNSCC patients as well as to explore potential biomarkers. METHODS AND ANALYSIS This is a prospective observational study at a single centre (Guy's and St Thomas' NHS Foundation Trust) to generate PDOs from patients' samples to assess treatment response and to correlate with patients' treatment outcomes. Patients will be included if they are diagnosed with HNSCC undergoing curative treatment (primary surgery or radiotherapy) or presenting with recurrent or metastatic cancers and they will be categorised into three groups (cohort 1: primary surgery, cohort 2: primary radiotherapy and cohort 3: recurrent/metastatic disease). Research tumour samples will be collected and processed into PDOs and chemosensitivity/radiosensitivity will be assessed using established methods. Moreover, blood and other biological samples (eg, saliva) will be collected at different time intervals during treatment and will be processed in the laboratory for plasma and peripheral blood mononuclear cell (PBMC) isolation. Plasma and saliva will be used for circulating tumour DNA analysis and PBMC will be stored for assessment of the peripheral immune characteristics of the patients as well as to perform co-culture experiments with PDOs. SOTO study (correlation of the treatment Sensitivity of patient-derived Organoids with Treatment Outcomes in patients with head and neck cancer) uses the collaboration of several specialties in head and neck cancer and has the potential to explore multiple areas of research with the aim of offering a valid and effective approach to personalised medicine for cancer patients. ETHICS AND DISSEMINATION This study was approved by North West-Greater Manchester South Research Ethics Committee (REC Ref: 22/NW/0023) on 21 March 2022. An informed consent will be obtained from all participants prior to inclusion in the study. Results will be disseminated via peer-reviewed publications and presentations at international conferences. TRIAL REGISTRATION NUMBER NCT05400239.
Collapse
Affiliation(s)
| | | | | | - Rhonda Henley-Smith
- Head and Neck Pathology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | | | - Lisette Collins
- Head and Neck Pathology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | | | | | | | - Steve Connor
- Head and Neck Radiology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Jessica Davis
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Anna Pasto
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Rami Mustapha
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Tony Ng
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Anthony Kong
- Comprehensive Cancer Centre, King's College London, London, UK
| |
Collapse
|
26
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
27
|
Bozal SB, Sjogren G, Costa AP, Brown JS, Roberts S, Baker D, Gabriel P, Ristau BT, Samuels M, Flynn WF, Robson P, Courtois ET. Development of an automated 3D high content cell screening platform for organoid phenotyping. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100182. [PMID: 39245180 DOI: 10.1016/j.slasd.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
The use of organoid models in biomedical research has grown substantially since their inception. As they gain popularity among scientists seeking more complex and biologically relevant systems, there is a direct need to expand and clarify potential uses of such systems in diverse experimental contexts. Herein we outline a high-content screening (HCS) platform that allows researchers to screen drugs or other compounds against three-dimensional (3D) cell culture systems in a multi-well format (384-well). Furthermore, we compare the quality of robotic liquid handling with manual pipetting and characterize and contrast the phenotypic effects detected by confocal imaging and biochemical assays in response to drug treatment. We show that robotic liquid handling is more consistent and amendable to high throughput experimental designs when compared to manual pipetting due to improved precision and automated randomization capabilities. We also show that image-based techniques are more sensitive to detecting phenotypic changes within organoid cultures than traditional biochemical assays that evaluate cell viability, supporting their integration into organoid screening workflows. Finally, we highlight the enhanced capabilities of confocal imaging in this organoid screening platform as they relate to discerning organoid drug responses in single-well co-cultures of organoids derived from primary human biopsies and patient-derived xenograft (PDX) models. Altogether, this platform enables automated, imaging-based HCS of 3D cellular models in a non-destructive manner, opening the path to complementary analysis through integrated downstream methods.
Collapse
Affiliation(s)
- Suleyman B Bozal
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States; Yale School of Medicine, Yale University, New Haven, CT, United States; Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, United States
| | - Greg Sjogren
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Antonio P Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, United States
| | - Joseph S Brown
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Shannon Roberts
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Dylan Baker
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Paul Gabriel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | - Michael Samuels
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States; Departments of Genetics & Genome Sciences and Cell Biology, UConn Health, Farmington, CT, United States.
| | - Elise T Courtois
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States; Department of Obstetrics and Gynecology, UConn Health, Farmington, CT, United States.
| |
Collapse
|
28
|
Herms A, Fernandez-Antoran D, Alcolea MP, Kalogeropoulou A, Banerjee U, Piedrafita G, Abby E, Valverde-Lopez JA, Ferreira IS, Caseda I, Bejar MT, Dentro SC, Vidal-Notari S, Ong SH, Colom B, Murai K, King C, Mahbubani K, Saeb-Parsy K, Lowe AR, Gerstung M, Jones PH. Self-sustaining long-term 3D epithelioid cultures reveal drivers of clonal expansion in esophageal epithelium. Nat Genet 2024; 56:2158-2173. [PMID: 39313617 PMCID: PMC11525200 DOI: 10.1038/s41588-024-01875-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
Aging epithelia are colonized by somatic mutations, which are subjected to selection influenced by intrinsic and extrinsic factors. The lack of suitable culture systems has slowed the study of this and other long-term biological processes. Here, we describe epithelioids, a facile, cost-effective method of culturing multiple mouse and human epithelia. Esophageal epithelioids self-maintain without passaging for at least 1 year, maintaining a three-dimensional structure with proliferative basal cells that differentiate into suprabasal cells, which eventually shed and retain genomic stability. Live imaging over 5 months showed that epithelioids replicate in vivo cell dynamics. Epithelioids support genetic manipulation and enable the study of mutant cell competition and selection in three-dimensional epithelia, and show how anti-cancer treatments modulate competition between transformed and wild-type cells. Finally, a targeted CRISPR-Cas9 screen shows that epithelioids recapitulate mutant gene selection in aging human esophagus and identifies additional drivers of clonal expansion, resolving the genetic networks underpinning competitive fitness.
Collapse
Affiliation(s)
- Albert Herms
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - David Fernandez-Antoran
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- ARAID Foundation, Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Maria P Alcolea
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Gabriel Piedrafita
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Inês S Ferreira
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Irene Caseda
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria T Bejar
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stefan C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sara Vidal-Notari
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Bartomeu Colom
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | | | | | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Alan R Lowe
- Institute for Structural and Molecular Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Oncology, Hutchison Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Radić M, Egger M, Kruithof-de Julio M, Seiler R. Patient-derived Organoids in Bladder Cancer: Opportunities and Challenges. Eur Urol Focus 2024:S2405-4569(24)00165-2. [PMID: 39232905 DOI: 10.1016/j.euf.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND OBJECTIVE Bladder cancer (BLCa) remains a prevalent malignancy with high recurrence rates and limited treatment options. In recent years, patient-derived organoids (PDOs) have emerged as a promising platform for studying cancer biology and therapeutic responses in a personalized manner. Using drug screening, PDOs facilitate the identification of novel therapeutic agents and translational treatment strategies. Moreover, their ability to model patient-specific responses to treatments holds promise for predicting clinical outcomes and guiding treatment decisions. This exploratory review aims to investigate the potential of PDOs in advancing BLCa research and treatment, with an emphasis on translational clinical approaches. Furthermore, we analyze the feasibility of deriving PDOs from minimally invasive blood and urine samples. METHODS In addition to exploring hypothetical applications of PDOs for predicting patient outcomes and their ability to model different stages of BLCa, we conducted a comprehensive PubMed search on already published data as well as comprehensive screening of currently ongoing trials implementing PDOs in precision medicine in cancer patients irrespective of the tumor entity. KEY FINDINGS AND LIMITATIONS While the research on BLCa PDOs is advancing rapidly, data on both BLCa PDO research and their clinical application are scarce. Owing to this fact, a narrative review format was chosen for this publication. CONCLUSIONS AND CLINICAL IMPLICATIONS BLCa PDOs have the potential to influence the domain of precision medicine and enhance personalized cancer treatment strategies. However, standardized protocols for PDO generation, their ideal clinical application, as well as their impact on outcomes remain to be determined. PATIENT SUMMARY In this review, we discuss the current state and future needs for the use of patient-derived organoids, small three-dimensional avatars of tumor cells, in bladder cancer. Patient-derived bladder cancer organoids offer a more personalized approach to studying and treating bladder cancer, providing a model that closely resembles the patient's own tumor. These organoids can help researchers identify new treatment options and predict how individual patients may respond to standard therapies. By using minimally invasive samples such as blood and urine, patients can participate in research studies more easily, potentially leading to improved outcomes in bladder cancer treatment.
Collapse
Affiliation(s)
- Martina Radić
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Martin Egger
- Department of Urology, Hospital Center Biel, Spitalzentrum Biel, Biel, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Roland Seiler
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland; Department of Urology, Hospital Center Biel, Spitalzentrum Biel, Biel, Switzerland.
| |
Collapse
|
30
|
Xin M, Li Q, Wang D, Wang Z. Organoids for Cancer Research: Advances and Challenges. Adv Biol (Weinh) 2024; 8:e2400056. [PMID: 38977414 DOI: 10.1002/adbi.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Indexed: 07/10/2024]
Abstract
As 3D culture technology advances, new avenues have opened for the development of physiological human cancer models. These preclinical models provide efficient ways to translate basic cancer research into clinical tumor therapies. Recently, cancer organoids have emerged as a model to dissect the more complex tumor microenvironment. Incorporating cancer organoids into preclinical programs have the potential to increase the success rate of oncology drug development and recapitulate the most efficacious treatment regimens for cancer patients. In this review, four main types of cancer organoids are introduced, their applications, advantages, limitations, and prospects are discussed, as well as the recent application of single-cell RNA-sequencing (scRNA-seq) in exploring cancer organoids to advance this field.
Collapse
Affiliation(s)
- Miaomaio Xin
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
- University of South Bohemia in Ceske Budejovice, Vodnany, 38925, Czech Republic
| | - Qian Li
- Changsha Medical University, Changsha, Hunan Province, 410000, China
| | - Dongyang Wang
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
| | - Zheng Wang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing, Sichuan Province, 404100, China
| |
Collapse
|
31
|
Huang S, Mei Z, Wan A, Zhao M, Qi X. Application and prospect of organoid technology in breast cancer. Front Immunol 2024; 15:1413858. [PMID: 39253075 PMCID: PMC11381393 DOI: 10.3389/fimmu.2024.1413858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common malignant tumor in women. Due to the high heterogeneity of breast cancer cells, traditional in vitro research models still have major limitations. Therefore, it is urgent to establish an experimental model that can accurately simulate the characteristics of human breast cancer. Breast cancer organoid technology emerged as the times required, that is, to construct tissue analogs with organ characteristics by using a patient's tumor tissue through 3D culture in vitro. Since the breast cancer organoid can fully preserve the histology and genetic characteristics of the original tumor, it provides a reliable model for preclinical drug screening, establishment of breast cancer organoid biobanks, research into the mechanisms of tumor development, and determination of cancer targets. It has promoted personalized treatment for clinical breast cancer patients. This article mainly focuses on recent research progress and applications of organoid technology in breast cancer, discussing the current limitations and prospects of breast cancer organoid technology.
Collapse
Affiliation(s)
- Shanlin Huang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zifan Mei
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast cancer, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
32
|
Qu B, Mu Q, Bi H, Chen Y, Wang Q, Ma X, Lu L. Interpretation of the past, present, and future of organoid technology: an updated bibliometric analysis from 2009 to 2024. Front Cell Dev Biol 2024; 12:1433111. [PMID: 39193361 PMCID: PMC11347291 DOI: 10.3389/fcell.2024.1433111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Organoid technology has been developed rapidly in the past decade, which involves the exploration of the mechanism of development, regeneration and various diseases, and intersects among multiple disciplines. Thousands of literature on 3D-culture or organoids have been published in the research areas of cell biology tissue engineering, nanoscience, oncology and so on, resulting in it being challenging for researchers to timely summarize these studies. Bibliometric statistics is a helpful way to help researchers clarify the above issues efficiently and manage the whole landscape systematically. In our study, all original articles on organoids were included in the Web of Science database from January 2009 to May 2024, and related information was collected and analyzed using Excel software, "bibliometrix" packages of the R software, VOSviewer and CiteSpace. As results, a total of 6222 papers were included to classify the status quo of the organoids and predict future research areas. Our findings highlight a growing trend in publications related to organoids, with the United States and Netherlands leading in this field. The University of California System, Harvard University, Utrecht University and Utrecht University Medical Center have emerged as pivotal contributors and the key authors in the field include Clevers, H, Beekman, JM and Spence JR. Our results also revealed that the research hotspots and trends of organoids mainly focused on clinical treatment, drug screening, and the application of materials and technologies such as "hydrogel" and "microfluidic technology" in organoids. Next, we had an in-depth interpretation of the development process of organoid research area, including the emergence of technology, the translation from bench to bedsides, the profiles of the most widely studied types of organoids, the application of materials and technologies, and the emerging organoid-immune co-cultures trends. Furthermore, we also discussed the pitfalls, challenges and prospects of organoid technology. In conclusion, this study provides readers straightforward and convenient access to the organoid research field.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Qiang Mu
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Huanhuan Bi
- College of Medicine, Qingdao University, Qingdao, China
| | - Yuxian Chen
- College of Medicine, Qingdao University, Qingdao, China
| | - Qitang Wang
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
33
|
Vollmer P, Amend B, Harland N, Stenzl A, Tsaur I, Maas M, Aicher WK, Walz S. Patient-derived bladder cancer organoids show stable transcript expression along cultivation. World J Urol 2024; 42:468. [PMID: 39110253 DOI: 10.1007/s00345-024-05182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/14/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION Bladder cancer (BC) is a prevalent malignancy with high recurrence rates. Patient-derived bladder cancer organoids (BCO) pose as a promising approach in both, disease modeling and individualized treatment screening. The aim of this study was to investigate the transcriptomic plasticity in BCOs as a function of cultivation times to define ideal time periods for the applications envisioned. METHODS Tumor samples of three patients with pathologically confirmed non-muscle invasive and muscle-invasive bladder cancer were included in this study and expanded as BCOs. RNA expression was investigated at different time periods of cells in culture using differential gene expression for overall transcript expression and quantitative real-time PCR (qRT-PCR) for pathological relevant markers. RESULTS Differential gene expression of the BCO lines was investigated across passages 1-4, in passages 5-9 and above 9, respectively. Analysis of the entire transcriptome of the respective BCO lines revealed consistent profiles without significant alterations throughout the cultivation and expansion procedure. Notably, key transcripts like TP53, PIK3CA, BRCA1, among others, exhibited stable expression levels in the quantitative RNA analysis during the cultivation period. CONCLUSION The robust transcriptome during BCO cultivation advocates for the use of earlier passages of BCOs in personalized medicine providing a time-efficient drug screening option to accelerate the counseling of patients' treatment options. Higher passages of BCOs still hold the potential in topics demanding for expanded cell masses such as medical device development and others.
Collapse
Affiliation(s)
- Philipp Vollmer
- Center for Medical Research, University of Tuebingen, 72074, Tübingen, Germany
| | - Bastian Amend
- Department of Urology, Tuebingen University Hospital, 72076, Tübingen, Germany
| | - Niklas Harland
- Department of Urology, Tuebingen University Hospital, 72076, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, Tuebingen University Hospital, 72076, Tübingen, Germany
| | - Igor Tsaur
- Department of Urology, Tuebingen University Hospital, 72076, Tübingen, Germany
| | - Moritz Maas
- Department of Urology, Tuebingen University Hospital, 72076, Tübingen, Germany
| | - Wilhelm K Aicher
- Center for Medical Research, University of Tuebingen, 72074, Tübingen, Germany
| | - Simon Walz
- Department of Urology, Tuebingen University Hospital, 72076, Tübingen, Germany.
| |
Collapse
|
34
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
35
|
Shen C, Liu J, Xie F, Yu Y, Ma X, Hu D, Liu C, Wang Y. N6-Methyladenosine enhances the translation of ENO1 to promote the progression of bladder cancer by inhibiting PCNA ubiquitination. Cancer Lett 2024; 595:217002. [PMID: 38823761 DOI: 10.1016/j.canlet.2024.217002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
The mechanism underlying N6-methyladenosine (m6A) modification in bladder cancer (BC) remains elusive. We identified that the RBM15/METTL3 complex enhances m6A modification and promotes the ENO1 protein translation efficiency through its 359A site by depending on YTHDF1 in BC cells. In the tumor microenvironment, TGF-β effectively stimulates RBM15/METTL3 expression to improve ENO1 mRNA m6A modification through the Smad2/3 pathway. Reduced ENO1 m6A levels hamper tumor proliferation both in vitro and in vivo. Mechanistically, ENO1 augments PCNA protein stability by reducing its K48-linked ubiquitination and thus prevents protein degradation through the endoplasmic reticulum-associated degradation pathway. According to the subsequent experiments, the ENO1 inhibitor significantly reduced tumor proliferation both in vitro and in vivo. Our study highlights the significance of RBM15/METTL3 complex-mediated ENO1 mRNA m6A modification in ENO1 expression. It also reveals a novel mechanism by which ENO1 promotes BC progression, thereby suggesting that ENO1 can be a therapeutic target for BC.
Collapse
Affiliation(s)
- Chengquan Shen
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing Liu
- Department of Research Management and International Cooperation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fei Xie
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yongbo Yu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaocheng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ding Hu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changxue Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Qingdao Clinical Medical Research Center for Urinary System Diseases, Qingdao, Shandong, China; Shandong Province Medical and Health Key Laboratory of Urology, Qingdao, Shandong, China.
| |
Collapse
|
36
|
Liu J, Zhang B, Cui Y, Song H, Shang D. In vitro co-culture models for studying organoids-macrophages interaction: the golden technology of cancer immunotherapy. Am J Cancer Res 2024; 14:3222-3240. [PMID: 39113861 PMCID: PMC11301299 DOI: 10.62347/bqfh7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Macrophages, as the largest immune cell group in tumour tissues, play a crucial role in influencing various malignant behaviours of tumour cells and tumour immune evasion. As the research on macrophages and cancer immunotherapy develops, the importance of appropriate research models becomes increasingly evident. The development of organoids has bridged the gap between traditional two-dimensional (2D) cultures and animal experiments. Recent studies have demonstrated that organoids exhibit similar physiological characteristics to the source tissue and closely resemble the in vivo genome and molecular markers of the source tissue or organ. However, organoids still lack an immune component. Developing a co-culture model of organoids and macrophages is crucial for studying the interaction and mechanisms between tumour cells and macrophages. This paper presents an overview of the establishment of co-culture models, the current research status of organoid macrophage interactions, and the current status of immunotherapy. In addition, the application prospects and shortcomings of the model are explained. Ultimately, it is hoped that the co-culture model will offer a preclinical testing platform for maximising a precise cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Yuying Cui
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Huiyi Song
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian, Liaoning, PR China
| |
Collapse
|
37
|
Yang Y, Kong Y, Cui J, Hou Y, Gu Z, Ma C. Advances and Applications of Cancer Organoids in Drug Screening and Personalized Medicine. Stem Cell Rev Rep 2024; 20:1213-1226. [PMID: 38532032 DOI: 10.1007/s12015-024-10714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
In recent years, the rapid emergence of 3D organoid technology has garnered significant attention from researchers. These miniature models accurately replicate the structure and function of human tissues and organs, offering more physiologically relevant platforms for cancer research. These intricate 3D structures not only serve as promising models for studying human cancer, but also significantly contribute to the advancement of various potential applications in the field of cancer research. To date, organoids have been efficiently constructed from both normal and malignant tissues originating from patients. Using such bioengineering platforms, simulations of infections and cancer processes, mutations and carcinogenesis can be achieved, and organoid technology is also expected to facilitate drug testing and personalized therapies. In conclusion, regenerative medicine has the potential to enhance organoid technology and current transplantation treatments by utilizing genetically identical healthy organoids as substitutes for irreversibly deteriorating diseased organs. This review explored the evolution of cancer organoids and emphasized the significant role these models play in fundamental research and the advancement of personalized medicine in oncology.
Collapse
Affiliation(s)
- Yujia Yang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yajie Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Jinlei Cui
- Immunology Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yu Hou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Zhanjing Gu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Cuiqing Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Immunology Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
38
|
Yu Y, Liang Y, Xie F, Zhang Z, Zhang P, Zhao X, Zhang Z, Liang Z, Li D, Wang L, Chen Y, Sun L, Niu H, Wang Y. Tumor-associated macrophage enhances PD-L1-mediated immune escape of bladder cancer through PKM2 dimer-STAT3 complex nuclear translocation. Cancer Lett 2024; 593:216964. [PMID: 38762193 DOI: 10.1016/j.canlet.2024.216964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME) and strongly associated with poor prognosis and drug resistance, including checkpoint blockade immunotherapy in solid tumor patients. However, the mechanism by which TAM affects immune metabolism reprogramming and immune checkpoint signalling pathway in the TME remains elusive. In this study we found that transforming growth factor-beta (TGF-β) secreted by M2-TAMs increased the level of glycolysis in bladder cancer (BLCA) and played important role in PD-L1-mediated immune evasion through pyruvate kinase isoenzymes M2 (PKM2). Mechanistically, TGF-β promoted high expression of PKM2 by promoting the nuclear translocation of PKM2 dimer in conjunction with phosphorylated signal transducer and activator of transcription (p-STAT3), which then exerted its kinase activity to promote PD-L1 expression in BLCA. Moreover, SB-431542 (TGF-β blocker) and shikonin (PKM2 inhibitor) significantly reduced PD-L1 expression and inhibited BLCA growth and organoids by enhancing anti-tumor immune responses. In conclusion, M2-TAM-derived TGF-β promotes PD-L1-mediated immune evasion in BLCA by increasing the PKM2 dimer-STAT3 complex nuclear translocation. Combined blockade of the TGF-β receptor and inhibition of PKM2 effectively prevent BLCA progression and immunosuppression, providing a potential targeted therapeutic strategy for BLCA.
Collapse
Affiliation(s)
- Yongbo Yu
- Urology Department, The Affiliated Hospital of Qingdao University, China; Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Medicine College, Qingdao University, Qingdao, China; Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fei Xie
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhao Zhang
- Urology Department, The Affiliated Hospital of Qingdao University, China; Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Medicine College, Qingdao University, Qingdao, China
| | - Pengfei Zhang
- Urology Department, The Affiliated Hospital of Qingdao University, China; Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Medicine College, Qingdao University, Qingdao, China
| | - Xinzhao Zhao
- Urology Department, The Affiliated Hospital of Qingdao University, China; Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Medicine College, Qingdao University, Qingdao, China
| | - Zhilei Zhang
- Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, China
| | - Zhijuan Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Dan Li
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Liping Wang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuanbin Chen
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lijiang Sun
- Urology Department, The Affiliated Hospital of Qingdao University, China
| | - Haitao Niu
- Urology Department, The Affiliated Hospital of Qingdao University, China; Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Yonghua Wang
- Urology Department, The Affiliated Hospital of Qingdao University, China; Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
39
|
Wan Y, Ding J, Jia Z, Hong Y, Tian G, Zheng S, Pan P, Wang J, Liang H. Current trends and research topics regarding organoids: A bibliometric analysis of global research from 2000 to 2023. Heliyon 2024; 10:e32965. [PMID: 39022082 PMCID: PMC11253259 DOI: 10.1016/j.heliyon.2024.e32965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
The use of animal models for biological experiments is no longer sufficient for research related to human life and disease. The development of organ tissues has replaced animal models by mimicking the structure, function, development and homeostasis of natural organs. This provides more opportunities to study human diseases such as cancer, infectious diseases and genetic disorders. In this study, bibliometric methods were used to analyze organoid-related articles published over the last 20+ years to identify emerging trends and frontiers in organoid research. A total of 13,143 articles from 4125 institutions in 86 countries or regions were included in the analysis. The number of papers increased steadily over the 20-year period. The United States was the leading country in terms of number of papers and citations. Harvard Medical School had the highest number of papers published. Keyword analysis revealed research trends and focus areas such as organ tissues, stem cells, 3D culture and tissue engineering. In conclusion, this study used bibliometric and visualization methods to explore the field of organoid research and found that organ tissues are receiving increasing attention in areas such as cancer, drug discovery, personalized medicine, genetic disease modelling and gene repair, making them a current research hotspot and a future research trend.
Collapse
Affiliation(s)
- Yantong Wan
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianan Ding
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Zixuan Jia
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guijie Tian
- School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou, China
| | - Shuqian Zheng
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Pinfei Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jieyan Wang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| |
Collapse
|
40
|
Piraino F, Costa M, Meyer M, Cornish G, Ceroni C, Garnier V, Hoehnel-Ka S, Brandenberg N. Organoid models: the future companions of personalized drug development. Biofabrication 2024; 16:032009. [PMID: 38608454 DOI: 10.1088/1758-5090/ad3e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.
Collapse
Affiliation(s)
| | - Mariana Costa
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Marine Meyer
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Love JR, Karthaus WR. Next-Generation Modeling of Cancer Using Organoids. Cold Spring Harb Perspect Med 2024; 14:a041380. [PMID: 37734867 PMCID: PMC11146310 DOI: 10.1101/cshperspect.a041380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In the last decade, organoid technology has become a cornerstone in cancer research. Organoids are long-term primary cell cultures, usually of epithelial origin, grown in a three-dimensional (3D) protein matrix and a fully defined medium. Organoids can be derived from many organs and cancer types and sites, encompassing both murine and human tissues. Importantly, they can be established from various stages during tumor evolution and recapitulate with high accuracy patient genomics and phenotypes in vitro, offering a platform for personalized medicine. Additionally, organoids are remarkably amendable for experimental manipulation. Taken together, these features make organoids a powerful tool with applications in basic cancer research and personalized medicine. Here, we will discuss the origins of organoid culture, applications in cancer research, and how cancer organoids can synergize with other models of cancer to drive basic discoveries as well as to translate these toward clinical solutions.
Collapse
Affiliation(s)
- Jillian R Love
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Wouter R Karthaus
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Becknell B, El-Harakeh M, Rodriguez-Tirado F, Grounds KM, Li B, Kercsmar M, Wang X, Jackson AR. Keratin 5 basal cells are temporally regulated developmental and tissue repair progenitors in bladder urothelium. Am J Physiol Renal Physiol 2024; 326:F1078-F1090. [PMID: 38634130 PMCID: PMC11386981 DOI: 10.1152/ajprenal.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Urothelium forms a distensible yet impermeable barrier, senses and transduces stimuli, and defends the urinary tract from mechanical, chemical, and bacterial injuries. Biochemical and genetic labeling studies support the existence of one or more progenitor populations with the capacity to rapidly regenerate the urothelium following injury, but slow turnover, a low mitotic index, and inconsistent methodologies obscure progenitor identity. The progenitor properties of basal keratin 5 urothelial cells (K5-UCs) have been previously investigated, but those studies focused on embryonic or adult bladder urothelium. Urothelium undergoes desquamation and apoptosis after birth, which requires postnatal proliferation and restoration. Therefore, we mapped the fate of bladder K5-UCs across postnatal development/maturation and following administration of cyclophosphamide to measure homeostatic and reparative progenitor capacities, respectively. In vivo studies demonstrate that basal K5-UCs are age-restricted progenitors in neonates and juveniles, but not in adult mice. Neonatal K5-UCs retain a superior progenitor capacity in vitro, forming larger and more differentiated urothelial organoids than adult K5-UCs. Accordingly, K5-UC transcriptomes are temporally distinct, with enrichment of transcripts associated with cell proliferation and differentiation in neonates. Induction of urothelial proliferation is sufficient to restore adult K5-UC progenitor capacity. Our findings advance the understanding of urothelial progenitors and support a linear model of urothelial formation and regeneration, which may have significant impact on therapeutic development or tissue engineering strategies.NEW & NOTEWORTHY Fate mapping reveals an important linear relationship, whereby bladder basal urothelial cells give rise to intermediate and superficial cells in an age-restricted manner and contribute to tissue repair. Neonatal basal cells reprise their role as superior progenitors in vitro and display distinct transcriptional signatures, which suggest progenitor function is at least partially cell intrinsic. However, the urothelium progenitor niche cannot be overlooked, since FGF7 rescues adult basal cell progenitor function.
Collapse
Affiliation(s)
- Brian Becknell
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Mohammad El-Harakeh
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Felipe Rodriguez-Tirado
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Kelly M Grounds
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Birong Li
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Macie Kercsmar
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Xin Wang
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Ashley R Jackson
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| |
Collapse
|
43
|
Jin H, Yang Q, Yang J, Wang F, Feng J, Lei L, Dai M. Exploring tumor organoids for cancer treatment. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0216185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As a life-threatening chronic disease, cancer is characterized by tumor heterogeneity. This heterogeneity is associated with factors that lead to treatment failure and poor prognosis, including drug resistance, relapse, and metastasis. Therefore, precision medicine urgently needs personalized tumor models that accurately reflect the tumor heterogeneity. Currently, tumor organoid technologies are used to generate in vitro 3D tissues, which have been shown to precisely recapitulate structure, tumor microenvironment, expression profiles, functions, molecular signatures, and genomic alterations in primary tumors. Tumor organoid models are important for identifying potential therapeutic targets, characterizing the effects of anticancer drugs, and exploring novel diagnostic and therapeutic options. In this review, we describe how tumor organoids can be cultured and summarize how researchers can use them as an excellent tool for exploring cancer therapies. In addition, we discuss tumor organoids that have been applied in cancer therapy research and highlight the potential of tumor organoids to guide preclinical research.
Collapse
Affiliation(s)
- Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University 4 , Changsha 410011, Hunan, China
| | - Jing Yang
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
44
|
Xiang D, He A, Zhou R, Wang Y, Xiao X, Gong T, Kang W, Lin X, Wang X, PDO-based DST Consortium, Liu L, Chen YG, Gao S, Liu Y. Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development. Theranostics 2024; 14:3300-3316. [PMID: 38855182 PMCID: PMC11155402 DOI: 10.7150/thno.96027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Patient-derived organoids (PDOs) have emerged as a promising platform for clinical and translational studies. A strong correlation exists between clinical outcomes and the use of PDOs to predict the efficacy of chemotherapy and/or radiotherapy. To standardize interpretation and enhance scientific communication in the field of cancer precision medicine, we revisit the concept of PDO-based drug sensitivity testing (DST). We present an expert consensus-driven approach for medication selection aimed at predicting patient responses. To further standardize PDO-based DST, we propose guidelines for clarification and characterization. Additionally, we identify several major challenges in clinical prediction when utilizing PDOs.
Collapse
Affiliation(s)
- Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200125, PRC
- National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, PRC
| | - Yonggang Wang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233 PRC
| | - Xiuying Xiao
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Ting Gong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin 300052, PRC
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, PRC
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Boao Research Hospital), Hainan 571434, PRC
| | - Xiaolin Lin
- Department of Oncology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| | - Xiaochen Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, PRC
| | | | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, PRC
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui 230001, PRC
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100190, PRC
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330047, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, PRC
- Frontier Science Center for Stem Cell Research, Tongji University, 1239 Siping Road, Shanghai 200092, PRC
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PRC
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200232, PRC
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200127, PRC
| |
Collapse
|
45
|
Lampis S, Galardi A, Di Paolo V, Di Giannatale A. Organoids as a new approach for improving pediatric cancer research. Front Oncol 2024; 14:1414311. [PMID: 38835365 PMCID: PMC11148379 DOI: 10.3389/fonc.2024.1414311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
A key challenge in cancer research is the meticulous development of models that faithfully emulates the intricacies of the patient scenario, with emphasis on preserving intra-tumoral heterogeneity and the dynamic milieu of the tumor microenvironment (TME). Organoids emerge as promising tool in new drug development, drug screening and precision medicine. Despite advances in the diagnoses and treatment of pediatric cancers, certain tumor subtypes persist in yielding unfavorable prognoses. Moreover, the prognosis for a significant portion of children experiencing disease relapse is dismal. To improve pediatric outcome many groups are focusing on the development of precision medicine approach. In this review, we summarize the current knowledge about using organoid system as model in preclinical and clinical solid-pediatric cancer. Since organoids retain the pivotal characteristics of primary parent tumors, they exert great potential in discovering novel tumor biomarkers, exploring drug-resistance mechanism and predicting tumor responses to chemotherapy, targeted therapy and immunotherapies. We also examine both the potential opportunities and existing challenges inherent organoids, hoping to point out the direction for future organoid development.
Collapse
Affiliation(s)
- Silvia Lampis
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Galardi
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Virginia Di Paolo
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
46
|
Jones RT, Scholtes M, Goodspeed A, Akbarzadeh M, Mohapatra S, Feldman LE, Vekony H, Jean A, Tilton CB, Orman MV, Romal S, Deiter C, Kan TW, Xander N, Araki SP, Joshi M, Javaid M, Clambey ET, Layer R, Laajala TD, Parker SJ, Mahmoudi T, Zuiverloon TC, Theodorescu D, Costello JC. NPEPPS Is a Druggable Driver of Platinum Resistance. Cancer Res 2024; 84:1699-1718. [PMID: 38535994 PMCID: PMC11094426 DOI: 10.1158/0008-5472.can-23-1976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/20/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
There is an unmet need to improve the efficacy of platinum-based cancer chemotherapy, which is used in primary and metastatic settings in many cancer types. In bladder cancer, platinum-based chemotherapy leads to better outcomes in a subset of patients when used in the neoadjuvant setting or in combination with immunotherapy for advanced disease. Despite such promising results, extending the benefits of platinum drugs to a greater number of patients is highly desirable. Using the multiomic assessment of cisplatin-responsive and -resistant human bladder cancer cell lines and whole-genome CRISPR screens, we identified puromycin-sensitive aminopeptidase (NPEPPS) as a driver of cisplatin resistance. NPEPPS depletion sensitized resistant bladder cancer cells to cisplatin in vitro and in vivo. Conversely, overexpression of NPEPPS in sensitive cells increased cisplatin resistance. NPEPPS affected treatment response by regulating intracellular cisplatin concentrations. Patient-derived organoids (PDO) generated from bladder cancer samples before and after cisplatin-based treatment, and from patients who did not receive cisplatin, were evaluated for sensitivity to cisplatin, which was concordant with clinical response. In the PDOs, depletion or pharmacologic inhibition of NPEPPS increased cisplatin sensitivity, while NPEPPS overexpression conferred resistance. Our data present NPEPPS as a druggable driver of cisplatin resistance by regulating intracellular cisplatin concentrations. SIGNIFICANCE Targeting NPEPPS, which induces cisplatin resistance by controlling intracellular drug concentrations, is a potential strategy to improve patient responses to platinum-based therapies and lower treatment-associated toxicities.
Collapse
Affiliation(s)
- Robert T. Jones
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mathijs Scholtes
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maryam Akbarzadeh
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biochemistry, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Saswat Mohapatra
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Lily Elizabeth Feldman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hedvig Vekony
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Annie Jean
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Charlene B. Tilton
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael V. Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shahla Romal
- Department of Biochemistry, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cailin Deiter
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tsung Wai Kan
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nathaniel Xander
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephanie P. Araki
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mahmood Javaid
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ryan Layer
- Computer Science Department, University of Colorado, Boulder, Colorado
- BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Sarah J. Parker
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Biochemistry, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tahlita C.M. Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
47
|
Totonji S, Ramos-Triguero A, Willmann D, Sum M, Urban S, Bauer H, Rieder A, Wang S, Greschik H, Metzger E, Schüle R. Lysine Methyltransferase 9 (KMT9) Is an Actionable Target in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2024; 16:1532. [PMID: 38672614 PMCID: PMC11049522 DOI: 10.3390/cancers16081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Novel treatment modalities are imperative for the challenging management of muscle-invasive and metastatic BC to improve patient survival rates. The recently identified KMT9, an obligate heterodimer composed of KMT9α and KMT9β, regulates the growth of various types of tumors such as prostate, lung, and colon cancer. While the overexpression of KMT9α was previously observed to be associated with aggressive basal-like MIBC in an analysis of patients' tissue samples, a potential functional role of KMT9 in this type of cancer has not been investigated to date. In this study, we show that KMT9 regulates proliferation, migration, and invasion of various MIBC cell lines with different genetic mutations. KMT9α depletion results in the differential expression of genes regulating the cell cycle, cell adhesion, and migration. Differentially expressed genes include oncogenes such as EGFR and AKT1 as well as mediators of cell adhesion or migration such as DAG1 and ITGA6. Reduced cell proliferation upon KMT9α depletion is also observed in Pten/Trp53 knockout bladder tumor organoids, which cannot be rescued with an enzymatically inactive KMT9α mutant. In accordance with the idea that the catalytic activity of KMT9 is required for the control of cellular processes in MIBC, a recently developed small-molecule inhibitor of KMT9 (KMI169) also impairs cancer cell proliferation. Since KMT9α depletion also restricts the growth of xenografts in mice, our data suggest that KMT9 is an actionable novel therapeutic target for the treatment of MIBC.
Collapse
Affiliation(s)
- Sainab Totonji
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Anna Ramos-Triguero
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Dominica Willmann
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Manuela Sum
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Helena Bauer
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Astrid Rieder
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Sheng Wang
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Holger Greschik
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
48
|
Jose A, Kulkarni P, Thilakan J, Munisamy M, Malhotra AG, Singh J, Kumar A, Rangnekar VM, Arya N, Rao M. Integration of pan-omics technologies and three-dimensional in vitro tumor models: an approach toward drug discovery and precision medicine. Mol Cancer 2024; 23:50. [PMID: 38461268 PMCID: PMC10924370 DOI: 10.1186/s12943-023-01916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/15/2023] [Indexed: 03/11/2024] Open
Abstract
Despite advancements in treatment protocols, cancer is one of the leading cause of deaths worldwide. Therefore, there is a need to identify newer and personalized therapeutic targets along with screening technologies to combat cancer. With the advent of pan-omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, and lipidomics, the scientific community has witnessed an improved molecular and metabolomic understanding of various diseases, including cancer. In addition, three-dimensional (3-D) disease models have been efficiently utilized for understanding disease pathophysiology and as screening tools in drug discovery. An integrated approach utilizing pan-omics technologies and 3-D in vitro tumor models has led to improved understanding of the intricate network encompassing various signalling pathways and molecular cross-talk in solid tumors. In the present review, we underscore the current trends in omics technologies and highlight their role in understanding genotypic-phenotypic co-relation in cancer with respect to 3-D in vitro tumor models. We further discuss the challenges associated with omics technologies and provide our outlook on the future applications of these technologies in drug discovery and precision medicine for improved management of cancer.
Collapse
Affiliation(s)
- Anmi Jose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pallavi Kulkarni
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Jaya Thilakan
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Murali Munisamy
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Anvita Gupta Malhotra
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Vivek M Rangnekar
- Markey Cancer Center and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India.
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
49
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
50
|
Xu Y, Sun G, Yang T, Li H, Hu P, Luo W, Zhang T, Liu H, Chen G, Ye Z, Wu Y, Yu J, Chen W, Zhao K, Liu C, Zhang H. Validation of hyperthermia as an enhancer of chemotherapeutic efficacy: insights from a bladder cancer organoid model. Int J Hyperthermia 2024; 41:2316085. [PMID: 38346911 DOI: 10.1080/02656736.2024.2316085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the combined efficacy of hyperthermia and chemotherapy using a bladder cancer organoid model and to explore hyperthermia-related molecular pathways. METHOD Tumor organoids were generated by embedding RT4 bladder cancer cells into Matrigel. The resulting organoids were treated with pirarubicin or gemcitabine at 37 °C or 42 °C. Proliferation was determined by Ki67 immunofluorescence staining, and apoptosis was assessed using a TdT-mediated dUTP nick end labeling (TUNEL) assay. RNA sequencing was used to identify the differentially expressed genes. RESULTS Bladder cancer organoids were successfully established and exhibited robust proliferative abilities. Treatment with gemcitabine or pirarubicin under hyperthermic conditions caused pronounced structural damage to the organoids and increased cell death compared to that in the normothermically treated group. Furthermore, Ki67 labeling and TUNEL assays showed that the hyperthermia chemotherapy group showed a significantly reduced proliferation rate and high level of apoptosis. Finally, RNA sequencing revealed the IFN-γ signaling pathway to be associated with hyperthermia. CONCLUSION Overall, hyperthermia combined with chemotherapy exerted better therapeutic effects than those of normothermic chemotherapy in grade 1-2 non-muscle-invasive bladder cancer, potentially through activation of the IFN-γ-JAK-STAT pathway.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Guoliang Sun
- Department of Urology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Tiantian Yang
- College of Pharmacy, Hubei University of Science and Technology, Hubei, China
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Wanru Luo
- College of Pharmacy, Hubei University of Science and Technology, Hubei, China
| | | | - Haoran Liu
- Bio-X, Stanford University School of Medicine, Stanford, CA, USA
| | - Guoyi Chen
- Department of Urology, Jianyang First Hospital, Fujian, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yuqing Wu
- Suzhou OptoMedic Technologies Inc, Jiangsu, China
| | - Jie Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, China
| | - Wanyi Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|