1
|
Swain J, Askenasy I, Rudland Nazeer R, Ho PM, Labrini E, Mancini L, Xu Q, Hollendung F, Sheldon I, Dickson C, Welch A, Agbamu A, Godlee C, Welch M. Pathogenicity and virulence of Pseudomonas aeruginosa: Recent advances and under-investigated topics. Virulence 2025; 16:2503430. [PMID: 40353451 PMCID: PMC12087490 DOI: 10.1080/21505594.2025.2503430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/23/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
Pseudomonas aeruginosa is a model for the study of quorum sensing, protein secretion, and biofilm formation. Consequently, it has become one of the most intensely reviewed pathogens, with many excellent articles in the current literature focusing on these aspects of the organism's biology. Here, though, we aim to take a slightly different approach and consider some less well appreciated (but nonetheless important) factors that affect P. aeruginosa virulence. We start by reminding the reader of the global importance of P. aeruginosa infection and that the "virulome" is very niche-specific. Overlooked but obvious questions such as "what prevents secreted protein products from being digested by co-secreted proteases?" are discussed, and we suggest how the nutritional preference(s) of the organism might dictate its environmental reservoirs. Recent studies identifying host genes associated with genetic predisposition towards P. aeruginosa infection (and even infection by specific P. aeruginosa strains) and the role(s) of intracellular P. aeruginosa are introduced. We also discuss the fact that virulence is a high-risk strategy and touch on how expression of the two main classes of virulence factors is regulated. A particular focus is on recent findings highlighting how nutritional status and metabolism are as important as quorum sensing in terms of their impact on virulence, and how co-habiting microbial species at the infection site impact on P. aeruginosa virulence (and vice versa). It is our view that investigation of these issues is likely to dominate many aspects of research into this WHO-designated priority pathogen over the next decade.
Collapse
Affiliation(s)
- Jemima Swain
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Isabel Askenasy
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | - Pok-Man Ho
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Edoardo Labrini
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | - Qingqing Xu
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | | | - Camilla Dickson
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Amelie Welch
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Adam Agbamu
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Camilla Godlee
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, Cambridge University, Cambridge, UK
| |
Collapse
|
2
|
Wang M, Xu Z, Huang Y, Dong B. Biodegradation of ciprofloxacin by a manganese-oxidizing fungus Cladosporium sp. XM01: Performance and transcriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138543. [PMID: 40344838 DOI: 10.1016/j.jhazmat.2025.138543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Biogenic manganese (Mn) oxidation presents a promising approach for ciprofloxacin (CIP) removal from wastewater, yet the interaction between Mn bio-oxidation and CIP degradation remains unclear. The Mn-oxidizing fungus Cladosporium sp. XM01 was selected as a model strain in this study, to explore the impacts of CIP on microbial growth, function and biotransformation. Results showed that CIP exhibited a promotive effect on the growth and Mn(II) oxidation capacity of XM01. After 192 h of cultivation, 39.80 %-69.19 % of CIP was removed by XM01 in the absence of Mn(II), while over 84 % was removed with 300 μM Mn(II), demonstrating both direct and Mn(II)-enhanced indirect degradation of CIP. Transcriptomic analysis revealed that the upregulation of ribosome, peroxisome, and tyrosine metabolism pathways enhanced XM01's adaptation to CIP and supported microbial growth. Cytochrome P450 (CYP450) enzymes were implicated as key mediators in CIP degradation. Additionally, in the presence of Mn(II), the further upregulation of transmembrane transporters, NAD(P)H dehydrogenase, and CYP450 indicated that Mn bio-oxidation enhanced XM01's adaptation and response to CIP, thereby accelerating its degradation. Proposed CIP degradation pathways include piperazine epoxidation, decarboxylation, and hydroxylation. This study advances the understanding of fungal Mn oxidation in antibiotic removal, emphasizing its potential in wastewater treatment.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| | - Yangrui Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Liu XF, Wang P, Dong Z, Zu Y, Wang X, Zhai Y, Wudong G, Yang Y, Hao M, Zhou D, Liu W, Jin YP, Wang AH. (P)ppGpp synthetase Rel facilitates cellulose formation of biofilm by regulating glycosyltransferase in Brucella abortus. Int J Biol Macromol 2025; 302:140022. [PMID: 39863195 DOI: 10.1016/j.ijbiomac.2025.140022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Biofilms are complex adhesive structures that establish chronic infection and allow robust protection from external stressors such as antibiotics. Cellulose as one of the compositions of bacteria biofilm which protect bacteria from stress, host immune responses and resistance to antibiotics. Bacterial stress responses are regulated via guanosine pentaphosphate and tetraphosphate (p)ppGpp. This molecule has been a target of research efforts to counteract biofilm formation in pathogenic bacteria. However, a role for (p)ppGpp synthetase Rel influencing in biofilms and its cellulose formation has not been identified in Brucella. Firstly, rel mutant significantly decreased biofilm biomass and rendered biofilms more susceptible to most antibiotics. The rel mutant also showed greatly decreased biofilm architectures including exopolysaccharide, extracellular DNA, and lipid. Remarkably, we found rel mutant significantly decreased biofilm cellulose formation. We further combined proteomic analysis to explore the key proteins involved in cellulose regulation of Rel in Brucella biofilm formation. 287 differentially expressed proteins (DEPs) were identified and enriched in diverse metabolic pathway between WT and Δrel strains including purine and sulfur metabolism, transcription factors and glycosyltransferases which may be related to cellulose formation. The Q-PCR showed that mRNA levels of only glycosyltransferase (WP_006161578.1) of the 12 down-DFPs had significantly upregulated in rel mutant contrast to WT strain and β-galactosidase assay showed a negative regulatory in rel mutant. Furthermore, Rel-dependent biofilms cellulose was also restored and accompanied by an increase in glycosyltransferase (WP_006161578.1) when glucose was added in TSB medium. Overall, this work expands the role of (p)ppGpp synthetase Rel as an important regulator in biofilm and cellulose formation that is tightly linked with pathogenicity and chronic persistent infections in Brucella.
Collapse
Affiliation(s)
- Xiao Fang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Pingping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Zheng Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Yaping Zu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Gaowa Wudong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanhao Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Ya Ping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Ai Hua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Sharma P, Kalra A, Tripathi AD, Chaturvedi VK, Chouhan B. Antimicrobial Proficiency of Amlodipine: Investigating its Impact on Pseudomonas spp. in Urinary Tract Infections. Indian J Microbiol 2025; 65:347-358. [PMID: 40371041 PMCID: PMC12069773 DOI: 10.1007/s12088-024-01280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2025] Open
Abstract
Antibiotic resistance in urinary tract infections (UTIs) is a growing concern due to extensive antibiotic use. The study explores a drug repurposing approach to find non-antibiotic drugs with antibacterial activity. In the present study, 8 strains of Pseudomonas spp. were used that were clinically isolated from UTI-infected patients. Amlodipine, a cardiovascular drug used in this study, has shown potential antimicrobial effect in reducing the various virulence factors, including swimming and twitching motility, biofilm, rhamnolipid, pyocyanin, and oxidative stress resistance against all the strains. Amlodipine exhibited the most potent antimicrobial activity with MIC in the range of 6.25 to 25 µg/ml. Significant inhibition in biofilm production was seen in the range of 45.75 to 76.70%. A maximum decrease of 54.66% and 59.45% in swimming and twitching motility was observed, respectively. Maximum inhibition of 65.87% of pyocyanin pigment was observed with the effect of amlodipine. Moreover, a significant decrease in rhamnolipids production observed after amlodipine treatment was between 16.5 and 0.001 mg/ml as compared to the control. All bacterial strains exhibited leakage of proteins and nucleic acids from their cell membranes when exposed to amlodipine which suggests the damage of the structural integrity. In conclusion, amlodipine exhibited good antimicrobial activity and can be used as a potential candidate to be repurposed for the treatment of urinary tract infections.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan 302004 India
| | - Aakanksha Kalra
- Dr. B. Lal Institute of Biotechnology, University of Rajasthan, Jaipur, Rajasthan 302017 India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Vivek K. Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences (BHU), Varanasi, 221005 India
| | - Bharti Chouhan
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan 302004 India
| |
Collapse
|
5
|
Teichmann L, Wenne M, Luitwieler S, Dugar G, Bengtsson-Palme J, ter Kuile B. Genetic adaptation to amoxicillin in Escherichia coli: The limited role of dinB and katE. PLoS One 2025; 20:e0312223. [PMID: 39970152 PMCID: PMC11838884 DOI: 10.1371/journal.pone.0312223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/27/2024] [Indexed: 02/21/2025] Open
Abstract
Bacteria can quickly adapt to sub-lethal concentrations of antibiotics. Several stress and DNA repair genes contribute to this adaptation process. However, the pathways leading to adaptation by acquisition of de novo mutations remain poorly understood. This study explored the roles of DNA polymerase IV (dinB) and catalase HP2 (katE) in E. coli's adaptation to amoxicillin. These genes are thought to play essential roles in beta-lactam resistance-dinB in increasing mutation rates and katE in managing oxidative stress. By comparing the adaptation rates, transcriptomic profiles, and genetic changes of wild-type and knockout strains, we aimed to clarify the contributions of these genes to beta-lactam resistance. While all strains exhibited similar adaptation rates and mutations in the frdD gene and ampC operon, several unique mutations were acquired in the ΔkatE and ΔdinB strains. Overall, this study distinguishes the contributions of general stress-related genes on the one hand, and dinB, and katE on the other hand, in development of beta-lactam resistance.
Collapse
Affiliation(s)
- Lisa Teichmann
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus Wenne
- Department of Life Sciences, Division of Systems and Synthetic Biology, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Gothenburg, Sweden
| | - Sam Luitwieler
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| | - Gaurav Dugar
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan Bengtsson-Palme
- Department of Life Sciences, Division of Systems and Synthetic Biology, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benno ter Kuile
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Santi I, Dias Teixeira R, Manfredi P, Hernandez Gonzalez H, Spiess DC, Mas G, Klotz A, Kaczmarczyk A, Vliet SV, Zamboni N, Hiller S, Jenal U. Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen. EMBO J 2024; 43:5211-5236. [PMID: 39322758 PMCID: PMC11535050 DOI: 10.1038/s44318-024-00248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Toxin-antitoxin (TA) systems are widespread in bacteria and implicated in genome stability, virulence, phage defense, and persistence. TA systems have diverse activities and cellular targets, but their physiological roles and regulatory mechanisms are often unclear. Here, we show that the NatR-NatT TA system, which is part of the core genome of the human pathogen Pseudomonas aeruginosa, generates drug-tolerant persisters by specifically depleting nicotinamide dinucleotides. While actively growing P. aeruginosa cells compensate for NatT-mediated NAD+ deficiency by inducing the NAD+ salvage pathway, NAD depletion generates drug-tolerant persisters under nutrient-limited conditions. Our structural and biochemical analyses propose a model for NatT toxin activation and autoregulation and indicate that NatT activity is subject to powerful metabolic feedback control by the NAD+ precursor nicotinamide. Based on the identification of natT gain-of-function alleles in patient isolates and on the observation that NatT increases P. aeruginosa virulence, we postulate that NatT modulates pathogen fitness during infections. These findings pave the way for detailed investigations into how a toxin-antitoxin system can promote pathogen persistence by disrupting essential metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexander Klotz
- Biozentrum, University of Basel, Basel, Switzerland
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | | | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | | | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
He P, Hu S, Zhang Y, Xiang Z, Zhu A, Chen S. Transcription factor AbrB regulates ROS generation and clearance in Bacillus licheniformis. Microbiol Res 2024; 287:127843. [PMID: 39024796 DOI: 10.1016/j.micres.2024.127843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Oxidative damage caused by the accumulation of reactive oxygen species (ROS) is one of the main obstacles to the improvement of microbial cell growth and fermentation characteristics under adverse environments. And the antioxidant capacity of cells will increase with the cell growth. Here, we found that a transition state transcription factor AbrB related to changes in cell growth status could regulate the accumulation of ROS and antioxidant capacity in Bacillus licheniformis. The results showed that the accumulation of intracellular ROS was reduced by 23.91 % and the cell survival rates were increased by 1.77-fold under 0.5 mM H2O2 when AbrB was knocked out. We further mapped regulatory target genes of AbrB related to ROS generation or clearance based on our previously analyzed transcriptome sequencing. It proved that AbrB could promote ROS generation via upregulating the synthesis of oxidase and siderophores, and negatively regulating the synthesis of iron chelators (pulcherriminic acid, and H2S). Additionally, AbrB could inhibit ROS clearance by negatively regulating the synthesis of antioxidase (superoxide dismutase, catalase, peroxidase, thioredoxin, thioredoxin reductase) and cysteine. Those results illustrated that the inactivation of AbrB during the stationary phase, along with its control over ROS generation and clearance, might represent a vital self-protection mechanism during cell evolution. Overall, the systematic investigation of the multi-pathway regulation network of ROS generation and clearance highlights the important function of AbrB in maintaining intracellular redox balance.
Collapse
Affiliation(s)
- Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shiying Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongjia Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhengwei Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Anting Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
8
|
Zheng R, Wu R, Liu Y, Sun Z, Xue Z, Bagheri Y, Khajouei S, Mi L, Tian Q, Pho R, Liu Q, Siddiqui S, Ren K, You M. Multiplexed sequential imaging in living cells with orthogonal fluorogenic RNA aptamer/dye pairs. Nucleic Acids Res 2024; 52:e67. [PMID: 38922685 PMCID: PMC11347136 DOI: 10.1093/nar/gkae551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Detecting multiple targets in living cells is important in cell biology. However, multiplexed fluorescence imaging beyond two-to-three targets remains a technical challenge. Herein, we introduce a multiplexed imaging strategy, 'sequential Fluorogenic RNA Imaging-Enabled Sensor' (seqFRIES), which enables live-cell target detection via sequential rounds of imaging-and-stripping. In seqFRIES, multiple orthogonal fluorogenic RNA aptamers are genetically encoded inside cells, and then the corresponding cell membrane permeable dye molecules are added, imaged, and rapidly removed in consecutive detection cycles. As a proof-of-concept, we have identified in this study four fluorogenic RNA aptamer/dye pairs that can be used for highly orthogonal and multiplexed imaging in living bacterial and mammalian cells. After further optimizing the cellular fluorescence activation and deactivation kinetics of these RNA/dye pairs, the whole four-color semi-quantitative seqFRIES process can be completed in ∼20 min. Meanwhile, seqFRIES-mediated simultaneous detection of critical signalling molecules and mRNA targets was also achieved within individual living cells. We expect our validation of this new seqFRIES concept here will facilitate the further development and potential broad usage of these orthogonal fluorogenic RNA/dye pairs for multiplexed and dynamic live-cell imaging and cell biology studies.
Collapse
Affiliation(s)
- Ru Zheng
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhining Sun
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhaolin Xue
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Sima Khajouei
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Lan Mi
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Raymond Pho
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Qinge Liu
- Department of Chemistry, Mount Holyoke College, Holyoke, MA 01075, USA
| | - Sidrat Siddiqui
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Gray DA, Wang B, Sidarta M, Cornejo FA, Wijnheijmer J, Rani R, Gamba P, Turgay K, Wenzel M, Strahl H, Hamoen LW. Membrane depolarization kills dormant Bacillus subtilis cells by generating a lethal dose of ROS. Nat Commun 2024; 15:6877. [PMID: 39128925 PMCID: PMC11317493 DOI: 10.1038/s41467-024-51347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
The bactericidal activity of several antibiotics partially relies on the production of reactive oxygen species (ROS), which is generally linked to enhanced respiration and requires the Fenton reaction. Bacterial persister cells, an important cause of recurring infections, are tolerant to these antibiotics because they are in a dormant state. Here, we use Bacillus subtilis cells in stationary phase, as a model system of dormant cells, to show that pharmacological induction of membrane depolarization enhances the antibiotics' bactericidal activity and also leads to ROS production. However, in contrast to previous studies, this results primarily in production of superoxide radicals and does not require the Fenton reaction. Genetic analyzes indicate that Rieske factor QcrA, the iron-sulfur subunit of respiratory complex III, seems to be a primary source of superoxide radicals. Interestingly, the membrane distribution of QcrA changes upon membrane depolarization, suggesting a dissociation of complex III. Thus, our data reveal an alternative mechanism by which antibiotics can cause lethal ROS levels, and may partially explain why membrane-targeting antibiotics are effective in eliminating persisters.
Collapse
Affiliation(s)
- Declan A Gray
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Margareth Sidarta
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Fabián A Cornejo
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany
| | - Jurian Wijnheijmer
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Rupa Rani
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Pamela Gamba
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK
- Charles River Laboratories, Keele Science Park, Keele, ST5 5SP, UK
| | - Kürşad Turgay
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany
- Leibniz Universität Hannover, Institut für Mikrobiologie, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Michaela Wenzel
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK
| | - Leendert W Hamoen
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Sett A, Dubey V, Bhowmik S, Pathania R. Decoding Bacterial Persistence: Mechanisms and Strategies for Effective Eradication. ACS Infect Dis 2024; 10:2525-2539. [PMID: 38940498 DOI: 10.1021/acsinfecdis.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The ability of pathogenic bacteria to evade antibiotic treatment is an intricate and multifaceted phenomenon. Over the years, treatment failure among patients due to determinants of antimicrobial resistance (AMR) has been the focal point for the research and development of new therapeutic agents. However, the survival of bacteria by persisting under antibiotic stress has largely been overlooked. Bacterial persisters are a subpopulation of sensitive bacterial cells exhibiting a noninheritable drug-tolerant phenotype. They are linked to the recalcitrance of infections in healthcare settings, in turn giving rise to AMR variants. The importance of bacterial persistence in recurring infections has been firmly recognized. Fundamental work over the past decade has highlighted numerous unique tolerance factors contributing to the persister phenotype in many clinically relevant pathogens. This review summarizes contributing factors that could aid in developing new strategies against bacterial antibiotic persisters.
Collapse
Affiliation(s)
- Abhiroop Sett
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Vineet Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Somok Bhowmik
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
- Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
11
|
Al-Momani H, Aolymat I, Ibrahim L, Albalawi H, Al Balawi D, Albiss BA, Almasri M, Alghweiri S. Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: a hormetic response. BMC Microbiol 2024; 24:290. [PMID: 39095741 PMCID: PMC11297655 DOI: 10.1186/s12866-024-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa. METHOD Samples of P. aeruginosa, i.e. the reference strain, ATCC 27,853, together with six strains recovered from patients with cystic fibrosis, were exposed to ten decreasing ZnO NPs doses (0.78-400 µg/mL). The ZnO NPs were manufactured from Peganum harmala using a chemical green synthesis approach, and their properties were verified utilizing X-ray diffraction and scanning electron microscopy. A microtiter plate technique was employed to investigate the impact of ZnO NPs on the growth, biofilm formation and metabolic activity of P. aeruginosa. Real-time polymerase chain reactions were performed to determine the effect of ZnO NPs on the expression of seven biofilm-encoding genes. RESULT The ZnO NPs demonstrated concentration-dependent bactericidal and antibiofilm efficiency at concentrations of 100-400 µg/mL. However, growth was significantly stimulated at ZnO NPs concentration of 25 µg/mL (ATCC 27853, Pa 3 and Pa 4) and at 12.5 µg/mL and 6.25 µg/mL (ATCC 27853, Pa 2, Pa 4 and Pa 5). No significant positive growth was detected at dilutions < 6.25 µg/mL. similarly, biofilm formation was stimulated at concentration of 12.5 µg/mL (ATCC 27853 and Pa 1) and at 6.25 µg/mL (Pa 4). At concentration of 12.5 µg/mL, ZnO NPs upregulated the expression of LasB ( ATCC 27853, Pa 1 and Pa 4) and LasR and LasI (ATCC 27853 and Pa 1) as well as RhII expression (ATCC 27853, Pa 2 and Pa 4). CONCLUSION When exposed to low ZnO NPs concentrations, P. aeruginosa behaves in a hormetic manner, undergoing positive growth and biofilm formation. These results highlight the importance of understanding the response of P. aeruginosa following exposure to low ZnO NPs concentrations.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan.
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Lujain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sahar Alghweiri
- Medical Laboratory Department, Prince Hashem Military Hospital, Zarqa, 13133, Jordan
| |
Collapse
|
12
|
Kloula Ben Ghorbal S, Dhaya I, Ouzari IH, Chatti A. Cyclopropanation and membrane unsaturation improve antibiotic resistance of swarmer Pseudomonas and its sod mutants exposed to radiations, in vitro and in silico approch. World J Microbiol Biotechnol 2024; 40:243. [PMID: 38869625 DOI: 10.1007/s11274-024-04033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
It was known that UVc irradiation increases the reactive oxygen species' (ROS) levels in bacteria hence the intervention of antioxidant enzymes and causes also changes in fatty acids (FAs) composition enabling bacteria to face antibiotics. Here, we intended to elucidate an interrelationship between SOD and susceptibility to antibiotics by studying FA membrane composition of UVc-treated P. aeruginosa PAO1 and its isogenic mutants (sodM, sodB and sod MB) membrane, after treatment with antibiotics. Swarmer mutants defective in genes encoding superoxide dismutase were pre-exposed to UVc radiations and then tested by disk diffusion method for their contribution to antibiotic tolerance in comparison with the P. aeruginosa wild type (WT). Moreover, fatty acid composition of untreated and UVc-treated WT and sod mutants was examined by Gaz chromatography and correlated to antibiotic resistance. Firstly, it has been demonstrated that after UVc exposure, swarmer WT strain, sodM and sodB mutants remain resistant to polymixin B, a membrane target antibiotic, through membrane unsaturation supported by the intervention of Mn-SOD after short UVc exposure and cyclopropanation of unsaturated FAs supported by the action of Fe-SOD after longer UVc exposure. However, resistance for ciprofloxacin is correlated with increase in saturated FAs. This correlation has been confirmed by a molecular docking approach showing that biotin carboxylase, involved in the initial stage of FA biosynthesis, exhibits a high affinity for ciprofloxacin. This investigation has explored the correlation of antibiotic resistance with FA content of swarmer P.aeruginosa pre-exposed to UVc radiations, confirmed to be antibiotic target dependant.
Collapse
Affiliation(s)
- Salma Kloula Ben Ghorbal
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, BP 273, 8020, Soliman, Tunisia.
| | - Ibtihel Dhaya
- LR18ES03- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecules Valorization, University of Tunis El Manar, Tunis, Tunisia
| | - Imene-Hadda Ouzari
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Physiques et Naturelles de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Abdelwaheb Chatti
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, BP 273, 8020, Soliman, Tunisia
- Unite de Biochimie des Lipides et Interactions des Macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Zarzouna, 7021, Bizerte, Tunisia
| |
Collapse
|
13
|
Liu X, Wang P, Yuan N, Zhai Y, Yang Y, Hao M, Zhang M, Zhou D, Liu W, Jin Y, Wang A. The (p)ppGpp synthetase Rsh promotes rifampicin tolerant persister cell formation in Brucella abortus by regulating the type II toxin-antitoxin module mbcTA. Front Microbiol 2024; 15:1395504. [PMID: 38841069 PMCID: PMC11150624 DOI: 10.3389/fmicb.2024.1395504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Persister cells are transiently tolerant to antibiotics and are associated with recalcitrant chronic infections due to recolonization of host cells after antibiotic removal. Brucella spp. are facultative pathogens that establish intracellular infection cycles in host cells which results in chronic persistent infections. Brucella abortus forms multi-drug persister cells which are promoted by the (p)ppGpp synthetase Rsh during rifampicin exposure. Here, we confirmed that Rsh promoted persister cells formation in B. abortus stationary phase treated with rifampicin and enrofloxacin. Deletion of the gene for Rsh decreased persister cells level in the presence of these drugs in different growth phases. However, persister cells formation by deletion strain varied in different growth phases in the presence of other antibiotics. Rsh also was involved in persister cells formation during rifampicin treatment under certain stress conditions, including acidic conditions, exposure to PBS, and heat stress. Moreover, Rsh impacted persister cell levels during rifampicin or enrofloxacin treatment in RAW264.7 macrophages. Certain typeIItoxin-antitoxin modules were upregulated under various stress conditions in B. abortus. We established that Rsh positively regulated the type II toxin-antitoxin mbcTA. Moreover, rifampicin-tolerant persister cells formation was elevated and ATP levels were decreased when mbcTA promoter was overexpressed in Rsh deletion background in stationary phase. Our results establish that (p)ppGpp synthetase Rsh plays a key role in B. abortus persistence and may serve as a potent novel target in combination with rifampicin in the development of new therapeutic approaches and prevention strategies to treat chronic infections of Brucella.
Collapse
Affiliation(s)
- Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Pingping Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Ningqiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yuanhao Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingxing Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| |
Collapse
|
14
|
García-Villada L, Degtyareva NP, Brooks AM, Goldberg JB, Doetsch PW. A role for the stringent response in ciprofloxacin resistance in Pseudomonas aeruginosa. Sci Rep 2024; 14:8598. [PMID: 38615146 PMCID: PMC11016087 DOI: 10.1038/s41598-024-59188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.
Collapse
Affiliation(s)
| | | | - Ashley M Brooks
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, NIEHS, Durham, NC, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul W Doetsch
- Genomic Integrity and Structural Biology Laboratory, NIEHS, Durham, NC, USA.
| |
Collapse
|
15
|
Yang L, Wang L, Wang M, Bajinka O, Wu G, Qin L, Tan Y. Oligoribonuclease mediates high adaptability of P. aeruginosa through metabolic conversion. BMC Microbiol 2024; 24:25. [PMID: 38238663 PMCID: PMC10797966 DOI: 10.1186/s12866-023-03175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Oligoribonuclease (orn) of P. aeruginosa is a highly conserved exonuclease, which can regulate the global gene expression levels of bacteria through regulation of both the nanoRNA and c-di-GMP. NanoRNA can regulate the expression of the bacterial global genome as a transcription initiator, and c-di-GMP is the most widely second messenger in bacterial cells. OBJECTIVE This study seeks to elucidate on the regulation by orn on pathogenicity of P. aeruginosa. METHODS P. aeruginosa with orn deletion was constructed by suicide plasmid homologous recombination method. The possible regulatory process of orn was analyzed by TMT quantitative labeling proteomics. Then experiments were conducted to verify the changes of Δorn on bacterial motility, virulence and biofilm formation. Bacterial pathogenicity was further detected in cell and animal skin trauma models. ELISA detection c-di-GMP concentration and colony aggregation and biofilm formation were observed by scanning electron microscope. RESULTS orn deletion changed the global metabolism of P. aeruginosa and reduced intracellular energy metabolism. It leads to the disorder of the quorum sensing system, the reduction of bacterial motility and virulence factors pyocyanin and rhamnolipids. But, orn deletion enhanced pathogenicity in vitro and in vivo, a high level of c-di-GMP and biofilm development of P. aeruginosa. CONCLUSION orn regulates the ability of P. aeruginosa to adapt to the external environment.
Collapse
Affiliation(s)
- Lulu Yang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Mengyu Wang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ousman Bajinka
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ling Qin
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| | - Yurong Tan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
16
|
Hare PJ, Gonzalez JR, Quelle RM, Wu YI, Mok WWK. Metabolic and transcriptional activities underlie stationary-phase Pseudomonas aeruginosa sensitivity to Levofloxacin. Microbiol Spectr 2024; 12:e0356723. [PMID: 38078717 PMCID: PMC10896071 DOI: 10.1128/spectrum.03567-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The bacterial pathogen Pseudomonas aeruginosa is responsible for a variety of chronic human infections. Even in the absence of identifiable resistance mutations, this pathogen can tolerate lethal antibiotic doses through phenotypic strategies like biofilm formation and metabolic quiescence. In this study, we determined that P. aeruginosa maintains greater metabolic activity in the stationary phase compared to the model organism, Escherichia coli, which has traditionally been used to study fluoroquinolone antibiotic tolerance. We demonstrate that hallmarks of E. coli fluoroquinolone tolerance are not conserved in P. aeruginosa, including the timing of cell death and necessity of the SOS DNA damage response for survival. The heightened sensitivity of stationary-phase P. aeruginosa to fluoroquinolones is attributed to maintained transcriptional and reductase activity. Our data suggest that perturbations that suppress transcription and respiration in P. aeruginosa may actually protect the pathogen against this important class of antibiotics.
Collapse
Affiliation(s)
- Patricia J Hare
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
- School of Dental Medicine, UConn Health , Farmington, Connecticut, USA
| | - Juliet R Gonzalez
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
| | - Ryan M Quelle
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
| | - Yi I Wu
- Richard D. Berlin Center for Cell Analysis and Modeling, UConn Health , Farmington, Connecticut, USA
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UConn Health , Farmington, Connecticut, USA
| |
Collapse
|
17
|
Pal AK, Ghorai D, Ge X, Sarkar B, Sahu AK, Chaudhary V, Jhawar R, Sanyal S, Singh M, Ghosh A. Second messenger c-di-AMP regulates multiple antibiotic sensitivity pathways in Mycobacterium smegmatis by discrete mechanisms. FEMS Microbiol Lett 2024; 371:fnae084. [PMID: 39390679 DOI: 10.1093/femsle/fnae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
One of the debilitating causes of high mortality in the case of tuberculosis and other bacterial infections is the resistance development against standard drugs. There are limited studies so far to describe how a bacterial second messenger molecule can directly participate in distinctive antibiotic tolerance characteristics of a cell in a mechanism-dependent manner. Here we show that intracellular cyclic di-AMP (c-di-AMP) concentration can modulate drug sensitivity of Mycobacterium smegmatis by interacting with an effector protein or interfering with the 5'-UTR regions in mRNA of the genes and thus causing transcriptional downregulation of important genes in the pathways. We studied four antibiotics with different mechanisms of action: rifampicin, ciprofloxacin, erythromycin, and tobramycin and subsequently found that the level of drug sensitivity of the bacteria is directly proportional to the c-di-AMP concentration inside the cell. Further, we unraveled the underlying molecular mechanisms to delineate the specific genes and pathways regulated by c-di-AMP and hence result in differential drug sensitivity in M. smegmatis.
Collapse
Affiliation(s)
- Aditya Kumar Pal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Ghorai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-75124, Sweden
| | - Biplab Sarkar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Amit Kumar Sahu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Chaudhary
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Ruchi Jhawar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-75124, Sweden
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Anirban Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 2023; 5:100129. [PMID: 37205903 PMCID: PMC10189392 DOI: 10.1016/j.bioflm.2023.100129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of life-threatening acute infections and life-long lasting chronic infections. The characteristic biofilm mode of life in P. aeruginosa chronic infections severely limits the efficacy of antimicrobial therapies, as it leads to intrinsic tolerance, involving physical and physiological factors in addition to biofilm-specific genes that can confer a transient protection against antibiotics promoting the development of resistance. Indeed, a striking feature of this pathogen is the extraordinary capacity to develop resistance to nearly all available antibiotics through the selection of chromosomal mutations, evidenced by its outstanding and versatile mutational resistome. This threat is dramatically amplified in chronic infections, driven by the frequent emergence of mutator variants with enhanced spontaneous mutation rates. Thus, this mini review is focused on describing the complex interplay of antibiotic resistance mechanisms in P. aeruginosa biofilms, to provide potentially useful information for the design of effective therapeutic strategies.
Collapse
Affiliation(s)
- María Fernández-Billón
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Aina E. Llambías-Cabot
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Antonio Oliver
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - María D. Macià
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
- Corresponding author. Department of Microbiology, Hospital Universitario Son Espases, Crta. Vallemossa 79, 07120, Palma de Mallorca, Spain.
| |
Collapse
|
19
|
Lin X, Zhang C, Han R, Li S, Peng H, Zhou X, Huang L, Xu Y. Oxytetracycline and heavy metals promote the migration of resistance genes in the intestinal microbiome by plasmid transfer. THE ISME JOURNAL 2023; 17:2003-2013. [PMID: 37700035 PMCID: PMC10579362 DOI: 10.1038/s41396-023-01514-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Horizontal gene transfer (HGT) has been considered the most important pathway to introduce antibiotic resistance genes (ARGs), which seriously threatens human health and biological security. The presence of ARGs in the aquatic environment and their effect on the intestinal micro-ecosystem of aquatic animals can occur easily. To investigate the HGT potential and rule of exogenous ARGs in the intestinal flora, a visual conjugative model was developed, including the donor of dual-fluorescent bacterium and the recipient of Xenopus tropicalis intestinal microbiome. Some common pollutants of oxytetracycline (OTC) and three heavy metals (Zn, Cu and Pb) were selected as the stressor. The multi-techniques of flow cytometry (FCM), scanning electron microscopy (SEM), atomic force microscopy (AFM), single-cell Raman spectroscopy with sorting (SCRSS) and indicator analysis were used in this study. The results showed that ARG transfer could occur more easily under stressors. Moreover, the conjugation efficiency mainly depended on the viability of the intestinal bacteria. The mechanisms of OTC and heavy metal stressing conjugation included the upregulation of ompC, traJ, traG and the downregulation of korA gene. Moreover, the enzymatic activities of SOD, CAT, GSH-PX increased and the bacterial surface appearance also changed. The predominant recipient was identified as Citrobacter freundi by SCRSS, in which the abundance and quantity of ARG after conjugation were higher than those before. Therefore, since the diversity of potential recipients in the intestine are very high, the migration of invasive ARGs in the microbiome should be given more attention to prevent its potential risks to public health.
Collapse
Affiliation(s)
- Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Ruiqi Han
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Shoupeng Li
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Huishi Peng
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Lu Huang
- Analysis and Test Center, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, PR China.
| |
Collapse
|
20
|
Ben Ghorbal SK, Maalej L, Ouzari IH, Chatti A. Implication of Mn-cofactored superoxide dismutase in the tolerance of swarmer Pseudomonas aeruginosa to polymixin, ciprofloxacin and meropenem antibiotics. World J Microbiol Biotechnol 2023; 39:347. [PMID: 37856014 DOI: 10.1007/s11274-023-03801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
The protective role of superoxide dismutase (Sod) against oxidative stress, resulting from the common antibiotic pathway of action, has been studied in the wild type and mutant strains of swarmer Pseudomonas aeruginosa, lacking Cytosolic Mn-Sod (sodM), Fe-Sod (sodB) or both Sods (sodMB).Our results showed that inactivation of sodB genes leads to significant motility defects and tolerance to meropenem. This resistance is correlated with a greater membrane unsaturation as well as an effective intervention of Mn-Sod isoform, in antibiotic tolerance.Moreover, loss of Mn-Sod in sodM mutant, leads to polymixin intolerance and is correlated with membrane unsaturation. Effectivelty, sodM mutant showed an enhanced swarming motility and a conserved rhamnolipid production. Whereas, in the double mutant sodMB, ciprofloxacin tolerance would be linked to an increase in the percentage of saturated fatty acids in the membrane, even in the absence of superoxide dismutase activity.The overall results showed that Mn-Sod has a protective role in the tolerance to antibiotics, in swarmer P.aeruginosa strain. It has been further shown that Sod intervention in antibiotic tolerance is through change in membrane fatty acid composition.
Collapse
Affiliation(s)
- Salma Kloula Ben Ghorbal
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées Technopole Borj Cedria, BP 273, Soliman, 8020, Tunisie.
| | - Lobna Maalej
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées Technopole Borj Cedria, BP 273, Soliman, 8020, Tunisie
| | - Imene-Hadda Ouzari
- Laboratoire des Microorganismes et Biomolécules Actives (LMBA), Facult e des Sciences de Tunis Campus Universitaire, El Manar II, Tunisie
| | - Abdelwaheb Chatti
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées Technopole Borj Cedria, BP 273, Soliman, 8020, Tunisie
- Unite de Biochimie des lipides et interactions des macromolécules en Biologie, Laboratoire de Biochimie et biologie moléculaire, Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| |
Collapse
|
21
|
Touzout SN, Merghni A, Laouani A, Boukhibar H, Alenazy R, Alobaid A, Alenazy M, Ben-Attia M, Saguem K, El-Bok S. Antibacterial Properties of Methanolic Leaf Extracts of Melia azedarach L. against Gram-Positive and Gram-Negative Pathogenic Bacteria. Microorganisms 2023; 11:2062. [PMID: 37630622 PMCID: PMC10457991 DOI: 10.3390/microorganisms11082062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Melia azedarach L., a Meliaceae family tree, is widely used in traditional folkloric medicine for its pharmaceutical properties. In the present study, we investigated the phytochemical composition of four methanolic leaf extracts of M. azedarach of various origins (Algeria and Tunisia) using high-performance liquid chromatography (HPLC). The antibacterial efficacy and mechanisms of action against Gram-positive and Gram-negative pathogenic microorganisms were then evaluated. Our findings revealed a presence of phenolic acids and flavonoids, such as gallic acid, chlorogenic acid, caffeic acid, hyperoside, isoquercetin, quercetin, and isorhamnetin both in Algerian and Tunisian localities, with an abundance of phenolic acids compared to flavonoids. Additionally, the studied extracts exhibit a broad spectrum of antibacterial activities, with MIC values ranging from 31.25 mg/mL to 125 mg/mL. Methanolic leaf extracts of M. azedarach from Algeria exhibited more potent biofilm eradication, with a percentage of inhibition reaching 72.17% against the S. aureus strain. Furthermore, inhibitory concentrations of tested substances, particularly the extract from the Relizane area, were capable of disrupting the membrane integrity of the treated bacteria as well as producing oxidative stress through ROS generation. Likewise, our results reveal that plant extract induces lipid peroxidation by raising MDA levels in comparison to untreated cells, particularly with the plant extract of Blida. M. azedarach extracts also reduced the synthesis of antioxidant enzymes (CAT and SOD). Our findings illustrate that M. azedarach remains a plant with significant antibacterial potential and distinct mechanisms of action that are closely related to the origins of this specimen.
Collapse
Affiliation(s)
- Soraya Naila Touzout
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (S.N.T.); (H.B.); (S.E.-B.)
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Aicha Laouani
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.L.); (K.S.)
- USCR Analytical Platform UHPLC-MS &Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Halima Boukhibar
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (S.N.T.); (H.B.); (S.E.-B.)
| | - Rawaf Alenazy
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdulmohsen Alobaid
- Department of Medical Laboratory, Aliman General Hospital-Riyadh, Ministry of Health, Riyadh 12684, Saudi Arabia;
| | | | - Mossadok Ben-Attia
- Environment Biomonitoring Laboratory (LR01/ES14), Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia;
| | - Khaled Saguem
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.L.); (K.S.)
- USCR Analytical Platform UHPLC-MS &Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Safia El-Bok
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (S.N.T.); (H.B.); (S.E.-B.)
| |
Collapse
|
22
|
Merghni A, Belmamoun AR, Urcan AC, Bobiş O, Lassoued MA. 1,8-Cineol (Eucalyptol) Disrupts Membrane Integrity and Induces Oxidative Stress in Methicillin-Resistant Staphylococcus aureus. Antioxidants (Basel) 2023; 12:1388. [PMID: 37507929 PMCID: PMC10376866 DOI: 10.3390/antiox12071388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the increased emergence of drug-resistant bacteria, the declining efficiency of traditional antimicrobials has generated severe concerns in recent years. Subsequently, more interest in other antimicrobial agents from natural resources draws more attention as an alternative to conventional medications. This study investigated the bactericidal mechanism of monoterpene 1,8-cineol (eucalyptol), a major compound of various essential oils, against methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial activity of 1,8-cineol was assessed by an MTT assay against clinical and reference MRSA strains. A cell membrane integrity test, followed by zeta potential (ZP) measurements, was performed to evaluate the disruption of the bacterial membrane integrity. Additionally, the cytotoxic effect of this molecule on MRSA bacteria was investigated by monitoring reactive oxygen species (ROS) generation, lipid peroxidation (MDA), and antioxidant enzyme activities (CAT and SOD). Regarding the anti-staphylococcal effect, the obtained results revealed the antibacterial efficacy of 1,8-cineol wherein the minimum inhibitory concentrations were equal to 7.23 mg/mL. Furthermore, it enhanced membrane permeability, with a 5.36-fold increase in nucleic acid and protein leakage as compared with untreated strains, along with the alteration of surface charge (ZP) in MRSA cells. The tested compound caused an increase in ROS generation reaching 17,462 FU and MDA production, reaching 9.56 μM/mg protein, in treated bacterial cells, along with a decrease in oxidative stress enzymes activities. Our findings suggest that 1,8-cineol has the ability to damage the membrane integrity and induce ROS-mediated oxidative stress in MRSA cells, leading to its antagonistic effect against this pathogen and consequently aiding in the reversal of antibiotic resistance.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Ahmed Reda Belmamoun
- Department of Agricultural Sciences, Faculty of Nature and Life Sciences, Djillali Liabes University, Sidi-Bel-Abbes 22000, Algeria
| | - Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Otilia Bobiş
- Department of Beekeeping and Sericulture, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Mohamed Ali Lassoued
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Phamacy, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
23
|
Li XS, Xue JZ, Qi Y, Muhammad I, Wang H, Li XY, Luo YJ, Zhu DM, Gao YH, Kong LC, Ma HX. Citric Acid Confers Broad Antibiotic Tolerance through Alteration of Bacterial Metabolism and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24109089. [PMID: 37240435 DOI: 10.3390/ijms24109089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/30/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotic tolerance has become an increasingly serious crisis that has seriously threatened global public health. However, little is known about the exogenous factors that can trigger the development of antibiotic tolerance, both in vivo and in vitro. Herein, we found that the addition of citric acid, which is used in many fields, obviously weakened the bactericidal activity of antibiotics against various bacterial pathogens. This mechanistic study shows that citric acid activated the glyoxylate cycle by inhibiting ATP production in bacteria, reduced cell respiration levels, and inhibited the bacterial tricarboxylic acid cycle (TCA cycle). In addition, citric acid reduced the oxidative stress ability of bacteria, which led to an imbalance in the bacterial oxidation-antioxidant system. These effects together induced the bacteria to produce antibiotic tolerance. Surprisingly, the addition of succinic acid and xanthine could reverse the antibiotic tolerance induced by citric acid in vitro and in animal infection models. In conclusion, these findings provide new insights into the potential risks of citric acid usage and the relationship between antibiotic tolerance and bacterial metabolism.
Collapse
Affiliation(s)
- Xue-Song Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Jun-Ze Xue
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Yu Qi
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Inam Muhammad
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- Department of Zoology, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18050, Pakistan
| | - Hao Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Xuan-Yu Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Yi-Jia Luo
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Dao-Mi Zhu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Yun-Hang Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Ling-Cong Kong
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Hong-Xia Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| |
Collapse
|
24
|
Keller MR, Dörr T. Bacterial metabolism and susceptibility to cell wall-active antibiotics. Adv Microb Physiol 2023; 83:181-219. [PMID: 37507159 PMCID: PMC11024984 DOI: 10.1016/bs.ampbs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Bacterial infections are increasingly resistant to antimicrobial therapy. Intense research focus has thus been placed on identifying the mechanisms that bacteria use to resist killing or growth inhibition by antibiotics and the ways in which bacteria share these traits with one another. This work has led to the advancement of new drugs, combination therapy regimens, and a deeper appreciation for the adaptability seen in microorganisms. However, while the primary mechanisms of action of most antibiotics are well understood, the more subtle contributions of bacterial metabolic state to repairing or preventing damage caused by antimicrobials (thereby promoting survival) are still understudied. Here, we review a modern viewpoint on a classical system: examining bacterial metabolism's connection to antibiotic susceptibility. We dive into the relationship between metabolism and antibiotic efficacy through the lens of growth rate, energy state, resource allocation, and the infection environment, focusing on cell wall-active antibiotics.
Collapse
Affiliation(s)
- Megan Renee Keller
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States; Department of Microbiology, Cornell University, Ithaca, NY, United States; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
25
|
Zheng R, Wu R, Liu Y, Sun Z, Bagheri Y, Xue Z, Mi L, Tian Q, Pho R, Siddiqui S, Ren K, You M. Multiplexed Sequential Imaging in Living Cells with Orthogonal Fluorogenic RNA Aptamer/Dye Pairs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537750. [PMID: 37131625 PMCID: PMC10153257 DOI: 10.1101/2023.04.20.537750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Single-cell detection of multiple target analytes is an important goal in cell biology. However, due to the spectral overlap of common fluorophores, multiplexed fluorescence imaging beyond two-to-three targets inside living cells remains a technical challenge. Herein, we introduce a multiplexed imaging strategy that enables live-cell target detection via sequential rounds of imaging-and-stripping process, which is named as "sequential Fluorogenic RNA Imaging-Enabled Sensor" (seqFRIES). In seqFRIES, multiple orthogonal fluorogenic RNA aptamers are genetically encoded inside cells, and then the corresponding cell membrane permeable dye molecules are added, imaged, and rapidly removed in consecutive detection cycles. As a proof-of-concept, we have identified in this study five in vitro orthogonal fluorogenic RNA aptamer/dye pairs (>10-fold higher fluorescence signals), four of which can be used for highly orthogonal and multiplexed imaging in living bacterial and mammalian cells. After further optimizing the cellular fluorescence activation and deactivation kinetics of these RNA/dye pairs, the whole four-color semi-quantitative seqFRIES process can now be completed in ~20 min. Meanwhile, seqFRIES-mediated simultaneous detection of two critical signaling molecules, guanosine tetraphosphate and cyclic diguanylate, was also achieved within individual living cells. We expect our validation of this new seqFRIES concept here will facilitate the further development and potential broad usage of these orthogonal fluorogenic RNA/dye pairs for highly multiplexed and dynamic cellular imaging and cell biology studies.
Collapse
Affiliation(s)
- Ru Zheng
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhining Sun
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhaolin Xue
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Lan Mi
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Raymond Pho
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Sidrat Siddiqui
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Jiang M, Su YB, Ye JZ, Li H, Kuang SF, Wu JH, Li SH, Peng XX, Peng B. Ampicillin-controlled glucose metabolism manipulates the transition from tolerance to resistance in bacteria. SCIENCE ADVANCES 2023; 9:eade8582. [PMID: 36888710 PMCID: PMC9995076 DOI: 10.1126/sciadv.ade8582] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 05/31/2023]
Abstract
The mechanism(s) of how bacteria acquire tolerance and then resistance to antibiotics remains poorly understood. Here, we show that glucose abundance decreases progressively as ampicillin-sensitive strains acquire resistance to ampicillin. The mechanism involves that ampicillin initiates this event via targeting pts promoter and pyruvate dehydrogenase (PDH) to promote glucose transport and inhibit glycolysis, respectively. Thus, glucose fluxes into pentose phosphate pathway to generate reactive oxygen species (ROS) causing genetic mutations. Meanwhile, PDH activity is gradually restored due to the competitive binding of accumulated pyruvate and ampicillin, which lowers glucose level, and activates cyclic adenosine monophosphate (cAMP)/cAMP receptor protein (CRP) complex. cAMP/CRP negatively regulates glucose transport and ROS but enhances DNA repair, leading to ampicillin resistance. Glucose and Mn2+ delay the acquisition, providing an effective approach to control the resistance. The same effect is also determined in the intracellular pathogen Edwardsiella tarda. Thus, glucose metabolism represents a promising target to stop/delay the transition of tolerance to resistance.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yu-bin Su
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jin-zhou Ye
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Su-fang Kuang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Jia-han Wu
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Shao-hua Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
27
|
Mutant structure of metabolic switch protein in complex with monomeric c-di-GMP reveals a potential mechanism of protein-mediated ligand dimerization. Sci Rep 2023; 13:2727. [PMID: 36810577 PMCID: PMC9944927 DOI: 10.1038/s41598-023-29110-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Bacterial second messengers c-di-GMP and (p)ppGpp have broad functional repertoires ranging from growth and cell cycle control to the regulation of biofilm formation and virulence. The recent identification of SmbA, an effector protein from Caulobacter crescentus that is jointly targeted by both signaling molecules, has opened up studies on how these global bacterial networks interact. C-di-GMP and (p)ppGpp compete for the same SmbA binding site, with a dimer of c-di-GMP inducing a conformational change that involves loop 7 of the protein that leads to downstream signaling. Here, we report a crystal structure of a partial loop 7 deletion mutant, SmbA∆loop in complex with c-di-GMP determined at 1.4 Å resolution. SmbA∆loop binds monomeric c-di-GMP indicating that loop 7 is required for c-di-GMP dimerization. Thus the complex probably represents the first step of consecutive c-di-GMP binding to form an intercalated dimer as has been observed in wild-type SmbA. Considering the prevalence of intercalated c-di-GMP molecules observed bound to proteins, the proposed mechanism may be generally applicable to protein-mediated c-di-GMP dimerization. Notably, in the crystal, SmbA∆loop forms a 2-fold symmetric dimer via isologous interactions with the two symmetric halves of c-di-GMP. Structural comparisons of SmbA∆loop with wild-type SmbA in complex with dimeric c-di-GMP or ppGpp support the idea that loop 7 is critical for SmbA function by interacting with downstream partners. Our results also underscore the flexibility of c-di-GMP, to allow binding to the symmetric SmbA∆loop dimer interface. It is envisaged that such isologous interactions of c-di-GMP could be observed in hitherto unrecognized targets.
Collapse
|
28
|
Pseudomonas aeruginosa Citrate Synthase GltA Influences Antibiotic Tolerance and the Type III Secretion System through the Stringent Response. Microbiol Spectr 2023; 11:e0323922. [PMID: 36602339 PMCID: PMC9927146 DOI: 10.1128/spectrum.03239-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Carbohydrate metabolism plays essential roles in energy generation and providing carbon skeletons for amino acid syntheses. In addition, carbohydrate metabolism has been shown to influence bacterial susceptibility to antibiotics and virulence. In this study, we demonstrate that citrate synthase gltA mutation can increase the expression of the type III secretion system (T3SS) genes and antibiotic tolerance in Pseudomonas aeruginosa. The stringent response is activated in the gltA mutant, and deletion of the (p)ppGpp synthetase gene relA restores the antibiotic tolerance and expression of the T3SS genes to wild-type level. We further demonstrate that the intracellular level of cAMP is increased by the stringent response in the gltA mutant, which increases the expression of the T3SS master regulator gene exsA. Overall, our results reveal an essential role of GltA in metabolism, antibiotic tolerance, and virulence, as well as a novel regulatory mechanism of the stringent response-mediated regulation of the T3SS in P. aeruginosa. IMPORTANCE Rising antimicrobial resistance imposes a severe threat to human health. It is urgent to develop novel antimicrobial strategies by understanding bacterial regulation of virulence and antimicrobial resistance determinants. The stringent response plays an essential role in virulence and antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic pathogen that causes acute and chronic infections in humans. The bacterium produces an arsenal of virulence factors and is highly resistant to a variety of antibiotics. In this study, we provide evidence that citrate synthase GltA plays a critical role in P. aeruginosa metabolism and influences the antibiotic tolerance and virulence. We further reveal a role of the stringent response in the regulation of the antibiotic tolerance and virulence. The significance of this work is in elucidation of novel regulatory pathways that control both antibiotic tolerance and virulence in P. aeruginosa.
Collapse
|
29
|
Anti-Staphylococcal Activities of Rosmarinus officinalis and Myrtus communis Essential Oils through ROS-Mediated Oxidative Stress. Antibiotics (Basel) 2023; 12:antibiotics12020266. [PMID: 36830178 PMCID: PMC9952310 DOI: 10.3390/antibiotics12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Rosmarinus officinalis and Myrtus communis essential oils (EOs) are well-known for their ethno-pharmaceutical properties. In the present study, we have analyzed the chemical composition of both EOs by gas chromatography-mass spectrometry. Then we assessed their antibacterial, antibiofilm, and anti-virulence actions against the opportunistic pathogen Staphylococcus aureus. The cytotoxic effect of agents tested against this bacterium was investigated by monitoring reactive oxygen-species (ROS) generation and antioxidant-enzyme (catalase) production. Regarding the antistaphylococcal effects, our results showed antibacterial efficacy of both Eos and their combination, where the minimum inhibitory concentrations ranged between 0.7 and 11.25 mg/mL. A combination of tested agents showed the highest anti-hemolytic and anti-protease effects. Additionally, association between EOs displayed more potency against the development of biofilm performed by S. aureus, with percentage of removal reaching 74%. The inhibitory impacts of EOs on S. aureus virulence factors were discovered to be concentration-dependent. Furthermore, our results provide insight on the abilities of R. officinalis and M. communis EOs, as well as their potential in combination, to generate ROS and affect oxidative stress enzyme catalase in S. aureus, leading to their antagonistic effect against this pathogen.
Collapse
|
30
|
pruR and PA0065 Genes Are Responsible for Decreasing Antibiotic Tolerance by Autoinducer Analog-1 (AIA-1) in Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:antibiotics11060773. [PMID: 35740179 PMCID: PMC9219673 DOI: 10.3390/antibiotics11060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa infection is considered a high-risk nosocomial infection and is very difficult to eradicate because of its tolerance to antibiotic treatment. A new compound, autoinducer analog-1 (AIA-1), has been demonstrated to reduce antibiotic tolerance, but its mechanisms remain unknown. This study aimed to investigate the mechanisms of AIA-1 in the antibiotic tolerance of P. aeruginosa. A transposon mutant library was constructed using miniTn5pro, and screening was performed to isolate high tolerant mutants upon exposure to biapenem and AIA-1. We constructed a deletion mutant and complementation strain of the genes detected in transposon insertion site determination, pruR and PA0066-65-64, and performed killing assays with antibiotics and AIA-1. Gene expression upon exposure to biapenem and AIA-1 and their relationship to stress response genes were analyzed. High antibiotic tolerance was observed in Tn5-pruR and Tn5-PA0065 transposon mutants and their deletion mutants, ΔpruR and ΔPA0066-65-64. Complemented strains of pruR and PA0066-65-64 with their respective deletion mutants exhibited suppressed antibiotic tolerance. It was determined that deletion of PA0066-65-64 increased rpoS expression, and PA0066-65-64 affects antibiotic tolerance via the rpoS pathway. Additionally, antibiotics and AIA-1 were found to inhibit pruR and PA0066-65-64. This study proposed that pruR and PA0066-65-64 are members of the antibiotic tolerance suppressors.
Collapse
|
31
|
Vogeleer P, Létisse F. Dynamic Metabolic Response to (p)ppGpp Accumulation in Pseudomonas putida. Front Microbiol 2022; 13:872749. [PMID: 35495732 PMCID: PMC9048047 DOI: 10.3389/fmicb.2022.872749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The stringent response is a ubiquitous bacterial reaction triggered by nutrient deprivation and mediated by the intracellular concentrations of ppGpp and pppGpp. These alarmones, jointly referred to as (p)ppGpp, control gene transcription, mRNA translation and protein activity to adjust the metabolism and growth rate to environmental changes. While the ability of (p)ppGpp to mediate cell growth slowdown and metabolism adaptation has been demonstrated in Escherichia coli, it’s role in Pseudomonas putida remains unclear. The aims of this study were therefore to determine which forms of (p)ppGpp are synthetized in response to severe growth inhibition in P. putida, and to decipher the mechanisms of (p)ppGpp-mediated metabolic regulation in this bacterium. We exposed exponentially growing cells of P. putida to serine hydroxamate (SHX), a serine analog known to trigger the stringent response, and tracked the dynamics of intra- and extracellular metabolites using untargeted quantitative MS and NMR-based metabolomics, respectively. We found that SHX promotes ppGpp and pppGpp accumulation few minutes after exposure and arrests bacterial growth. Meanwhile, central carbon metabolites increase in concentration while purine pathway intermediates drop sharply. Importantly, in a ΔrelA mutant and a ppGpp0 strain in which (p)ppGpp synthesis genes were deleted, SHX exposure inhibited cell growth but led to an accumulation of purine pathway metabolites instead of a decrease, suggesting that as observed in other bacteria, (p)ppGpp downregulates the purine pathway in P. putida. Extracellular accumulations of pyruvate and acetate were observed as a specific metabolic consequence of the stringent response. Overall, our results show that (p)ppGpp rapidly remodels the central carbon metabolism and the de novo purine biosynthesis pathway in P. putida. These data represent a hypothesis-generating resource for future studies on the stringent response.
Collapse
|
32
|
Abstract
The bacterial response to antibiotics eliciting resistance is one of the key challenges in global health. Despite many attempts to understand intrinsic antibiotic resistance, many of the underlying mechanisms still remain elusive. In this study, we found that iron supplementation promoted antibiotic resistance in Streptomyces coelicolor. Iron-promoted resistance occurred specifically against bactericidal antibiotics, irrespective of the primary target of antibiotics. Transcriptome profiling revealed that some genes in the central metabolism and respiration were upregulated under iron-replete conditions. Iron supported the growth of S. coelicolor even under anaerobic conditions. In the presence of potassium cyanide, which reduces aerobic respiration of cells, iron still promoted respiration and antibiotic resistance. This suggests the involvement of a KCN-insensitive type of respiration in the iron effect. This phenomenon was also observed in another actinobacterium, Mycobacterium smegmatis. Taken together, these findings provide insight into a bacterial resistance strategy that mitigates the activity of bactericidal antibiotics whose efficacy accompanies oxidative damage by switching the respiration mode.
Collapse
|
33
|
Kho ZY, Azad MAK, Han ML, Zhu Y, Huang C, Schittenhelm RB, Naderer T, Velkov T, Selkrig J, Zhou Q(T, Li J. Correlative proteomics identify the key roles of stress tolerance strategies in Acinetobacter baumannii in response to polymyxin and human macrophages. PLoS Pathog 2022; 18:e1010308. [PMID: 35231068 PMCID: PMC8887720 DOI: 10.1371/journal.ppat.1010308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii possesses stress tolerance strategies against host innate immunity and antibiotic killing. However, how the host-pathogen-antibiotic interaction affects the overall molecular regulation of bacterial pathogenesis and host response remains unexplored. Here, we simultaneously investigate proteomic changes in A. baumannii and macrophages following infection in the absence or presence of the polymyxins. We discover that macrophages and polymyxins exhibit complementary effects to disarm several stress tolerance and survival strategies in A. baumannii, including oxidative stress resistance, copper tolerance, bacterial iron acquisition and stringent response regulation systems. Using the spoT mutant strains, we demonstrate that bacterial cells with defects in stringent response exhibit enhanced susceptibility to polymyxin killing and reduced survival in infected mice, compared to the wild-type strain. Together, our findings highlight that better understanding of host-pathogen-antibiotic interplay is critical for optimization of antibiotic use in patients and the discovery of new antimicrobial strategy to tackle multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhi Ying Kho
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Mohammad A. K. Azad
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Han
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thomas Naderer
- Biomedicine Discovery Institute, Infection Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Joel Selkrig
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
34
|
Feucherolles M, Nennig M, Becker SL, Martiny D, Losch S, Penny C, Cauchie HM, Ragimbeau C. Combination of MALDI-TOF Mass Spectrometry and Machine Learning for Rapid Antimicrobial Resistance Screening: The Case of Campylobacter spp. Front Microbiol 2022; 12:804484. [PMID: 35250909 PMCID: PMC8894766 DOI: 10.3389/fmicb.2021.804484] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
While MALDI-TOF mass spectrometry (MS) is widely considered as the reference method for the rapid and inexpensive identification of microorganisms in routine laboratories, less attention has been addressed to its ability for detection of antimicrobial resistance (AMR). Recently, some studies assessed its potential application together with machine learning for the detection of AMR in clinical pathogens. The scope of this study was to investigate MALDI-TOF MS protein mass spectra combined with a prediction approach as an AMR screening tool for relevant foodborne pathogens, such as Campylobacter coli and Campylobacter jejuni. A One-Health panel of 224 C. jejuni and 116 C. coli strains was phenotypically tested for seven antimicrobial resistances, i.e., ciprofloxacin, erythromycin, tetracycline, gentamycin, kanamycin, streptomycin, and ampicillin, independently, and were submitted, after an on- and off-plate protein extraction, to MALDI Biotyper analysis, which yielded one average spectra per isolate and type of extraction. Overall, high performance was observed for classifiers detecting susceptible as well as ciprofloxacin- and tetracycline-resistant isolates. A maximum sensitivity and a precision of 92.3 and 81.2%, respectively, were reached. No significant prediction performance differences were observed between on- and off-plate types of protein extractions. Finally, three putative AMR biomarkers for fluoroquinolones, tetracyclines, and aminoglycosides were identified during the current study. Combination of MALDI-TOF MS and machine learning could be an efficient and inexpensive tool to swiftly screen certain AMR in foodborne pathogens, which may enable a rapid initiation of a precise, targeted antibiotic treatment.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belval, Luxembourg
- *Correspondence: Maureen Feucherolles,
| | - Morgane Nennig
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Delphine Martiny
- National Reference Centre for Campylobacter, Laboratoire des Hôpitaux Universitaires de Bruxelles-Universitaire Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
- Université de Mons (UMONS), Mons, Belgium
| | - Serge Losch
- Laboratoire de Médecine Vétérinaire de l’Etat, Dudelange, Luxembourg
| | - Christian Penny
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belval, Luxembourg
- Chambre des Députés du Grand-Duché de Luxembourg, Parliamentary Research Service, Luxembourg, Luxembourg
| | - Henry-Michel Cauchie
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belval, Luxembourg
- Henry-Michel Cauchie,
| | - Catherine Ragimbeau
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| |
Collapse
|
35
|
Nair RR, Sharan D, Srinivasan V, Mukkayyan N, Jakkala K, Ajitkumar P. The H2O2 inherently released by the mycobacterial minor subpopulation enhances the survival of the major kin subpopulation against rifampicin. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100148. [PMID: 35909613 PMCID: PMC9325904 DOI: 10.1016/j.crmicr.2022.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/04/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Stress survival of mycobacterial minor (SCs) and major (NCs) subpopulations. The SCs enhance survival of the NCs against rifampicin. H2O2 released by the SCs increased KatG levels in the NCs. Increased KatG levels neutralised the H2O2 formed during rifampicin exposure. The enhanced survival was not observed in the furA-katG/katG knockout mutants.
Exposure to antibiotics most often generates oxidative stress in bacteria. Oxidative stress survival mechanisms would facilitate the evolution of antibiotic resistance. As part of an effort to understand oxidative stress survival mechanisms in mycobacteria, here we show that the minor subpopulation (SCs; short-sized cells constituting 10% of the population) of Mycobacterium smegmatis significantly increased the survival of its major kin subpopulation (NCs; normal/long-sized cells constituting 90% of the population) in the mid-log-phase (MLP) cultures against the oxidative stress induced by rifampicin and exogenously added H2O2 (positive control). We had earlier shown that the SCs in the MLP cultures inherently and naturally release significantly high levels of H2O2 into the medium. Addition of the SCs’ culture supernatant, unlike the supernatant of the dimethylthiourea (H2O2 scavenger) exposed SCs, enhanced the survival of NCs. It indicated that NCs’ survival required the H2O2 present in the SCs’ supernatant. This H2O2 transcriptionally induced high levels of catalase-peroxidase (KatG) in the NCs. The naturally high KatG levels in the NCs significantly neutralised the endogenous H2O2 formed upon exposure to rifampicin or H2O2, thereby enhancing the survival of NCs against oxidative stress. The absence of such enhanced survival in the furA-katG and katG knockout (KO) mutants of NCs in the presence of wild-type SCs, confirmed the requirement of the H2O2 present in the SCs’ supernatant and NCs’ KatG for enhanced oxidative stress survival. The presence of SCs:NCs at 1:9 in the pulmonary tuberculosis patients’ sputum alludes to the clinical significance of the finding.
Collapse
Affiliation(s)
- Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deepti Sharan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Vijay Srinivasan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Nagaraja Mukkayyan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Microbial Pathogenesis, University of Maryland, Baltimore 21201, Maryland, USA
| | - Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Parthasarathi Ajitkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Corresponding author.
| |
Collapse
|
36
|
Wet-dry cycles protect surface-colonizing bacteria from major antibiotic classes. THE ISME JOURNAL 2022; 16:91-100. [PMID: 34253853 PMCID: PMC8692528 DOI: 10.1038/s41396-021-01051-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Diverse antibiotic compounds are abundant in microbial habitats undergoing recurrent wet-dry cycles, such as soil, root and leaf surfaces, and the built environment. These antibiotics play a central role in microbial warfare and competition, thus affecting population dynamics and the composition of natural microbial communities. Yet, the impact of wet-dry cycles on bacterial response to antibiotics has been scarcely explored. Using the bacterium E. coli as a model organism, we show through a combination of experiments and computational modeling, that wet-dry cycles protect bacteria from beta-lactams. This is due to the combined effect of several mechanisms including tolerance induced by high salt concentrations and slow cell-growth, which are inherently associated with microscopic surface wetness-a hydration state typical to 'dry' periods. Moreover, we find evidence for a cross-protection effect, where lethal doses of antibiotic considerably increase bacterial survival during the dry periods. This work focuses on beta-lactams, yet similar protection was observed for additional major antibiotic classes. Our findings shed new light on how we understand bacterial response to antibiotics, with broad implications for population dynamics, interspecies interactions, and the evolution of antibiotic resistance in vast terrestrial microbial habitats.
Collapse
|
37
|
Pulschen AA, Fernandes AZN, Cunha AF, Sastre DE, Matsuguma BE, Gueiros-Filho FJ. Many birds with one stone: targeting the (p)ppGpp signaling pathway of bacteria to improve antimicrobial therapy. Biophys Rev 2021; 13:1039-1051. [DOI: 10.1007/s12551-021-00895-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
|
38
|
Antimicrobial and Antioxidant Secondary Metabolites from Trifolium baccarinii Chiov. (Fabaceae) and Their Mechanisms of Antibacterial Action. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3099428. [PMID: 34722760 PMCID: PMC8556085 DOI: 10.1155/2021/3099428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
The treatment of infectious diseases with antimicrobial agents continues to present problems in modern-day medicine with many studies showing significant increase in the incidence of bacterial resistance to several antibiotics. The screening of antimicrobial activity of plant extracts and natural products has shown that medicinal plants are made up of a potential source of new anti-infective agents. The aim of this study was to evaluate the antimicrobial and antioxidant activities of extracts and compounds from the whole plant Trifolium baccarinii Chiov. and to determine their modes of antibacterial action. The plant extracts were prepared by maceration in organic solvents. The antimicrobial activities were evaluated using the broth microdilution method. The antioxidant activity was evaluated using the 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assays. The mechanisms of antibacterial action were determined by lysis, salt tolerance assays, and antioxidant enzyme activities. The cytotoxic effect on the erythrocytes was determined by a spectrophotometric method. Biochanin A, formononetin, luteolin, luteolin-4'-O-β-D-glucopyranoside, 4,7,2'-trihydroxy-4'-methoxyisoflavanol, sissotrin, 1-methyl-β-D-glucopyranoside, ononin, D-mannitol, and 3-O-β-D-glucuronopyranosylsoyasapogenol B were isolated from Trifolium baccarinii. The MeOH, EtOAc, and n-BuOH extracts as well as biochanin A, formononetin, luteolin, luteolin-4'-O-β-D-glucopyranoside, 4,7,2'-trihydroxy-4'-methoxyisoflavanol, and sissotrin from Trifolium baccarinii displayed the highest antimicrobial and antioxidant activities. The MeOH extract and 4,7,2'-trihydroxy-4'-methoxyisoflavanol exhibited antibacterial activity through the bacteriolytic effect and reduction of the antioxidant defenses in the bacterial cells. The present study portrays Trifolium baccarinii as a potential natural source of antibacterial, antifungal, and antioxidant agents.
Collapse
|
39
|
D'Arpa P, Karna SLR, Chen T, Leung KP. Pseudomonas aeruginosa transcriptome adaptations from colonization to biofilm infection of skin wounds. Sci Rep 2021; 11:20632. [PMID: 34667187 PMCID: PMC8526614 DOI: 10.1038/s41598-021-00073-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
In burn patients Pseudomonas aeruginosa infection is a major cause of morbidity. Analysis of the pathogen's gene expression as it transitions from colonization to acute and then biofilm wound infection may provide strategies for infection control. Toward this goal, we seeded log-phase P. aeruginosa (PAO1) into 3-day-old, full-thickness excision wounds (rabbit ear) and harvested the bacteria during colonization (Hrs 2 and 6), acute infection (Hr 24), and biofilm infection (Days 5 and 9) for transcriptome analysis (RNA-Seq). After 2-6 h in the wound, genes for metabolism and cell replication were down-regulated while wound-adaptation genes were up-regulated (vs. expression in log-phase culture). As the infection progressed from acute to biofilm infection, more genes became up-regulated than down-regulated, but the down-regulated genes enriched in more pathways, likely because the genes and pathways that bacteria already colonizing wounds up-regulate to establish biofilm infection are less known. Across the stages of infection, carbon-utilization pathways shifted. During acute infection, itaconate produced by myeloid cells appears to have been a carbon source because myeloid cell infiltration and the expression of the host gene, ACOD1, for itaconate production peaked coincidently with the expression of the PAO1 genes for itaconate transport and catabolism. Additionally, branched-chain amino acids are suggested to be a carbon source in acute infection and in biofilm infection. In biofilm infection, fatty acid degradation was also up-regulated. These carbon sources feed into the glyoxylate cycle that was coincidently up-regulated, suggesting it provided the precursors for P. aeruginosa to synthesize macromolecules in establishing wound infection.
Collapse
Affiliation(s)
- Peter D'Arpa
- Combat Wound Repair Group and Tissue Regeneration Department, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA.,The Geneva Foundation, Tacoma, USA
| | - S L Rajasekhar Karna
- Combat Wound Repair Group and Tissue Regeneration Department, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
| | - Tsute Chen
- The Forsyth Institute, Cambridge, MA, USA
| | - Kai P Leung
- Combat Wound Repair Group and Tissue Regeneration Department, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA.
| |
Collapse
|
40
|
Liu K, Li L, Yao W, Wang W, Huang Y, Wang R, Li P. Genetic engineering of Pseudomonas chlororaphis Lzh-T5 to enhance production of trans-2,3-dihydro-3-hydroxyanthranilic acid. Sci Rep 2021; 11:16451. [PMID: 34385485 PMCID: PMC8361184 DOI: 10.1038/s41598-021-94674-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) is a cyclic β-amino acid used for the synthesis of non-natural peptides and chiral materials. And it is an intermediate product of phenazine production in Pseudomonas spp. Lzh-T5 is a P. chlororaphis strain isolated from tomato rhizosphere found in China. It can synthesize three antifungal phenazine compounds. Disruption the phzF gene of P. chlororaphis Lzh-T5 results in DHHA accumulation. Several strategies were used to improve production of DHHA: enhancing the shikimate pathway by overexpression, knocking out negative regulatory genes, and adding metal ions to the medium. In this study, three regulatory genes (psrA, pykF, and rpeA) were disrupted in the genome of P. chlororaphis Lzh-T5, yielding 5.52 g/L of DHHA. When six key genes selected from the shikimate, pentose phosphate, and gluconeogenesis pathways were overexpressed, the yield of DHHA increased to 7.89 g/L. Lastly, a different concentration of Fe3+ was added to the medium for DHHA fermentation. This genetically engineered strain increased the DHHA production to 10.45 g/L. According to our result, P. chlororaphis Lzh-T5 could be modified as a microbial factory to produce DHHA. This study laid a good foundation for the future industrial production and application of DHHA.
Collapse
Affiliation(s)
- Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Ling Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, People's Republic of China.
| | - Wentao Yao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yujie Huang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| |
Collapse
|
41
|
Could the analgesic drugs, paracetamol and indomethacin, function as quorum sensing inhibitors? Microb Pathog 2021; 158:105097. [PMID: 34284088 DOI: 10.1016/j.micpath.2021.105097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 07/15/2021] [Indexed: 11/22/2022]
Abstract
The current failure of antimicrobials in treating life-threatening diseases, the high rate of multidrug resistant pathogens and the slow progress in the development of new antibiotics directed scientists to develop antivirulence drugs that targets quorum sensing (QS). In many microbes, QS acts as a communication system which control pathogenicity of microbes. Analgesics can be beneficial in controlling virulence traits of microbes and hence they may augment the efficacy of antimicrobials. In this study, two analgesics were screened for the inhibition of QS in Chromobacterium violaceum CV026 and their effects on virulence production in Pseudomonas aeruginosa PAO1 strain and clinical isolates of Acinetobacter baumannii were evaluated. The traits investigated were biofilm formation, pyocyanin and rhamnolipid production, twitching, swarming or surface associated motilities, production of protease, phospholipase and gelatinase enzymes and sensitivity to oxidative stress. Relative expression of abaI gene was calculated by performing qRT-PCR. Docking analysis of paracetamol as QSI (quorum sensing inhibitor) of AbaI and AbaR proteins was performed. Paracetamol inhibited QS in CV026, but indomethacin devoids anti-QS activity. Paracetamol inhibited virulence factors of PAO1. It strongly inhibited biofilm formation, and swarming by 66.4% and 57.1%, respectively. While, it moderately to slightly inhibited rhamnolipid, pyocyanin, gelatinase, resistance to oxidative stress, protease and twitching motility by 33.3%, 33.1% 17.5%, 9.1%, 8.7% and 7.7%, respectively. For A. baumannii, paracetamol strongly inhibited biofilm by 39.7-93% and phospholipase enzyme by 8.7-100%, reduced twitching and surface motility by 6.7-82.5% and 7.7-29.4%, respectively, And slightly reduced sensitivity to oxidative stress by 3.3-36.4%. Paracetamol at sub-MIC suppressed the expression of abaI gene by 32% in A. baumannii. Docking studies suggested that paracetamol can bind to AbaR and AbaI proteins and bind more to AbaR, hence it may act by inhibiting AHL signal reception. As a conclusion, paracetamol, beside its analgesic activity, has anti-QS activity and could be used in the eradication of P. aeruginosa and A. baumannii infections in combination with antibiotics.
Collapse
|
42
|
Dörr T. Understanding tolerance to cell wall-active antibiotics. Ann N Y Acad Sci 2021; 1496:35-58. [PMID: 33274447 PMCID: PMC8359209 DOI: 10.1111/nyas.14541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
Antibiotic tolerance-the ability of bacteria to survive for an extended time in the presence of bactericidal antibiotics-is an understudied contributor to antibiotic treatment failure. Herein, I review the manifestations, mechanisms, and clinical relevance of tolerance to cell wall-active (CWA) antibiotics, one of the most important groups of antibiotics at the forefront of clinical use. I discuss definitions of tolerance and assays for tolerance detection, comprehensively discuss the mechanism of action of β-lactams and other CWA antibiotics, and then provide an overview of how cells mitigate the potentially lethal effects of CWA antibiotic-induced cell damage to become tolerant. Lastly, I discuss evidence for a role of CWA antibiotic tolerance in clinical antibiotic treatment failure.
Collapse
Affiliation(s)
- Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Department of Microbiology, and Cornell Institute of Host–Pathogen Interactions and DiseaseCornell UniversityIthacaNew York
| |
Collapse
|
43
|
Mishra R, Yadav V, Guha M, Singh A. Heterogeneous Host-Pathogen Encounters Coordinate Antibiotic Resilience in Mycobacterium tuberculosis. Trends Microbiol 2021; 29:606-620. [PMID: 33309526 PMCID: PMC7611257 DOI: 10.1016/j.tim.2020.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Successful treatment of tuberculosis (TB) depends on the eradication of its causative agent Mycobacterium tuberculosis (Mtb) in the host. However, the emergence of phenotypically drug-resistant Mtb in the host environment tempers the ability of antibiotics to cure disease. Host immunity produces diverse microenvironmental niches that are exploited by Mtb to mobilize adaptation programs. Such differential interactions amplify pre-existing heterogeneity in the host-pathogen milieu to influence disease pathology and therapy outcome. Therefore, comprehending the intricacies of phenotypic heterogeneity can be an empirical step forward in potentiating drug action. With this goal, we review the interconnectedness of the lesional, cellular, and bacterial heterogeneity underlying phenotypic drug resistance. Based on this information, we anticipate the development of new therapeutic strategies targeting host-pathogen heterogeneity to cure TB.
Collapse
Affiliation(s)
- Richa Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Vikas Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Madhura Guha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India.
| |
Collapse
|
44
|
Affiliation(s)
- Thien-Fah Mah
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
45
|
Chebotar' IV, Emelyanova MA, Bocharova JA, Mayansky NA, Kopantseva EE, Mikhailovich VM. The classification of bacterial survival strategies in the presence of antimicrobials. Microb Pathog 2021; 155:104901. [PMID: 33930413 DOI: 10.1016/j.micpath.2021.104901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023]
Abstract
The survival of bacteria under antibiotic therapy varies in nature and is based on the bacterial ability to employ a wide range of fundamentally different resistance mechanisms. This great diversity requires a disambiguation of the term 'resistance' and the development of a more precise classification of bacterial survival strategies during contact with antibiotics. The absence of a unified definition for the terms 'resistance', 'tolerance' and 'persistence' further aggravates the imperfections of the current classification system. This review suggests a number of original classification criteria that will take into account (1) the bacterial ability to replicate in the presence of antimicrobial agents, (2) existing evolutionary stability of a trait within a species, and (3) the presence or absence of specialized genes that determine the ability of a microorganism to decrease its own metabolism or switch it completely off. This review describes potential advantages of the suggested classification system, which include a better understanding of the relationship between bacterial survival in the presence of antibiotics and molecular mechanisms of cellular metabolism suppression, the opportunity to pinpoint targets to identify a true bacterial resistance profile. The true resistance profile in turn, could be used to develop effective diagnostic and antimicrobial therapy methods, while taking into consideration specific bacterial survival mechanisms.
Collapse
Affiliation(s)
- Igor V Chebotar'
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Marina A Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation
| | - Julia A Bocharova
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Nikolay A Mayansky
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Elena E Kopantseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation
| | - Vladimir M Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation.
| |
Collapse
|
46
|
Valenzuela‐Heredia D, Henríquez‐Castillo C, Donoso R, Lavín P, Ringel MT, Brüser T, Campos JL. An unusual overrepresentation of genetic factors related to iron homeostasis in the genome of the fluorescent Pseudomonas sp. ABC1. Microb Biotechnol 2021; 14:1060-1072. [PMID: 33492712 PMCID: PMC8085936 DOI: 10.1111/1751-7915.13753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the genus Pseudomonas inhabit diverse environments, such as soil, water, plants and humans. The variability of habitats is reflected in the diversity of the structure and composition of their genomes. This cosmopolitan bacterial genus includes species of biotechnological, medical and environmental importance. In this study, we report on the most relevant genomic characteristics of Pseudomonas sp. strain ABC1, a siderophore-producing fluorescent strain recently isolated from soil. Phylogenomic analyses revealed that this strain corresponds to a novel species forming a sister clade of the recently proposed Pseudomonas kirkiae. The genomic information reveals an overrepresented repertoire of mechanisms to hoard iron when compared to related strains, including a high representation of fecI-fecR family genes related to iron regulation and acquisition. The genome of the Pseudomonas sp. ABC1 contains the genes for non-ribosomal peptide synthetases (NRPSs) of a novel putative Azotobacter-related pyoverdine-type siderophore, a yersiniabactin-type siderophore and an antimicrobial betalactone; the last two are found only in a limited number of Pseudomonas genomes. Strain ABC1 can produce siderophores in a low-cost medium, and the supernatants from cultures of this strain promote plant growth, highlighting their biotechnological potential as a sustainable industrial microorganism.
Collapse
Affiliation(s)
| | - Carlos Henríquez‐Castillo
- Laboratorio de Fisiología y Genética Marina (FIGEMA)Centro de Estudios Avanzados de Zonas Áridas (CEAZA)CoquimboChile
- Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
| | - Raúl Donoso
- Programa Institucional de Fomento a la InvestigaciónDesarrollo, e Innovación (PIDi)Universidad Tecnológica MetropolitanaSantiagoChile
| | - Paris Lavín
- Facultad de Ciencias del Mar y Recursos BiológicosDepartamento de BiotecnologíaLaboratorio de Complejidad Microbiana y Ecología FuncionalInstituto AntofagastaUniversidad de AntofagastaAntofagastaChile
- Network for Extreme Environments Research (NEXER)Universidad de AntofagastaUniversidad de La Frontera y Universidad de MagallanesPunta ArenasChile
| | | | - Thomas Brüser
- Institute of MicrobiologyLeibniz University HannoverHannoverGermany
| | - José Luis Campos
- Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezViña del MarChile
| |
Collapse
|
47
|
Gao Y, Chen Z, Yao W, Li D, Fu X. Gentamicin Combined With Hypoionic Shock Rapidly Eradicates Aquaculture Bacteria in vitro and in vivo. Front Microbiol 2021; 12:641846. [PMID: 33889141 PMCID: PMC8055967 DOI: 10.3389/fmicb.2021.641846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial pathogens are a major cause of infectious diseases in aquatic animals. The abuse of antibiotics in the aquatic industry has led to the proliferation of antibiotic resistance. It is therefore essential to develop more effective and safer strategies to increase the efficacy and extend the life span of the antibiotics used in aquaculture. In this study, we show that six aquaculture bacterial pathogens (i.e., Aeromonas hydrophila, Vibrio alginolyticus, Edwardsiella tarda, Streptococcus iniae, Vibrio harveyi, and Vibrio fluvialis) in the stationary phase can be rapidly killed after immersion in gentamicin- or neomycin-containing, ion-free solutions for a few minutes. Such hypoionic shock treatment enhances the bacterial uptake of gentamicin in an ATP-dependent manner. Importantly, we demonstrate, as a proof of concept, that gentamicin under hypoionic shock conditions can effectively kill A. hydrophila in vivo in a skin infection model of zebrafish (Danio rerio), completely curing the infected fish. Given that pathogenic bacteria generally adhere to the skin surface and gills of aquatic animals, our strategy is of potential significance for bacterial infection control, especially for small-scale economic fish farming and ornamental fish farming. Further, the combined treatment can be completed within 5 min with a relatively small volume of solution, thus minimizing the amount of residual antibiotics in both animals and the environment.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Zhongyu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wei Yao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fuzhou, China.,College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, China
| |
Collapse
|
48
|
Shin J, Choe D, Ransegnola B, Hong H, Onyekwere I, Cross T, Shi Q, Cho B, Westblade LF, Brito IL, Dörr T. A multifaceted cellular damage repair and prevention pathway promotes high-level tolerance to β-lactam antibiotics. EMBO Rep 2021; 22:e51790. [PMID: 33463026 PMCID: PMC7857431 DOI: 10.15252/embr.202051790] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Bactericidal antibiotics are powerful agents due to their ability to convert essential bacterial functions into lethal processes. However, many important bacterial pathogens are remarkably tolerant against bactericidal antibiotics due to inducible damage repair responses. The cell wall damage response two-component system VxrAB of the gastrointestinal pathogen Vibrio cholerae promotes high-level β-lactam tolerance and controls a gene network encoding highly diverse functions, including negative control over multiple iron uptake systems. How this system contributes to tolerance is poorly understood. Here, we show that β-lactam antibiotics cause an increase in intracellular free iron levels and collateral oxidative damage, which is exacerbated in the ∆vxrAB mutant. Mutating major iron uptake systems dramatically increases ∆vxrAB tolerance to β-lactams. We propose that VxrAB reduces antibiotic-induced toxic iron and concomitant metabolic perturbations by downregulating iron uptake transporters and show that iron sequestration enhances tolerance against β-lactam therapy in a mouse model of cholera infection. Our results suggest that a microorganism's ability to counteract diverse antibiotic-induced stresses promotes high-level antibiotic tolerance and highlights the complex secondary responses elicited by antibiotics.
Collapse
Affiliation(s)
- Jung‐Ho Shin
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Donghui Choe
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Brett Ransegnola
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Hye‐Rim Hong
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Ikenna Onyekwere
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Trevor Cross
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Qiaojuan Shi
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNYUSA
| | - Byung‐Kwan Cho
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
- Intelligent Synthetic Biology CenterDaejeonKorea
| | - Lars F Westblade
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
- Division of Infectious DiseasesDepartment of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Ilana L Brito
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNYUSA
| | - Tobias Dörr
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
- Cornell Institute of Host‐Microbe Interactions and DiseaseCornell UniversityIthacaNYUSA
| |
Collapse
|
49
|
Horvatek P, Salzer A, Hanna AMF, Gratani FL, Keinhörster D, Korn N, Borisova M, Mayer C, Rejman D, Mäder U, Wolz C. Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes. PLoS Genet 2020; 16:e1009282. [PMID: 33378356 PMCID: PMC7802963 DOI: 10.1371/journal.pgen.1009282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/12/2021] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits. In Staphylococcus aureus, (pp)pGpp can be synthesized via the RelA-SpoT-homolog, RelSau upon amino acid limitation or via one of the two small (pp)pGpp synthetases RelP or RelQ upon cell wall stress. We used RNA-Seq to compare the global effects in response to induction of the synthetase of rel-Syn (coding for the enzymatic region of RelSau) or relQ without the need to apply additional stress conditions. Induction of rel-Syn resulted in changes in the nucleotide pool similar to induction of the stringent response via the tRNA synthetase inhibitor mupirocin: a reduction in the GTP pool, an increase in the ATP pool and synthesis of pppGpp, ppGpp and pGpp. Induction of all three enzymes resulted in similar changes in the transcriptome. However, RelQ was less active than Rel-Syn and RelP, indicating strong restriction of its (pp)pGpp-synthesis activity in vivo. (pp)pGpp induction resulted in the downregulation of many genes involved in protein and RNA/DNA metabolism. Many of the (pp)pGpp upregulated genes are part of the GTP sensitive CodY regulon and thus likely regulated through lowering of the GTP pool. New CodY independent transcriptional changes were detected including genes involved in the SOS response, iron storage (e.g. ftnA, dps), oxidative stress response (e.g., perR, katA, sodA) and the psmα1–4 and psmß1-2 operons coding for cytotoxic, phenol soluble modulins (PSMs). Analyses of the ftnA, dps and psm genes in different regulatory mutants revealed that their (pp)pGpp-dependent regulation can occur independent of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled from expression of the quorum sensing system Agr, the main known psm activator. The expression of central genes of the oxidative stress response protects the bacteria from anticipated ROS stress derived from PSMs or exogenous sources. Thus, we identified a new link between the stringent response and oxidative stress in S. aureus that is likely crucial for survival upon phagocytosis. Most bacteria make use of the second messenger (pp)pGpp to reprogram bacterial metabolism under nutrient-limiting conditions. In the human pathogen Staphylococcus aureus, (pp)pGpp plays an important role in virulence, phagosomal escape and antibiotic tolerance. Here, we analyzed the immediate consequences of (pp)pGpp synthesis upon transcriptional induction of the (pp)pGpp-producing enzymes Rel, RelP or RelQ. (pp)pGpp synthesis provokes immediate changes in the nucleotide pool and severely impacts the expression of hundreds of genes. A main consequence of (pp)pGpp synthesis in S. aureus is the induction of ROS-inducing toxic phenol soluble modulins (PSMs) and simultaneous expression of the detoxifying system to protect the producer. This mechanism is likely of special advantage for the pathogen after phagocytosis.
Collapse
Affiliation(s)
- Petra Horvatek
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Andrea Salzer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | | | - Fabio Lino Gratani
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
- Quantitative Proteomics & Proteome Center Tuebingen, University of Tuebingen, Germany
| | - Daniela Keinhörster
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Natalya Korn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
- * E-mail:
| |
Collapse
|
50
|
Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel) 2020; 10:antibiotics10010003. [PMID: 33374551 PMCID: PMC7822488 DOI: 10.3390/antibiotics10010003] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistant bacteria are a global threat for human and animal health. However, they are only part of the problem of antibiotic failure. Another bacterial strategy that contributes to their capacity to withstand antimicrobials is the formation of biofilms. Biofilms are associations of microorganisms embedded a self-produced extracellular matrix. They create particular environments that confer bacterial tolerance and resistance to antibiotics by different mechanisms that depend upon factors such as biofilm composition, architecture, the stage of biofilm development, and growth conditions. The biofilm structure hinders the penetration of antibiotics and may prevent the accumulation of bactericidal concentrations throughout the entire biofilm. In addition, gradients of dispersion of nutrients and oxygen within the biofilm generate different metabolic states of individual cells and favor the development of antibiotic tolerance and bacterial persistence. Furthermore, antimicrobial resistance may develop within biofilms through a variety of mechanisms. The expression of efflux pumps may be induced in various parts of the biofilm and the mutation frequency is induced, while the presence of extracellular DNA and the close contact between cells favor horizontal gene transfer. A deep understanding of the mechanisms by which biofilms cause tolerance/resistance to antibiotics helps to develop novel strategies to fight these infections.
Collapse
|