1
|
Lv CL, Li B. Interface morphodynamics in living tissues. SOFT MATTER 2025; 21:3670-3687. [PMID: 40226989 DOI: 10.1039/d5sm00145e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Interfaces between distinct tissues or between tissues and environments are common in multicellular organisms. The evolution and stability of these interfaces are essential for tissue development, and their dysfunction can lead to diseases such as cancer. Mounting efforts, either theoretical or experimental, have been devoted to uncovering the morphodynamics of tissue interfaces. Here, we review the recent progress of studies on interface morphodynamics. The regulatory mechanisms governing interface evolution are dissected, with a focus on adhesion, cortical tension, cell activity, extracellular matrix, and microenvironment. We examine the methodologies used to study morphodynamics, emphasizing the characteristics of experimental techniques and theoretical models. Finally, we explore the broader implications of interface morphodynamics in tissue morphogenesis and diseases, offering a comprehensive perspective on this rapidly developing field.
Collapse
Affiliation(s)
- Cheng-Lin Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
- Mechano-X Institute, Department of Engineering Mechanics, Tsinghua University, Beijing, China
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Brückner DB, Hannezo E. Tissue Active Matter: Integrating Mechanics and Signaling into Dynamical Models. Cold Spring Harb Perspect Biol 2025; 17:a041653. [PMID: 38951023 PMCID: PMC11960702 DOI: 10.1101/cshperspect.a041653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The importance of physical forces in the morphogenesis, homeostatic function, and pathological dysfunction of multicellular tissues is being increasingly characterized, both theoretically and experimentally. Analogies between biological systems and inert materials such as foams, gels, and liquid crystals have provided striking insights into the core design principles underlying multicellular organization. However, these connections can seem surprising given that a key feature of multicellular systems is their ability to constantly consume energy, providing an active origin for the forces that they produce. Key emerging questions are, therefore, to understand whether and how this activity grants tissues novel properties that do not have counterparts in classical materials, as well as their consequences for biological function. Here, we review recent discoveries at the intersection of active matter and tissue biology, with an emphasis on how modeling and experiments can be combined to understand the dynamics of multicellular systems. These approaches suggest that a number of key biological tissue-scale phenomena, such as morphogenetic shape changes, collective migration, or fate decisions, share unifying design principles that can be described by physical models of tissue active matter.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
3
|
Ranamukhaarachchi SK, Walker A, Tang MH, Leineweber WD, Lam S, Rappel WJ, Fraley SI. Global versus local matrix remodeling drives rotational versus invasive collective migration of epithelial cells. Dev Cell 2025; 60:871-884.e8. [PMID: 39706188 PMCID: PMC11945606 DOI: 10.1016/j.devcel.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/18/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
The coordinated movement of cell collectives is essential for normal epithelial tissue development, maintenance, and cancer progression. Here, we report on a minimal 3D extracellular matrix (ECM) system wherein both invasive collective migration (ICM) and rotational collective migration (RCM) arise spontaneously from individually seeded epithelial cells of mammary and hepatic origin, regardless of whether they express adherens junctions, and lead to ductal-like and acinar-like structures, respectively. Quantitative microscopy and cellular Potts modeling reveal that initial differences in cell protrusion dynamics and matrix-remodeling localization generate RCM and ICM behavior in confining 3D ECM. Matrix-remodeling activity by matrix metalloproteinases (MMPs) is localized to the base of protrusions in cells that initiate ICM, whereas RCM does not require MMPs and is associated with ITGβ1-mediated remodeling localized globally around the cell body. Further analysis in vitro and in vivo supports the concept that distinct matrix-remodeling strategies encode collective migration behaviors and tissue structure.
Collapse
Affiliation(s)
| | - Alyssa Walker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Man-Ho Tang
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - William D Leineweber
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia Lam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Kim J, Jeong H, Falcó C, Hruska AM, Martinson WD, Marzoratti A, Araiza M, Yang H, Franck C, Carrillo JA, Guo M, Wong IY. Collective Transitions from Orbiting to Matrix Invasion in 3D Multicellular Spheroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.636936. [PMID: 39990484 PMCID: PMC11844419 DOI: 10.1101/2025.02.10.636936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Coordinated cell rotation along a curved matrix interface can sculpt epithelial tissues into spherical morphologies. Subsequently, radially-oriented invasion of multicellular strands or branches can occur by local remodeling of the confining matrix. These symmetry-breaking transitions emerge from the dynamic reciprocity between cells and matrix, but remain poorly understood. Here, we show that epithelial cell spheroids collectively transition from circumferential orbiting to radial invasion via bi-directional interactions with the surrounding matrix curvature. Initially, spheroids exhibit an ellipsoidal shape but become rounded as orbiting occurs. However, cells gradually reorient from coordinated rotation towards outward strand invasion due to the accumulation of contractile tractions at discrete sites. Remarkably, the initial ellipsoid morphology predicts subsequent invasion of 2-4 strands roughly aligned with the major axis. We then perturb collective migration using osmotic pressure, showing that orbiting can be arrested and invasion can be reversed. We also investigate coordinated orbiting in "mosaic" spheroids, showing a small fraction of "leader" cells with weakened cell-cell adhesions can impede collective orbiting but still invade into the matrix. Finally, we establish a minimal self-propelled particle model to elucidate how collective orbiting is mediated by the crosstalk of cell-cell and cell-matrix adhesion along a curved boundary. Altogether, this work elucidates how tissue morphogenesis is governed by the interplay of collective behaviors and the local curvature of the cell-matrix, with relevance for embryonic development and tumor progression.
Collapse
Affiliation(s)
- Jiwon Kim
- School of Engineering, Legoretta Cancer Center. Brown University. 184 Hope St Box D, Providence RI 02912, USA
| | - Hyuntae Jeong
- School of Engineering, Legoretta Cancer Center. Brown University. 184 Hope St Box D, Providence RI 02912, USA
| | - Carles Falcó
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Alex M. Hruska
- School of Engineering, Legoretta Cancer Center. Brown University. 184 Hope St Box D, Providence RI 02912, USA
| | - W. Duncan Martinson
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Alejandro Marzoratti
- School of Engineering, Legoretta Cancer Center. Brown University. 184 Hope St Box D, Providence RI 02912, USA
| | - Mauricio Araiza
- Department of Mechanical Engineering. University of Wisconsin-Madison. 1513 University Ave, Madison, WI 53706, USA
| | - Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Christian Franck
- Department of Mechanical Engineering. University of Wisconsin-Madison. 1513 University Ave, Madison, WI 53706, USA
| | - José A. Carrillo
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Ian Y. Wong
- School of Engineering, Legoretta Cancer Center. Brown University. 184 Hope St Box D, Providence RI 02912, USA
| |
Collapse
|
5
|
Hoffmann LA, Giomi L. Homochirality in the Vicsek model: Fluctuations and potential implications for cellular flocks. Phys Rev E 2025; 111:015427. [PMID: 39972731 DOI: 10.1103/physreve.111.015427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Chirality is a feature of many biological systems, and much research has been focused on understanding the origin and implications of this property. Famously, sugars and amino acids found in nature are homochiral, i.e., chiral symmetry is broken and only one of the two possible chiral states is ever observed. Certain types of cells show chiral behavior, too. Understanding the origin of cellular chirality and its effect on tissues and cellular dynamics is still an open problem and subject to much (recent) research, e.g., in the context of drosophila morphogenesis. Here, we develop a simple model to describe the possible origin of homochirality in cells. Combining the Vicsek model for collective behavior with the model of Jafarpour et al. [Phys. Rev. Lett. 115, 158101 (2015)0031-900710.1103/PhysRevLett.115.158101], developed to describe the emergence of molecular homochirality, we investigate how a homochiral state might have evolved in cells from an initially symmetric state without any mechanisms that explicitly break chiral symmetry. We investigate the transition to homochirality and show how the "openness" of the system as well as noise determine if and when a globally homochiral state is reached. While hypothetical and explorative in nature, our analysis may serve as a starting point for more realistic models of chirality in flocking multicellular systems.
Collapse
Affiliation(s)
- Ludwig A Hoffmann
- Harvard University, Instituut-Lorentz, Universiteit Leiden, P. O. Box 9506, 2300 RA Leiden, The Netherlands and John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USA
| | - Luca Giomi
- Universiteit Leiden, Instituut-Lorentz, P. O. Box 9506, 2300 RA Leiden, The Netherlands
| |
Collapse
|
6
|
Dong H, Hu F, Ma X, Yang J, Pan L, Xu J. Collective Cell Radial Ordered Migration in Spatial Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307487. [PMID: 38520715 PMCID: PMC11132034 DOI: 10.1002/advs.202307487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Collective cells, a typical active matter system, exhibit complex coordinated behaviors fundamental for various developmental and physiological processes. The present work discovers a collective radial ordered migration behavior of NIH3T3 fibroblasts that depends on persistent top-down regulation with 2D spatial confinement. Remarkably, individual cells move in a weak-oriented, diffusive-like rather than strong-oriented ballistic manner. Despite this, the collective movement is spatiotemporal heterogeneous and radial ordering at supracellular scale, manifesting as a radial ordered wavefront originated from the boundary and propagated toward the center of pattern. Combining bottom-up cell-to-extracellular matrix (ECM) interaction strategy, numerical simulations based on a developed mechanical model well reproduce and explain above observations. The model further predicts the independence of geometric features on this ordering behavior, which is validated by experiments. These results together indicate such radial ordered collective migration is ascribed to the couple of top-down regulation with spatial restriction and bottom-up cellular endogenous nature.
Collapse
Affiliation(s)
- Hao Dong
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Fen Hu
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Xuehe Ma
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Jianyu Yang
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Leiting Pan
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
- State Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesCollege of Life SciencesNankai UniversityTianjin300071China
- Shenzhen Research Institute of Nankai UniversityShenzhenGuangdong518083China
- Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanShanxi030006China
| | - Jingjun Xu
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
- Shenzhen Research Institute of Nankai UniversityShenzhenGuangdong518083China
| |
Collapse
|
7
|
Brückner DB, Broedersz CP. Learning dynamical models of single and collective cell migration: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:056601. [PMID: 38518358 DOI: 10.1088/1361-6633/ad36d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| |
Collapse
|
8
|
Li ZY, Chen YP, Liu HY, Li B. Three-Dimensional Chiral Morphogenesis of Active Fluids. PHYSICAL REVIEW LETTERS 2024; 132:138401. [PMID: 38613297 DOI: 10.1103/physrevlett.132.138401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
Chirality is an essential nature of biological systems. However, it remains obscure how the handedness at the microscale is translated into chiral morphogenesis at the tissue level. Here, we investigate three-dimensional (3D) tissue morphogenesis using an active fluid theory invoking chirality. We show that the coordination of achiral and chiral stresses, arising from microscopic interactions and energy input of individual cells, can engender the self-organization of 3D papillary and helical structures. The achiral active stress drives the nucleation of asterlike topological defects, which initiate 3D out-of-plane budding, followed by rodlike elongation. The chiral active stress excites vortexlike topological defects, which favor the tip spheroidization and twisting of the elongated rod. These results unravel the chiral morphogenesis observed in our experiments of 3D organoids generated by human embryonic stem cells.
Collapse
Affiliation(s)
- Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yun-Ping Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hao-Yu Liu
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Jiang L, Guo K, Chen Y, Xiang N. Droplet Microfluidics for Current Cancer Research: From Single-Cell Analysis to 3D Cell Culture. ACS Biomater Sci Eng 2024; 10:1335-1354. [PMID: 38420753 DOI: 10.1021/acsbiomaterials.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cancer is the second leading cause of death worldwide. Differences in drug resistance and treatment response caused by the heterogeneity of cancer cells are the primary reasons for poor cancer therapy outcomes in patients. In addition, current in vitro anticancer drug-screening methods rely on two-dimensional monolayer-cultured cancer cells, which cannot accurately predict drug behavior in vivo. Therefore, a powerful tool to study the heterogeneity of cancer cells and produce effective in vitro tumor models is warranted to leverage cancer research. Droplet microfluidics has become a powerful platform for the single-cell analysis of cancer cells and three-dimensional cell culture of in vitro tumor spheroids. In this review, we discuss the use of droplet microfluidics in cancer research. Droplet microfluidic technologies, including single- or double-emulsion droplet generation and passive- or active-droplet manipulation, are concisely discussed. Recent advances in droplet microfluidics for single-cell analysis of cancer cells, circulating tumor cells, and scaffold-free/based 3D cell culture of tumor spheroids have been systematically introduced. Finally, the challenges that must be overcome for the further application of droplet microfluidics in cancer research are discussed.
Collapse
Affiliation(s)
- Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Hachem Z, Hadrian C, Aldbaisi L, Alkaabi M, Wan LQ, Fan J. Asymmetrical positioning of cell organelles reflects the cell chirality of mouse myoblast cells. APL Bioeng 2024; 8:016119. [PMID: 38495528 PMCID: PMC10942803 DOI: 10.1063/5.0189401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Cell chirality is crucial for the chiral morphogenesis of biological tissues, yet its underlying mechanism remains unclear. Cell organelle polarization along multiple axes in a cell body, namely, apical-basal, front-rear, and left-right, is known to direct cell behavior such as orientation, rotation, and migration. Among these axes, the left-right bias holds significant sway in determining the chiral directionality of these behaviors. Normally, mouse myoblast (C2C12) cells exhibit a strong counterclockwise chirality on a ring-shaped micropattern, whereas they display a clockwise dominant chirality under Latrunculin A treatment. To investigate the relationship between multicellular chirality and organelle positioning in single cells, we studied the left-right positioning of cell organelles under distinct cell chirality in single cells via micropatterning technique, fluorescent microscopy, and imaging analysis. We found that on a "T"-shaped micropattern, a C2C12 cell adopts a triangular shape, with its nucleus-centrosome axis pointing toward the top-right direction of the "T." Several other organelles, including the Golgi apparatus, lysosomes, actin filaments, and microtubules, showed a preference to polarize on one side of the axis, indicating the universality of the left-right asymmetrical organelle positioning. Interestingly, upon reversing cell chirality with Latrunculin A, the organelles correspondingly reversed their left-right positioning bias, as suggested by the consistently biased metabolism and contractile properties at the leading edge. This left-right asymmetry in organelle positioning may help predict cell migration direction and serve as a potential marker for identifying cell chirality in biological models.
Collapse
Affiliation(s)
- Zeina Hachem
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| | - Courtney Hadrian
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| | - Lina Aldbaisi
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| | - Muslim Alkaabi
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| | | | - Jie Fan
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| |
Collapse
|
11
|
Zhang H, Rahman T, Lu S, Adam AP, Wan LQ. Helical vasculogenesis driven by cell chirality. SCIENCE ADVANCES 2024; 10:eadj3582. [PMID: 38381835 PMCID: PMC10881055 DOI: 10.1126/sciadv.adj3582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
The cellular helical structure is well known for its crucial role in development and disease. Nevertheless, the underlying mechanism governing this phenomenon remains largely unexplored, particularly in recapitulating it in well-controlled engineering systems. Leveraging advanced microfluidics, we present compelling evidence of the spontaneous emergence of helical endothelial tubes exhibiting robust right-handedness governed by inherent cell chirality. To strengthen our findings, we identify a consistent bias toward the same chirality in mouse vascular tissues. Manipulating endothelial cell chirality using small-molecule drugs produces a dose-dependent reversal of the handedness in engineered vessels, accompanied by non-monotonic changes in vascular permeability. Moreover, our three-dimensional cell vertex model provides biomechanical insights into the chiral morphogenesis process, highlighting the role of cellular torque and tissue fluidity in its regulation. Our study unravels an intriguing mechanism underlying vascular chiral morphogenesis, shedding light on the broader implications and distinctive perspectives of tubulogenesis within biological systems.
Collapse
Affiliation(s)
- Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shuhan Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
- Department of Ophthalmology, Albany Medical College, Albany, NY 12208, USA
| | - Leo Q. Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
12
|
Happel L, Voigt A. Coordinated Motion of Epithelial Layers on Curved Surfaces. PHYSICAL REVIEW LETTERS 2024; 132:078401. [PMID: 38427891 DOI: 10.1103/physrevlett.132.078401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/21/2023] [Indexed: 03/03/2024]
Abstract
Coordinated cellular movements are key processes in tissue morphogenesis. Using a cell-based modeling approach we study the dynamics of epithelial layers lining surfaces with constant and varying curvature. We demonstrate that extrinsic curvature effects can explain the alignment of cell elongation with the principal directions of curvature. Together with specific self-propulsion mechanisms and cell-cell interactions this effect gets enhanced and can explain observed large-scale, persistent, and circumferential rotation on cylindrical surfaces. On toroidal surfaces the resulting curvature coupling is an interplay of intrinsic and extrinsic curvature effects. These findings unveil the role of curvature and postulate its importance for tissue morphogenesis.
Collapse
Affiliation(s)
- L Happel
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
| | - A Voigt
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Cluster of Excellence, Physics of Life, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| |
Collapse
|
13
|
Li Y, Wang Y, Ao Q, Li X, Huang Z, Dou X, Mu N, Pu X, Wang J, Chen T, Yin G, Feng H, Feng C. Unique Chirality Selection in Neural Cells for D-Matrix Enabling Specific Manipulation of Cell Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301435. [PMID: 37366043 DOI: 10.1002/adma.202301435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Manipulating neural cell behaviors is a critical issue to various therapies for neurological diseases and damages, where matrix chirality has long been overlooked despite the proven adhesion and proliferation improvement of multiple non-neural cells by L-matrixes. Here, it is reported that the D-matrix chirality specifically enhances cell density, viability, proliferation, and survival in four different types of neural cells, contrasting its inhibition in non-neural cells. This universal impact on neural cells is defined as "chirality selection for D-matrix" and is achieved through the activation of JNK and p38/MAPK signaling pathways by the cellular tension relaxation resulting from the weak interaction between D-matrix and cytoskeleton proteins, particularly actin. Also, D-matrix promotes sciatic nerve repair effectively, both with or without non-neural stem cell implantation, by improving the population, function, and myelination of autologous Schwann cells. D-matrix chirality, as a simple, safe, and effective microenvironment cue to specifically and universally manipulate neural cell behaviors, holds extensive application potential in addressing neurological issues such as nerve regeneration, neurodegenerative disease treatment, neural tumor targeting, and neurodevelopment.
Collapse
Affiliation(s)
- Ya Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, China
| | - Yulin Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, China
| | - Qiang Ao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, China
| | - Xiaohui Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ning Mu
- Third Military Medical University Southwest Hospital, Chongqing, 400038, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Tunan Chen
- Third Military Medical University Southwest Hospital, Chongqing, 400038, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Hua Feng
- Third Military Medical University Southwest Hospital, Chongqing, 400038, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Brandstätter T, Brückner DB, Han YL, Alert R, Guo M, Broedersz CP. Curvature induces active velocity waves in rotating spherical tissues. Nat Commun 2023; 14:1643. [PMID: 36964141 PMCID: PMC10039078 DOI: 10.1038/s41467-023-37054-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/26/2023] [Indexed: 03/26/2023] Open
Abstract
The multicellular organization of diverse systems, including embryos, intestines, and tumors relies on coordinated cell migration in curved environments. In these settings, cells establish supracellular patterns of motion, including collective rotation and invasion. While such collective modes have been studied extensively in flat systems, the consequences of geometrical and topological constraints on collective migration in curved systems are largely unknown. Here, we discover a collective mode of cell migration in rotating spherical tissues manifesting as a propagating single-wavelength velocity wave. This wave is accompanied by an apparently incompressible supracellular flow pattern featuring topological defects as dictated by the spherical topology. Using a minimal active particle model, we reveal that this collective mode arises from the effect of curvature on the active flocking behavior of a cell layer confined to a spherical surface. Our results thus identify curvature-induced velocity waves as a mode of collective cell migration, impacting the dynamical organization of 3D curved tissues.
Collapse
Affiliation(s)
- Tom Brandstätter
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - David B Brückner
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333, Munich, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Nakamura M, Hui J, Parkhurst SM. Bending actin filaments: twists of fate. Fac Rev 2023; 12:7. [PMID: 37081903 PMCID: PMC10111394 DOI: 10.12703/r/12-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking. Interestingly, this latter property, the bending of actin filaments, is emerging as an exciting new feature for determining dynamic actin configurations and functions. Indeed, recent studies using in vitro assays have found that proteins including IQGAP, Cofilin, Septins, Anillin, α-Actinin, Fascin, and Myosins-alone or in combination-can influence the bending or curvature of actin filaments. This bending increases the number and types of dynamic assemblies that can be generated, as well as the spectrum of their functions. Intriguingly, in some cases, actin bending creates directionality within a cell, resulting in a chiral cell shape. This actin-dependent cell chirality is highly conserved in vertebrates and invertebrates and is essential for cell migration and breaking L-R symmetry of tissues/organs. Here, we review how different types of actin binding protein can bend actin filaments, induce curved filament geometries, and how they impact on cellular functions.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
16
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
17
|
Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives. Nat Commun 2023; 14:776. [PMID: 36774346 PMCID: PMC9922260 DOI: 10.1038/s41467-023-35918-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/06/2023] [Indexed: 02/13/2023] Open
Abstract
Deviations from mirror symmetry in the development of bilateral organisms are common but the mechanisms of initial symmetry breaking are insufficiently understood. The actin cytoskeleton of individual cells self-organises in a chiral manner, but the molecular players involved remain essentially unidentified and the relationship between chirality of an individual cell and cell collectives is unclear. Here, we analysed self-organisation of the chiral actin cytoskeleton in individual cells on circular or elliptical patterns, and collective cell alignment in confined microcultures. Screening based on deep-learning analysis of actin patterns identified actin polymerisation regulators, depletion of which suppresses chirality (mDia1) or reverses chirality direction (profilin1 and CapZβ). The reversed chirality is mDia1-independent but requires the function of actin-crosslinker α-actinin1. A robust correlation between the effects of a variety of actin assembly regulators on chirality of individual cells and cell collectives is revealed. Thus, actin-driven cell chirality may underlie tissue and organ asymmetry.
Collapse
|
18
|
Rahman T, Peters F, Wan LQ. Cell jamming regulates epithelial chiral morphogenesis. J Biomech 2023; 147:111435. [PMID: 36641827 PMCID: PMC10020895 DOI: 10.1016/j.jbiomech.2023.111435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Internal organs such as the heart demonstrate apparent left-right (LR) asymmetric morphology and positioning. Cellular chirality and associated LR biased mechanical behavior such as cell migration have been attributed to LR symmetry breaking during embryonic development. Mathematical models have shown that chiral directional migration can be driven by cellular intrinsic torque. Tissue jamming state (i.e., solid-like vs fluid-like state) strongly regulates collective migratory behavior, but how it might affect chiral morphogenesis is still unknown. Here, we develop a cell vertex model to study the role of tissue rigidity or jamming state on chiral morphogenesis of the cells on a patterned ring-shaped tissue, simulating a previously reported experimental setup for measuring cell chirality. We simulate chirality as torsional forces acting on cell vertices. As expected, the cells undergo bidirectional migration at the opposing (inner and outer) boundaries of the ring-shaped tissue. We discover that more fluid-like tissues (unjammed) demonstrate a stronger chiral cell alignment and elongation than more solid-like (jammed) tissues and maintain a bigger difference in migration velocity between opposing tissue boundaries. Finally, we find that fluid-like tissues undergo more cell-neighbor exchange events. This study reveals that chiral torque is sufficient to achieve a biased cellular alignment as seen in vitro. It further sheds light on the mechanical regulation of chiral morphogenesis of tissues and reveals a role of cell density-independent tissue rigidity in this process.
Collapse
Affiliation(s)
- Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Frank Peters
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
19
|
Hang B, Jassem E, Mohammed H, Wan LQ, Herschkowitz JI, Fan J. Interacting with tumor cells weakens the intrinsic clockwise chirality of endothelial cells. APL Bioeng 2022; 6:046107. [PMID: 36505506 PMCID: PMC9729015 DOI: 10.1063/5.0115827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells (ECs) possess a strong intrinsic clockwise (CW, or rightward) chirality under normal conditions. Enervating this chirality of ECs significantly impairs the function of the endothelial barrier. Malignant tumor cells (TCs) undergo metastasis by playing upon the abnormal leakage of blood vessels. However, the impact of TCs on EC chirality is still poorly understood. Using a transwell model, we co-cultured the human umbilical vein endothelial cells or human lung microvascular endothelial cells and breast epithelial tumor cell lines to simulate the TC-EC interaction. Using a micropatterning method, we assessed the EC chirality changes induced by paracrine signaling of and physical contact with TCs. We found that the intrinsic clockwise chirality of ECs was significantly compromised by the TC's physical contact, while the paracrine signaling (i.e., without physical contact) of TCs causes minimal changes. In addition, ECs neighboring TCs tend to possess a left bias, while ECs spaced apart from TCs are more likely to preserve the intrinsic right bias. Finally, we found the chirality change of ECs could result from physical binding between CD44 and E-selectin, which activates protein kinase C alpha (PKCα) and induces pseudopodial movement of EC toward TC. Our findings together suggest the crucial role of EC-TC physical interaction in EC chirality and that weakening the EC chirality could potentially compromise the overall endothelial integrity which increases the probability of metastatic cancer spread.
Collapse
Affiliation(s)
- Benson Hang
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| | - Eman Jassem
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| | - Hanan Mohammed
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| | | | - Jason I. Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany-SUNY, Rensselaer, New York 12144, USA
| | - Jie Fan
- Department of Natural Sciences, CASL, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA,Author to whom correspondence should be addressed:
| |
Collapse
|
20
|
Kim T, Kwak S, Hwang M, Hong J, Choi J, Yeom B, Kim Y. Recognition of 3D Chiral Microenvironments for Myoblast Differentiation. ACS Biomater Sci Eng 2022; 8:4230-4235. [PMID: 36169613 DOI: 10.1021/acsbiomaterials.2c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell chirality plays a critical role in the linkage between molecular chirality and the asymmetrical biological functions of body organs. However, enantioselective interactions between cell chirality and the extracellular environment are not yet fully understood. In this study, we investigated the effects of structurally chiral extracellular microenvironments on cellular alignments and differentiations. Twisted wrinkle-shaped chiral micropatterns were prepared using biaxial and asymmetric buckling methods, wherein structural handedness was determined from the orientation of the tilt angle between the first and second microwrinkles. Myoblasts were separately cultured on two enantiomeric chiral micropatterns in a mirror-reflected shape. Cells cultured on the left-handed chiral micropatterns preferred alignments along the direction of the second microwrinkle, with a relatively deeper valley than that of the first microwrinkle. The aligned cells on the left-handed pattern showed higher differentiation rates, as assessed by fusion indices and marker protein expression levels, than those cultured on right-handed chiral micropatterns. These results suggest that myoblasts exhibit enantioselective recognition of structurally chiral microenvironments, which can promote cellular alignments and differentiation.
Collapse
Affiliation(s)
- Taeyeon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seran Kwak
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Myonghoo Hwang
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinwoo Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.,Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Glentis A, Blanch-Mercader C, Balasubramaniam L, Saw TB, d’Alessandro J, Janel S, Douanier A, Delaval B, Lafont F, Lim CT, Delacour D, Prost J, Xi W, Ladoux B. The emergence of spontaneous coordinated epithelial rotation on cylindrical curved surfaces. SCIENCE ADVANCES 2022; 8:eabn5406. [PMID: 36103541 PMCID: PMC9473582 DOI: 10.1126/sciadv.abn5406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional collective epithelial rotation around a given axis represents a coordinated cellular movement driving tissue morphogenesis and transformation. Questions regarding these behaviors and their relationship with substrate curvatures are intimately linked to spontaneous active matter processes and to vital morphogenetic and embryonic processes. Here, using interdisciplinary approaches, we study the dynamics of epithelial layers lining different cylindrical surfaces. We observe large-scale, persistent, and circumferential rotation in both concavely and convexly curved cylindrical tissues. While epithelia of inverse curvature show an orthogonal switch in actomyosin network orientation and opposite apicobasal polarities, their rotational movements emerge and vary similarly within a common curvature window. We further reveal that this persisting rotation requires stable cell-cell adhesion and Rac-1-dependent cell polarity. Using an active polar gel model, we unveil the different relationships of collective cell polarity and actin alignment with curvatures, which lead to coordinated rotational behavior despite the inverted curvature and cytoskeleton order.
Collapse
Affiliation(s)
- Alexandros Glentis
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Carles Blanch-Mercader
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
| | | | - Thuan Beng Saw
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | | | - Sebastien Janel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019–UMR 9017–CIIL–Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | | | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019–UMR 9017–CIIL–Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Delphine Delacour
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Wang Xi
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
22
|
Nakanishi J, Yamamoto S. Static and photoresponsive dynamic materials to dissect physical regulation of cellular functions. Biomater Sci 2022; 10:6116-6134. [PMID: 36111810 DOI: 10.1039/d2bm00789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in mechanobiology has highlighted the importance of physical cues, such as mechanics, geometry (size), topography, and porosity, in the determination of cellular activities and fates, in addition to biochemical factors derived from their surroundings. In this review, we will first provide an overview of how such fundamental insights are identified by synchronizing the hierarchical nature of biological systems and static materials with tunable physical cues. Thereafter, we will explain the photoresponsive dynamic biomaterials to dissect the spatiotemporal aspects of the dependence of biological functions on physical cues.
Collapse
Affiliation(s)
- Jun Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, Japan.,Graduate School of Advanced Engineering, Tokyo University of Science, Japan
| | - Shota Yamamoto
- Research Center for Functional Materials, National Institute for Materials Science, Japan. .,Graduate School of Arts and Sciences, The University of Tokyo, Japan
| |
Collapse
|
23
|
Zhang H, Ronaldson-Bouchard K, Vunjak-Novakovic G, Wan LQ. A Micropatterning Assay for Measuring Cell Chirality. J Vis Exp 2022:10.3791/63105. [PMID: 35343954 PMCID: PMC9008871 DOI: 10.3791/63105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2023] Open
Abstract
Chirality is an intrinsic cellular property, which depicts the asymmetry in terms of polarization along the left-right axis of the cell. As this unique property attracts increasing attention due to its important roles in both development and disease, a standardized quantification method for characterizing cell chirality would advance research and potential applications. In this protocol, we describe a multicellular chirality characterization assay that utilizes micropatterned arrays of cells. Cellular micropatterns are fabricated on titanium/gold-coated glass slides via microcontact printing. After seeding on the geometrically defined (e.g., ring-shaped), protein-coated islands, cells directionally migrate and form a biased alignment toward either the clockwise or the counterclockwise direction, which can be automatically analyzed and quantified by a custom-written MATLAB program. Here we describe in detail the fabrication of micropatterned substrates, cell seeding, image collection, and data analysis and show representative results obtained using the NIH/3T3 cells. This protocol has previously been validated in multiple published studies and is an efficient and reliable tool for studying cell chirality in vitro.
Collapse
Affiliation(s)
- Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute; Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University; Department of Medicine, Columbia University
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute; Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute; Department of Biological Sciences, Rensselaer Polytechnic Institute; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute;
| |
Collapse
|
24
|
Zhang H, Wan LQ. Cell Chirality as a Novel Measure for Cytotoxicity. Adv Biol (Weinh) 2022; 6:e2101088. [PMID: 34796704 PMCID: PMC9008805 DOI: 10.1002/adbi.202101088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/28/2021] [Indexed: 12/25/2022]
Abstract
Cytotoxicity assessment has great importance in both research and pharmaceutical development. The mainstream in vitro cytotoxicity assays are mostly biochemical assays that evaluate a specific cellular activity such as proliferation and apoptosis. Few assays assess toxicity by characterizing overall functional outcomes in cellular physiology such as multicellular morphogenesis. The intrinsic cellular chiral bias (also known as cell chirality, left-right asymmetry, or handedness), which determines cellular polarization along the left-right axis, is demonstrated to play important roles in development and disease. This chiral property of cells gives insights not only into functions of individual cells, such as motility and polarity but also into emerging behaviors of cell clusters, such as collective cell migration. Therefore, cell chirality characterization can be potentially used as a biomarker for assessing the overall effects of pharmaceutical drugs and environmental factors on the health of the cell. In this review article, the current in vitro techniques for cell chirality characterization and their applications are discussed and the advantages and limitations of these cell chirality assays as potential tools for detecting cytotoxicity are discussed.
Collapse
Affiliation(s)
- Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
25
|
CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left-right symmetry breaking. Proc Natl Acad Sci U S A 2021; 118:2021814118. [PMID: 33972425 PMCID: PMC8157923 DOI: 10.1073/pnas.2021814118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.
Collapse
|
26
|
Yao X, Wang X, Ding J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater 2021; 126:92-108. [PMID: 33684535 DOI: 10.1016/j.actbio.2021.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Consistent left-right (LR) asymmetry or chirality is critical for embryonic development and function maintenance. While chirality on either molecular or organism level has been well established, that on the cellular level has remained an open question for a long time. Although it remains unclear whether chirality exists universally on the cellular level, valuable efforts have recently been made to explore this fundamental topic pertinent to both cell biology and biomaterial science. The development of material fabrication techniques, surface patterning, in particular, has afforded a unique platform to study cell-material interactions. By using patterning techniques, chirality on the cellular level has been examined for cell clusters and single cells in vitro in well-designed experiments. In this review, we first introduce typical fabrication techniques of surface patterning suitable for cell studies and then summarize the main aspects of preliminary evidence of cell chirality on patterned surfaces to date. We finally indicate the limitations of the studies conducted thus far and describe the perspectives of future research in this challenging field. STATEMENT OF SIGNIFICANCE: While both biomacromolecules and organisms can exhibit chirality, it is not yet conclusive whether a cell has left-right (LR) asymmetry. It is important yet challenging to study and reveal the possible existence of cell chirality. By using the technique of surface patterning, the recent decade has witnessed progress in the exploration of possible cell chirality within cell clusters and single cells. Herein, some important preliminary evidence of cell chirality is collected and analyzed. The open questions and perspectives are also described to promote further investigations of cell chirality in biomaterials.
Collapse
|
27
|
Zhang H, Fan J, Zhao Z, Wang C, Wan LQ. Effects of Alzheimer's Disease-Related Proteins on the Chirality of Brain Endothelial Cells. Cell Mol Bioeng 2021; 14:231-240. [PMID: 34109002 DOI: 10.1007/s12195-021-00669-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/11/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Cell chirality is an intrinsic cellular property that determines the directionality of cellular polarization along the left-right axis. We recently show that endothelial cell chirality can influence intercellular junction formation and alter trans-endothelial permeability, depending on the uniformity of the chirality of adjacent cells, which suggests a potential role for cell chirality in neurodegenerative diseases with blood-brain barrier (BBB) dysfunctions, such as Alzheimer's disease (AD). In this study, we determined the effects of AD-related proteins amyloid-β (Aβ), tau, and apolipoprotein E4 (ApoE4) on the chiral bias of the endothelial cell component in BBB. Methods We first examined the chiral bias and effects of protein kinase C (PKC)-mediated chiral alterations of human brain microvascular endothelial cells (hBMECs) using the ring micropattern chirality assay. We then investigated the effects of Aβ, tau, and ApoE4 on hBMEC chirality using chirality assay and biased organelle positions. Results The hBMECs have a strong clockwise chiral bias, which can be reversed by protein kinase C (PKC) activation. Treatment with tau significantly disrupted the chiral bias of hBMECs with altered cellular polarization. In contrast, neither ApoE4 nor Aβ-42 caused significant changes in cell chirality. Conclusions We conclude that tau might cause BBB dysfunction by disrupting cell polarization and chiral morphogenesis, while the effects of ApoE4 and Aβ-42 on BBB integrity might be chirality-independent. The potential involvement of chiral morphogenesis in tau-mediated BBB dysfunction in AD provides a novel perspective in vascular dysfunction in tauopathies such as AD, chronic traumatic encephalopathy, progressive supranuclear palsy, and frontotemporal dementia. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00669-w.
Collapse
Affiliation(s)
- Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Jie Fan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Zhen Zhao
- Department of Physiology and Neuroscience, The Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033 USA
| | - Chunyu Wang
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
28
|
Wang X, Zhang R, Mozaffari A, de Pablo JJ, Abbott NL. Active motion of multiphase oil droplets: emergent dynamics of squirmers with evolving internal structure. SOFT MATTER 2021; 17:2985-2993. [PMID: 33596294 DOI: 10.1039/d0sm01873b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthetic soft matter systems, when driven beyond equilibrium by active processes, offer the potential to achieve dynamical states and functions of a complexity found in living matter. Emulsions offer the basis of a simple yet versatile system for identification of the physicochemical principles underlying active soft matter, but how multiple internal phases within emulsion droplets (e.g., Janus morphologies) organize to impact emergent dynamics is not understood. Here, we create multiphase oil droplets with ultralow interfacial tensions but distinct viscosities, and drive them into motion in aqueous micellar solutions. Preferential solubilization of select components of the oil both drives the droplet motion and yields a progression of internal phase morphological states with distinct symmetries. We find the active droplets to exhibit five dynamical states during morphogenesis. By quantifying microscopic flow fields, we show that it is possible to map the diverse droplet behaviors to squirmer models of spherical microswimmers in Stokes flow, thus showing that multiphase droplets offer the basis of a versatile platform with which to study and engineer the hydrodynamics of microswimmers.
Collapse
Affiliation(s)
- Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Rui Zhang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ali Mozaffari
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA and Argonne National Laboratory, Chicago, IL, USA
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
29
|
Wang Y, Yang Y, Wang X, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Micropattern-controlled chirality of focal adhesions regulates the cytoskeletal arrangement and gene transfection of mesenchymal stem cells. Biomaterials 2021; 271:120751. [PMID: 33740614 DOI: 10.1016/j.biomaterials.2021.120751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Cell chirality has been demonstrated to be important for controlling cell functions. However, it is not clear how the chirality of the extracellular microenvironment regulates cell adhesion and cytoskeletal structures and therefore affects gene transfection. In this study, the chirality of focal adhesions and the cytoskeleton of single human mesenchymal stem cells (hMSCs) was controlled by specially designed micropatterns, and its influence on gene transfection was investigated. Micropatterns with different cell adhesion areas and swirling stripe lines were prepared by micropatterning fibronectin on polystyrene surfaces. The chiral micropatterns induced the formation of chiral focal adhesions and chiral cytoskeletal structures. Gene transfection efficiency was enhanced with increasing adhesion area, while hMSCs on left-handed and right-handed swirling micropatterns showed the same level of gene transfection. When the swirling angle was changed from 0°, 30°, and 60° to 90°, the gene transfection efficiency at a swirling angle of 60° was the lowest. The influence of cell chirality on gene transfection was strongly associated with cellular uptake capacity, DNA synthesis and cytoskeletal mechanics. The results demonstrated that cytoskeletal swirling had a significant influence on gene transfection.
Collapse
Affiliation(s)
- Yongtao Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yingjun Yang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Xinlong Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
30
|
Cui X, Tong J, Yau J, Bajpai A, Yang J, Peng Y, Singh M, Qian W, Ma X, Chen W. Mechanical Forces Regulate Asymmetric Vascular Cell Alignment. Biophys J 2020; 119:1771-1780. [PMID: 33086046 PMCID: PMC7677134 DOI: 10.1016/j.bpj.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022] Open
Abstract
Mechanical forces between cells and their microenvironment critically regulate the asymmetric morphogenesis and physiological functions in vascular systems. Here, we investigated the asymmetric cell alignment and cellular forces simultaneously in micropatterned endothelial cell ring-shaped sheets and studied how the traction and intercellular forces are involved in the asymmetric vascular morphogenesis. Tuning the traction and intercellular forces using different topographic geometries of symmetric and asymmetric ring-shaped patterns regulated the vascular asymmetric morphogenesis in vitro. Moreover, pharmacologically suppressing the cell traction force and intercellular force disturbed the force-dependent asymmetric cell alignment. We further studied this phenomenon by modeling the vascular sheets with a mechanical force-propelled active particle model and confirmed that mechanical forces synergistically drive the asymmetric endothelial cell alignments in different tissue geometries. Further study using mouse diabetic aortic endothelial cells indicated that diseased endothelial cells exhibited abnormal cell alignments, traction, and intercellular forces, indicating the importance of mechanical forces in physiological vascular morphogenesis and functions. Overall, we have established a controllable micromechanical platform to study the force-dependent vascular asymmetric morphogenesis and thus provide a direct link between single-cell mechanical processes and collective behaviors in a multicellular environment.
Collapse
Affiliation(s)
- Xin Cui
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Jie Tong
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Jimmy Yau
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Apratim Bajpai
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Jing Yang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Yansong Peng
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Mrinalini Singh
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York
| | - Xiao Ma
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Department of Biomedical Engineering, New York University, Brooklyn, New York.
| |
Collapse
|
31
|
Rahman T, Zhang H, Fan J, Wan LQ. Cell chirality in cardiovascular development and disease. APL Bioeng 2020; 4:031503. [PMID: 32903894 PMCID: PMC7449703 DOI: 10.1063/5.0014424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The cardiovascular system demonstrates left-right (LR) asymmetry: most notably, the LR asymmetric looping of the bilaterally symmetric linear heart tube. Similarly, the orientation of the aortic arch is asymmetric as well. Perturbations to the asymmetry have been associated with several congenital heart malformations and vascular disorders. The source of the asymmetry, however, is not clear. Cell chirality, a recently discovered and intrinsic LR asymmetric cellular morphological property, has been implicated in the heart looping and vascular barrier function. In this paper, we summarize recent advances in the field of cell chirality and describe various approaches developed for studying cell chirality at multi- and single-cell levels. We also examine research progress in asymmetric cardiovascular development and associated malformations. Finally, we review evidence connecting cell chirality to cardiac looping and vascular permeability and provide thoughts on future research directions for cell chirality in the context of cardiovascular development and disease.
Collapse
Affiliation(s)
- Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jie Fan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
32
|
Bao Y, Wu S, Chu LT, Kwong HK, Hartanto H, Huang Y, Lam ML, Lam RHW, Chen TH. Early Committed Clockwise Cell Chirality Upregulates Adipogenic Differentiation of Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2020; 4:e2000161. [PMID: 32864891 DOI: 10.1002/adbi.202000161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Indexed: 11/11/2022]
Abstract
Cell chirality is observed with diverse forms and coordinates various left-right (LR) asymmetry in tissue morphogenesis. To give rise to such diversity, cell chirality may be coupled with cell differentiation. Here, using micropatterned human mesenchymal stem cells (hMSCs), an early committed clockwise (CW) cell chirality that can itself upregulate the adipogenic differentiation is reported. hMSC chirality enables a positively tilted chiral orientation on micropatterned stripes. When cultured as single cells on circular micropatterns, an anticlockwise (ACW)-biased nucleus rotation and swirling pattern of actin filament are observed. Interestingly, with adipogenic induction for 3-6 days, such chirality is reversed to negative chiral orientation and CW-biased rotation, which is earlier than the maturation of other differentiation markers, and consistently expressed in terminally differentiated adipocytes. Using latrunculin A (LatA), cytochalasin D (CD), and nocodazole (Noco) that forces a CW-biased actin filament and nucleus rotation resembling the early differentiated chirality upon adipogenic induction, an upregulation of adipogenic differentiation is found. The result demonstrates that the early differentiated chirality may serve as a mechanical precursor to engage the lineage commitment, suggesting a feedback mechanism of chiral actin in regulating cell differentiation and LR morphogenesis.
Collapse
Affiliation(s)
- Yuanye Bao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Siying Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Lok Ting Chu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Hoi Kwan Kwong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Hogi Hartanto
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Yaozhun Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Miu Ling Lam
- School of Creative Media, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
33
|
Hayakawa M, Hiraiwa T, Wada Y, Kuwayama H, Shibata T. Polar pattern formation induced by contact following locomotion in a multicellular system. eLife 2020; 9:53609. [PMID: 32352381 PMCID: PMC7213982 DOI: 10.7554/elife.53609] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Biophysical mechanisms underlying collective cell migration of eukaryotic cells have been studied extensively in recent years. One mechanism that induces cells to correlate their motions is contact inhibition of locomotion, by which cells migrating away from the contact site. Here, we report that tail-following behavior at the contact site, termed contact following locomotion (CFL), can induce a non-trivial collective behavior in migrating cells. We show the emergence of a traveling band showing polar order in a mutant Dictyostelium cell that lacks chemotactic activity. We find that CFL is the cell-cell interaction underlying this phenomenon, enabling a theoretical description of how this traveling band forms. We further show that the polar order phase consists of subpopulations that exhibit characteristic transversal motions with respect to the direction of band propagation. These findings describe a novel mechanism of collective cell migration involving cell-cell interactions capable of inducing traveling band with polar order.
Collapse
Affiliation(s)
- Masayuki Hayakawa
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | - Yuko Wada
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hidekazu Kuwayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Ibaraki, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
34
|
Yang X, Li Z, Polyakova T, Dejneka A, Zablotskii V, Zhang X. Effect of static magnetic field on DNA synthesis: The interplay between DNA chirality and magnetic field left-right asymmetry. FASEB Bioadv 2020; 2:254-263. [PMID: 32259051 PMCID: PMC7133733 DOI: 10.1096/fba.2019-00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 05/26/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Interactions between magnetic fields (MFs) and living cells may stimulate a large variety of cellular responses to a MF, while the underlying intracellular mechanisms still remain a great puzzle. On a fundamental level, the MF - cell interaction is affected by the two broken symmetries: (a) left-right (LR) asymmetry of the MF and (b) chirality of DNA molecules carrying electric charges and subjected to the Lorentz force when moving in a MF. Here we report on the chirality-driven effect of static magnetic fields (SMFs) on DNA synthesis. This newly discovered effect reveals how the interplay between two fundamental features of symmetry in living and inanimate nature-DNA chirality and the inherent features of MFs to distinguish the left and right-manifests itself in different DNA synthesis rates in the upward and downward SMFs, consequently resulting in unequal cell proliferation for the two directions of the field. The interplay between DNA chirality and MF LR asymmetry will provide fundamental knowledge for many MF-induced biological phenotypes.
Collapse
Affiliation(s)
- Xingxing Yang
- High Magnetic Field LaboratoryKey Laboratory of High Magnetic Field and Ion Beam Physical BiologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- Science Island Branch of Graduate SchoolUniversity of Science and Technology of ChinaHefeiChina
| | - Zhiyuan Li
- High Magnetic Field LaboratoryKey Laboratory of High Magnetic Field and Ion Beam Physical BiologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
| | - Xin Zhang
- High Magnetic Field LaboratoryKey Laboratory of High Magnetic Field and Ion Beam Physical BiologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- Science Island Branch of Graduate SchoolUniversity of Science and Technology of ChinaHefeiChina
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| |
Collapse
|
35
|
Namba T, Ishihara S. Cytoskeleton polarity is essential in determining orientational order in basal bodies of multi-ciliated cells. PLoS Comput Biol 2020; 16:e1007649. [PMID: 32084125 PMCID: PMC7055923 DOI: 10.1371/journal.pcbi.1007649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/04/2020] [Accepted: 01/09/2020] [Indexed: 01/16/2023] Open
Abstract
In multi-ciliated cells, directed and synchronous ciliary beating in the apical membrane occurs through appropriate configuration of basal bodies (BBs, roots of cilia). Although it has been experimentally shown that the position and orientation of BBs are coordinated by apical cytoskeletons (CSKs), such as microtubules (MTs), and planar cell polarity (PCP), the underlying mechanism for achieving the patterning of BBs is not yet understood. In this study, we propose that polarity in bundles of apical MTs play a crucial role in the patterning of BBs. First, the necessity of the polarity was discussed by theoretical consideration on the symmetry of the system. The existence of the polarity was investigated by measuring relative angles between the MTs and BBs using published experimental data. Next, a mathematical model for BB patterning was derived by combining the polarity and self-organizational ability of CSKs. In the model, BBs were treated as finite-size particles in the medium of CSKs and excluded volume effects between BBs and CSKs were taken into account. The model reproduces the various experimental observations, including normal and drug-treated phenotypes. Our model with polarity provides a coherent and testable mechanism for apical BB pattern formation. We have also discussed the implication of our study on cell chirality. Synchronous and directed ciliary beating in trachea allows transport and ejection of virus and dust from the body. This ciliary function depends on the coordinated configuration of basal bodies (root of cilia) in apical cell membrane. However, the mechanism for their formation remains unknown. In this study, we show that the polarity in apical microtubule bundles plays a significant role in the organization of basal bodies. A mathematical model incorporating polarity has been formulated which provides a coherent explanation and is able to reproduce experimental observations. We have clarified both necessity (‘why polarity is required for pattern formation’) and sufficiency (‘how polarity works for pattern formation’) of cytoskeleton polarity for correct pattering of basal bodies with verification by experimental data. This model further leads us to a possible mechanism for cellular chirality.
Collapse
Affiliation(s)
- Toshinori Namba
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo, Japan
| | - Shuji Ishihara
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Komaba, Tokyo, Japan
- * E-mail:
| |
Collapse
|
36
|
Zuo T, Luo D, Huang Y, Li YY, Zhou X, Li D. Chiral 3D Coordination Polymers Consisting of Achiral Terpyridyl Precursors: from Spontaneous Resolution to Enantioenriched Induction. Chemistry 2020; 26:1936-1940. [DOI: 10.1002/chem.201905091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/02/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Zuo
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 P. R. China
| | - Yong‐Liang Huang
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 P. R. China
| | - Yan Yan Li
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 P. R. China
| | - Xiao‐Ping Zhou
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
37
|
The many implications of actin filament helicity. Semin Cell Dev Biol 2019; 102:65-72. [PMID: 31862222 DOI: 10.1016/j.semcdb.2019.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
One of the best known features of actin filaments is their helical structure. A number of essential properties emerge from this molecular arrangement of actin subunits. Here, we give an overview of the mechanical and biochemical implications of filament helicity, at different scales. In particular, a number of recent studies have highlighted the role of filament helicity in the adaptation to and the generation of mechanical torsion, and in the modulation of the filament's interaction with very different actin-binding proteins (such as myosins, cross-linkers, formins, and cofilin). Helicity can thus be seen as a key factor for the regulation of actin assembly, and as a link between biochemical regulators and their mechanical context. In addition, actin filament helicity appears to play an essential role in the establishment of chirality at larger scales, up to the organismal scale. Altogether, helicity appears to be an essential feature contributing to the regulation of actin assembly dynamics, and to actin's ability to organize cells at a larger scale.
Collapse
|
38
|
Morozov M, Michelin S. Orientational instability and spontaneous rotation of active nematic droplets. SOFT MATTER 2019; 15:7814-7822. [PMID: 31517379 DOI: 10.1039/c9sm01076a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In experiments, an individual chemically-active liquid crystal (LC) droplet submerged in the bulk of a surfactant solution may self-propel along a straight, helical, or random trajectory. In this paper, we develop a minimal model capturing all three types of self-propulsion trajectories of a drop in the case of a nematic LC with homeotropic anchoring at the LC-fluid interface. We emulate the director field within the drop by a single preferred polarization vector that is subject of two reorientation mechanisms, namely, the internal flow-induced displacement of the hedgehog defect and the droplet's rotation. Within this reduced-order model, the coupling between the nematic ordering of the drop and the surfactant transport is represented by variations of the droplet's interfacial properties with nematic polarization. Our analysis reveals that a novel mode of orientational instability emerges from the competition of the two reorientation mechanisms and is characterized by a spontaneous rotation of the self-propelling drop responsible for helical self-propulsion trajectories. In turn, we also show that random trajectories in isotropic and nematic drops alike stem from the advection-driven transition to chaos. The succession of the different propulsion modes is consistent with experimentally-reported transitions in the shape of droplet trajectories as the drop size is varied.
Collapse
Affiliation(s)
- Matvey Morozov
- LadHyX Département de Mécanique, CNRS École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France.
| | | |
Collapse
|
39
|
Abstract
Consistent asymmetries between the left and right sides of animal bodies are common. For example, the internal organs of vertebrates are left-right (L-R) asymmetric in a stereotyped fashion. Other structures, such as the skeleton and muscles, are largely symmetric. This Review considers how symmetries and asymmetries form alongside each other within the embryo, and how they are then maintained during growth. I describe how asymmetric signals are generated in the embryo. Using the limbs and somites as major examples, I then address mechanisms for protecting symmetrically forming tissues from asymmetrically acting signals. These examples reveal that symmetry should not be considered as an inherent background state, but instead must be actively maintained throughout multiple phases of embryonic patterning and organismal growth.
Collapse
Affiliation(s)
- Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
40
|
Kwong HK, Huang Y, Bao Y, Lam ML, Chen TH. Remnant Effects of Culture Density on Cell Chirality After Reseeding. ACS Biomater Sci Eng 2019; 5:3944-3953. [DOI: 10.1021/acsbiomaterials.8b01364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | - Miu Ling Lam
- CityU Shenzhen Research Institute, Shenzhen 518057, China
| | - Ting-Hsuan Chen
- CityU Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200086, China
| |
Collapse
|
41
|
Fan J, Zhang H, Rahman T, Stanton DN, Wan LQ. Cell organelle-based analysis of cell chirality. Commun Integr Biol 2019; 12:78-81. [PMID: 31143366 PMCID: PMC6527183 DOI: 10.1080/19420889.2019.1605277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
The maintenance of tight endothelial junctions requires the establishment of proper cell polarity, which includes not only the apicobasal and front-rear polarity but also the left-right (L-R) polarity. The cell possesses an intrinsic mechanism of orienting the L-R axis with respect to the other axes, following a left-hand or right-hand rule, termed cell chirality. We have previously reported that endothelial cells exhibit a clockwise or rightward bias on ring-shaped micropatterns. Now we further characterize the chirality of individual endothelial cells on micropatterns by analyzing the L-R positioning of the cell centroid relative to the nucleus-centrosome axis. Our results show that the centroids of endothelial cells preferably polarized towards the right side of the nucleus-centrosome axis. This bias is consistent with cell chirality characterized by other methods. These results suggest that the positioning of cell organelles is intrinsically L-R biased inside individual cells. This L-R bias provides an opportunity for determining cell chirality in situ, even in vivo, without the limitations of using isolated cells in in vitro engineered platforms.
Collapse
Affiliation(s)
- Jie Fan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Diana N Stanton
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.,Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
42
|
Chiral Neuronal Motility: The Missing Link between Molecular Chirality and Brain Asymmetry. Symmetry (Basel) 2019. [DOI: 10.3390/sym11010102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Left–right brain asymmetry is a fundamental property observed across phyla from invertebrates to humans, but the mechanisms underlying its formation are still largely unknown. Rapid progress in our knowledge of the formation of body asymmetry suggests that brain asymmetry might be controlled by the same mechanisms. However, most of the functional brain laterality, including language processing and handedness, does not share common mechanisms with visceral asymmetry. Accumulating evidence indicates that asymmetry is manifested as chirality at the single cellular level. In neurons, the growth cone filopodia at the tips of neurites exhibit a myosin V-dependent, left-helical, and right-screw rotation, which drives the clockwise circular growth of neurites on adhesive substrates. Here, I propose an alternative model for the formation of brain asymmetry that is based on chiral neuronal motility. According to this chiral neuron model, the molecular chirality of actin filaments and myosin motors is converted into chiral neuronal motility, which is in turn transformed into the left–right asymmetry of neural circuits and lateralized brain functions. I also introduce automated, numerical, and quantitative methods to analyze the chirality and the left–right asymmetry that would enable the efficient testing of the model and to accelerate future investigations in this field.
Collapse
|
43
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|