1
|
Akagawa M, Sugasawa K, Ura K, Sassa A. Impact of an oxidative RNA lesion on in vitro replication catalyzed by SARS-CoV-2 RNA-dependent RNA polymerase. J Biol Chem 2025:108512. [PMID: 40250563 DOI: 10.1016/j.jbc.2025.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/02/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
The production of reactive oxygen species in response to RNA virus infection results in the oxidation of viral genomic RNA within infected cells. These oxidative RNA lesions undergo replication catalyzed by the viral replisome. G to U transversion mutations are frequently observed in the SARS-CoV-2 genome and may be linked to the replication process catalyzed by RNA-dependent RNA polymerase (RdRp) past the oxidative RNA lesion 7,8-dihydro-8-oxo-riboguanosine (8-oxo-rG). To better understand the mechanism of viral RNA mutagenesis, it is crucial to elucidate the role of RdRp in replicating across oxidative lesions. In this study, we investigated the RNA synthesis catalyzed by the reconstituted SARS-CoV-2 RdRp past a single 8-oxo-rG. The RdRp-mediated primer extension was significantly inhibited by 8-oxo-rG on the template RNA. A steady-state multiple-turnover reaction demonstrated that the turnover rate of RdRp was significantly slow when replication was blocked by 8-oxo-rG, reflecting low bypass efficiency even with prolonged reaction time. Once RdRp was able to bypass 8-oxo-rG, it preferentially incorporated rCMP, with a lesser amount of rAMP opposite 8-oxo-rG. In contrast, RdRp demonstrated greater activity in extending from the mutagenic rA:8-oxo-rG terminus compared to the lower efficiency of extension from the rC:8-oxo-rG pair. Based on steady-state kinetic analyses for the incorporation of rNMPs opposite 8-oxo-rG and chain extension from rC:8-oxo-rG or rA:8-oxo-rG, the relative bypass frequency for rA:8-oxo-rG was found to be seven-fold higher than that for rC:8-oxo-rG. Therefore, the properties of RdRp indicated in this study may contribute to the mechanism of mutagenesis of the SARS-CoV-2 genome.
Collapse
Affiliation(s)
- Masataka Akagawa
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Kiyoe Ura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Akira Sassa
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan.
| |
Collapse
|
2
|
Olatunji M, Liu Y. RNA damage and its implications in genome stability. DNA Repair (Amst) 2025; 147:103821. [PMID: 40043352 DOI: 10.1016/j.dnarep.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Endogenous and environmental stressors can damage DNA and RNA to compromise genome and transcriptome stability and integrity in cells, leading to genetic instability and diseases. Recent studies have demonstrated that RNA damage can also modulate genome stability via RNA-templated DNA synthesis, suggesting that it is essential to maintain RNA integrity for the sustainment of genome stability. However, little is known about RNA damage and repair and their roles in modulating genome stability. Current efforts have mainly focused on revealing RNA surveillance pathways that detect and degrade damaged RNA, while the critical role of RNA repair is often overlooked. Due to their abundance and susceptibility to nucleobase damaging agents, it is essential for cells to evolve robust RNA repair mechanisms that can remove RNA damage, maintaining RNA integrity during gene transcription. This is supported by the discovery of the alkylated RNA nucleobase repair enzyme human AlkB homolog 3 that can directly remove the methyl group on damaged RNA nucleobases, predominantly in the nucleus of human cells, thereby restoring the integrity of the damaged RNA nucleobases. This is further supported by the fact that several DNA repair enzymes can also process RNA damage. In this review, we discuss RNA damage and its effects on cellular function, DNA repair, genome instability, and potential RNA damage repair mechanisms. Our review underscores the necessity for future research on RNA damage and repair and their essential roles in modulating genome stability.
Collapse
Affiliation(s)
- Mustapha Olatunji
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA; Department of Chemistry and Biochemistry, and Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
3
|
He J, Yin S, Deng X, Ma Z, Zhang H, Miao Y, Yi J, Chen C, Zhang J. The effector protein BspE affects Brucella survival by regulating the inflammatory response and apoptosis. Int Immunopharmacol 2025; 144:113576. [PMID: 39566384 DOI: 10.1016/j.intimp.2024.113576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
Brucella T4SS secretes numerous effector proteins to disrupt host immune responses and apoptosis, enabling long-term survival. One such effector protein is BspE, whose role remains largely unknown. In this study, we demonstrated that BspE promotes the growth of Brucella, enhances its survival in macrophages, and affects the release of macrophage inflammatory factors. Furthermore, BspE facilitates Brucella colonization and pathological damage in mice. Our findings reveal that BspE can be translated in the host cell nucleus, where it interacts with the host RNA-binding protein PCBP1 to promote Brucella replication in macrophages. Knockdown of PCBP1 affects BspE-mediated proliferation of Brucella in macrophages. Furthermore, the BspE-PCBP1 interaction hinders P53 signaling and inhibits macrophage apoptosis. Although this interaction affects inflammatory cytokines, it does not significantly involve the NF-κB pathway. These findings contribute to a better understanding of how the Brucella effector protein BspE regulates host immune responses and apoptosis to influence its own survival.
Collapse
Affiliation(s)
- Jinke He
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China; Department of Basic Medicine, Xinjiang Second Medical College, Kelamayi 834000, Xinjiang, China
| | - Shuanghong Yin
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren 554300, Guizhou, China; School of Sports and Health Science, Tongren University, Tongren 554300, China
| | - Xiaoyu Deng
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China; Department of Basic Medicine, Hunan University of Medicine, huaihua 418000, Hunan, China
| | - Zhongchen Ma
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China
| | - Huan Zhang
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China
| | - Yuhe Miao
- Fujian Sunvet Biological Technology Co., Ltd, Nanping 354100, Fujian, China
| | - Jihai Yi
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China.
| | - Chuangfu Chen
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832003, China.
| | - Junbo Zhang
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren 554300, Guizhou, China; College of A&F Engineering and Planning, Tongren University, Tongren 554300, Guizhou, China.
| |
Collapse
|
4
|
Mangiapane G, D'Agostino VG, Tell G. Emerging roles of bases modifications and DNA repair proteins in onco-miRNA processing: novel insights in cancer biology. Cancer Gene Ther 2024; 31:1765-1772. [PMID: 39322751 DOI: 10.1038/s41417-024-00836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Onco-microRNAs (onco-miRNAs) are essential players in the post-transcriptional regulation of gene expression and exert a crucial role in tumorigenesis. Novel information about the epitranscriptomic modifications, involved in onco-miRNAs biogenesis, and in the modulation of their interplay with regulatory factors responsible for their processing and sorting are emerging. In this review, we highlight the contribution of bases modifications, sequence motifs, and secondary structures on miRNAs processing and sorting. We focus on several modes of action of RNA binding proteins (RBPs) on these processes. Moreover, we describe the new emerging scenario that shows an unexpected though essential role of selected DNA repair proteins in actively participating in these events, highlighting the original intervention represented by the non-canonical functions of Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), a central player in Base Excision Repair (BER) pathway of DNA lesions. Taking advantage of this new knowledge will help in prospecting new cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Vito Giuseppe D'Agostino
- Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DMED), University of Udine, Udine, Italy.
| |
Collapse
|
5
|
Wheeler HB, Madrigal AA, Chaim IA. Mapping the future of oxidative RNA damage in neurodegeneration: Rethinking the status quo with new tools. Proc Natl Acad Sci U S A 2024; 121:e2317860121. [PMID: 39495912 PMCID: PMC11572933 DOI: 10.1073/pnas.2317860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Over two decades ago, increased levels of RNA oxidation were reported in postmortem patients with ALS, Alzheimer's, Parkinson's, and other neurodegenerative diseases. Interestingly, not all cell types and transcripts were equally oxidized. Furthermore, it was shown that RNA oxidation is an early phenomenon, altogether indicating that oxidative RNA damage could be a driver, and not a consequence, of disease. Despite all these exciting observations, the field appears to have stagnated since then. We argue that this is a consequence of the shortcomings of technologies to model these diseases, limiting our understanding of which transcripts are being oxidized, which RNA-binding proteins are interacting with these RNAs, what their implications are in RNA processing, and as a result, what their potential role is in disease onset and progression. Here, we discuss the limits of previous technologies and propose ways by which advancements in iPSC-derived disease modeling, proteomics, and sequencing technologies can be combined and leveraged to answer new and decades-old questions.
Collapse
Affiliation(s)
- Hailey B. Wheeler
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Assael A. Madrigal
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Isaac A. Chaim
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
6
|
Bellina A, Malfatti MC, Salgado G, Fleming AM, Antoniali G, Othman Z, Gualandi N, La Manna S, Marasco D, Dassi E, Burrows CJ, Tell G. Apurinic/Apyrimidinic Endodeoxyribonuclease 1 modulates RNA G-quadruplex folding of miR-92b and controls its expression in cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2317861121. [PMID: 39495925 PMCID: PMC11572961 DOI: 10.1073/pnas.2317861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
In the last decade, several novel functions of the mammalian Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) have been discovered, going far beyond its canonical function as DNA repair enzyme and unveiling its potential roles in cancer development. Indeed, it was shown to be involved in DNA G-quadruplex biology and RNA metabolism, most importantly in the miRNA maturation pathway and the decay of oxidized or abasic miRNAs during oxidative stress conditions. In recent years, several noncanonical pathways of miRNA biogenesis have emerged, with a specific focus on guanosine-rich precursors that can form RNA G-quadruplex (rG4) structures. Here, we show that several miRNA precursors, dysregulated upon APE1 depletion, contain an rG4 motif and that their corresponding target genes are up-regulated after APE1 depletion. We also demonstrate, both by in vitro assays and by using different cancer cell lines, that APE1 can modulate the folding of an rG4 structure contained in pre-miR-92b, with a mechanism strictly dependent on lysine residues present in its N-terminal disordered region. Furthermore, APE1 cellular depletion alters the maturation process of miR-92b, mainly affecting the shuttling between the nucleus and cytosol. Bioinformatic analysis of APE1-regulated rG4-containing miRNAs supports the relevance of our findings in cancer biology. Specifically, these miRNAs exhibit high prognostic significance in lung, cervical, and liver tumors, as suggested by their involvement in several cancer-related pathways.
Collapse
Affiliation(s)
- Alessia Bellina
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
- Liver Cancer Unit, Fondazione Italiana Fegato—Organizzazione Non Lucrativa di Utilità Sociale, Basovizza34149, Italy
| | - Gilmar Salgado
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Zahraa Othman
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Nicolò Gualandi
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Sara La Manna
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Daniela Marasco
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento38123, Italy
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| |
Collapse
|
7
|
Liu D, Yang S, Yu S. Interactions Between Ferroptosis and Oxidative Stress in Ischemic Stroke. Antioxidants (Basel) 2024; 13:1329. [PMID: 39594471 PMCID: PMC11591163 DOI: 10.3390/antiox13111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemic stroke is a devastating condition that occurs due to the interruption of blood flow to the brain, resulting in a range of cellular and molecular changes. In recent years, there has been growing interest in the role of ferroptosis, a newly identified form of regulated cell death, in ischemic stroke. Ferroptosis is driven by the accumulation of lipid peroxides and is characterized by the loss of membrane integrity. Additionally, oxidative stress, which refers to an imbalance between prooxidants and antioxidants, is a hallmark of ischemic stroke and significantly contributes to the pathogenesis of the disease. In this review, we explore the interactions between ferroptosis and oxidative stress in ischemic stroke. We examine the underlying mechanisms through which oxidative stress induces ferroptosis and how ferroptosis, in turn, exacerbates oxidative stress. Furthermore, we discuss potential therapeutic strategies that target both ferroptosis and oxidative stress in the treatment of ischemic stroke. Overall, this review highlights the complex interplay between ferroptosis and oxidative stress in ischemic stroke and underscores the need for further research to identify novel therapeutic targets for this condition.
Collapse
Affiliation(s)
| | - Sha Yang
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Shuguang Yu
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| |
Collapse
|
8
|
Qiao K, Xu C, Zhang C, Wang Q, Jiang J, Chen Z, Zhou L, Jia S, Cao L. Discovery of an 8-oxoguanine regulator PCBP1 inhibitor by virtual screening and its synergistic effects with ROS-modulating agents in pancreatic cancer. Front Mol Biosci 2024; 11:1441550. [PMID: 39170746 PMCID: PMC11336162 DOI: 10.3389/fmolb.2024.1441550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Drugs that target reactive oxygen species (ROS) metabolism have progressed the treatment of pancreatic cancer treatment, yet their efficacy remains poor because of the adaptation of cancer cells to high concentration of ROS. Cells cope with ROS by recognizing 8-oxoguanine residues and processing severely oxidized RNA, which make it feasible to improve the efficacy of ROS-modulating drugs in pancreatic cancer by targeting 8-oxoguanine regulators. Methods: Poly(rC)-binding protein 1 (PCBP1) was identified as a potential oncogene in pancreatic cancer through datasets of The Cancer Genome Atlas (TCGA) project and Gene Expression Omnibus (GEO). High-throughput virtual screening was used to screen out potential inhibitors for PCBP1. Computational molecular dynamics simulations was used to verify the stable interaction between the two compounds and PCBP1 and their structure-activity relationships. In vitro experiments were performed for functional validation of silychristin. Results: In this study, we identified PCBP1 as a potential oncogene in pancreatic cancer. By applying high-throughput virtual screening, we identified Compound 102 and Compound 934 (silychristin) as potential PCBP1 inhibitors. Computational molecular dynamics simulations and virtual alanine mutagenesis verified the structure-activity correlation between PCBP1 and the two identified compounds. These two compounds interfere with the PCBP1-RNA interaction and impair the ability of PCBP1 to process RNA, leading to intracellular R loop accumulation. Compound 934 synergized with ROS agent hydrogen peroxide to strongly improve induced cell death in pancreatic cancer cells. Discussion: Our results provide valuable insights into the development of drugs that target PCBP1 and identified promising synergistic agents for ROS-modulating drugs in pancreatic cancer.
Collapse
Affiliation(s)
- Kexiong Qiao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chaolei Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, China
| | - Qianqian Wang
- School of Medicine, Sir Run Run Shaw Hospital, Graduate School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Jiang
- School of Medicine, Sir Run Run Shaw Hospital, Graduate School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongrong Chen
- School of Medicine, Sir Run Run Shaw Hospital, Graduate School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangjing Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,, Hangzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Zhang Y, Bi K, Zhou L, Wang J, Huang L, Sun Y, Peng G, Wu W. Advances in Blood Biomarkers for Alzheimer's Disease: Ultra-Sensitive Detection Technologies and Impact on Clinical Diagnosis. Degener Neurol Neuromuscul Dis 2024; 14:85-102. [PMID: 39100640 PMCID: PMC11297492 DOI: 10.2147/dnnd.s471174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease has escalated into a critical public health concern, marked by its neurodegenerative nature that progressively diminishes cognitive abilities. Recognized as a continuously advancing and presently incurable condition, AD underscores the necessity for early-stage diagnosis and interventions aimed at delaying the decline in mental function. Despite the proven efficacy of cerebrospinal fluid and positron emission tomography in diagnosing AD, their broader utility is constrained by significant costs and the invasive nature of these procedures. Consequently, the innovation of blood biomarkers such as Amyloid-beta, phosphorylated-tau, total-tau et al, distinguished by their high sensitivity, minimal invasiveness, accessibility, and cost-efficiency, emerges as a promising avenue for AD diagnosis. The advent of ultra-sensitive detection methodologies, including single-molecule enzyme-linked immunosorbent assay and immunoprecipitation-mass spectrometry, has revolutionized the detection of AD plasma biomarkers, supplanting previous low-sensitivity techniques. This rapid advancement in detection technology facilitates the more accurate quantification of pathological brain proteins and AD-associated biomarkers in the bloodstream. This manuscript meticulously reviews the landscape of current research on immunological markers for AD, anchored in the National Institute on Aging-Alzheimer's Association AT(N) research framework. It highlights a selection of forefront ultra-sensitive detection technologies now integral to assessing AD blood immunological markers. Additionally, this review examines the crucial pre-analytical processing steps for AD blood samples that significantly impact research outcomes and addresses the practical challenges faced during clinical testing. These discussions are crucial for enhancing our comprehension and refining the diagnostic precision of AD using blood-based biomarkers. The review aims to shed light on potential avenues for innovation and improvement in the techniques employed for detecting and investigating AD, thereby contributing to the broader field of neurodegenerative disease research.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Linfu Zhou
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Lingtong Huang
- Department of Critical Care Units, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
10
|
Kong FB, Shi ZY, Huang YL, Chen HH, Deng QM, Wu K, Zhu Z, Li L, Xu S, Zhong XG, Yang JR, Wang XT. SIVA-1 interaction with PCBP1 serves as a predictive biomarker for cisplatin sensitivity in gastric cancer and its inhibitory effect on tumor growth in vivo. J Cancer 2024; 15:4301-4312. [PMID: 38947376 PMCID: PMC11212092 DOI: 10.7150/jca.92963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Background: SIVA-1 has been reported to play a key role in cell apoptosis and gastric cancer (GC) chemoresistance in vitro. Nevertheless, the clinical significance of SIVA-1 in GC chemotherapy remains unclear. Methods and results: Immunohistochemistry and histoculture drug response assays were used to determine SIVA-1 expression and the inhibition rate (IR) of agents to GC and to further analyze the relationship between these two phenomena. Additionally, cisplatin (DDP)-resistant GC cells were used to elucidate the role and mechanism of SIVA-1 in vivo. The results demonstrated that SIVA-1 expression was positively correlated with the IR of DDP to GC but not with those of 5-fluorouracil (5-FU) or adriamycin (ADM). Furthermore, SIVA-1 overexpression with DDP treatment synergistically inhibited tumor growth in vivo by increasing PCBP1 and decreasing Bcl-2 and Bcl-xL expression. Conclusions: Our study demonstrated that SIVA-1 may serve as an indicator of the GC sensitivity to DDP, and the mechanism of SIVA-1 in GC resistance to DDP was preliminarily revealed.
Collapse
Affiliation(s)
- Fan-Biao Kong
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Zheng-Yi Shi
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Yu-Liang Huang
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Huan-Huan Chen
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Qiao-Ming Deng
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, 530023, People's Republic of China
| | - Kun Wu
- Department of Surgery, Minzu hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530001, People's Republic of China
| | - Zhou Zhu
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Lei Li
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Sheng Xu
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Xiao-Gang Zhong
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Jian-Rong Yang
- Department of Hepatobiliary, Pancreas and Spleen Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| | - Xiao-Tong Wang
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences. 6 Taoyuan Road, Nanning, Guangxi Zhuang autonomous region 530021, People's Republic of China
| |
Collapse
|
11
|
Ogawa S, Ishii T, Otani T, Inai Y, Matsuura T, Inai T. JNK inhibition enhances cell-cell adhesion impaired by desmoglein 3 gene disruption in keratinocytes. Histochem Cell Biol 2024; 161:345-357. [PMID: 38227055 DOI: 10.1007/s00418-023-02264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/17/2024]
Abstract
c-Jun NH2-terminal protein kinase (JNK) and p38 are stress-activated mitogen-activated protein kinases (MAPK) that are phosphorylated by various stimuli. It has been reported that the loss of desmoglein (DSG) 3, a desmosomal transmembrane core molecule, in keratinocytes impairs cell-cell adhesion accompanied by p38 MAPK activation. To understand the biological role of DSG3 in desmosomes and its relationship with stress-activated MAPKs, we established DSG3 knockout keratinocytes (KO cells). Wild-type cells showed a linear localization of DSG1 to cell-cell contacts, whereas KO cells showed a remarkable reduction despite the increased protein levels of DSG1. Cell-cell adhesion in KO cells was impaired over time, as demonstrated by dispase-based dissociation assays. The linear localization of DSG1 to cell-cell contacts and the strength of cell-cell adhesion were promoted by the pharmacological inhibition of JNK. Conversely, pharmacological activation of JNK, but not p38 MAPK, in wild-type cells reduced the linear localization of DSG1 in cell-cell contacts. Our data indicate that DSG1 and DSG2 in KO cells cannot compensate for the attenuation of cell-cell adhesion strength caused by DSG3 deficiency and that JNK inhibition restores the strength of cell-cell adhesion by increasing the linear localization of DSG1 in cell-cell contacts in KO cells. Inhibition of JNK signaling may improve cell-cell adhesion in diseases in which DSG3 expression is impaired.
Collapse
Affiliation(s)
- Shuhei Ogawa
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Takashi Ishii
- Department of Nutrition and Dietetics, School of Family and Consumer Sciences, Kamakura Women's University, Kanagawa, 247-0056, Japan
| | - Takahito Otani
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Yuko Inai
- Division of General Dentistry, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Matsuura
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
| |
Collapse
|
12
|
Taylor KE, Miller LG, Contreras LM. RNA-binding proteins that preferentially interact with 8-oxoG-modified RNAs: our current understanding. Biochem Soc Trans 2024; 52:111-122. [PMID: 38174726 DOI: 10.1042/bst20230254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Cells encounter a variety of stresses throughout their lifetimes. Oxidative stress can occur via a myriad of factors, including exposure to chemical toxins or UV light. Importantly, these stressors induce chemical changes (e.g. chemical modifications) to biomolecules, such as RNA. Commonly, guanine is oxidized to form 8-oxo-7,8-hydroxyguanine (8-oxoG) and this modification can disrupt a plethora of cellular processes including messenger RNA translation and stability. Polynucleotide phosphorylase (PNPase), heterogeneous nuclear ribonucleoprotein D (HNRPD/Auf1), poly(C)-binding protein (PCBP1/HNRNP E1), and Y-box binding protein 1 (YB-1) have been identified as four RNA-binding proteins that preferentially bind 8-oxoG-modified RNA over unmodified RNA. All four proteins are native to humans and PNPase is additionally found in bacteria. Additionally, under oxidative stress, cell survival declines in mutants that lack PNPase, Auf1, or PCBP1, suggesting they are critical to the oxidative stress response. This mini-review captures the current understanding of the PNPase, HNRPD/Auf1, PCBP1, and YB-1 proteins and the mechanism that has been outlined so far by which they recognize and interact with 8-oxoG-modified RNAs.
Collapse
Affiliation(s)
- Kathleen E Taylor
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lucas G Miller
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
14
|
Villers J, Smith EM, DeLiberto AN, Arguello AE, Nyaanga J, Kleiner RE. Chemoproteomic Profiling of 8-Oxoguanosine-Sensitive RNA-Protein Interactions. Biochemistry 2023; 62:3411-3419. [PMID: 38010074 PMCID: PMC11031733 DOI: 10.1021/acs.biochem.3c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cellular nucleic acids are subject to assault by endogenous and exogenous agents that can perturb the flow of genetic information. Oxidative stress leads to the accumulation of 8-oxoguanine (8OG) in DNA and RNA. 8OG lesions on mRNA negatively impact translation, but their effect on global RNA-protein interactions is largely unknown. Here, we apply an RNA chemical proteomics approach to investigate the effect of 8OG on RNA-protein binding. We find proteins that bind preferentially to 8OG-modified RNA, including IGF2BP1-3 and hnRNPD, and proteins that are repelled by 8OG such as RBM4. We characterize these interactions using biochemical and biophysical assays to quantify the effect of 8OG on binding and show that a single 8OG abolishes the binding of RBM4 to its preferred CGG-containing substrate. Taken together, our work establishes the molecular consequences of 8OG on cellular RNA-protein binding and provides a framework for interrogating the role of RNA oxidation in biological systems.
Collapse
Affiliation(s)
- Jennifer Villers
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | - Joy Nyaanga
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
15
|
Miller LG, Demny M, Tamamis P, Contreras LM. Characterization of epitranscriptome reader proteins experimentally and in silico: Current knowledge and future perspectives beyond the YTH domain. Comput Struct Biotechnol J 2023; 21:3541-3556. [PMID: 37501707 PMCID: PMC10371769 DOI: 10.1016/j.csbj.2023.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
To date, over 150 chemical modifications to the four canonical RNA bases have been discovered, known collectively as the epitranscriptome. Many of these modifications have been implicated in a variety of cellular processes and disease states. Additional work has been done to identify proteins known as "readers" that selectively interact with RNAs that contain specific chemical modifications. Protein interactomes with N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytosine (m5C), and 8-oxo-7,8-dihydroguanosine (8-oxoG) have been determined, mainly through experimental advances in proteomics techniques. However, relatively few proteins have been confirmed to bind directly to RNA containing these modifications. Furthermore, for many of these protein readers, the exact binding mechanisms as well as the exclusivity for recognition of modified RNA species remain elusive, leading to questions regarding their roles within different cellular processes. In the case of the YT-521B homology (YTH) family of proteins, both experimental and in silico techniques have been leveraged to provide valuable biophysical insights into the mechanisms of m6A recognition at atomic resolution. To date, the YTH family is one of the best characterized classes of readers. Here, we review current knowledge about epitranscriptome recognition of the YTH domain proteins from previously published experimental and computational studies. We additionally outline knowledge gaps for proteins beyond the well-studied human YTH domains and the current in silico techniques and resources that can enable investigation of protein interactions with modified RNA outside of the YTH-m6A context.
Collapse
Affiliation(s)
- Lucas G. Miller
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Madeline Demny
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
16
|
Kharel P, Singhal NK, Mahendran T, West N, Croos B, Rana J, Smith L, Freeman E, Chattopadhyay A, McDonough J, Basu S. NAT8L mRNA oxidation is linked to neurodegeneration in multiple sclerosis. Cell Chem Biol 2023; 30:308-320.e5. [PMID: 36882060 DOI: 10.1016/j.chembiol.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 12/31/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
RNA oxidation has been implicated in neurodegeneration, but the underlying mechanism for such effects is unclear. Extensive RNA oxidation occurs within the neurons in multiple sclerosis (MS) brains. Here, we identified selectively oxidized mRNAs in neuronal cells that pertained to neuropathological pathways. N-acetyl aspartate transferase 8 like (NAT8L) is one such transcript, whose translation product enzymatically synthesizes N-acetyl aspartic acid (NAA), a neuronal metabolite important for myelin synthesis. We reasoned that impediment of translation of an oxidized NAT8L mRNA will result in a reduction in its cognate protein, thus lowering the NAA level. This hypothesis is supported by our studies on cells, an animal model, and postmortem human MS brain. Reduced brain NAA level hampers myelin integrity making neuronal axons more susceptible to damage, which contributes to MS neurodegeneration. Overall, this work provides a framework for a mechanistic understanding of the link between RNA oxidation and neurodegeneration.
Collapse
Affiliation(s)
- Prakash Kharel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | | | - Thulasi Mahendran
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Nicole West
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Brintha Croos
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Joram Rana
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Lindsey Smith
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Ernest Freeman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | - Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
17
|
Qureshi QUA, Audas TE, Morin RD, Coyle KM. Emerging roles for heterogeneous ribonuclear proteins in normal and malignant B cells. Biochem Cell Biol 2023; 101:160-171. [PMID: 36745874 DOI: 10.1139/bcb-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are among the most abundantly expressed RNA binding proteins in the cell and play major roles in all facets of RNA metabolism. hnRNPs are increasingly appreciated as essential for mammalian B cell development by regulating the carefully ordered expression of specific genes. Due to this tight regulation of the hnRNP-RNA network, it is no surprise that a growing number of genes encoding hnRNPs have been causally associated with the onset or progression of many cancers, including B cell neoplasms. Here we discuss our current understanding of hnRNP-driven regulation in normal, perturbed, and malignant B cells, and the most recent and emerging therapeutic innovations aimed at targeting the hnRNP-RNA network in lymphoma.
Collapse
Affiliation(s)
- Qurat Ul Ain Qureshi
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan D Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
18
|
Mani S, Dubey R, Lai IC, Babu MA, Tyagi S, Swargiary G, Mody D, Singh M, Agarwal S, Iqbal D, Kumar S, Hamed M, Sachdeva P, Almutary AG, Albadrani HM, Ojha S, Singh SK, Jha NK. Oxidative Stress and Natural Antioxidants: Back and Forth in the Neurological Mechanisms of Alzheimer's Disease. J Alzheimers Dis 2023; 96:877-912. [PMID: 37927255 DOI: 10.3233/jad-220700] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Chun Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Deepansh Mody
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| |
Collapse
|
19
|
Gillet N, Dumont E. Dynamics and energetics of PCBP1 binding to severely oxidized RNA. Front Mol Biosci 2022; 9:994915. [PMID: 36406269 PMCID: PMC9671708 DOI: 10.3389/fmolb.2022.994915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/18/2022] [Indexed: 10/20/2023] Open
Abstract
Oxidatively generated lesions such as 8-oxo-7, 8-dihydroguanine (8-oxoG) on RNA strands constitute a hallmark marker of the oxidative stress in the cell. Poly-C binding protein 1 (PCBP1) is able to specifically recognize severely damaged RNA strands containing two 8-oxoG lesions separated by five nucleobases, which trigger a signaling pathway leading to cell apoptosis. We apply an in silico protocol based on microsecond timescale all-atom classical molecular dynamics simulations associated with conformational and energy analyses to unveil the specific recognition mechanism at a molecular level. By comparing the RNA and protein behavior for sequences with six different damage profiles, our results highlight an allosteric mechanism, allowing a stronger binding of the oxidized guanine at position 9 only if another 8-oxoG lesion is present at position 15, in full agreement with experiments. We assess the role of lysine K23 and the additional ketone group of the oxidized guanine, thanks to computational site-directed mutagenesis.
Collapse
Affiliation(s)
- Natacha Gillet
- Laboratoire de Chimie, ENS de Lyon, CNRS UMR 5182, Lyon, France
| | - Elise Dumont
- CNRS, Institut de Chimie de Nice, Université Côte d’Azur, Nice, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
20
|
Li W, Deng X, Chen J. RNA-binding proteins in regulating mRNA stability and translation: roles and mechanisms in cancer. Semin Cancer Biol 2022; 86:664-677. [PMID: 35381329 PMCID: PMC9526761 DOI: 10.1016/j.semcancer.2022.03.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/10/2023]
Abstract
RNA-binding proteins (RBPs) are key players in cellular physiology through posttranscriptional regulation of the expression of target RNA transcripts. By modulating the processing, stability and translation of cancer-related messenger RNA (mRNA) transcripts, a large set of RBPs play essential roles in various types of cancers. Perturbations in RBP activity have been causally associated with cancer development, tumor metabolism, drug resistance, cancer stem cell self-renewal, and tumor immune evasion. Here, we summarize the recent advances in cancer pathological roles and mechanisms of RBPs in regulating mRNA stability and translation with an emphasis on the emerging category of RNA modification-associated RBPs. The functional diversity of RBPs in different types of cancers and the therapeutic potential of targeting dysregulated RBPs for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia 91016, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia 91016, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
21
|
Hahm JY, Park J, Jang ES, Chi SW. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med 2022; 54:1626-1642. [PMID: 36266447 PMCID: PMC9636213 DOI: 10.1038/s12276-022-00822-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022] Open
Abstract
In pathophysiology, reactive oxygen species control diverse cellular phenotypes by oxidizing biomolecules. Among these, the guanine base in nucleic acids is the most vulnerable to producing 8-oxoguanine, which can pair with adenine. Because of this feature, 8-oxoguanine in DNA (8-oxo-dG) induces a G > T (C > A) mutation in cancers, which can be deleterious and thus actively repaired by DNA repair pathways. 8-Oxoguanine in RNA (o8G) causes problems in aberrant quality and translational fidelity, thereby it is subjected to the RNA decay pathway. In addition to oxidative damage, 8-oxo-dG serves as an epigenetic modification that affects transcriptional regulatory elements and other epigenetic modifications. With the ability of o8G•A in base pairing, o8G alters structural and functional RNA-RNA interactions, enabling redirection of posttranscriptional regulation. Here, we address the production, regulation, and function of 8-oxo-dG and o8G under oxidative stress. Primarily, we focus on the epigenetic and epitranscriptional roles of 8-oxoguanine, which highlights the significance of oxidative modification in redox-mediated control of gene expression.
Collapse
Affiliation(s)
- Ja Young Hahm
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Jongyeun Park
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Eun-Sook Jang
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Sung Wook Chi
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481 Republic of Korea
| |
Collapse
|
22
|
Generation of PCBP1-deficient pigs using CRISPR/Cas9-mediated gene editing. iScience 2022; 25:105268. [PMID: 36274935 PMCID: PMC9579030 DOI: 10.1016/j.isci.2022.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/16/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Classical swine fever virus (CSFV), a classic swine fever pathogen, causes severe economic losses worldwide. Poly (rC)-binding protein 1 (PCBP1), which interacts with Npro of CSFV, plays a vital role in CSFV growth. We are the first to report the generation of PCBP1-deficient pigs via gene-editing technology. The PCBP1-deficient pigs exhibited normal birth weight and reproductive-performance traits and developed normally. Viral challenge experiments indicated that primary cells isolated from F0- and F1-generation pigs exhibited significantly reduced CSFV infection. Additional mechanistic exploration further confirmed that the PCBP1 deficiency-mediated antiviral effect is related to the activation of type I interferon (IFN). Besides showing that a gene-editing strategy could be used to generate PCBP1-deficient pigs, our study introduces a valuable animal model for further investigating the infection mechanisms of CSFV that will help to develop better antiviral solutions. Reduced CSFV infection in PCBP1-deficient cells is related to activated ISGs expression PCBP1-deficient pigs were successfully generated via gene-editing technology Primary cells isolated from PCBP1-deficient pigs exhibited reduced CSFV infection
Collapse
|
23
|
Han R, Jiang J, Fang J, Contreras LM. PNPase and RhlB Interact and Reduce the Cellular Availability of Oxidized RNA in Deinococcus radiodurans. Microbiol Spectr 2022; 10:e0214022. [PMID: 35856907 PMCID: PMC9430589 DOI: 10.1128/spectrum.02140-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023] Open
Abstract
8-Oxo-7,8-dihydroguanine (8-oxoG) is a major RNA modification caused by oxidative stresses and has been implicated in carcinogenesis, neurodegeneration, and aging. Several RNA-binding proteins have been shown to have a binding preference for 8-oxoG-modified RNA in eukaryotes and protect cells from oxidative stress. To date, polynucleotide phosphorylase (PNPase) is one of the most well-characterized proteins in bacteria that recognize 8-oxoG-modified RNA, but how PNPase cooperates with other proteins to process oxidized RNA is still unclear. Here, we use RNA affinity chromatography and mass spectrometry to search for proteins that preferably bind 8-oxoG-modified RNA in Deinococcus radiodurans, an extremophilic bacterium with extraordinary resistance to oxidative stresses. We identified four proteins that preferably bind to oxidized RNA: PNPase (DR_2063), DEAD box RNA helicase (DR_0335/RhlB), ribosomal protein S1 (DR_1983/RpsA), and transcriptional termination factor (DR_1338/Rho). Among these proteins, PNPase and RhlB exhibit high-affinity binding to 8-oxoG-modified RNA in a dose-independent manner. Deletions of PNPase and RhlB caused increased sensitivity of D. radiodurans to oxidative stress. We further showed that PNPase and RhlB specifically reduce the cellular availability of 8-oxoG-modified RNA but have no effect on oxidized DNA. Importantly, PNPase directly interacts with RhlB in D. radiodurans; however, no additional phenotypic effect was observed for the double deletion of pnp and rhlB compared to the single deletions. Overall, our findings suggest the roles of PNPase and RhlB in targeting 8-oxoG-modified RNAs and thereby constitute an important component of D. radiodurans resistance to oxidative stress. IMPORTANCE Oxidative RNA damage can be caused by oxidative stress, such as hydrogen peroxide, ionizing radiation, and antibiotic treatment. 8-oxo-7,8-dihydroguanine (8-oxoG), a major type of oxidized RNA, is highly mutagenic and participates in a variety of disease occurrences and development. Although several proteins have been identified to recognize 8-oxoG-modified RNA, the knowledge of how RNA oxidative damage is controlled largely remains unclear, especially in nonmodel organisms. In this study, we identified four RNA binding proteins that show higher binding affinity to 8-oxoG-modified RNA compared to unmodified RNA in the extremophilic bacterium Deinococcus radiodurans, which can endure high levels of oxidative stress. Two of the proteins, polynucleotide phosphorylase (PNPase) and DEAD-box RNA helicase (RhlB), interact with each other and reduce the cellular availability of 8-oxoG-modified RNA under oxidative stress. As such, this work contributes to our understanding of how RNA oxidation is influenced by RNA binding proteins in bacteria.
Collapse
Affiliation(s)
- Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jessie Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Jaden Fang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
24
|
Chen Y, Dou Z, Chen X, Zhao D, Che T, Su W, Qu T, Zhang T, Xu C, Lei H, Li Q, Zhang H, Di C. Overexpression of splicing factor poly(rC)-binding protein 1 elicits cycle arrest, apoptosis induction, and p73 splicing in human cervical carcinoma cells. J Cancer Res Clin Oncol 2022; 148:3475-3484. [PMID: 35896897 DOI: 10.1007/s00432-022-04170-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Splicing factor poly(rC)-binding protein 1 (PCBP1) is a novel tumor suppressor that is downregulated in several cancers thereby regulating tumor formation and metastasis. However, the involvement of PCBP1 in apoptosis of cancer cells and the molecular mechanism remains elusive. On this basis, we sought to investigate the role of splicing factor PCBP1 in the apoptosis in human cervical cancer cells. METHODS To investigate PCBP1 functions in vitro, we overexpressed PCBP1 in human cervical cancer cells. A series of cytological function assays were employed to study to the role of PCBP1 in cell proliferation, cell cycle arrest and apoptosis. RESULTS Overexpression of PCBP1 was found to greatly repress proliferation of HeLa cells in a time-dependent manner. It also induced a significant increase in G2/M phase arrest and apoptosis. Furthermore, overexpressed PCBP1 favored the production of long isoforms of p73, thereby inducing upregulated ratio of Bax/Bcl-2, the release of cytochrome c and the expression of caspase-3. CONCLUSION Our results revealed that PCBP1 played a vital role in p73 splicing, cycle arrest and apoptosis induction in human cervical carcinoma cells. Targeting PCBP1 may be a potential therapeutic strategy for cervical cancer therapy.
Collapse
Affiliation(s)
- Yuhong Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Dapeng Zhao
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tuanjie Che
- Laboratory of Precision Medicine and Translational Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China.,Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, 730030, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tao Qu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Caipeng Xu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huiweng Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Qiang Li
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China. .,Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China. .,Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China. .,Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Yue L, Luo Y, Jiang L, Sekido Y, Toyokuni S. PCBP2 knockdown promotes ferroptosis in malignant mesothelioma. Pathol Int 2022; 72:242-251. [PMID: 35089637 DOI: 10.1111/pin.13209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Malignant mesothelioma (MM) is still increasing worldwide. The pathogenesis depends on asbestos-induced iron accumulation, which eventually leads to ferroptosis-resistance of mesothelial cells via somatic mutations. Poly (rC)-binding proteins 1 and 2 (PCBP1/2) are recently recognized cytosolic Fe(II) chaperones. Here we studied the role of PCBP1/2 in rat/human mesothelial and MM cells as well as rat/human MM specimens. Normal peritoneal mesothelial cells in rats exhibited PCBP1 but not PCBP2 immunopositivity whereas primary/immortalized mesothelial cells showed PCBP1/2 immunopositivity. Rat MM specimens induced by intraperitoneal injection of chrysotile, including in situ lesion, revealed PCBP1/2 immunopositivity (90% for both) in the nucleus and cytoplasm with a tendency of higher expression in epithelioid subtype. Knockdown of PCBP2 but not PCBP1 significantly decreased both TfR1 and FTH expression in MM cells with inhibition of proliferation, indicating stagnation of intracellular iron transport. Erastin, a cysteine-deprivation type ferroptosis inducer, decreased the expression of both PCBP1/2 in MM cells. Furthermore, PCBP2 knockdown significantly increased the sensitivity of MM cells to erastin-induced ferroptosis with increased catalytic Fe(II). In conclusion, PCBP2 works for ferroptosis-resistance not only during mesothelial carcinogenesis but also in MM, which warrants further investigation as a novel therapeutic target.
Collapse
Affiliation(s)
- Lin Yue
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yaguang Luo
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
26
|
Toyokuni S, Kong Y, Zheng H, Maeda Y, Motooka Y, Akatsuka S. Iron as spirit of life to share under monopoly. J Clin Biochem Nutr 2022; 71:78-88. [PMID: 36213789 PMCID: PMC9519419 DOI: 10.3164/jcbn.22-43] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
Any independent life requires iron to survive. Whereas iron deficiency causes oxygen insufficiency, excess iron is a risk for cancer, generating a double-edged sword. Iron metabolism is strictly regulated via specific systems, including iron-responsive element (IRE)/iron regulatory proteins (IRPs) and the corresponding ubiquitin ligase FBXL5. Here we briefly reflect the history of bioiron research and describe major recent advancements. Ferroptosis, a newly coined Fe(II)-dependent regulated necrosis, is providing huge impact on science. Carcinogenesis is a process to acquire ferroptosis-resistance and ferroptosis is preferred in cancer therapy due to immunogenicity. Poly(rC)-binding proteins 1/2 (PCBP1/2) were identified as major cytosolic Fe(II) chaperone proteins. The mechanism how cells retrieve stored iron in ferritin cores was unraveled as ferritinophagy, a form of autophagy. Of note, ferroptosis may exploit ferritinophagy during the progression. Recently, we discovered that cellular ferritin secretion is through extracellular vesicles (EVs) escorted by CD63 under the regulation of IRE/IRP system. Furthermore, this process was abused in asbestos-induced mesothelial carcinogenesis. In summary, cellular iron metabolism is tightly regulated by multi-system organizations as surplus iron is shared through ferritin in EVs among neighbor and distant cells in need. However, various noxious stimuli dramatically promote cellular iron uptake/storage, which may result in ferroptosis.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
| |
Collapse
|
27
|
Alluri RK, Li Z, McCrae KR. Stress Granule-Mediated Oxidized RNA Decay in P-Body: Hypothetical Role of ADAR1, Tudor-SN, and STAU1. Front Mol Biosci 2021; 8:672988. [PMID: 34150849 PMCID: PMC8211916 DOI: 10.3389/fmolb.2021.672988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative damage to RNA. Recent studies have suggested a role for oxidized RNA in several human disorders. Under the conditions of oxidative stress, mRNAs released from polysome dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched in mRNAs, containing inverted repeat (IR) Alus in 3′ UTRs, AU-rich elements, and RNA-binding proteins. SGs and processing bodies (P-bodies) transiently interact through a docking mechanism to allow the exchange of RNA species. However, the types of RNA species exchanged, and the mechanisms and outcomes of exchange are still unknown. Specialized RNA-binding proteins, including adenosine deaminase acting on RNA (ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and SG/P-body docking are uncertain. Here, we critically review relevant literature and propose a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.
Collapse
Affiliation(s)
- Ravi Kumar Alluri
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Zhongwei Li
- Biomedical Science Department, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Keith R McCrae
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
28
|
Malfatti MC, Antoniali G, Codrich M, Tell G. Coping with RNA damage with a focus on APE1, a BER enzyme at the crossroad between DNA damage repair and RNA processing/decay. DNA Repair (Amst) 2021; 104:103133. [PMID: 34049077 DOI: 10.1016/j.dnarep.2021.103133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Interest in RNA damage as a novel threat associated with several human pathologies is rapidly increasing. Knowledge on damaged RNA recognition, repair, processing and decay is still scanty. Interestingly, in the last few years, more and more evidence put a bridge between DNA damage repair enzymes and the RNA world. The Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) was firstly identified as a crucial enzyme of the base excision repair (BER) pathway preserving genome stability toward non-distorting DNA lesion-induced damages. Later, an unsuspected role of APE1 in controlling gene expression was discovered and its pivotal involvement in several human pathologies, ranging from tumor progression to neurodegenerative diseases, has emerged. Recent novel findings indicate a role of APE1 in RNA metabolism, particularly in processing activities of damaged (abasic and oxidized) RNA and in the regulation of oncogenic microRNAs (miRNAs). Even though the role of miRNAs in human pathologies is well-known, the mechanisms underlying their quality control are still totally unexplored. A detailed knowledge of damaged RNA decay processes in human cells is crucial in order to understand the molecular processes involved in multiple pathologies. This cutting-edge perspective article will highlight these emerging aspects of damaged RNA processing and decay, focusing the attention on the involvement of APE1 in RNA world.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
29
|
Tanaka M, Chock PB. Oxidative Modifications of RNA and Its Potential Roles in Biosystem. Front Mol Biosci 2021; 8:685331. [PMID: 34055897 PMCID: PMC8149912 DOI: 10.3389/fmolb.2021.685331] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated level of oxidized RNA was detected in vulnerable neurons in Alzheimer patients. Subsequently, several diseases and pathological conditions were reported to be associated with RNA oxidation. In addition to several oxidized derivatives, cross-linking and unique strand breaks are generated by RNA oxidation. With a premise that dysfunctional RNA mediated by oxidation is the pathogenetic molecular mechanism, intensive investigations have revealed the mechanism for translation errors, including premature termination, which gives rise to aberrant polypeptides. To this end, we and others revealed that mRNA oxidation could compromise its translational activity and fidelity. Under certain conditions, oxidized RNA can also induce several signaling pathways, to mediate inflammatory response and induce apoptosis. In this review, we focus on the oxidative modification of RNA and its resulting effect on protein synthesis as well as cell signaling. In addition, we will also discuss the potential roles of enzymatic oxidative modification of RNA in mediating cellular effects.
Collapse
Affiliation(s)
- Mikiei Tanaka
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - P Boon Chock
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Xu Z, Huang J, Gao M, Guo G, Zeng S, Chen X, Wang X, Gong Z, Yan Y. Current perspectives on the clinical implications of oxidative RNA damage in aging research: challenges and opportunities. GeroScience 2021; 43:487-505. [PMID: 32529593 PMCID: PMC8110629 DOI: 10.1007/s11357-020-00209-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
Ribonucleic acid (RNA) molecules can be easily attacked by reactive oxygen species (ROS), which are produced during normal cellular metabolism and under various oxidative stress conditions. Numerous findings report that the amount of cellular 8-oxoG, the most abundant RNA damage biomarker, is a promising target for the sensitive measurement of oxidative stress and aging-associated diseases, including neuropsychiatric disorders. Most importantly, available data suggest that RNA oxidation has important implications for various signaling pathways and gene expression regulation in aging-related diseases, highlighting the necessity of using combinations of RNA oxidation adducts in both experimental studies and clinical trials. In this review, we primarily describe evidence for the effect of oxidative stress on RNA integrity modulation and possible quality control systems. Additionally, we discuss the profiles and clinical implications of RNA oxidation products that have been under intensive investigation in several aging-associated medical disorders.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Oncology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ming Gao
- Department of Oncology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guijie Guo
- Department of Oncology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
31
|
Kumar S, Mohapatra T. Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression. Front Cell Dev Biol 2021; 9:628415. [PMID: 33816473 PMCID: PMC8010680 DOI: 10.3389/fcell.2021.628415] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Gene regulation depends on dynamic and reversibly modifiable biological and chemical information in the epigenome/epitranscriptome. Accumulating evidence suggests that messenger RNAs (mRNAs) are generated in flashing bursts in the cells in a precisely regulated manner. However, the different aspects of the underlying mechanisms are not fully understood. Cellular RNAs are post-transcriptionally modified at the base level, which alters the metabolism of mRNA. The current understanding of epitranscriptome in the animal system is far ahead of that in plants. The accumulating evidence indicates that the epitranscriptomic changes play vital roles in developmental processes and stress responses. Besides being non-genetically encoded, they can be of reversible nature and involved in fine-tuning the expression of gene. However, different aspects of base modifications in mRNAs are far from adequate to assign the molecular basis/functions to the epitranscriptomic changes. Advances in the chemogenetic RNA-labeling and high-throughput next-generation sequencing techniques are enabling functional analysis of the epitranscriptomic modifications to reveal their roles in mRNA biology. Mapping of the common mRNA modifications, including N 6-methyladenosine (m6A), and 5-methylcytidine (m5C), have enabled the identification of other types of modifications, such as N 1-methyladenosine. Methylation of bases in a transcript dynamically regulates the processing, cellular export, translation, and stability of the mRNA; thereby influence the important biological and physiological processes. Here, we summarize the findings in the field of mRNA base modifications with special emphasis on m6A, m5C, and their roles in growth, development, and stress tolerance, which provide a new perspective for the regulation of gene expression through post-transcriptional modification. This review also addresses some of the scientific and technical issues in epitranscriptomic study, put forward the viewpoints to resolve the issues, and discusses the future perspectives of the research in this area.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
32
|
Yoshimura M, Honda H, Sasagasako N, Mori S, Hamasaki H, Suzuki SO, Ishii T, Ninomiya T, Kira JI, Iwaki T. PCBP2 Is Downregulated in Degenerating Neurons and Rarely Observed in TDP-43-Positive Inclusions in Sporadic Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2020; 80:220-228. [PMID: 33313661 DOI: 10.1093/jnen/nlaa148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Various heterogeneous nuclear ribonucleoproteins (hnRNPs) are deposited in pathological inclusions of amyotrophic lateral sclerosis (ALS) and related diseases, such as frontotemporal lobar degeneration (FTLD). Recently, poly (rC)-binding protein 2 (PCBP2, hnRNP-E2), a member of the hnRNP family, was reported to be colocalized with transactivation-responsive DNA-binding protein 43 kDa (TDP-43)-immunopositive inclusions in cases of FTLD-TDP. Here, we used immunohistochemical methods to investigate PCBP1 and PCBP2 expression in the spinal cords of sporadic ALS patients, with special reference to TDP-43-positive inclusions. Thirty autopsy cases of sporadic ALS were examined by immunohistochemistry using antibodies against PCBP1, PCBP2, sequestosome 1 (p62), and TDP-43. In control subjects without neurological disorders, neurons predominantly expressed PCBP2, rather than PCBP1, in their cytoplasm and nuclei. Anterior horn cells of sporadic ALS patients often had various levels of PCBP2 expression, and motor neurons with skein-like inclusions often had reduced or lost cytoplasmic and nuclear PCBP2 staining. Notably, one case with FTLD-TDP subtype B pathology had marked colocalization of TDP-43 and PCBP2 in the cytoplasmic inclusions and dystrophic neurites of the cerebral cortex, hippocampus, and spinal cord. In conclusion, PCBP2 was reduced in anterior horn cells of sporadic ALS, but its occurrence in TDP-43 inclusions was a rare phenomenon.
Collapse
Affiliation(s)
- Motoi Yoshimura
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Omuta, Japan
| | - Shinichiro Mori
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurology, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Hideomi Hamasaki
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ishii
- From the Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Biochemistry, Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health and Center for Cohort Studies, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
33
|
RNA and Oxidative Stress in Alzheimer's Disease: Focus on microRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2638130. [PMID: 33312335 PMCID: PMC7721489 DOI: 10.1155/2020/2638130] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023]
Abstract
Oxidative stress (OS) is one of the major pathomechanisms of Alzheimer's disease (AD), which is closely associated with other key events in neurodegeneration such as mitochondrial dysfunction, inflammation, metal dysregulation, and protein misfolding. Oxidized RNAs are identified in brains of AD patients at the prodromal stage. Indeed, oxidized mRNA, rRNA, and tRNA lead to retarded or aberrant protein synthesis. OS interferes with not only these translational machineries but also regulatory mechanisms of noncoding RNAs, especially microRNAs (miRNAs). MiRNAs can be oxidized, which causes misrecognizing target mRNAs. Moreover, OS affects the expression of multiple miRNAs, and conversely, miRNAs regulate many genes involved in the OS response. Intriguingly, several miRNAs embedded in upstream regulators or downstream targets of OS are involved also in neurodegenerative pathways in AD. Specifically, seven upregulated miRNAs (miR-125b, miR-146a, miR-200c, miR-26b, miR-30e, miR-34a, miR-34c) and three downregulated miRNAs (miR-107, miR-210, miR-485), all of which are associated with OS, are found in vulnerable brain regions of AD at the prodromal stage. Growing evidence suggests that altered miRNAs may serve as targets for developing diagnostic or therapeutic tools for early-stage AD. Focusing on a neuroprotective transcriptional repressor, REST, and the concept of hormesis that are relevant to the OS response may provide clues to help us understand the role of the miRNA system in cellular and organismal adaptive mechanisms to OS.
Collapse
|
34
|
Vågbø CB, Slupphaug G. RNA in DNA repair. DNA Repair (Amst) 2020; 95:102927. [DOI: 10.1016/j.dnarep.2020.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
|
35
|
Zhang X, Di C, Chen Y, Wang J, Su R, Huang G, Xu C, Chen X, Long F, Yang H, Zhang H. Multilevel regulation and molecular mechanism of poly (rC)-binding protein 1 in cancer. FASEB J 2020; 34:15647-15658. [PMID: 33058239 DOI: 10.1096/fj.202000911r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023]
Abstract
Poly (rC)-binding protein 1 (PCBP1), an RNA- or DNA-binding protein with a relative molecular weight of 38 kDa, which is characterized by downregulation in many cancer types. Numerous cases have indicated that PCBP1 could be considered as a tumor suppressor to inhibit tumorigenesis, development, and metastasis. In the current review, we described the multilevel regulatory roles of PCBP1, including gene transcription, alternative splicing, and translation of many cancer-related genes. Additionally, we also provided a brief overview about the inhibitory effect of PCBP1 on most common tumors. More importantly, we summarized the current research status about PCBP1 in hypoxic microenvironment, autophagy, apoptosis, and chemotherapy of cancer cells, aiming to clarify the molecular mechanisms of PCBP1 in cancer. Taken together, in-depth study of PCBP1 in cancer may provide new ideas for cancer therapy.
Collapse
Affiliation(s)
- Xuetian Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ruowei Su
- The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guomin Huang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Caipeng Xu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Long
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow, Soochow, China
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Ishii T, Igawa T, Hayakawa H, Fujita T, Sekiguchi M, Nakabeppu Y. PCBP1 and PCBP2 both bind heavily oxidized RNA but cause opposing outcomes, suppressing or increasing apoptosis under oxidative conditions. J Biol Chem 2020; 295:12247-12261. [PMID: 32647012 PMCID: PMC7443489 DOI: 10.1074/jbc.ra119.011870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
PCBP1, a member of the poly(C)-binding protein (PCBP) family, has the capability of binding heavily oxidized RNA and therefore participates in the cellular response to oxidative conditions, helping to induce apoptosis. There are four other members of this family, PCBP2, PCBP3, PCBP4, and hnRNPK, but it is not known whether they play similar roles. To learn more, we first tested their affinity for an RNA strand carrying two 8-oxoguanine (8-oxoG) residues at sites located in close proximity to each other, representative of a heavily oxidized strand or RNA with one 8-oxoG or none. Among them, only PCBP2 exhibited highly selective binding to RNA carrying two 8-oxoG residues similar to that observed with PCBP1. In contrast, PCBP3, PCBP4, and hnRNPK bound RNA with or without 8-oxoG modifications and exhibited slightly increased binding to the former. Mutations in conserved RNA-binding domains of PCBP2 disrupted the specific interaction with heavily oxidized RNA. We next tested PCBP2 activity in cells. Compared with WT HeLa S3 cells, PCBP2-KO cells established by gene editing exhibited increased apoptosis with increased caspase-3 activity and PARP1 cleavage under oxidative conditions, which were suppressed by the expression of WT PCBP2 but not one of the mutants lacking binding activity. In contrast, PCBP1-KO cells exhibited reduced apoptosis with much less caspase-3 activity and PARP cleavage than WT cells. Our results indicate that PCBP2 as well as PCBP1 bind heavily oxidized RNA; however, the former may counteract PCBP1 to suppress apoptosis under oxidative conditions.
Collapse
Affiliation(s)
- Takashi Ishii
- Department of Biochemistry, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Tatsuhiro Igawa
- Frontier Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Hayakawa
- Department of Biochemistry, Fukuoka Dental College, Fukuoka, Japan
| | - Tsugumi Fujita
- Department of Biochemistry, Fukuoka Dental College, Fukuoka, Japan
| | - Mutsuo Sekiguchi
- Frontier Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
37
|
Zhang W, Zhang S, Guan W, Huang Z, Kong J, Huang C, Wang H, Yang S. Poly C Binding Protein 1 Regulates p62/SQSTM1 mRNA Stability and Autophagic Degradation to Repress Tumor Progression. Front Genet 2020; 11:930. [PMID: 32922440 PMCID: PMC7457068 DOI: 10.3389/fgene.2020.00930] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence show that Poly C Binding Protein 1 (PCBP1) is deleted in distinct types of tumors as a novel tumor suppressor, but its tumor suppression mechanism remains elusive. Here, we firstly describe that downregulation of PCBP1 is significantly associated with clinical ovarian tumor progression. Mechanistically, PCBP1 overexpression affects various autophagy-related genes expression at various expression levels to attenuate the intrinsic cell autophagy, including the autophagy-initiating ULK, ATG12, ATG7 as well as the bona fide marker of autophagosome, LC3B. Accordingly, knockdown of the endogenous PCBP1 in turn enhances autophagy and less cell death. Meanwhile, PCBP1 upregulates p62/SQSTM1 via inhibition p62/SQSTM1 autophagolysome and proteasome degradation as well as its mRNA stability, consequently accompanying with the caspase 3 or 8 activation for tumor cell apoptosis. Importantly, clinical ovary cancer sample analysis consistently validates the relevance of PCBP1 expression to both p62/SQSTM1 and caspase-8 to overall survival, and indicates PCBP1 may be a master player to repress tumor initiation. Taken together, our results uncover the tumorigenic mechanism of PCBP1 depletion and suggest that inhibition of tumor cell autophagy with autophagic inhibitors could be an effective therapeutical strategy for PCBP1-deficient tumor.
Collapse
Affiliation(s)
- Wenliang Zhang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shaoyang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhicong Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianqiu Kong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunlong Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Li Z, Chen X, Liu Z, Ye W, Li L, Qian L, Ding H, Li P, Aung LHH. Recent Advances: Molecular Mechanism of RNA Oxidation and Its Role in Various Diseases. Front Mol Biosci 2020; 7:184. [PMID: 32850971 PMCID: PMC7413073 DOI: 10.3389/fmolb.2020.00184] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Compared with the research on DNA damage, there are fewer studies on RNA damage, and the damage mechanism remains mostly unknown. Recent studies have shown that RNA is more vulnerable to damage than DNA when the cells are exposed to endogenous and exogenous insults. RNA injury may participate in a variety of disease occurrence and development. RNA not only has important catalytic functions and other housekeeping functions, it also plays a decisive role in the translation of genetic information and protein biosynthesis. Various kinds of stressors, such as ultraviolet, reactive oxygen species and nitrogen, can cause damage to RNA. It may involve in the development and progression of diseases. In this review, we focused on the relationship between the RNA damage and disease as well as the research progress on the mechanism of RNA damage, which is of great significance for the pathogenesis, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Ye
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Device, Huaiyin Institute of Technology, Huaian, China
| | - Ling Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lili Qian
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hongyan Ding
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Device, Huaiyin Institute of Technology, Huaian, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Arslan J, Jamshed H, Qureshi H. Early Detection and Prevention of Alzheimer's Disease: Role of Oxidative Markers and Natural Antioxidants. Front Aging Neurosci 2020; 12:231. [PMID: 32848710 PMCID: PMC7397955 DOI: 10.3389/fnagi.2020.00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) contributes to Alzheimer’s disease (AD) pathology. OS can be a result of increased reactive oxygen/nitrogen species, reduced antioxidants, oxidatively damaged molecules, and/or a combination of these factors. Scientific literature is scarce for the markers of OS-specific for detecting AD at an early stage. The first aim of the current review is to provide an overview of the potential OS markers in the brain, cerebrospinal fluid (CSF), blood and/or urine that can be used for early diagnosis of human AD. The reason for exploring OS markers is that the proposed antioxidant therapies against AD appear to start too late to be effective. The second aim is to evaluate the evidence for natural antioxidants currently proposed to prevent or treat AD symptoms. To address these two aims, we critically evaluated the studies on humans in which various OS markers for detecting AD at an early stage were presented. Non-invasive OS markers that can detect mild cognitive impairment (MCI) and AD at an early stage in humans with greater specificity and sensitivity are primarily related to lipid peroxidation. However, a combination of OS markers, family history, and other biochemical tests are needed to detect the disease early on. We also report that the long-term use of vitamins (vitamin E as in almonds) and polyphenol-rich foods (curcumin/curcuminoids of turmeric, ginkgo biloba, epigallocatechin-3-gallate in green tea) seem justified for ameliorating AD symptoms. Future research on humans is warranted to justify the use of natural antioxidants.
Collapse
Affiliation(s)
- Jamshed Arslan
- Department of Basic Medical Sciences, Faculty of Pharmacy, Barrett Hodgson University, Karachi, Pakistan
| | - Humaira Jamshed
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| | - Humaira Qureshi
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| |
Collapse
|
40
|
Post-transcriptional air pollution oxidation to the cholesterol biosynthesis pathway promotes pulmonary stress phenotypes. Commun Biol 2020; 3:392. [PMID: 32699268 PMCID: PMC7376215 DOI: 10.1038/s42003-020-01118-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The impact of environmentally-induced chemical changes in RNA has been fairly unexplored. Air pollution induces oxidative modifications such as 8-oxo-7,8-dihydroguanine (8-oxoG) in RNAs of lung cells, which could be associated with premature lung dysfunction. We develop a method for 8-oxoG profiling using immunocapturing and RNA sequencing. We find 42 oxidized transcripts in bronchial epithelial BEAS-2B cells exposed to two air pollution mixtures that recreate urban atmospheres. We show that the FDFT1 transcript in the cholesterol biosynthesis pathway is susceptible to air pollution-induced oxidation. This process leads to decreased transcript and protein expression of FDFT1, and reduced cholesterol synthesis in cells exposed to air pollution. Knockdown of FDFT1 replicates alterations seen in air pollution exposure such as transformed cell size and suppressed cytoskeleton organization. Our results argue of a possible novel biomarker and of an unseen mechanism by which air pollution selectively modifies key metabolic-related transcripts facilitating cell phenotypes in bronchial dysfunction. Gonzales-Rivera et al. develop a method for 8-oxoG profiling using immunocapturing and RNA sequencing. They show that the FDFT1 transcript is susceptible to air pollution-induced oxidation, after identifying 42 transcripts that are differentially oxidized in bronchial epithelial BEAS-2B cells under air pollution conditions relative to clean air. FDFT1 oxidation affects cholesterol synthesis pathway, leading to phenotypes associated with several lung diseases.
Collapse
|
41
|
Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 2020; 52:400-408. [PMID: 32210357 PMCID: PMC7156397 DOI: 10.1038/s12276-020-0407-z] [Citation(s) in RCA: 347] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
Many studies have highlighted the importance of the tight regulation of mRNA stability in the control of gene expression. mRNA stability largely depends on the mRNA nucleotide sequence, which affects the secondary and tertiary structures of the mRNAs, and the accessibility of various RNA-binding proteins to the mRNAs. Recent advances in high-throughput RNA-sequencing techniques have resulted in the elucidation of the important roles played by mRNA modifications and mRNA nucleotide sequences in regulating mRNA stability. To date, hundreds of different RNA modifications have been characterized. Among them, several RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), 8-oxo-7,8-dihydroguanosine (8-oxoG), pseudouridine (Ψ), 5-methylcytidine (m5C), and N4-acetylcytidine (ac4C), have been shown to regulate mRNA stability, consequently affecting diverse cellular and biological processes. In this review, we discuss our current understanding of the molecular mechanisms underlying the regulation of mammalian mRNA stability by various RNA modifications.
Collapse
Affiliation(s)
- Sung Ho Boo
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, Republic of Korea.
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
42
|
Abstract
Alzheimer disease (AD) is a major cause of age-related dementia. We do not fully understand AD aetiology and pathogenesis, but oxidative damage is a key component. The brain mostly uses glucose for energy, but in AD and amnestic mild cognitive impairment glucose metabolism is dramatically decreased, probably owing, at least in part, to oxidative damage to enzymes involved in glycolysis, the tricarboxylic acid cycle and ATP biosynthesis. Consequently, ATP-requiring processes for cognitive function are impaired, and synaptic dysfunction and neuronal death result, with ensuing thinning of key brain areas. We summarize current research on the interplay and sequence of these processes and suggest potential pharmacological interventions to retard AD progression.
Collapse
|
43
|
Shcherbik N, Pestov DG. The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation. Cells 2019; 8:cells8111379. [PMID: 31684095 PMCID: PMC6912279 DOI: 10.3390/cells8111379] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The ribosome is a complex ribonucleoprotein-based molecular machine that orchestrates protein synthesis in the cell. Both ribosomal RNA and ribosomal proteins can be chemically modified by reactive oxygen species, which may alter the ribosome′s functions or cause a complete loss of functionality. The oxidative damage that ribosomes accumulate during their lifespan in a cell may lead to reduced or faulty translation and contribute to various pathologies. However, remarkably little is known about the biological consequences of oxidative damage to the ribosome. Here, we provide a concise summary of the known types of changes induced by reactive oxygen species in rRNA and ribosomal proteins and discuss the existing experimental evidence of how these modifications may affect ribosome dynamics and function. We emphasize the special role that redox-active transition metals, such as iron, play in ribosome homeostasis and stability. We also discuss the hypothesis that redox-mediated ribosome modifications may contribute to adaptive cellular responses to stress.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
44
|
Abstract
Similar to many other biological molecules, RNA is vulnerable to chemical insults from endogenous and exogenous sources. Noxious agents such as reactive oxygen species or alkylating chemicals have the potential to profoundly affect the chemical properties and hence the function of RNA molecules in the cell. Given the central role of RNA in many fundamental biological processes, including translation and splicing, changes to its chemical composition can have a detrimental impact on cellular fitness, with some evidence suggesting that RNA damage has roles in diseases such as neurodegenerative disorders. We are only just beginning to learn about how cells cope with RNA damage, with recent studies revealing the existence of quality-control processes that are capable of recognizing and degrading or repairing damaged RNA. Here, we begin by reviewing the most abundant types of chemical damage to RNA, including oxidation and alkylation. Focusing on mRNA damage, we then discuss how alterations to this species of RNA affect its function and how cells respond to these challenges to maintain proteostasis. Finally, we briefly discuss how chemical damage to noncoding RNAs such as rRNA, tRNA, small nuclear RNA, and small nucleolar RNA is likely to affect their function.
Collapse
Affiliation(s)
- Liewei L. Yan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Hani S. Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, To whom correspondence should be addressed:
Dept. of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Dr., St. Louis, MO 63130. Tel.:
314-935-7662; Fax:
314-935-4432; E-mail:
| |
Collapse
|
45
|
Mori S, Honda H, Ishii T, Yoshimura M, Sasagasako N, Suzuki SO, Taniwaki T, Iwaki T. Expanded polyglutamine impairs normal nuclear distribution of fused in sarcoma and poly (rC)‐binding protein 1 in Huntington's disease. Neuropathology 2019; 39:358-367. [DOI: 10.1111/neup.12600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Shinichiro Mori
- Department of NeuropathologyGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
- Department of Neurology, Division of Respirology, Neurology and Rheumatology, Department of MedicineKurume University School of Medicine Kurume Japan
| | - Hiroyuki Honda
- Department of NeuropathologyGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Takashi Ishii
- Department of BiochemistryFukuoka Dental College Fukuoka Japan
| | - Motoi Yoshimura
- Department of NeuropathologyGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Naokazu Sasagasako
- Department of NeurologyNeuro‐Muscular Center, National Omuta Hospital Omuta Japan
| | - Satoshi O. Suzuki
- Department of NeuropathologyGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| | - Takayuki Taniwaki
- Department of Neurology, Division of Respirology, Neurology and Rheumatology, Department of MedicineKurume University School of Medicine Kurume Japan
| | - Toru Iwaki
- Department of NeuropathologyGraduate School of Medical Sciences, Kyushu University Fukuoka Japan
| |
Collapse
|
46
|
Deng H, Lin L, Wang S, Yu G, Zhou Z, Liu Y, Niu G, Song J, Chen X. X-ray-Controlled Bilayer Permeability of Bionic Nanocapsules Stabilized by Nucleobase Pairing Interactions for Pulsatile Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903443. [PMID: 31379091 DOI: 10.1002/adma.201903443] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/13/2019] [Indexed: 06/10/2023]
Abstract
The targeted and sustained drug release from stimuli-responsive nanodelivery systems is limited by the irreversible and uncontrolled disruption of the currently used nanostructures. Bionic nanocapsules are designed by cross-linking polythymine and photoisomerized polyazobenzene (PETAzo) with adenine-modified ZnS (ZnS-A) nanoparticles (NPs) via nucleobase pairing. The ZnS-A NPs convert X-rays into UV radiation that isomerizes the azobenzene groups, which allows controlled diffusion of the active payloads across the bilayer membranes. In addition, the nucleobase pairing interactions between PETAzo and ZnS-A prevent drug leakage during their in vivo circulation, which not only enhances tumor accumulation but also maintains stability. These nanocapsules with tunable permeability show prolonged retention, remotely controlled drug release, enhanced targeted accumulation, and effective antitumor effects, indicating their potential as an anticancer drug delivery system.
Collapse
Affiliation(s)
- Hongzhang Deng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Sheng Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
47
|
Nazarov IB, Bakhmet EI, Tomilin AN. KH-Domain Poly(C)-Binding Proteins as Versatile Regulators of Multiple Biological Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:205-219. [PMID: 31221059 DOI: 10.1134/s0006297919030039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Five known members of the family of KH-domain poly(C)-binding proteins (Pcbp1-4, hnRNP-K) have an unusually broad spectrum of cellular functions that include regulation of gene transcription, regulation of pre-mRNA processing, splicing, mRNA stability, translational silencing and enhancement, the control of iron turnover, and many others. Mechanistically, these proteins act via nucleic acid binding and protein-protein interactions. Through performing these multiple tasks, the KH-domain poly(C)-binding family members are involved in a wide variety of biological processes such as embryonic development, cell differentiation, and cancer. Deregulation of KH-domain protein expression is frequently associated with severe developmental defects and neoplasia. This review summarizes progress in studies of the KH-domain proteins made over past two decades. The review also reports our recent finding implying an involvement of the KH-factor Pcbp1 into control of transition from naïve to primed pluripotency cell state.
Collapse
Affiliation(s)
- I B Nazarov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - E I Bakhmet
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
48
|
Ishii T, Sekiguchi M. Two ways of escaping from oxidative RNA damage: Selective degradation and cell death. DNA Repair (Amst) 2019; 81:102666. [PMID: 31326364 DOI: 10.1016/j.dnarep.2019.102666] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) are produced during normal cellular metabolism, and various oxidized compounds are formed by the ROS attack. Among oxidized bases, 8-oxo-7,8-dihydroguanine (8-oxoG) is most abundant and seems important with respect to the maintenance and transfer of genetic information. The accumulation of 8-oxoG in messenger RNA may cause errors during codon-anticodon pairing in the translation process, which may result in the synthesis of abnormal proteins. Organisms that use oxygen as the source of energy production must therefore have some mechanisms to eliminate the deleterious effects of RNA oxidation. Recently, we found two protein factors, AUF1 and PCBP1, which each have a different binding capacity to oxidized RNA. Evidence demonstrated that AUF1 is involved in the specific degradation of oxidized RNA, and that PCBP1 has a function of inducing cell death to eliminate severely damaged RNA.
Collapse
Affiliation(s)
- Takashi Ishii
- Department of Biochemistry, Fukuoka Dental College, Fukuoka 814-0193, Japan.
| | - Mutsuo Sekiguchi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
49
|
Meng N, Gong Y, Mu X, Wang YH, Su L, Jiang CS, Zhang H. Novel Role of Heterogeneous Nuclear Ribonucleoprotein E1 in Regulation of Apoptosis and Autophagy by a Triazole Derivative in Vascular Endothelial Cells. Int J Biol Sci 2019; 15:1299-1309. [PMID: 31223288 PMCID: PMC6567801 DOI: 10.7150/ijbs.32677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/04/2019] [Indexed: 11/08/2022] Open
Abstract
Vascular endothelial cell (VEC) apoptosis and autophagy play an important role in the maintenance of vascular homeostasis. However, the association of molecular mechanisms between vascular endothelial cell apoptosis and autophagy has not been clarified. Here, we identified a novel triazole derivative, JL014, which could inhibit human umbilical vein vascular endothelial cell (HUVEC) apoptosis induced by deprivation of serum and fibroblast growth factor 2 and maintain HUVEC survival by promoting autophagy. Importantly, JL014 increased the mRNA and protein level of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) in HUVECs. In addition, knockdown of hnRNP E1 by RNA interference inhibited the effects of JL014 on VEC apoptosis and autophagy. Furthermore, we investigated the effect of JL014 on the expression of HMBOX1, a key VEC apoptosis inhibitor and autophagy inducer by inhibiting mTOR signaling and the level of cleaved caspase-3. Our results demonstrated that JL014 enhanced mRNA transcription and increased protein synthesis of HMBOX1. JL014 also inhibited mTOR signaling and the cleaved caspase-3 level. Mechanistic studies revealed that hnRNP E1 could bind to the promoter and 5'UTR of HMBOX1 and active HMBOX1 expression. Therefore, our results firmly establish hnRNP E1 as a new regulator of VEC apoptosis and autophagy through mediating HMBOX1 expression, and opened the door to a novel therapeutic drug for related vascular diseases.
Collapse
Affiliation(s)
- Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yan Gong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xin Mu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yan Hong Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Cheng Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|