1
|
Diamant ES, Oswald KN, Awoyemi AG, Gaston KJ, MacGregor-Fors I, Berger-Tal O, Roll U. The importance of biome in shaping urban biodiversity. Trends Ecol Evol 2025:S0169-5347(25)00086-2. [PMID: 40254468 DOI: 10.1016/j.tree.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Humanity is urbanizing, with vast implications on natural systems. To date, most research on urban biodiversity has centered on temperate biomes. Conversely, drylands, collectively the largest terrestrial global biome, remain understudied. Here, we synthesize key mechanistic differences of urbanization's impacts on biodiversity across these biomes. Irrigation shapes dryland urban ecology, and can lead to greener, sometimes more biodiverse, landscapes than local wildlands. These green urban patches in drylands often have a different species composition, including many non-native and human-commensal species. Socioeconomic factors - locally and globally - can mediate how biomes shape urban biodiversity patterns through the effects of irrigation, greening, and invasive species. We advocate for more research in low-income dryland cities, and for implementing biome-specific, scientifically grounded management and policies.
Collapse
Affiliation(s)
- Eleanor S Diamant
- Jacob Blaustein Center for Scientific Cooperation, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| | - Krista N Oswald
- Jacob Blaustein Center for Scientific Cooperation, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Adewale G Awoyemi
- Department of Zoology, Faculty of Sciences, University of Granada, Granada, Spain; Forest Center, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Ian MacGregor-Fors
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti 00014, Finland
| | - Oded Berger-Tal
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Uri Roll
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
2
|
Straka TM, Radchuk V, Kowarik I, von der Lippe M, Buchholz S. Urbanization Impacts Top Predators and Alters Biotic Interactions in Predator-Prey-Mutualistic Communities of Urban Dry Grasslands. Ecol Evol 2025; 15:e70791. [PMID: 39803209 PMCID: PMC11724209 DOI: 10.1002/ece3.70791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Urbanization as a major driver of global change modifies biodiversity patterns and the abundance and interactions among species or functional species groups. For example, urbanization can negatively impact both predator-prey and mutualistic relationships. However, empirical studies on how urbanization modifies biotic, particularly multitrophic, interactions are still limited. In this study, we applied a framework focused on a predator-prey-mutualistic relationship involving communities of insect-pollinated vascular plants, pollinators (bees and hoverflies), predatory spiders, and sand lizards as top predators to test (i) the effect of urbanization on abundance and species richness at different trophic levels and (ii) the effect of urbanization on the regulation of biotic interactions using correlations between species abundances as a proxy. By assessing 56 dry grassland patches in Berlin, Germany, we found that higher trophic levels (sand lizard abundance as well as predatory spider species richness and abundance) were significantly impacted by urbanization whereas pollinators were affected to a lesser degree (only abundance, but not species richness). In contrast, insect-pollinated vascular plants were not impacted by urbanization. Path analyses revealed significant relationships in low-urbanized areas. In these areas, we observed significant bottom-up-regulated mutualistic and predator-prey interactions (plants-pollinators, and pollinators-predatory spiders), as well as top-down-regulated predator-prey interactions (sand lizards-pollinators, and predatory spiders-pollinators). In contrast, no significant interactions were found in highly urbanized sites. Our results suggest that bottom-up regulation is stronger than top-down regulation in low-urbanized areas. To our knowledge, this is the first study to examine the effects of urbanization on predator-prey-mutualistic interactions and to determine whether these interactions are regulated by bottom-up or top-down processes. These findings enhance our understanding of multitrophic interactions in urban environments and their associated ecosystem services, such as pollination, thereby supporting efforts in urban biodiversity conservation.
Collapse
Affiliation(s)
- Tanja M. Straka
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Freie Universität Berlin, Institute of BiologyBerlinGermany
| | - Viktoriia Radchuk
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Ingo Kowarik
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Moritz von der Lippe
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Sascha Buchholz
- Department of EcologyTechnische Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- University of Münster, Institute of Landscape EcologyMünsterGermany
| |
Collapse
|
3
|
Petrenko JA, Martin PR, Fanelli RE, Bonier F. Urban tolerance does not protect against population decline in North American birds. Biol Lett 2024; 20:20230507. [PMID: 38290550 PMCID: PMC10827415 DOI: 10.1098/rsbl.2023.0507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Population declines of organisms are widespread and severe, but some species' populations have remained stable, or even increased. The reasons some species are less vulnerable to population decline than others are not well understood. Species that tolerate urban environments often have a broader environmental tolerance, which, along with their ability to tolerate one of the most human-modified habitats (i.e. cities), might allow them to persist in the face of diverse anthropogenic challenges. Here, we examined the relationship between urban tolerance and annual population trajectories for 397 North American bird species. Surprisingly, we found that urban tolerance was unrelated to species' population trajectories. The lack of a relationship between urban tolerance and population trajectories may reflect other factors driving population declines independent of urban tolerance, challenges that are amplified in cities (e.g. climate warming, disease), and other human impacts (e.g. conservation efforts, broad-scale land-use changes) that have benefitted some urban-avoidant species. Overall, our results illustrate that urban tolerance does not protect species against population decline.
Collapse
Affiliation(s)
| | - Paul R. Martin
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Rachel E. Fanelli
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Frances Bonier
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
4
|
Patterson CW, Drury JP. Interspecific behavioural interference and range dynamics: current insights and future directions. Biol Rev Camb Philos Soc 2023; 98:2012-2027. [PMID: 37364865 DOI: 10.1111/brv.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Novel biotic interactions in shifting communities play a key role in determining the ability of species' ranges to track suitable habitat. To date, the impact of biotic interactions on range dynamics have predominantly been studied in the context of interactions between different trophic levels or, to a lesser extent, exploitative competition between species of the same trophic level. Yet, both theory and a growing number of empirical studies show that interspecific behavioural interference, such as interspecific territorial and mating interactions, can slow down range expansions, preclude coexistence, or drive local extinction, even in the absence of resource competition. We conducted a systematic review of the current empirical research into the consequences of interspecific behavioural interference on range dynamics. Our findings demonstrate there is abundant evidence that behavioural interference by one species can impact the spatial distribution of another. Furthermore, we identify several gaps where more empirical work is needed to test predictions from theory robustly. Finally, we outline several avenues for future research, providing suggestions for how interspecific behavioural interference could be incorporated into existing scientific frameworks for understanding how biotic interactions influence range expansions, such as species distribution models, to build a stronger understanding of the potential consequences of behavioural interference on the outcome of future range dynamics.
Collapse
Affiliation(s)
| | - Jonathan P Drury
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| |
Collapse
|
5
|
Keith SA, Drury JP, McGill BJ, Grether GF. Macrobehaviour: behavioural variation across space, time, and taxa. Trends Ecol Evol 2023; 38:1177-1188. [PMID: 37661519 DOI: 10.1016/j.tree.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
We explore how integrating behavioural ecology and macroecology can provide fundamental new insight into both fields, with particular relevance for understanding ecological responses to rapid environmental change. We outline the field of macrobehaviour, which aims to unite these disciplines explicitly, and highlight examples of research in this space. Macrobehaviour can be envisaged as a spectrum, where behavioural ecologists and macroecologists use new data and borrow tools and approaches from one another. At the heart of this spectrum, interdisciplinary research considers how selection in the context of large-scale factors can lead to systematic patterns in behavioural variation across space, time, and taxa, and in turn, influence macroecological patterns and processes. Macrobehaviour has the potential to enhance forecasts of future biodiversity change.
Collapse
Affiliation(s)
- Sally A Keith
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Jonathan P Drury
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME 04469, USA
| | - Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Kenyon HL, Martin PR. Color as an Interspecific Badge of Status: A Comparative Test. Am Nat 2023; 202:433-447. [PMID: 37792917 DOI: 10.1086/725916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractAnimals as diverse as cephalopods, insects, fish, and mammals signal social dominance to conspecifics to avoid costly fights. Even though between-species fights may be equally costly, the extent to which dominance signals are used between species is unknown. Here, we test the hypothesis that differences in color are associated with dominance between closely related species that aggressively interact over resources, examining between-species variation in colors that are used in within-species badges of status (black, white, and carotenoid coloration) in a comparative analysis of diverse species of birds. We found that dominant species have more black, on average, than subordinate species, particularly in regions important for aggressive signaling (face, throat, and bill). Furthermore, dominant species were more likely to have more black in comparisons in which the dominant species was similar in size or smaller than the subordinate, suggesting that black may be a more important signal when other signals of dominance (size) are missing. Carotenoid colors (i.e., red, pink, orange, and yellow) were not generally associated with dominance but may signal dominance in some taxonomic groups. White may have opposing functions: white was associated with dominance in species in which black was also associated with dominance but was associated with subordinance in species in which carotenoid-based dominance signals may be used. Overall, these results provide new evidence that colors may function broadly as signals of dominance among competing species. Such signals could help to mediate aggressive interactions among species, thereby reducing some costs of co-occurrence and facilitating coexistence in nature.
Collapse
|
7
|
Martin PR, Ghalambor CK. A Case for the "Competitive Exclusion-Tolerance Rule" as a General Cause of Species Turnover along Environmental Gradients. Am Nat 2023; 202:1-17. [PMID: 37384767 DOI: 10.1086/724683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractClosely related, ecologically similar species often segregate their distributions along environmental gradients of time, space, and resources, but previous research suggests diverse underlying causes. Here, we review reciprocal removal studies in nature that experimentally test the role of interactions among species in determining their turnover along environmental gradients. We find consistent evidence for asymmetric exclusion coupled with differences in environmental tolerance causing the segregation of species pairs, where a dominant species excludes a subordinate from benign regions of the gradient but is unable to tolerate challenging regions to which the subordinate species is adapted. Subordinate species were consistently smaller and performed better in regions of the gradient typically occupied by the dominant species compared with their native distribution. These results extend previous ideas contrasting competitive ability with adaptation to abiotic stress to include a broader diversity of species interactions (intraguild predation, reproductive interference) and environmental gradients, including gradients of biotic challenge. Collectively, these findings suggest that adaptation to environmental challenge compromises performance in antagonistic interactions with ecologically similar species. The consistency of this pattern across diverse organisms, environments, and biomes suggests generalizable processes structuring the segregation of ecologically similar species along disparate environmental gradients, a phenomenon that we propose should be named the competitive exclusion-tolerance rule.
Collapse
|
8
|
Chen S, Liu Y, Patrick SC, Goodale E, Safran RJ, Pagani‐Núñez E. A multidimensional framework to quantify the effects of urbanization on avian breeding fitness. Ecol Evol 2023; 13:e10259. [PMID: 37404704 PMCID: PMC10316489 DOI: 10.1002/ece3.10259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Urbanization has dramatically altered Earth's landscapes and changed a multitude of environmental factors. This has resulted in intense land-use change, and adverse consequences such as the urban heat island effect (UHI), noise pollution, and artificial light at night (ALAN). However, there is a lack of research on the combined effects of these environmental factors on life-history traits and fitness, and on how these interactions shape food resources and drive patterns of species persistence. Here, we systematically reviewed the literature and created a comprehensive framework of the mechanistic pathways by which urbanization affects fitness and thus favors certain species. We found that urbanization-induced changes in urban vegetation, habitat quality, spring temperature, resource availability, acoustic environment, nighttime light, and species behaviors (e.g., laying, foraging, and communicating) influence breeding choices, optimal time windows that reduce phenological mismatch, and breeding success. Insectivorous and omnivorous species that are especially sensitive to temperature often experience advanced laying behaviors and smaller clutch sizes in urban areas. By contrast, some granivorous and omnivorous species experience little difference in clutch size and number of fledglings because urban areas make it easier to access anthropogenic food resources and to avoid predation. Furthermore, the interactive effect of land-use change and UHI on species could be synergistic in locations where habitat loss and fragmentation are greatest and when extreme-hot weather events take place in urban areas. However, in some instances, UHI may mitigate the impact of land-use changes at local scales and provide suitable breeding conditions by shifting the environment to be more favorable for species' thermal limits and by extending the time window in which food resources are available in urban areas. As a result, we determined five broad directions for further research to highlight that urbanization provides a great opportunity to study environmental filtering processes and population dynamics.
Collapse
Affiliation(s)
- Sihao Chen
- Department of Health and Environmental SciencesXi'an Jiaotong‐Liverpool UniversitySuzhouChina
- Department of Earth, Ocean and Ecological Sciences, School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Yu Liu
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Samantha C. Patrick
- Department of Earth, Ocean and Ecological Sciences, School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Eben Goodale
- Department of Health and Environmental SciencesXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| | - Rebecca J. Safran
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | - Emilio Pagani‐Núñez
- Department of Health and Environmental SciencesXi'an Jiaotong‐Liverpool UniversitySuzhouChina
- School of Applied SciencesEdinburgh Napier UniversityEdinburghUK
- Centre for Conservation and Restoration ScienceEdinburgh Napier UniversityEdinburghUK
| |
Collapse
|
9
|
Liu Y, Jiang Y, Xu J, Liao W. Evolution of Avian Eye Size Is Associated with Habitat Openness, Food Type and Brain Size. Animals (Basel) 2023; 13:ani13101675. [PMID: 37238105 DOI: 10.3390/ani13101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The eye is the primary sensory organ that obtains information from the ecological environments and specifically bridges the brain with the extra environment. However, the coevolutionary relationships between eye size and ecological factors, behaviours and brain size in birds remain poorly understood. Here, we investigate whether eye size evolution is associated with ecological factors (e.g., habitat openness, food type and foraging habitat), behaviours (e.g., migration and activity pattern) and brain size among 1274 avian species using phylogenetically controlled comparative analyses. Our results indicate that avian eye size is significantly associated with habitat openness, food type and brain size. Species living in dense habitats and consuming animals exhibit larger eye sizes compared to species living in open habitats and consuming plants, respectively. Large-brained birds tend to possess larger eyes. However, migration, foraging habitat and activity pattern were not found to be significantly associated with eye size in birds, except for nocturnal birds having longer axial lengths than diurnal ones. Collectively, our results suggest that avian eye size is primarily influenced by light availability, food need and cognitive ability.
Collapse
Affiliation(s)
- Yating Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ying Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jiliang Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| |
Collapse
|
10
|
Bonier F. Future directions in urban endocrinology - The effects of endocrine plasticity on urban tolerance. Mol Cell Endocrinol 2023; 565:111886. [PMID: 36775244 DOI: 10.1016/j.mce.2023.111886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
After twenty years of studies of endocrine traits in animals living in cities, the field of urban endocrinology has built a robust literature including numerous studies looking for signatures of the effects of urban living, usually in mean circulating hormone concentrations. The findings of this past research have primarily demonstrated the absence of any generalizable endocrine responses to city life. In this opinion paper, I suggest that a strong route forward would include investigations of the role of variation in endocrine plasticity in determining the degree to which organisms tolerate urban challenges (i.e., urban tolerance). Achieving this research aim will require creative experimental and comparative studies, consideration of alternative study systems, and teasing apart of sources of variation in plastic phenotypes (plasticity, sorting, and contemporary evolution). Insight into the role of endocrine plasticity in influencing urban tolerance could help us better understand and predict impacts of expanding urbanization on biodiversity across the globe.
Collapse
Affiliation(s)
- Frances Bonier
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
11
|
Neate-Clegg MHC, Tonelli BA, Youngflesh C, Wu JX, Montgomery GA, Şekercioğlu ÇH, Tingley MW. Traits shaping urban tolerance in birds differ around the world. Curr Biol 2023; 33:1677-1688.e6. [PMID: 37023752 DOI: 10.1016/j.cub.2023.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/24/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023]
Abstract
As human density increases, biodiversity must increasingly co-exist with urbanization or face local extinction. Tolerance of urban areas has been linked to numerous functional traits, yet few globally consistent patterns have emerged to explain variation in urban tolerance, which stymies attempts at a generalizable predictive framework. Here, we calculate an Urban Association Index (UAI) for 3,768 bird species in 137 cities across all permanently inhabited continents. We then assess how this UAI varies as a function of ten species-specific traits and further test whether the strength of trait relationships vary as a function of three city-specific variables. Of the ten species traits, nine were significantly associated with urban tolerance. Urban-associated species tend to be smaller, less territorial, have greater dispersal ability, broader dietary and habitat niches, larger clutch sizes, greater longevity, and lower elevational limits. Only bill shape showed no global association with urban tolerance. Additionally, the strength of several trait relationships varied across cities as a function of latitude and/or human population density. For example, the associations of body mass and diet breadth were more pronounced at higher latitudes, while the associations of territoriality and longevity were reduced in cities with higher population density. Thus, the importance of trait filters in birds varies predictably across cities, indicating biogeographic variation in selection for urban tolerance that could explain prior challenges in the search for global patterns. A globally informed framework that predicts urban tolerance will be integral to conservation as increasing proportions of the world's biodiversity are impacted by urbanization.
Collapse
Affiliation(s)
- Montague H C Neate-Clegg
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Benjamin A Tonelli
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Casey Youngflesh
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - Joanna X Wu
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Graham A Montgomery
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Çağan H Şekercioğlu
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Biology and Genetics, Koç University, Sarıyer, 34450 İstanbul, Türkiye
| | - Morgan W Tingley
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Li Y, Hopkins AJM, Davis RA. Going, Going, Gone The Diminishing Capacity of Museum Specimen Collections to Address Global Change Research: A Case Study on Urban Reptiles. Animals (Basel) 2023; 13:ani13061078. [PMID: 36978619 PMCID: PMC10044672 DOI: 10.3390/ani13061078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
It has been increasingly popular to use natural history specimens to examine environmental changes. As the current functionality of museum specimens has extended beyond their traditional taxonomic role, there has been a renewed focus on the completeness of biological collections to provide data for current and future research. We used the collections of the Western Australian Museum to answer questions about the change in occurrence of five common reptile species due to the rapid urbanization of Perth. We recorded a significant decline in collection effort from the year 2000 onwards (F = 7.65, p < 0.01) compared to the period 1990–1999. Spatial analysis revealed that only 0.5% of our study region was well sampled, 8.5% were moderately sampled and the majority of the regions (91%) were poorly sampled. By analysing the trend of specimen acquisition from 1950 to 2010, we discovered a significant inconsistency in specimen sampling effort for 13 common reptile species across time and space. A large proportion of past specimens lacked information including the place and time of collection. An increase in investment to museums and an increase in geographically and temporally systematic collecting is advocated to ensure that collections can answer questions about environmental change.
Collapse
Affiliation(s)
- Yanlin Li
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Anna J. M. Hopkins
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Robert A. Davis
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
- Department of Terrestrial Zoology, Western Australia Museum, 49 Kew St, Welshpool, WA 6106, Australia
- Correspondence:
| |
Collapse
|
13
|
Casanelles‐Abella J, Fontana S, Fournier B, Frey D, Moretti M. Low resource availability drives feeding niche partitioning between wild bees and honeybees in a European city. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2727. [PMID: 36054537 PMCID: PMC10077915 DOI: 10.1002/eap.2727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Cities are socioecological systems that filter and select species, therefore establishing unique species assemblages and biotic interactions. Urban ecosystems can host richer wild bee communities than highly intensified agricultural areas, specifically in resource-rich urban green spaces such as allotments and family gardens. At the same time, urban beekeeping has boomed in many European cities, raising concerns that the fast addition of a large number of managed bees could deplete the existing floral resources, triggering competition between wild bees and honeybees. Here, we studied the interplay between resource availability and the number of honeybees at local and landscape scales and how this relationship influences wild bee diversity. We collected wild bees and honeybees in a pollination experiment using four standardized plant species with distinct floral morphologies. We performed the experiment in 23 urban gardens in the city of Zurich (Switzerland), distributed along gradients of urban and local management intensity, and measured functional traits related to resource use. At each site, we quantified the feeding niche partitioning (calculated as the average distance in the multidimensional trait space) between the wild bee community and the honeybee population. Using multilevel structural equation models (SEM), we tested direct and indirect effects of resource availability, urban beekeeping, and wild bees on the community feeding niche partitioning. We found an increase in feeding niche partitioning with increasing wild bee species richness. Moreover, feeding niche partitioning tended to increase in experimental sites with lower resource availability at the landscape scale, which had lower abundances of honeybees. However, beekeeping intensity at the local and landscape scales did not directly influence community feeding niche partitioning or wild bee species richness. In addition, wild bee species richness was positively influenced by local resource availability, whereas local honeybee abundance was positively affected by landscape resource availability. Overall, these results suggest that direct competition for resources was not a main driver of the wild bee community. Due to the key role of resource availability in maintaining a diverse bee community, our study encourages cities to monitor floral resources to better manage urban beekeeping and help support urban pollinators.
Collapse
Affiliation(s)
- Joan Casanelles‐Abella
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Institute of Terrestrial Ecosystems, ETH ZurichZurichSwitzerland
| | - Simone Fontana
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Nature Conservation and Landscape EcologyUniversity of FreiburgFreiburgGermany
| | - Bertrand Fournier
- Institute of Environmental Sciences and Geography, University of PotsdamPotsdamGermany
| | - David Frey
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Marco Moretti
- Biodiversity and Conservation BiologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
14
|
Sinclair ECC, Martin PR, Bonier F. Among-species variation in hormone concentrations is associated with urban tolerance in birds. Proc Biol Sci 2022; 289:20221600. [PMID: 36448281 PMCID: PMC9709560 DOI: 10.1098/rspb.2022.1600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
As cities expand across the globe, understanding factors that underlie variation in urban tolerance is vital for predicting changes in patterns of biodiversity. Endocrine traits, like circulating hormone concentrations and regulation of endocrine responses, might contribute to variation in species' ability to cope with urban challenges. For example, variation in glucocorticoid and androgen concentrations has been linked to life-history and behavioural traits that are associated with urban tolerance. However, we lack an understanding of the degree to which evolved differences in endocrine traits predict variation in urban tolerance across species. We analysed 1391 estimates of circulating baseline corticosterone, stress-induced corticosterone, and testosterone concentrations paired with citizen-science-derived urban occurrence scores in a broad comparative analysis of endocrine phenotypes across 71 bird species that differ in their occurrence in urban habitats. Our results reveal context-dependent links between baseline corticosterone and urban tolerance, as well as testosterone and urban tolerance. Stress-induced corticosterone was not related to urban tolerance. These findings suggest that some endocrine phenotypes contribute to a species' tolerance of urban habitats, but also indicate that other aspects of the endocrine phenotype, such as the ability to appropriately attenuate responses to urban challenges, might be important for success in cities.
Collapse
Affiliation(s)
- Emma C. C. Sinclair
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Paul R. Martin
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Frances Bonier
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
15
|
Guindre-Parker S, Kilgour DAV, Linkous CR. The development of behavioral and endocrine coping styles in nestlings from urban and rural sites. Gen Comp Endocrinol 2022; 327:114091. [PMID: 35764176 DOI: 10.1016/j.ygcen.2022.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
Urbanization is increasing globally and altering the stressors that animals face in their everyday lives. Organisms often differ in their coping styles-both behavioral and endocrine-across urban to rural habitats. For example, urban animals are often bolder, more exploratory, and mount stronger glucocorticoid stress responses compared to their rural counterparts. While these coping styles are important in shaping fitness across the urban-to-rural gradient, it remains unclear when these differences arise in the life of organisms. We explore the development of coping styles in European starling nestlings (Sturnus vulgaris), an urban-adapted species. We test whether breathing rate, handling struggle rate, and bag struggle rate differ across sites and find no difference in the behavioral coping styles of nestlings raised in urban versus rural sites. We also explore differences in baseline and stress-induced glucocorticoids, finding that urban nestlings develop a stronger stress response than rural birds before fledging the nest. We find no significant correlations between behavioral and endocrine traits for urban or rural birds, which supports the two-tiered model of coping styles. One possibility is that behavioral and endocrine differences develop at different times over the lives of organisms. Our findings support prior work suggesting that behavioral and endocrine coping mechanisms act independently of one another, and suggests that endocrine coping mechanisms develop in early life and before differences in behavioral coping styles might arise. Future work on the mechanisms leading to early-life differences in coping styles-from genetics to maternal effects to environmental effects-is needed to best predict how urban-adapted organisms cope with environmental change. Studies across a greater number of sites will help disentangle site from urbanization effects.
Collapse
Affiliation(s)
- Sarah Guindre-Parker
- Department of Ecology, Evolution, & Organismal Biology, Kennesaw State University, Kennesaw, GA, United States.
| | - Denyelle A V Kilgour
- Department of Ecology, Evolution, & Organismal Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Courtney R Linkous
- Department of Ecology, Evolution, & Organismal Biology, Kennesaw State University, Kennesaw, GA, United States
| |
Collapse
|
16
|
Fröhlich A, Hawryło P, Ciach M. Urbanization filters woodpecker assemblages: Habitat specialization limits population abundance of dead wood dependent organisms in the urban landscape. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
17
|
Chen Y, Li L, Zhu X, Shen Y, Ma A, Zhang X, Chen P, Lu C. Urban Low-Rise Residential Areas Provide Preferred Song Post Sites for a Resident Songbird. Animals (Basel) 2022; 12:ani12182436. [PMID: 36139294 PMCID: PMC9494978 DOI: 10.3390/ani12182436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Urbanization is expanding rapidly worldwide, and brings additional selection pressure on animals. The song differences between urban and rural songbirds have been widely verified, but the effects of urban morphological variation on long-settled urban birds have been poorly explored. Here, we investigated the distribution and song differences of a common resident songbird—the oriental magpie-robin (Copsychus saularis) between three urban morphology types (i.e., urban park, low-rise residential area, and high-rise residential area). The results indicated that the population density in low-rise residential areas was significantly higher than in urban parks, while it was the lowest in high-rise residential areas. Males in low-rise residential areas had greater song length, syllable numbers, frequency bandwidth, and song diversity than those in urban parks. The song differences were mainly related to habitat types, independent of singing height and perch type. Our findings suggest that low-rise residential areas may provide preferred song post sites for the oriental magpie-robin, which is well-adapted to the low-rise building morphology, but rejects the emerging high-rise buildings. Future studies are needed to assess the effects of urban morphological variation on more resident animals to determine which urban morphologies are conducive to enhancing biodiversity and encouraging animals to settle in urban areas.
Collapse
Affiliation(s)
- Yanhong Chen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Lijing Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Xiaotian Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Yicheng Shen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Anran Ma
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xinyu Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Pan Chen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Correspondence: (P.C.); (C.L.)
| | - Changhu Lu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (P.C.); (C.L.)
| |
Collapse
|
18
|
Turak N, Monnier‐Corbel A, Gouret M, Frantz A. Urbanization shapes the relation between density and melanin‐based colouration in bird communities. OIKOS 2022. [DOI: 10.1111/oik.09313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Neyla Turak
- Sorbonne Univ., Univ. Paris‐Est Créteil, CNRS, INRA, IRD, Inst. of Ecology and Environmental Sciences – Paris Paris France
| | - Alice Monnier‐Corbel
- Sorbonne Univ., Univ. Paris‐Est Créteil, CNRS, INRA, IRD, Inst. of Ecology and Environmental Sciences – Paris Paris France
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Univ. Paris France
- Emirates Center for Wildlife Propagation Missour Morocco
| | - Mélanie Gouret
- Sorbonne Univ., Univ. Paris‐Est Créteil, CNRS, INRA, IRD, Inst. of Ecology and Environmental Sciences – Paris Paris France
| | - Adrien Frantz
- Sorbonne Univ., Univ. Paris‐Est Créteil, CNRS, INRA, IRD, Inst. of Ecology and Environmental Sciences – Paris Paris France
| |
Collapse
|
19
|
Miles LS, Murray‐Stoker D, Nhan VJ, Johnson MTJ. Effects of urbanization on specialist insect communities of milkweed are mediated by spatial and temporal variation. Ecosphere 2022. [DOI: 10.1002/ecs2.4222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Lindsay S. Miles
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
| | - David Murray‐Stoker
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Vanessa J. Nhan
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
| | - Marc T. J. Johnson
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
20
|
Thaweepworadej P, Evans KL. Avian species richness and tropical urbanization gradients: Effects of woodland retention and human disturbance. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2586. [PMID: 35333421 PMCID: PMC9541691 DOI: 10.1002/eap.2586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/10/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Urbanization is a major driver of tropical biodiversity loss. In temperate regions avian species richness-urbanization intensity relationships typically exhibit unimodal patterns, with peak richness at intermediate urbanization levels. In tropical regions, the form of such relationships and the extent to which they are moderated by patches of seminatural habitat are unclear. We address these questions in Bangkok, Thailand (one of the largest and most rapidly expanding tropical mega-cities) and generate conservation recommendations for tropical biodiversity in urban locations. We use repeated point count surveys at a random location, and the largest available woodland patch, in 150 1 km × 1 km grid cells selected along the urbanization gradient. Woodland patches support higher species richness compared with randomized locations (except for non-natives), and avian species richness declines linearly with increasing urbanization. The contrast with unimodal patterns in temperate regions is probably driven by divergent patterns of habitat heterogeneity along tropical and temperate urbanization gradients. Moreover, we provide novel evidence that retaining patches of urban woodland moderates adverse impacts of urbanization on avian species richness. For most species groups, the benefits of woodland increase as urbanization intensifies, despite such woodland patches being very small (mean of 0.38 ha). Avian species richness in woodland patches is maximized, and community composition less similar to that in randomized locations, when woodland patches are larger and visited by fewer people. Assemblages of forest-dependent species (which provide additional ecological functions) have higher richness, and are less similar to those in randomized locations, in patches of woodland with higher tree species richness and biomass. Finally, species richness in randomized sites is greatest when they are closer to woodland patches, and such assemblages more closely resemble those of woodland sites. Our work highlights four strategies for tropical urban bird conservation: (1) conserving woodland patches across the urbanization gradient regardless of patch size, (2) improving the quality of existing woodland by increasing tree biomass and diversity, (3) creating additional woodland that is well distributed throughout the urban area to minimize effects of habitat isolation and (4) reducing human disturbance, especially in areas of the highest habitat quality, while ensuring that the benefits of connecting people to nature are realized in other locations.
Collapse
Affiliation(s)
| | - Karl L. Evans
- School of Biosciences, The University of SheffieldSheffieldUK
| |
Collapse
|
21
|
Qu J, Bonte D, Vandegehuchte ML. Phenotypic and genotypic divergence of plant‐herbivore interactions along an urbanization gradient. Evol Appl 2022; 15:865-877. [PMID: 35603025 PMCID: PMC9108311 DOI: 10.1111/eva.13376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Urban environments provide challenging conditions for species survival, including increased temperatures, drought and pollution. Species can deal with these conditions through evolution across generations or the immediate expression of phenotypic plasticity. The resulting phenotypic changes are key to the performance of species and their interactions with other species in the community. We here document patterns of herbivory in Arabidopsis thaliana along a rural–urban gradient, and tested the genetic background and ecological consequences of traits related to herbivore resistance. Aphid densities increased with urbanization levels along the gradient while plant size did not change. Offspring of urban mothers, raised under common garden conditions, were larger and had a decreased trichome density and seed set but a higher caterpillar (Pieris brassicae) tolerance. In contrast, no urban evolution was detected for defences against aphids (Myzus persicae). Aphids reduced seed set more strongly in urban offspring, but this effect disappeared in second‐generation plants. In general, urban adaptations as expressed in size and caterpillar tolerance were found, but these adaptations were associated with smaller inflorescences. The maternal effect on the response of seed set to aphid feeding demonstrates the relevance of intergenerational plasticity as a direct ecological consequence of herbivory. Our study demonstrates that the urban environment interacts with the plant's genotype and the extended phenotype as determined by ecological interactions.
Collapse
Affiliation(s)
- Jiao Qu
- Lushan Botanical Garden Chinese Academy of Sciences Jiujiang 332900 Jiangxi China
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
- Department of Biology Norwegian University of Science and Technology Høgskoleringen 5 7491 Trondheim Norway
| |
Collapse
|
22
|
Alberti M, Wang T. Detecting patterns of vertebrate biodiversity across the multidimensional urban landscape. Ecol Lett 2022; 25:1027-1045. [PMID: 35113498 DOI: 10.1111/ele.13969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Explicit characterisation of the complexity of urban landscapes is critical for understanding patterns of biodiversity and for detecting the underlying social and ecological processes that shape them. Urban environments exhibit variable heterogeneity and connectivity, influenced by different historical contingencies, that affect community assembly across scales. The multidimensional nature of urban disturbance and co-occurrence of multiple stressors can cause synergistic effects leading to nonlinear responses in populations and communities. Yet, current research design of urban ecology and evolutionary studies typically relies on simple representation of the parameter space that can be observed. Sampling approaches apply simple urban gradients such as linear transects in space or comparisons of urban sites across the urban mosaic accounting for a few variables. This rarely considers multiple dimensions and scales of biodiversity, and proves to be inadequate to explain observed patterns. We apply a multidimensional approach that integrates distinctive social, ecological and built characteristics of urban landscapes, representing variations along dimensions of heterogeneity, connectivity and historical contingency. Measuring species richness and beta diversity across 100 US metropolitan areas at the city and 1-km scales, we show that distinctive signatures of urban biodiversity can result from interactions between socioecological heterogeneity and connectivity, mediated by historical contingency.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, Washington, USA.,Urban Ecology Research Lab, University of Washington, Seattle, Washington, USA
| | - Tianzhe Wang
- Department of Urban Design and Planning, University of Washington, Seattle, Washington, USA.,Urban Ecology Research Lab, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Meade J, Martin JM, Welbergen JA. Fast food in the city? Nomadic flying-foxes commute less and hang around for longer in urban areas. Behav Ecol 2021. [DOI: 10.1093/beheco/arab078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Urbanization creates novel ecological spaces where some species thrive. Geographical urbanization promotes human–wildlife conflict; however, we know relatively little about the drivers of biological urbanization, which poses impediments for sound wildlife management and conservation action. Flying-foxes are extremely mobile and move nomadically in response to flowering resources, but are now increasingly found in urban areas, for reasons that are poorly understood. To investigate the mechanisms behind flying-fox urbanization, we examined the movement of 99 satellite tracked grey-headed flying-foxes (Pteropus poliocephalus) over 1 year in urban versus non-urban environments. We found that tracked individuals preferentially visited major-urban roosts, exhibited higher fidelity to major-urban roosts, and foraged over shorter distances when roosting in major-urban areas. In contrast to other colonial species, there were no density-dependent effects of colony size on foraging distance, suggesting that at a landscape scale, flying-foxes distribute themselves across roosts in an ideal-free manner, minimizing competition over urban and non-urban foraging resources. Yet, males consistently foraged over shorter distances than females, suggesting that at a local scale foraging distances reflect competitive inequalities between individuals. Overall, our study supports the hypothesis that flying-fox urbanization is driven by increased spatiotemporal availability of food resources in urban areas; however, unlike in other species, it is likely a consequence of increased urban visitation by nomadic individuals rather than a subset of the population becoming “urban residents” per se. We discuss the implications of the movement behavior we report for the conservation and management of highly mobile species.
Collapse
Affiliation(s)
- Jessica Meade
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Bourke Street, Richmond, NSW, Australia
| | - John M Martin
- Institute of Science and Learning, Taronga Conservation Society Australia, Bradley’s Head Rd, Mosman, 2088 NSW, Australia
| | - Justin A Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Bourke Street, Richmond, NSW, Australia
| |
Collapse
|
24
|
Rigal S, Devictor V, Gaüzère P, Kéfi S, Forsman JT, Kajanus MH, Mönkkönen M, Dakos V. Biotic homogenisation in bird communities leads to large‐scale changes in species associations. OIKOS 2021. [DOI: 10.1111/oik.08756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Stanislas Rigal
- ISEM, Univ. de Montpellier, CNRS, IRD, EPHE Montpellier France
| | | | - Pierre Gaüzère
- Univ. Grenoble Alpes, CNRS, Univ. of Savoie Mont Blanc, LECA, Laboratoire d'Écologie Alpine Grenoble France
| | - Sonia Kéfi
- ISEM, Univ. de Montpellier, CNRS, IRD, EPHE Montpellier France
- Santa Fe Inst. Santa Fe NM USA
| | - Jukka T. Forsman
- Dept of Ecology and Genetics, Univ. of Oulu Oulu Finland
- Natural Resources Inst. Finland Oulu Finland
| | | | - Mikko Mönkkönen
- Dept of Biological and Environmental Science, Univ. of Jyvaskyla Jyväskylä Finland
| | - Vasilis Dakos
- ISEM, Univ. de Montpellier, CNRS, IRD, EPHE Montpellier France
| |
Collapse
|
25
|
McEachin S, Drury JP, Anderson CN, Grether GF. Mechanisms of reduced interspecific interference between territorial species. Behav Ecol 2021. [DOI: 10.1093/beheco/arab115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Interspecific territoriality has complex ecological and evolutionary consequences. Species that interact aggressively often exhibit spatial or temporal shifts in activity that reduce the frequency of costly encounters. We analyzed data collected over a 13-year period on 50 populations of rubyspot damselflies (Hetaerina spp.) to examine how rates of interspecific fighting covary with fine-scale habitat partitioning and to test for agonistic character displacement in microhabitat preferences. In most sympatric species, interspecific fights occur less frequently than expected based on the species’ relative densities. Incorporating measurements of spatial segregation and species discrimination into the calculation of expected frequencies accounted for most of the reduction in interspecific fighting (subtle differences in microhabitat preferences could account for the rest). In 23 of 25 sympatric population pairs, we found multivariate differences between species in territory microhabitat (perch height, stream width, current speed, and canopy cover). As predicted by the agonistic character displacement hypothesis, sympatric species that respond more aggressively to each other in direct encounters differ more in microhabitat use and have higher levels of spatial segregation. Previous work established that species with the lowest levels of interspecific fighting have diverged in territory signals and competitor recognition through agonistic character displacement. In the other species pairs, interspecific aggression appears to be maintained as an adaptive response to reproductive interference, but interspecific fighting is still costly. We now have robust evidence that evolved shifts in microhabitat preferences also reduce the frequency of interspecific fighting.
Collapse
Affiliation(s)
- Shawn McEachin
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles Young Drive South, Los Angeles, CA, USA
| | | | | | - Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
26
|
Callaghan CT, Bowler DE, Pereira HM. Thermal flexibility and a generalist life history promote urban affinity in butterflies. GLOBAL CHANGE BIOLOGY 2021; 27:3532-3546. [PMID: 34056817 DOI: 10.1111/gcb.15670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Urban expansion poses a serious threat to biodiversity. Given that the expected area of urban land cover is predicted to increase by 2-3 million km2 by 2050, urban environments are one of the most widespread human-dominated land-uses affecting biodiversity. Responses to urbanization differ greatly among species. Some species are unable to tolerate urban environments (i.e., urban avoiders), others are able to adapt and use areas with moderate levels of urbanization (i.e., urban adapters), and yet others are able to colonize and even thrive in urban environments (i.e., urban exploiters). Quantifying species-specific responses to urbanization remains an important goal, but our current understanding of urban tolerance is heavily biased toward traditionally well-studied taxa (e.g., mammals and birds). We integrated a continuous measure of urbanization-night-time lights-with over 900,000 species' observations from the Global Biodiversity Information Facility to derive a comprehensive analysis of species-specific (N = 158 species) responses of butterflies to urbanization across Europe. The majority of butterfly species included in our analysis avoided urban areas, regardless of whether species' urban affinities were quantified as a mean score of urban affinity across all occurrences (79%) or as a species' response curve to the whole urbanization gradient (55%). We then used species-specific responses to urbanization to assess which life history strategies promote urban affinity in butterflies. These trait-based analyses found strong evidence that the average number of flight months, likely associated with thermal niche breath, and number of adult food types were positively associated with urban affinity, while hostplant specialism was negatively associated with urban affinity. Overall, our results demonstrate that specialist butterflies, both in terms of thermal and diet preferences, are most at risk from increasing urbanization, and should thus be considered in urban planning and prioritized for conservation.
Collapse
Affiliation(s)
- Corey T Callaghan
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana E Bowler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Helmholtz Center for Environmental Research - UFZ, Department of Ecosystem Services, Leipzig, Germany
| | - Henrique M Pereira
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- CIBIO (Research Centre in Biodiversity and Genetic Resources)-InBIO (Research Network in Biodiversity and Evolutionary Biology), Universidade do Porto, Vairão, Portugal
| |
Collapse
|
27
|
Egert-Berg K, Handel M, Goldshtein A, Eitan O, Borissov I, Yovel Y. Fruit bats adjust their foraging strategies to urban environments to diversify their diet. BMC Biol 2021; 19:123. [PMID: 34134697 PMCID: PMC8210355 DOI: 10.1186/s12915-021-01060-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Urbanization is one of the most influential processes on our globe, putting a great number of species under threat. Some species learn to cope with urbanization, and a few even benefit from it, but we are only starting to understand how they do so. In this study, we GPS tracked Egyptian fruit bats from urban and rural populations to compare their movement and foraging in urban and rural environments. Because fruit trees are distributed differently in these two environments, with a higher diversity in urban environments, we hypothesized that foraging strategies will differ too. Results When foraging in urban environments, bats were much more exploratory than when foraging in rural environments, visiting more sites per hour and switching foraging sites more often on consecutive nights. By doing so, bats foraging in settlements diversified their diet in comparison to rural bats, as was also evident from their choice to often switch fruit species. Interestingly, the location of the roost did not dictate the foraging grounds, and we found that many bats choose to roost in the countryside but nightly commute to and forage in urban environments. Conclusions Bats are unique among small mammals in their ability to move far rapidly. Our study is an excellent example of how animals adjust to environmental changes, and it shows how such mobile mammals might exploit the new urban fragmented environment that is taking over our landscape. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01060-x.
Collapse
Affiliation(s)
- Katya Egert-Berg
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Michal Handel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Aya Goldshtein
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ofri Eitan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ivailo Borissov
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yossi Yovel
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel. .,School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel. .,Wissenschaftskolleg zu Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Martin PR, Burke KW, Bonier F. Plasticity versus Evolutionary Divergence: What Causes Habitat Partitioning in Urban-Adapted Birds? Am Nat 2020; 197:60-74. [PMID: 33417523 DOI: 10.1086/711753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractHabitat partitioning can facilitate the coexistence of closely related species and often results from competitive interference inducing plastic shifts of subordinate species in response to aggressive, dominant species (plasticity) or the evolution of ecological differences in subordinate species that reduce their ability to occupy habitats where the dominant species occurs (evolutionary divergence). Evidence consistent with both plasticity and evolutionary divergence exist, but the relative contributions of each to habitat partitioning have been difficult to discern. Here we use a global data set on the breeding occurrence of birds in cities to test predictions of these alternative hypotheses to explain previously described habitat partitioning associated with competitive interference. Consistent with plasticity, the presence of behaviorally dominant congeners in a city was associated with a 65% reduction in the occurrence of subordinate species, but only when the dominant was a widespread breeder in urban habitats. Consistent with evolutionary divergence, increased range-wide overlap with dominant congeners was associated with a 56% reduction in the occurrence of subordinates in cities, even when the dominant was absent from the city. Overall, our results suggest that both plasticity and evolutionary divergence play important, concurrent roles in habitat partitioning among closely related species in urban environments.
Collapse
|
29
|
Putman BJ, Tippie ZA. Big City Living: A Global Meta-Analysis Reveals Positive Impact of Urbanization on Body Size in Lizards. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.580745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urban environments pose different selective pressures than natural ones, leading to changes in animal behavior, physiology, and morphology. Understanding how animals respond to urbanization could inform the management of urban habitats. Non-avian reptiles have important roles in ecosystems worldwide, yet their responses to urbanization have not been as comprehensively studied as those of mammals and birds. However, unlike mammals and birds, most reptiles cannot easily move away from disturbances, making the selective pressure to adapt to urban environments especially strong. In recent years, there has been a surge in research on the responses of lizards to urbanization, yet no formal synthesis has determined what makes an urban lizard, in other words, which phenotypic traits are most likely to change with urbanization and in which direction? Here, we present a qualitative synthesis of the literature and a quantitative phylogenetic meta-analysis comparing phenotypic traits between urban and non-urban lizard populations. The most robust finding from our analysis is that urban lizards are larger than their non-urban counterparts. This result remained consistent between sexes and taxonomic groups. Hence, lizards that pass through the urban filter have access to better resources, more time for foraging, and/or there is selection on attaining a larger body size. Other results included an increase in the diameters of perches used and longer limb and digit lengths, although this may be a result of increased body size. Urban lizards were not bolder, more active or exploratory, and did not differ in immune responses than non-urban populations. Overall, studies are biased to a few geographic regions and taxa. More than 70% of all data came from three species of anoles in the family Dactyloidae, making it difficult to generalize patterns to other clades. Thus, more studies are needed across multiple taxa and habitats to produce meaningful predictions that could help inform conservation and management of urban ecological communities.
Collapse
|
30
|
Planillo A, Kramer‐Schadt S, Buchholz S, Gras P, von der Lippe M, Radchuk V. Arthropod abundance modulates bird community responses to urbanization. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Aimara Planillo
- Department of Ecological Dynamics Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - Stephanie Kramer‐Schadt
- Department of Ecological Dynamics Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Department of Ecology Technische Universität Berlin (TU) Berlin Germany
| | - Sascha Buchholz
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Department of Ecology Technische Universität Berlin (TU) Berlin Germany
| | - Pierre Gras
- Department of Ecological Dynamics Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin Germany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
| | - Moritz von der Lippe
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB) Berlin Germany
- Department of Ecology Technische Universität Berlin (TU) Berlin Germany
| | - Viktoriia Radchuk
- Department of Ecological Dynamics Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin Germany
| |
Collapse
|
31
|
Cowen MC, Drury JP, Grether GF. Multiple routes to interspecific territoriality in sister species of North American perching birds. Evolution 2020; 74:2134-2148. [DOI: 10.1111/evo.14068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/06/2020] [Accepted: 07/20/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Madeline C. Cowen
- Department of Ecology & Evolutionary Biology University of California, Los Angeles Los Angeles California 90095
| | - Jonathan P. Drury
- Department of Biosciences Durham University Durham DH1 3LE United Kingdom
| | - Gregory F. Grether
- Department of Ecology & Evolutionary Biology University of California, Los Angeles Los Angeles California 90095
| |
Collapse
|
32
|
Cooper DS, Shultz AJ, Blumstein DT. Temporally Separated Data Sets Reveal Similar Traits of Birds Persisting in a United States Megacity. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Non-king elimination, intransitive triad interactions, and species coexistence in ecological competition networks. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Drury JP, Cowen MC, Grether GF. Competition and hybridization drive interspecific territoriality in birds. Proc Natl Acad Sci U S A 2020; 117:12923-12930. [PMID: 32457140 PMCID: PMC7293658 DOI: 10.1073/pnas.1921380117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Costly interactions between species that arise as a by-product of ancestral similarities in communication signals are expected to persist only under specific evolutionary circumstances. Territorial aggression between species, for instance, is widely assumed to persist only when extrinsic barriers prevent niche divergence or selection in sympatry is too weak to overcome gene flow from allopatry. However, recent theoretical and comparative studies have challenged this view. Here we present a large-scale, phylogenetic analysis of the distribution and determinants of interspecific territoriality. We find that interspecific territoriality is widespread in birds and strongly associated with hybridization and resource overlap during the breeding season. Contrary to the view that territoriality only persists between species that rarely breed in the same areas or where niche divergence is constrained by habitat structure, we find that interspecific territoriality is positively associated with breeding habitat overlap and unrelated to habitat structure. Furthermore, our results provide compelling evidence that ancestral similarities in territorial signals are maintained and reinforced by selection when interspecific territoriality is adaptive. The territorial signals linked to interspecific territoriality in birds depend on the evolutionary age of interacting species, plumage at shallow (within-family) timescales, and song at deeper (between-family) timescales. Evidently, territorial interactions between species have persisted and shaped phenotypic diversity on a macroevolutionary timescale.
Collapse
Affiliation(s)
- Jonathan P Drury
- Department of Biosciences, Durham University, DH1 3LE Durham, United Kingdom;
| | - Madeline C Cowen
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Gregory F Grether
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095
| |
Collapse
|
35
|
Martin PR, Kenyon HL, Hayes L. Size-dependent costs of migration: Migrant bird species are subordinate to residents, but only at small body sizes. J Evol Biol 2020; 33:495-504. [PMID: 31900965 DOI: 10.1111/jeb.13583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/09/2019] [Accepted: 12/25/2019] [Indexed: 11/27/2022]
Abstract
Migrant species are commonly thought to be poor competitors in aggressive interactions with resident species. However, no studies have tested whether this relationship is widespread. Here, we compare the behavioural dominance of closely related species of migratory and nonmigratory birds, testing whether migrants are consistently subordinate to resident species in aggressive contests. We compiled published behavioural dominance data involving migrant and resident congeners, gathering additional data on the body mass and migratory distance of each species. Focal species included a diverse array of birds (28 taxonomic families, 12 orders) from around the world. We found that migrant species are usually subordinate to resident species, but that this relationship disappears at larger body sizes. For smaller birds (<500 g), resident species were behaviourally dominant in 83%-88% of comparisons; for larger birds (>500 g), resident species were dominant in only 25%-30% of comparisons. The relative difference in body mass best predicted dominance relationships among species, with larger species dominant in 80%-84% of comparisons. When migrant and resident masses were equal, however, resident species were still more likely to be dominant in smaller birds, suggesting that other factors may also contribute to the subordinate status of migrants. Overall, our results suggest that in smaller species, the evolution of migration is associated with lighter weights and other traits that compromise the competitive abilities of migrants relative to residents. In contrast, larger species appear able to evolve migration without compromising their size or competitive abilities in aggressive contests, suggesting size-dependent constraints on the evolution of migration.
Collapse
Affiliation(s)
- Paul R Martin
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Haley L Kenyon
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Leah Hayes
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
36
|
Interspecific conflict structures urban avian assemblages. Proc Natl Acad Sci U S A 2018; 115:12331-12333. [PMID: 30478059 DOI: 10.1073/pnas.1817912115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|