1
|
Ye D, Kamhi JF, Gordon DM. The role of dopamine in foraging decisions in social insects. FRONTIERS IN INSECT SCIENCE 2025; 5:1581307. [PMID: 40313369 PMCID: PMC12043631 DOI: 10.3389/finsc.2025.1581307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025]
Abstract
Animals often need to make decisions about whether to confront risks, and climate change is making these decisions even more critical by increasing environmental stress. Biogenic amines are crucial for modulating behavior in all animals and may contribute to behavioral adaptations to changing environments through supporting decision-making involving risk. Our review focuses on the neuromodulator dopamine in insects because of its role in risk-related behavioral choices, particularly in the context of ant foraging activity. In ants, individual decisions contribute to the collective regulation of foraging activity. We consider the role of dopamine in the regulation of collective foraging activity to manage water loss in the desert red harvester ant, Pogonomyrmex barbatus, in the southwest US that is undergoing severe drought. We discuss dopaminergic circuitry and its involvement in decisions about foraging risk, drawing from both the vertebrate and invertebrate literature, to outline areas of future research in the role of dopamine in collective decision-making in response to changing environmental conditions.
Collapse
Affiliation(s)
- Dajia Ye
- Department of Biology, Stanford University, Stanford, CA, United States
| | - J. Frances Kamhi
- Department of Psychology, Neuroscience Program, Denison University, Granville, OH, United States
| | - Deborah M. Gordon
- Department of Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
2
|
Hiramatsu S, Saito K, Kondo S, Katow H, Yamagata N, Wu CF, Tanimoto H. Synaptic enrichment and dynamic regulation of the two opposing dopamine receptors within the same neurons. eLife 2025; 13:RP98358. [PMID: 39882849 PMCID: PMC11781798 DOI: 10.7554/elife.98358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Dopamine can play opposing physiological roles depending on the receptor subtype. In the fruit fly Drosophila melanogaster, Dop1R1 and Dop2R encode the D1- and D2-like receptors, respectively, and are reported to oppositely regulate intracellular cAMP levels. Here, we profiled the expression and subcellular localization of endogenous Dop1R1 and Dop2R in specific cell types in the mushroom body circuit. For cell-type-specific visualization of endogenous proteins, we employed reconstitution of split-GFP tagged to the receptor proteins. We detected dopamine receptors at both presynaptic and postsynaptic sites in multiple cell types. Quantitative analysis revealed enrichment of both receptors at the presynaptic sites, with Dop2R showing a greater degree of localization than Dop1R1. The presynaptic localization of Dop1R1 and Dop2R in dopamine neurons suggests dual feedback regulation as autoreceptors. Furthermore, we discovered a starvation-dependent, bidirectional modulation of the presynaptic receptor expression in the protocerebral anterior medial (PAM) and posterior lateral 1 (PPL1) clusters, two distinct subsets of dopamine neurons, suggesting their roles in regulating appetitive behaviors. Our results highlight the significance of the co-expression of the two opposing dopamine receptors in the spatial and conditional regulation of dopamine responses in neurons.
Collapse
Affiliation(s)
- Shun Hiramatsu
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Kokoro Saito
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Hidetaka Katow
- Department of Cell Biology, New York UniversityNew YorkUnited States
| | - Nobuhiro Yamagata
- Faculty and Graduate School of Engineering Science, Akita UniversityAkitaJapan
| | - Chun-Fang Wu
- Department of Biology, University of IowaIowa CityUnited States
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| |
Collapse
|
3
|
Pyenson BC, Huisken JL, Gupta N, Rehan SM. The brain atlas of a subsocial bee reflects that of eusocial Hymenoptera. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70007. [PMID: 39513483 PMCID: PMC11544451 DOI: 10.1111/gbb.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
The evolutionary transition from solitary life to group-living in a society with cooperative brood care, reproductive division of labor and morphological castes is associated with increased cognitive demands for task-specialization. Associated with these demands, the brains of eusocial Hymenoptera divide transcriptomic signatures associated with foraging and reproduction to different populations of cells and also show diverse astrocyte and Kenyon cell types compared with solitary non-hymenopteran insects. The neural architecture of subsocial bees, which represent evolutionary antecedent states to eusocial Hymenoptera, could then show how widely this eusocial brain is conserved across aculeate Hymenoptera. Using single-nucleus transcriptomics, we have created an atlas of neuron and glial cell types from the brain of a subsocial insect, the small carpenter bee (Ceratina calcarata). The proportion of C. calcarata neurons related to the metabolism of classes of neurotransmitters is similar to that of other insects, whereas astrocyte and Kenyon cell types show highly similar gene expression patterns to those of eusocial Hymenoptera. In the winter, the transcriptomic signature across the brain reflected diapause. When the bee was active in the summer, however, genes upregulated in neurons reflected foraging, while the gene expression signature of glia associated with reproductive functions. Like eusocial Hymenoptera, we conclude that neural components for foraging and reproduction in C. calcarata are compartmentalized to different parts of its brain. Cellular examination of the brains of other solitary and subsocial insects can show the extent of neurobiological conservation across levels of social complexity.
Collapse
Affiliation(s)
| | | | - Nandini Gupta
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | |
Collapse
|
4
|
Qi C, Qian C, Steijvers E, Colvin RA, Lee D. Single dopaminergic neuron DAN-c1 in Drosophila larval brain mediates aversive olfactory learning through D2-like receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575767. [PMID: 38293177 PMCID: PMC10827047 DOI: 10.1101/2024.01.15.575767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The intricate relationship between the dopaminergic system and olfactory associative learning in Drosophila has been an intense scientific inquiry. Leveraging the formidable genetic tools, we conducted a screening of 57 dopaminergic drivers, leading to the discovery of DAN-c1 driver, uniquely targeting the single dopaminergic neuron (DAN) in each brain hemisphere. While the involvement of excitatory D1-like receptors is well-established, the role of D2-like receptors (D2Rs) remains underexplored. Our investigation reveals the expression of D2Rs in both DANs and the mushroom body (MB) of third instar larval brains. Silencing D2Rs in DAN-c1 via microRNA disrupts aversive learning, further supported by optogenetic activation of DAN-c1 during training, affirming the inhibitory role of D2R autoreceptor. Intriguingly, D2R knockdown in the MB impairs both appetitive and aversive learning. These findings elucidate the distinct contributions of D2Rs in diverse brain structures, providing novel insights into the molecular mechanisms governing associative learning in Drosophila larvae.
Collapse
Affiliation(s)
- Cheng Qi
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | | | | - Robert A. Colvin
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
5
|
Parnas M, Manoim JE, Lin AC. Sensory encoding and memory in the mushroom body: signals, noise, and variability. Learn Mem 2024; 31:a053825. [PMID: 38862174 PMCID: PMC11199953 DOI: 10.1101/lm.053825.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
To survive in changing environments, animals need to learn to associate specific sensory stimuli with positive or negative valence. How do they form stimulus-specific memories to distinguish between positively/negatively associated stimuli and other irrelevant stimuli? Solving this task is one of the functions of the mushroom body, the associative memory center in insect brains. Here we summarize recent work on sensory encoding and memory in the Drosophila mushroom body, highlighting general principles such as pattern separation, sparse coding, noise and variability, coincidence detection, and spatially localized neuromodulation, and placing the mushroom body in comparative perspective with mammalian memory systems.
Collapse
Affiliation(s)
- Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
6
|
Selcho M. Octopamine in the mushroom body circuitry for learning and memory. Learn Mem 2024; 31:a053839. [PMID: 38862169 PMCID: PMC11199948 DOI: 10.1101/lm.053839.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 06/13/2024]
Abstract
Octopamine, the functional analog of noradrenaline, modulates many different behaviors and physiological processes in invertebrates. In the central nervous system, a few octopaminergic neurons project throughout the brain and innervate almost all neuropils. The center of memory formation in insects, the mushroom bodies, receive octopaminergic innervations in all insects investigated so far. Different octopamine receptors, either increasing or decreasing cAMP or calcium levels in the cell, are localized in Kenyon cells, further supporting the release of octopamine in the mushroom bodies. In addition, different mushroom body (MB) output neurons, projection neurons, and dopaminergic PAM cells are targets of octopaminergic neurons, enabling the modulation of learning circuits at different neural sites. For some years, the theory persisted that octopamine mediates rewarding stimuli, whereas dopamine (DA) represents aversive stimuli. This simple picture has been challenged by the finding that DA is required for both appetitive and aversive learning. Furthermore, octopamine is also involved in aversive learning and a rather complex interaction between these biogenic amines seems to modulate learning and memory. This review summarizes the role of octopamine in MB function, focusing on the anatomical principles and the role of the biogenic amine in learning and memory.
Collapse
Affiliation(s)
- Mareike Selcho
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Mancini N, Thoener J, Tafani E, Pauls D, Mayseless O, Strauch M, Eichler K, Champion A, Kobler O, Weber D, Sen E, Weiglein A, Hartenstein V, Chytoudis-Peroudis CC, Jovanic T, Thum AS, Rohwedder A, Schleyer M, Gerber B. Rewarding Capacity of Optogenetically Activating a Giant GABAergic Central-Brain Interneuron in Larval Drosophila. J Neurosci 2023; 43:7393-7428. [PMID: 37734947 PMCID: PMC10621887 DOI: 10.1523/jneurosci.2310-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/19/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Larvae of the fruit fly Drosophila melanogaster are a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic analyses, optogenetics, Ca2+ imaging, and pharmacology, we study how APL affects associative olfactory memory. We first provide a detailed account of the structure, regional polarity, connectivity, and metamorphic development of APL, and further confirm that optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body Kenyon cells. All these findings are consistent with the previously identified function of APL in the sparsening of sensory representations. To our surprise, however, we found that optogenetically activating APL can also have a strong rewarding effect. Specifically, APL activation together with odor presentation establishes an odor-specific, appetitive, associative short-term memory, whereas naive olfactory behavior remains unaffected. An acute, systemic inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons impair reward learning through APL activation. Our findings provide a study case of complex circuit function in a numerically simple brain, and suggest a previously unrecognized capacity of central-brain GABAergic neurons to engage in dopaminergic reinforcement.SIGNIFICANCE STATEMENT The single, identified giant anterior paired lateral (APL) neuron is one of the most complex neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal activity in the mushroom body, the memory center of insects. We provide the most detailed account yet of the structure of APL in larval Drosophila as a neurogenetically accessible study case. We further reveal that, contrary to expectations, the experimental activation of APL can exert a rewarding effect, likely via dopaminergic reward pathways. The present study both provides an example of unexpected circuit complexity in a numerically simple brain, and reports an unexpected effect of activity in central-brain GABAergic circuits.
Collapse
Affiliation(s)
- Nino Mancini
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Juliane Thoener
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Esmeralda Tafani
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Martin Strauch
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, 52074, Germany
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Old San Juan, Puerto Rico, 00901
| | - Andrew Champion
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, CB2 3EL, United Kingdom
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia
| | - Oliver Kobler
- Leibniz Institute for Neurobiology, Combinatorial Neuroimaging Core Facility, Magdeburg, 39118, Germany
| | - Denise Weber
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Edanur Sen
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Volker Hartenstein
- University of California, Department of Molecular, Cell and Developmental Biology, Los Angeles, California 90095-1606
| | | | - Tihana Jovanic
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des neurosciences Paris-Saclay, Saclay, 91400, France
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Astrid Rohwedder
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
- Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany
- Institute for Biology, Otto von Guericke University, Magdeburg, 39120, Germany
| |
Collapse
|
8
|
Hao H, Song L, Zhang L. Wolfram syndrome 1 regulates sleep in dopamine receptor neurons by modulating calcium homeostasis. PLoS Genet 2023; 19:e1010827. [PMID: 37399203 DOI: 10.1371/journal.pgen.1010827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Sleep disruptions are quite common in psychological disorders, but the underlying mechanism remains obscure. Wolfram syndrome 1 (WS1) is an autosomal recessive disease mainly characterized by diabetes insipidus/mellitus, neurodegeneration and psychological disorders. It is caused by loss-of function mutations of the WOLFRAM SYNDROME 1 (WFS1) gene, which encodes an endoplasmic reticulum (ER)-resident transmembrane protein. Heterozygous mutation carriers do not develop WS1 but exhibit 26-fold higher risk of having psychological disorders. Since WS1 patients display sleep abnormalities, we aimed to explore the role of WFS1 in sleep regulation so as to help elucidate the cause of sleep disruptions in psychological disorders. We found in Drosophila that knocking down wfs1 in all neurons and wfs1 mutation lead to reduced sleep and dampened circadian rhythm. These phenotypes are mainly caused by lack of wfs1 in dopamine 2-like receptor (Dop2R) neurons which act to promote wake. Consistently, the influence of wfs1 on sleep is blocked or partially rescued by inhibiting or knocking down the rate-limiting enzyme of dopamine synthesis, suggesting that wfs1 modulates sleep via dopaminergic signaling. Knocking down wfs1 alters the excitability of Dop2R neurons, while genetic interactions reveal that lack of wfs1 reduces sleep via perturbation of ER-mediated calcium homeostasis. Taken together, we propose a role for wfs1 in modulating the activities of Dop2R neurons by impinging on intracellular calcium homeostasis, and this in turn influences sleep. These findings provide a potential mechanistic insight for pathogenesis of diseases associated with WFS1 mutations.
Collapse
Affiliation(s)
- Huanfeng Hao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Song
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei, China
| |
Collapse
|
9
|
Nabhan AB. Pathophysiology, Clinical Implications and Management of Orofacial Neuropathic Pain- with special attention to Trigeminal neuralgia: A Narrative Review. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2023; 16:835-846. [DOI: 10.13005/bpj/2666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Background: It is a widely held belief that if the trigeminal nerve is damaged, the victim would experience agonising and unrelenting external pain. A lesion to the trigeminal nerve may have a wide-reaching effect, such as on one side of the face in particular, or it might have a more localised effect, such as on some or all of your gums. The risk of damage increases the likelihood that it will be difficult to speak and swallow. This nerve provides sensation to a part of your face that may be constantly aching or tingling for some people. However, the trigeminal nerve injury-related persistent orofacial pain might be brought on by a wide variety of unknown triggers. Aim: In this study investigate the clinical manifestations of chronic orofacial pain brought on by a damage to the trigeminal nerve, as well as the diagnostic and therapeutic approaches available to treat this condition. Methodology Through the use of search phrases such as "Trigeminal nerve injury," "Trigeminal ganglion," "Trigeminal spinal subnucleus caudalis," "Craniofacial pain," "Oral prognosis," and "treatment," the computerised databases for the last twenty years have been investigated. There are now two hundred objects in total that have been accumulated. There have been around fifty of them that are pertinent to the discussion that is going on in this work. Majority of the patients fair enough with the pharmacology treatment/drugs like the carbamazepine & oxcarbazepine which forms the first line treatment options followed by lamotrigine & baclofen encompassing the second line of drugs along with adjuvant drug support of topiramate, levetiracetam, gabapentin, pregabalin. As the field of science has explored &advanced for the latest treatment options include microvascular decompression, gamma knife radiosurgery, percutaneous rhizotomies variable based on the evidences & guidelines 54 Conclusion: New diagnostic criteria and treatment alternatives have become available for people who suffer from trigeminal neuropathy and orofacial neuropathic pain as a result of recent developments in fundamental animal research that have led to their development. Despite the results, more research needs to investigate a greater variety of distinct non-neuronal cell feature approaches.
Collapse
Affiliation(s)
- Abdullah Bin Nabhan
- Oral Medicine and Orofacial Pain, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al Kharj, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Okray Z, Jacob PF, Stern C, Desmond K, Otto N, Talbot CB, Vargas-Gutierrez P, Waddell S. Multisensory learning binds neurons into a cross-modal memory engram. Nature 2023; 617:777-784. [PMID: 37100911 PMCID: PMC10208976 DOI: 10.1038/s41586-023-06013-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously 'modality-selective' KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience.
Collapse
Affiliation(s)
- Zeynep Okray
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK.
| | - Pedro F Jacob
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Ciara Stern
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Kieran Desmond
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Nils Otto
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Clifford B Talbot
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | | | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Love CR, Gautam S, Lama C, Le NH, Dauwalder B. The Drosophila dopamine 2-like receptor D2R (Dop2R) is required in the blood brain barrier for male courtship. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12836. [PMID: 36636829 PMCID: PMC9994173 DOI: 10.1111/gbb.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
The blood brain barrier (BBB) has the essential function to protect the brain from potentially hazardous molecules while also enabling controlled selective uptake. How these processes and signaling inside BBB cells control neuronal function is an intense area of interest. Signaling in the adult Drosophila BBB is required for normal male courtship behavior and relies on male-specific molecules in the BBB. Here we show that the dopamine receptor D2R is expressed in the BBB and is required in mature males for normal mating behavior. Conditional adult male knockdown of D2R in BBB cells causes courtship defects. The courtship defects observed in genetic D2R mutants can be rescued by expression of normal D2R specifically in the BBB of adult males. Drosophila BBB cells are glial cells. Our findings thus identify a specific glial function for the DR2 receptor and dopamine signaling in the regulation of a complex behavior.
Collapse
Affiliation(s)
- Cameron R Love
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.,Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Sumit Gautam
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Chamala Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Nhu Hoa Le
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
12
|
Qiao J, Yang S, Geng H, Yung WH, Ke Y. Input-timing-dependent plasticity at incoming synapses of the mushroom body facilitates olfactory learning in Drosophila. Curr Biol 2022; 32:4869-4880.e4. [PMID: 36265490 DOI: 10.1016/j.cub.2022.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Aversive olfactory conditioning in Drosophila is a valuable model for elucidating the mechanism of associative learning. Much effort has centered around the role of neuroplasticity at the mushroom body (MB)-mushroom body output neuron (MBON) synapses in mapping odors to specific behaviors. By electrophysiological recordings from MB neurons, we discovered a form of input-timing-dependent plasticity at the incoming synapses from projection neurons that controls the efficacy of aversive olfactory memory formation. Importantly, this plasticity is facilitated by the neural activity of PPL1, the neuronal cluster that also modulates MB-MBON connections at the output stage of MB. Unlike the MB-MBON synapses that probably utilize dopamine D1-like receptors, this neuroplasticity is dependent on D2-like receptors that are expressed mainly by γ Kenyon cells noticeably in their somato-dendritic region. The D2-like receptors recruit voltage-gated calcium channels, leading to calcium influx in the soma and dendrites of γ neurons. Together, our results reveal a previously unrecognized synaptic component of the MB circuit architecture that not only could increase the salience of a conditioning odor but also couples the process of memory encoding and valency mapping to drive-associative learning.
Collapse
Affiliation(s)
- Jingda Qiao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Shengxi Yang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Hongyan Geng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
13
|
Naganos S, Ueno K, Horiuchi J, Saitoe M. Dopamine activity in projection neurons regulates short-lasting olfactory approach memory in Drosophila. Eur J Neurosci 2022; 56:4558-4571. [PMID: 35815601 PMCID: PMC9540629 DOI: 10.1111/ejn.15766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
Survival in many animals requires the ability to associate certain cues with danger and others with safety. In a Drosophila melanogaster aversive olfactory conditioning paradigm, flies are exposed to two odours, one presented coincidentally with electrical shocks, and a second presented 45 s after shock cessation. When flies are later given a choice between these two odours, they avoid the shock‐paired odour and prefer the unpaired odour. While many studies have examined how flies learn to avoid the shock‐paired odour through formation of odour‐fear associations, here we demonstrate that conditioning also causes flies to actively approach the second odour. In contrast to fear memories, which are longer lasting and requires activity of D1‐like dopamine receptors only in the mushroom bodies, approach memory is short‐lasting and requires activity of D1‐like dopamine receptors in projection neurons originating from the antennal lobes, primary olfactory centers. Further, while recall of fear memories requires activity of the mushroom bodies, recall of approach memories does not. Our data suggest that olfactory approach memory is formed using different mechanisms in different brain locations compared to aversive and appetitive olfactory memories.
Collapse
Affiliation(s)
| | - Kohei Ueno
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Minoru Saitoe
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
14
|
Wu Z, Lin D, Li Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci 2022; 23:257-274. [PMID: 35361961 PMCID: PMC11163306 DOI: 10.1038/s41583-022-00577-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/26/2022]
Abstract
Neurotransmitters and neuromodulators have a wide range of key roles throughout the nervous system. However, their dynamics in both health and disease have been challenging to assess, owing to the lack of in vivo tools to track them with high spatiotemporal resolution. Thus, developing a platform that enables minimally invasive, large-scale and long-term monitoring of neurotransmitters and neuromodulators with high sensitivity, high molecular specificity and high spatiotemporal resolution has been essential. Here, we review the methods available for monitoring the dynamics of neurotransmitters and neuromodulators. Following a brief summary of non-genetically encoded methods, we focus on recent developments in genetically encoded fluorescent indicators, highlighting how these novel indicators have facilitated advances in our understanding of the functional roles of neurotransmitters and neuromodulators in the nervous system. These studies present a promising outlook for the future development and use of tools to monitor neurotransmitters and neuromodulators.
Collapse
Affiliation(s)
- Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Dayu Lin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
15
|
Gkanias E, McCurdy LY, Nitabach MN, Webb B. An incentive circuit for memory dynamics in the mushroom body of Drosophila melanogaster. eLife 2022; 11:e75611. [PMID: 35363138 PMCID: PMC8975552 DOI: 10.7554/elife.75611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Insects adapt their response to stimuli, such as odours, according to their pairing with positive or negative reinforcements, such as sugar or shock. Recent electrophysiological and imaging findings in Drosophila melanogaster allow detailed examination of the neural mechanisms supporting the acquisition, forgetting, and assimilation of memories. We propose that this data can be explained by the combination of a dopaminergic plasticity rule that supports a variety of synaptic strength change phenomena, and a circuit structure (derived from neuroanatomy) between dopaminergic and output neurons that creates different roles for specific neurons. Computational modelling shows that this circuit allows for rapid memory acquisition, transfer from short term to long term, and exploration/exploitation trade-off. The model can reproduce the observed changes in the activity of each of the identified neurons in conditioning paradigms and can be used for flexible behavioural control.
Collapse
Affiliation(s)
- Evripidis Gkanias
- Institute of Perception Action and Behaviour, School of Informatics, University of EdinburghEdinburghUnited Kingdom
| | - Li Yan McCurdy
- Department of Cellular and Molecular Physiology, Yale UniversityNew HavenUnited States
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Barbara Webb
- Institute of Perception Action and Behaviour, School of Informatics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
16
|
Stahl A, Noyes NC, Boto T, Botero V, Broyles CN, Jing M, Zeng J, King LB, Li Y, Davis RL, Tomchik SM. Associative learning drives longitudinally graded presynaptic plasticity of neurotransmitter release along axonal compartments. eLife 2022; 11:e76712. [PMID: 35285796 PMCID: PMC8956283 DOI: 10.7554/elife.76712] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
Anatomical and physiological compartmentalization of neurons is a mechanism to increase the computational capacity of a circuit, and a major question is what role axonal compartmentalization plays. Axonal compartmentalization may enable localized, presynaptic plasticity to alter neuronal output in a flexible, experience-dependent manner. Here, we show that olfactory learning generates compartmentalized, bidirectional plasticity of acetylcholine release that varies across the longitudinal compartments of Drosophila mushroom body (MB) axons. The directionality of the learning-induced plasticity depends on the valence of the learning event (aversive vs. appetitive), varies linearly across proximal to distal compartments following appetitive conditioning, and correlates with learning-induced changes in downstream mushroom body output neurons (MBONs) that modulate behavioral action selection. Potentiation of acetylcholine release was dependent on the CaV2.1 calcium channel subunit cacophony. In addition, contrast between the positive conditioned stimulus and other odors required the inositol triphosphate receptor, which maintained responsivity to odors upon repeated presentations, preventing adaptation. Downstream from the MB, a set of MBONs that receive their input from the γ3 MB compartment were required for normal appetitive learning, suggesting that they represent a key node through which reward learning influences decision-making. These data demonstrate that learning drives valence-correlated, compartmentalized, bidirectional potentiation, and depression of synaptic neurotransmitter release, which rely on distinct mechanisms and are distributed across axonal compartments in a learning circuit.
Collapse
Affiliation(s)
- Aaron Stahl
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Nathaniel C Noyes
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Tamara Boto
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Connor N Broyles
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Miao Jing
- Chinese Institute for Brain ResearchBeijingChina
| | - Jianzhi Zeng
- Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- State Key Laboratory of Membrane Biology, Peking University School of Life SciencesBeijingChina
- PKU IDG/McGovern Institute for Brain ResearchBeijingChina
| | - Lanikea B King
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Yulong Li
- Chinese Institute for Brain ResearchBeijingChina
- Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- State Key Laboratory of Membrane Biology, Peking University School of Life SciencesBeijingChina
- PKU IDG/McGovern Institute for Brain ResearchBeijingChina
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Seth M Tomchik
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| |
Collapse
|
17
|
Driscoll M, Buchert SN, Coleman V, McLaughlin M, Nguyen A, Sitaraman D. Compartment specific regulation of sleep by mushroom body requires GABA and dopaminergic signaling. Sci Rep 2021; 11:20067. [PMID: 34625611 PMCID: PMC8501079 DOI: 10.1038/s41598-021-99531-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Sleep is a fundamental behavioral state important for survival and is universal in animals with sufficiently complex nervous systems. As a highly conserved neurobehavioral state, sleep has been described in species ranging from jellyfish to humans. Biogenic amines like dopamine, serotonin and norepinephrine have been shown to be critical for sleep regulation across species but the precise circuit mechanisms underlying how amines control persistence of sleep, arousal and wakefulness remain unclear. The fruit fly, Drosophila melanogaster, provides a powerful model system for the study of sleep and circuit mechanisms underlying state transitions and persistence of states to meet the organisms motivational and cognitive needs. In Drosophila, two neuropils in the central brain, the mushroom body (MB) and the central complex (CX) have been shown to influence sleep homeostasis and receive aminergic neuromodulator input critical to sleep–wake switch. Dopamine neurons (DANs) are prevalent neuromodulator inputs to the MB but the mechanisms by which they interact with and regulate sleep- and wake-promoting neurons within MB are unknown. Here we investigate the role of subsets of PAM-DANs that signal wakefulness and project to wake-promoting compartments of the MB. We find that PAM-DANs are GABA responsive and require GABAA-Rdl receptor in regulating sleep. In mapping the pathways downstream of PAM neurons innervating γ5 and β′2 MB compartments we find that wakefulness is regulated by both DopR1 and DopR2 receptors in downstream Kenyon cells (KCs) and mushroom body output neurons (MBONs). Taken together, we have identified and characterized a dopamine modulated sleep microcircuit within the mushroom body that has previously been shown to convey information about positive and negative valence critical for memory formation. These studies will pave way for understanding how flies balance sleep, wakefulness and arousal.
Collapse
Affiliation(s)
- Margaret Driscoll
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Steven N Buchert
- Department of Psychology, College of Science, California State University- East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA
| | - Victoria Coleman
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Morgan McLaughlin
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Amanda Nguyen
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Divya Sitaraman
- Department of Psychological Sciences, College of Arts and Sciences, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA. .,Department of Psychology, College of Science, California State University- East Bay, 25800 Carlos Bee Blvd, Hayward, CA, 94542, USA.
| |
Collapse
|
18
|
Leinwand SG, Scott K. Juvenile hormone drives the maturation of spontaneous mushroom body neural activity and learned behavior. Neuron 2021; 109:1836-1847.e5. [PMID: 33915110 DOI: 10.1016/j.neuron.2021.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Mature behaviors emerge from neural circuits sculpted by genetic programs and spontaneous and evoked neural activity. However, how neural activity is refined to drive maturation of learned behavior remains poorly understood. Here, we explore how transient hormonal signaling coordinates a neural activity state transition and maturation of associative learning. We identify spontaneous, asynchronous activity in a Drosophila learning and memory brain region, the mushroom body. This activity declines significantly over the first week of adulthood. Moreover, this activity is generated cell-autonomously via Cacophony voltage-gated calcium channels in a single cell type, α'/β' Kenyon cells. Juvenile hormone, a crucial developmental regulator, acts transiently in α'/β' Kenyon cells during a young adult sensitive period to downregulate spontaneous activity and enable subsequent enhanced learning. Hormone signaling in young animals therefore controls a neural activity state transition and is required for improved associative learning, providing insight into the maturation of circuits and behavior.
Collapse
Affiliation(s)
- Sarah G Leinwand
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Durrieu M, Wystrach A, Arrufat P, Giurfa M, Isabel G. Fruit flies can learn non-elemental olfactory discriminations. Proc Biol Sci 2020; 287:20201234. [PMID: 33171086 PMCID: PMC7735272 DOI: 10.1098/rspb.2020.1234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
Associative learning allows animals to establish links between stimuli based on their concomitance. In the case of Pavlovian conditioning, a single stimulus A (the conditional stimulus, CS) is reinforced unambiguously with an unconditional stimulus (US) eliciting an innate response. This conditioning constitutes an 'elemental' association to elicit a learnt response from A+ without US presentation after learning. However, associative learning may involve a 'complex' CS composed of several components. In that case, the compound may predict a different outcome than the components taken separately, leading to ambiguity and requiring the animal to perform so-called non-elemental discrimination. Here, we focus on such a non-elemental task, the negative patterning (NP) problem, and provide the first evidence of NP solving in Drosophila. We show that Drosophila learn to discriminate a simple component (A or B) associated with electric shocks (+) from an odour mixture composed either partly (called 'feature-negative discrimination' A+ versus AB-) or entirely (called 'NP' A+B+ versus AB-) of the shock-associated components. Furthermore, we show that conditioning repetition results in a transition from an elemental to a configural representation of the mixture required to solve the NP task, highlighting the cognitive flexibility of Drosophila.
Collapse
Affiliation(s)
- Matthias Durrieu
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
| | - Antoine Wystrach
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
| | - Patrick Arrufat
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institut Universitaire de France (IUF), Paris, France
| | - Guillaume Isabel
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
20
|
Sun F, Zhou J, Dai B, Qian T, Zeng J, Li X, Zhuo Y, Zhang Y, Wang Y, Qian C, Tan K, Feng J, Dong H, Lin D, Cui G, Li Y. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods 2020; 17:1156-1166. [PMID: 33087905 PMCID: PMC7648260 DOI: 10.1038/s41592-020-00981-9] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022]
Abstract
Dopamine (DA) plays a critical role in the brain, and the ability to directly measure dopaminergic activity is essential for understanding its physiological functions. We therefore developed red fluorescent G-protein-coupled receptor-activation-based DA (GRABDA) sensors and optimized versions of green fluorescent GRABDA sensors. In response to extracellular DA, both the red and green GRABDA sensors exhibit a large increase in fluorescence, with subcellular resolution, subsecond kinetics and nanomolar-to-submicromolar affinity. Moreover, the GRABDA sensors resolve evoked DA release in mouse brain slices, detect evoked compartmental DA release from a single neuron in live flies and report optogenetically elicited nigrostriatal DA release as well as mesoaccumbens dopaminergic activity during sexual behavior in freely behaving mice. Coexpressing red GRABDA with either green GRABDA or the calcium indicator GCaMP6s allows tracking of dopaminergic signaling and neuronal activity in distinct circuits in vivo.
Collapse
Affiliation(s)
- Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jingheng Zhou
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Bing Dai
- Neuroscience Institute, Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yajun Zhang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Cheng Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Tan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Dayu Lin
- Neuroscience Institute, Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
21
|
Zhao F, Zeng Y, Guo A, Su H, Xu B. A neural algorithm for Drosophila linear and nonlinear decision-making. Sci Rep 2020; 10:18660. [PMID: 33122701 PMCID: PMC7596070 DOI: 10.1038/s41598-020-75628-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 10/16/2020] [Indexed: 11/15/2022] Open
Abstract
It has been evidenced that vision-based decision-making in Drosophila consists of both simple perceptual (linear) decision and value-based (non-linear) decision. This paper proposes a general computational spiking neural network (SNN) model to explore how different brain areas are connected contributing to Drosophila linear and nonlinear decision-making behavior. First, our SNN model could successfully describe all the experimental findings in fly visual reinforcement learning and action selection among multiple conflicting choices as well. Second, our computational modeling shows that dopaminergic neuron-GABAergic neuron-mushroom body (DA-GABA-MB) works in a recurrent loop providing a key circuit for gain and gating mechanism of nonlinear decision making. Compared with existing models, our model shows more biologically plausible on the network design and working mechanism, and could amplify the small differences between two conflicting cues more clearly. Finally, based on the proposed model, the UAV could quickly learn to make clear-cut decisions among multiple visual choices and flexible reversal learning resembling to real fly. Compared with linear and uniform decision-making methods, the DA-GABA-MB mechanism helps UAV complete the decision-making task with fewer steps.
Collapse
Affiliation(s)
- Feifei Zhao
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Zeng
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Aike Guo
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Shanghai Institute of Microsystem and Information Technology, Shanghai, 200050, China.
| | - Haifeng Su
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bo Xu
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Amin H, Apostolopoulou AA, Suárez-Grimalt R, Vrontou E, Lin AC. Localized inhibition in the Drosophila mushroom body. eLife 2020; 9:56954. [PMID: 32955437 PMCID: PMC7541083 DOI: 10.7554/elife.56954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Many neurons show compartmentalized activity, in which activity does not spread readily across the cell, allowing input and output to occur locally. However, the functional implications of compartmentalized activity for the wider neural circuit are often unclear. We addressed this problem in the Drosophila mushroom body, whose principal neurons, Kenyon cells, receive feedback inhibition from a non-spiking interneuron called the anterior paired lateral (APL) neuron. We used local stimulation and volumetric calcium imaging to show that APL inhibits Kenyon cells’ dendrites and axons, and that both activity in APL and APL’s inhibitory effect on Kenyon cells are spatially localized (the latter somewhat less so), allowing APL to differentially inhibit different mushroom body compartments. Applying these results to the Drosophila hemibrain connectome predicts that individual Kenyon cells inhibit themselves via APL more strongly than they inhibit other individual Kenyon cells. These findings reveal how cellular physiology and detailed network anatomy can combine to influence circuit function.
Collapse
Affiliation(s)
- Hoger Amin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Anthi A Apostolopoulou
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Raquel Suárez-Grimalt
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Eleftheria Vrontou
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
23
|
Michels B, Franke K, Weiglein A, Sultani H, Gerber B, Wessjohann LA. Rewarding compounds identified from the medicinal plant Rhodiola rosea. ACTA ACUST UNITED AC 2020; 223:223/16/jeb223982. [PMID: 32848044 DOI: 10.1242/jeb.223982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Preparations of Rhodiola rosea root are widely used in traditional medicine. They can increase life span in worms and flies, and have various effects related to nervous system function in different animal species and humans. However, which of the compounds in R. rosea is mediating any one of these effects has remained unknown in most cases. Here, an analysis of the volatile and non-volatile low-molecular-weight constituents of R. rosea root samples was accompanied by an investigation of their behavioral impact on Drosophila melanogaster larvae. Rhodiola rosea root samples have an attractive smell and taste to the larvae, and exert a rewarding effect. This rewarding effect was also observed for R. rosea root extracts, and did not require activity of dopamine neurons that mediate known rewards such as sugar. Based on the chemical profiles of R. rosea root extracts and resultant fractions, a bioactivity-correlation analysis (AcorA) was performed to identify candidate rewarding compounds. This suggested positive correlations for - among related compounds - ferulic acid eicosyl ester (FAE-20) and β-sitosterol glucoside. A validation using these as pure compounds confirmed that the correlations were causal. Their rewarding effects can be observed even at low micromolar concentrations and thus at remarkably lower doses than for any known taste reward in the larva. We discuss whether similar rewarding effects, should they be observed in humans, would indicate a habit-forming or addictive potential.
Collapse
Affiliation(s)
- Birgit Michels
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Katrin Franke
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Haider Sultani
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, 39118 Magdeburg, Germany .,Otto von Guericke University, Institute of Biology, 39106 Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Ludger A Wessjohann
- Leibniz Institute of Plant Biochemistry (IPB), Department of Bioorganic Chemistry, 06120 Halle (Saale), Germany
| |
Collapse
|
24
|
Hidalgo S, Fuenzalida-Uribe N, Molina-Mateo D, Escobar AP, Oliva C, España RA, Andrés ME, Campusano JM. Study of the release of endogenous amines in Drosophila brain in vivo in response to stimuli linked to aversive olfactory conditioning. J Neurochem 2020; 156:337-351. [PMID: 32596813 DOI: 10.1111/jnc.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/27/2022]
Abstract
A highly challenging question in neuroscience is to understand how aminergic neural circuits contribute to the planning and execution of behaviors, including the generation of olfactory memories. In this regard, electrophysiological techniques like Local Field Potential or imaging methods have been used to answer questions relevant to cell and circuit physiology in different animal models, such as the fly Drosophila melanogaster. However, these techniques do not provide information on the neurochemical identity of the circuits of interest. Different approaches including fast scan cyclic voltammetry, allow researchers to identify and quantify in a timely fashion the release of endogenous neuroactive molecules, but have been only used in in vitro Drosophila brain preparations. Here, we report a procedure to record for the first time the release of endogenous amines -dopamine, serotonin and octopamine- in adult fly brain in vivo, by fast scan cyclic voltammetry. As a proof of principle, we carried out recordings in the calyx region of the Mushroom Bodies, the brain area mainly associated to the generation of olfactory memories in flies. By using principal component regression in normalized training sets for in vivo recordings, we detect an increase in octopamine and serotonin levels in response to electric shock and olfactory cues respectively. This new approach allows the study of dynamic changes in amine neurotransmission that underlie complex behaviors in Drosophila and shed new light on the contribution of these amines to olfactory processing in this animal model.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,School of Physiology, Pharmacology and Ncxeuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Nicolás Fuenzalida-Uribe
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Molina-Mateo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica P Escobar
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Oliva
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Maria Estela Andrés
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencia UC, Santiago, Chile
| |
Collapse
|
25
|
Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning. J Neurosci 2020; 40:4240-4250. [PMID: 32277043 DOI: 10.1523/jneurosci.1756-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 11/21/2022] Open
Abstract
Aminergic signaling modulates associative learning and memory. Substantial advance has been made in Drosophila on the dopamine receptors and circuits mediating olfactory learning; however, our knowledge of other aminergic modulation lags behind. To address this knowledge gap, we investigated the role of octopamine in olfactory conditioning. Here, we report that octopamine activity through the β-adrenergic-like receptor Octβ1R drives aversive and appetitive learning: Octβ1R in the mushroom body αβ neurons processes aversive learning, whereas Octβ1R in the projection neurons mediates appetitive learning. Our genetic interaction and imaging studies pinpoint cAMP signaling as a key downstream effector for Octβ1R function. The rutabaga-adenylyl cyclase synthesizes cAMP in a Ca2+/calmodulin-dependent manner, serving as a coincidence detector for associative learning and likely representing a downstream target for Octβ1R. Supporting this notion, the double heterozygous rutabaga/+;octβ1r/+ flies perform poorly in both aversive and appetitive conditioning, while individual heterozygous rutabaga/+ and octβ1r/+ flies behave like the wild-type control. Consistently, the mushroom body and projection neurons in the octβ1r brain exhibit blunted responses to octopamine when cAMP levels are monitored through the cAMP sensor. We previously demonstrated the pivotal functions of the D1 receptor dDA1 in aversive and appetitive learning, and the α1 adrenergic-like receptor OAMB in appetitive learning. As expected, octβ1r genetically interacts with dumb (dDA1 mutant) in aversive and appetitive learning, but it interacts with oamb only in appetitive learning. This study uncovers the indispensable contributions of dopamine and octopamine signaling to aversive and appetitive learning. All experiments were performed on mixed sex unless otherwise noted.SIGNIFICANCE STATEMENT Animals make flexible behavioral choices that are constantly shaped by experience. This plasticity is vital for animals to appropriately respond to the cues predicting benefit or harm. In Drosophila, dopamine is known to mediate both reward-based and punishment-based learning while octopamine function is important only for reward. Here, we demonstrate that the octopamine-Octβ1R-cAMP pathway processes both aversive and appetitive learning in distinct neural sites of the olfactory circuit. Furthermore, we show that the octopamine-Octβ1R and dopamine-dDA1 signals together drive both aversive and appetitive learning, whereas the octopamine-Octβ1R and octopamine-OAMB pathways jointly facilitate appetitive, but not aversive, learning. This study identifies the cognate actions of octopamine and dopamine signaling as a key neural mechanism for associative learning.
Collapse
|
26
|
Zamberlan DC, Halmenschelager PT, Silva LFO, da Rocha JBT. Copper decreases associative learning and memory in Drosophila melanogaster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135306. [PMID: 31926406 DOI: 10.1016/j.scitotenv.2019.135306] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Copper is an essential element to all living organisms. Repeated use of metal-enriched chemicals, fertilizers, and organic substances may cause contamination at a large scale. Altered levels of Cu2+ may result in harmful effects and can be associated with memory and cognitive dysfunction. Studying simple, genetically tractable organisms such as Drosophila melanogaster, can reveal important data on the neural basis of conditioning. D. melanogaster is an important alternative experimental model to assess the toxic response to metals. In the present study, the effects of copper on flies' development and in learning and memory retention in male and female adult flies were investigated. We paired an odorant to pain perception and observed the aversion behavior over time. Exposure of D. melanogaster eggs to Cu2+ increased mortality of larvae, pupae, and adults and decreased memory retention in adults. Moreover, male flies demonstrated to be more susceptible to Cu2+ toxicity than females. The results therefore, reinforce the importance of controlling the anthropogenic heavy-metals soil contamination given their hazardous effects to living organisms.
Collapse
Affiliation(s)
- D C Zamberlan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - P T Halmenschelager
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - L F O Silva
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002 Barranquilla, Atlantico, Colombia
| | - J B T da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
27
|
Warth Pérez Arias CC, Frosch P, Fiala A, Riemensperger TD. Stochastic and Arbitrarily Generated Input Patterns to the Mushroom Bodies Can Serve as Conditioned Stimuli in Drosophila. Front Physiol 2020; 11:53. [PMID: 32116764 PMCID: PMC7027390 DOI: 10.3389/fphys.2020.00053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/21/2020] [Indexed: 11/18/2022] Open
Abstract
Single neurons in the brains of insects often have individual genetic identities and can be unambiguously identified between animals. The overall neuronal connectivity is also genetically determined and hard-wired to a large degree. Experience-dependent structural and functional plasticity is believed to be superimposed onto this more-or-less fixed connectome. However, in Drosophila melanogaster, it has been shown that the connectivity between the olfactory projection neurons (OPNs) and Kenyon cells, the intrinsic neurons of the mushroom body, is highly stochastic and idiosyncratic between individuals. Ensembles of distinctly and sparsely activated Kenyon cells represent information about the identity of the olfactory input, and behavioral relevance can be assigned to this representation in the course of associative olfactory learning. Previously, we showed that in the absence of any direct sensory input, artificially and stochastically activated groups of Kenyon cells could be trained to encode aversive cues when their activation coincided with aversive stimuli. Here, we have tested the hypothesis that the mushroom body can learn any stochastic neuronal input pattern as behaviorally relevant, independent of its exact origin. We show that fruit flies can learn thermogenetically generated, stochastic activity patterns of OPNs as conditioned stimuli, irrespective of glomerular identity, the innate valence that the projection neurons carry, or inter-hemispheric symmetry.
Collapse
Affiliation(s)
- Carmina Carelia Warth Pérez Arias
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Patrizia Frosch
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Thomas D Riemensperger
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Perino A, Pereira HM, Navarro LM, Fernández N, Bullock JM, Ceaușu S, Cortés-Avizanda A, van Klink R, Kuemmerle T, Lomba A, Pe'er G, Plieninger T, Rey Benayas JM, Sandom CJ, Svenning JC, Wheeler HC. Rewilding complex ecosystems. Science 2019; 364:364/6438/eaav5570. [PMID: 31023897 DOI: 10.1126/science.aav5570] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The practice of rewilding has been both promoted and criticized in recent years. Benefits include flexibility to react to environmental change and the promotion of opportunities for society to reconnect with nature. Criticisms include the lack of a clear conceptualization of rewilding, insufficient knowledge about possible outcomes, and the perception that rewilding excludes people from landscapes. Here, we present a framework for rewilding that addresses these concerns. We suggest that rewilding efforts should target trophic complexity, natural disturbances, and dispersal as interacting processes that can improve ecosystem resilience and maintain biodiversity. We propose a structured approach to rewilding projects that includes assessment of the contributions of nature to people and the social-ecological constraints on restoration.
Collapse
Affiliation(s)
- Andrea Perino
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. .,Institut für Biologie, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Henrique M Pereira
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. .,Institut für Biologie, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,CIBIO (Research Centre in Biodiversity and Genetic Resources)–InBIO (Research Network in Biodiversity and Evolutionary Biology), Universidade do Porto, Vairão, Portugal
| | - Laetitia M Navarro
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institut für Biologie, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Néstor Fernández
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institut für Biologie, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Silvia Ceaușu
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus, Denmark
| | - Ainara Cortés-Avizanda
- CIBIO (Research Centre in Biodiversity and Genetic Resources)–InBIO (Research Network in Biodiversity and Evolutionary Biology), Universidade do Porto, Vairão, Portugal.,Animal Ecology and Demography Unit, IMEDEA (CSIC-UIB), Balearic Islands (Mallorca), Spain.,Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tobias Kuemmerle
- Geography Department and Integrative Research Institute for Transformations in Human-Environment Systems (IRI THESys), Humboldt University of Berlin, Berlin, Germany
| | - Angela Lomba
- CIBIO (Research Centre in Biodiversity and Genetic Resources)–InBIO (Research Network in Biodiversity and Evolutionary Biology), Universidade do Porto, Vairão, Portugal
| | - Guy Pe'er
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Economics and Department of Ecosystem Services, Helmholtz-Zentrum für Umweltforschung UFZ, Leipzig, Germany
| | - Tobias Plieninger
- Faculty of Organic Agricultural Sciences, University of Kassel, Kassel, Germany.,Department of Agricultural Economics and Rural Development, University of Göttingen, Göttingen, Germany
| | - José M Rey Benayas
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Spain
| | | | - Jens-Christian Svenning
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus, Denmark
| | - Helen C Wheeler
- Department of Biology, Anglia Ruskin University, Cambridge, UK.,Centre d'Écologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique, Paris, France.,Department of Arctic and Marine Biology, UiT Norges Arktiske Universitet, Tromsø, Norway.,Department of Biology, Chemistry and Geography, Université du Quebec à Rimouski, Rimouski, Quebec, Canada
| |
Collapse
|
29
|
Karam CS, Jones SK, Javitch JA. Come Fly with Me: An overview of dopamine receptors in Drosophila melanogaster. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:56-65. [PMID: 31219669 DOI: 10.1111/bcpt.13277] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) receptors play critical roles in a wide range of behaviours, including sensory processing, motor function, reward and arousal. As such, aberrant DA signalling is associated with numerous neurological and psychiatric disorders. Therefore, understanding the mechanisms by which DA neurotransmission drives intracellular signalling pathways that modulate behaviour can provide critical insights to guide the development of targeted therapeutics. Drosophila melanogaster has emerged as a powerful model with unique advantages to study the mechanisms underlying DA neurotransmission and associated behaviours in a controlled and systematic manner. Many regions in the fly brain innervated by dopaminergic neurons have been mapped and linked to specific behaviours, including associative learning and arousal. Here, we provide an overview of the homology between human and Drosophila dopaminergic systems and review the current literature on the pharmacology, molecular signalling mechanisms and behavioural outcome of DA receptor activation in the Drosophila brain.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA
| | - Sandra K Jones
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA.,Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA
| |
Collapse
|