1
|
Chen X, Yuan L, Ma X, Wang J, Wang F, Zhang Y, Cao P, Yang J, Sun R, Chen J, Zhou X, Liu H. Challenging the prognostic expectations: a rare case of ZNF618:: NUTM1-positive B-cell lymphoblastic leukemia with poor outcome. BLOOD SCIENCE 2025; 7:e00230. [PMID: 40115133 PMCID: PMC11925428 DOI: 10.1097/bs9.0000000000000230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/27/2025] [Indexed: 03/23/2025] Open
Affiliation(s)
- Xue Chen
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Lili Yuan
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Xiaoli Ma
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Jianling Wang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Yang Zhang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Panxiang Cao
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Junfang Yang
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Ruijuan Sun
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Jiaqi Chen
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Xiaosu Zhou
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing 100176, China
| | - Hongxing Liu
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing 100176, China
| |
Collapse
|
2
|
Ilyasova K, Zerkalenkova E, Soldatkina O, Kazakova A, Myakova N, Roumiantseva J, Fomynih V, Popov A, Tsaur G, Olshanskaya Y, Maschan M. Genetic Diversity in KMT2A -r and KMT2A -Wt Groups: Assessing the Prognostic Value of Markers in BCP-ALL Among Infants. Int J Lab Hematol 2025; 47:472-480. [PMID: 40000924 DOI: 10.1111/ijlh.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND/OBJECTIVES Infant BCP-ALL is classified into KMT2A-r and KMT2A-wt groups, both showing heterogeneity. KMT2A rearrangements indicate poor prognosis, but outcomes vary by fusion partner. The KMT2A-wt group includes cases in the B-other ALL subgroup, with unclear prognostic significance. We aim to improve understanding of molecular subtypes in KMT2A-r and KMT2A-wt, focusing on NUTM1 and PAX5 rearrangements. METHODS We analyzed 175 infants (aged 0-365 days) diagnosed with BCP-ALL from 2010 to 2023 at the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology. Genomic aberrations were identified by karyotyping, FISH and RNA-seq. RNA-seq was performed using the Illumina, and gene fusions were validated by Sanger sequencing. RESULTS There was no difference in survival based on KMT2A partner genes. The KMT2A::AFF1 group showed similar outcomes to other partners, with 2-year EFS of 36% (95% CI, 21%-59%) versus 37% (95% CI, 23%-60%) (log-rank test, p = 0.9). In the KMT2A-wt group (n = 33, 17.7% of cases), NUTM1-r (n = 9) and PAX5-r (n = 10) accounted for 27% and 30.3%, respectively. The NUTM1-r and PAX5-r groups showed excellent survival rates, with 2-year EFS of 80% (95% CI, 52%-100%) and 100% (95% CI, 100%-100%), respectively, but the small cohort size limit the statistical power of the analysis (log-rank test, p = 0.9). CONCLUSIONS Survival in the KMT2A-r group did not differ by fusion partner. NUTM1 rearrangements showed a favorable prognosis, and PAX5-rearranged patients had better outcomes than previously reported. In the NUTM1-r group, the most common fusion, BRD9:NUTM1, showed variability in breakpoints (Exons 3, 8, and 14 of BRD9).
Collapse
Affiliation(s)
- Karina Ilyasova
- Dmitry Rogachev National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Zerkalenkova
- Dmitry Rogachev National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Olga Soldatkina
- Dmitry Rogachev National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Anna Kazakova
- Dmitry Rogachev National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Natalya Myakova
- Dmitry Rogachev National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Julia Roumiantseva
- Dmitry Rogachev National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Veronica Fomynih
- Dmitry Rogachev National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Popov
- Dmitry Rogachev National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Grigory Tsaur
- Regional Children's Hospital, Yekaterinburg, Russian Federation
- Research Institute of Medical Cell Technologies, Yekaterinburg, Russian Federation
- Ural State Medical University, Yekaterinburg, Russian Federation
| | - Yulia Olshanskaya
- Dmitry Rogachev National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Michael Maschan
- Dmitry Rogachev National Research and Clinical Centre for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|
3
|
Wang'ondu RW, Ashcraft E, Chang TC, Roberts KG, Brady SW, Fan Y, Evans W, Relling MV, Crews KR, Yang J, Yang W, Pounds S, Wu G, Devidas M, Maloney K, Mattano L, Schore RJ, Angiolillo A, Larsen E, Salzer W, Burke MJ, Loh ML, Jeha S, Pui CH, Inaba H, Cheng C, Mullighan CG. Heterogeneity of IKZF1 genomic alterations and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia. Leukemia 2025:10.1038/s41375-025-02633-3. [PMID: 40360879 DOI: 10.1038/s41375-025-02633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Genomic alterations of IKZF1 are common and associated with adverse clinical features in B-progenitor acute lymphoblastic leukemia (B-ALL). The relationship between the type of IKZF1 alteration, B-ALL genomic subtype and outcome are incompletely understood. B-ALL subtype and genomic alterations were determined using transcriptome and genomic sequencing, and SNP microarray analysis in 688 pediatric patients with B-ALL in the St. Jude Total Therapy XV and 16 studies. IKZF1 alterations were identified in 115 (16.7%) patients, most commonly in BCR::ABL1 (78%) and CRLF2-rearranged, BCR::ABL1-like B-ALL (70%). These alterations were associated with 5-year cumulative incidence of relapse (CIR) of 14.8 ± 3.3% compared to 5.0 ± 0.9% for patients without any IKZF1 alteration (P < 0.0001). In separate multivariable analyses adjusting for genetic subtype groups and other factors, IKZF1 deletions of exons 4-7 (P = 0.0002), genomic IKZF1plus with any IKZF1 deletion (P = 0.006) or with focal IKZF1 deletion (P = 0.0007), and unfavorable genomic subtypes (P < 0.005) were independently adverse prognostic factors. Associations of genomic IKZF1plus and exon 4-7 deletions with adverse outcomes were confirmed in an independent cohort. The type of IKZF1 alteration, together with the subtype, are informative for risk stratification and to predict response in patients with B-ALL.
Collapse
Affiliation(s)
- Ruth W Wang'ondu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily Ashcraft
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Samuel W Brady
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kelly Maloney
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | | | - Reuven J Schore
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital, Washington DC, WA, USA
- Department of Pediatrics and Clinical and Translational Oncology Program, George Washington University School of Medicine and Health Sciences, Washington DC, WA, USA
| | | | - Eric Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME, USA
| | - Wanda Salzer
- Uniformed Services University, School of Medicine, Bethesda, MD, USA
| | - Michael J Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mignon L Loh
- Ben Towne Center for Childhood Cancer Research and the Department of Pediatrics, Seattle Children's Hospital, University of Washington, and the Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sima Jeha
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Thomson A, Rehn J, Yeung D, Breen J, White D. Deciphering IGH rearrangement complexity and detection strategies in acute lymphoblastic leukaemia. NPJ Precis Oncol 2025; 9:99. [PMID: 40185891 PMCID: PMC11971345 DOI: 10.1038/s41698-025-00887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
Acute lymphoblastic leukaemia is a highly heterogeneous malignancy characterised by various genomic alterations that influence disease progression and therapeutic outcomes. Gene fusions involving the immunoglobulin heavy chain gene represent a complex and diverse category. These fusions often result in enhancer hijacking, upregulation of partner proto-oncogenes and contribute to leukemogenesis. This review highlights the mechanisms underlying IGH gene fusions, the critical role they play in ALL pathogenesis, and current detection technologies.
Collapse
Affiliation(s)
- Ashlee Thomson
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
| | - Jacqueline Rehn
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - David Yeung
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Haematology Department, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, 5000, Australia
| | - James Breen
- Black Ochre Data Labs, Indigenous Genomics, The Kids Research Institute Australia, Adelaide, SA, 5000, Australia
- James Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia
| | - Deborah White
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Clayton, VIC, 3168, Australia.
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
| |
Collapse
|
5
|
Passet M, Kim R, Clappier E. Genetic subtypes of B-cell acute lymphoblastic leukemia in adults. Blood 2025; 145:1451-1463. [PMID: 39786374 DOI: 10.1182/blood.2023022919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT B-cell acute lymphoblastic leukemia (B-ALL) is a rare malignancy in adults, with outcomes remaining poor, especially compared with children. Over the past 2 decades, extensive whole-genome studies have identified numerous genetic alterations driving leukemia, leading to the recognition of >20 distinct subtypes that are closely associated with treatment response and prognosis. In pediatric B-ALL, large correlation studies have made genetic classification a central component of risk-adapted treatment strategies. Notably, genetic subtypes are unevenly distributed according to age, and the spectrum of genetic alterations and their prognostic relevance in adult B-ALL have been less extensively studied, with treatment primarily based on the presence or absence of BCR::ABL1 fusion. This review provides an overview of genetic subtypes in adult B-ALL, including recent biological and clinical insights in well-established subtypes as well as data on newly recognized subtypes. Their relevance for risk classification, disease monitoring, and therapeutic management, including in the context of B-cell-directed therapies, is discussed. This review advocates for continuing efforts to further improve our understanding of the biology of adult B-ALL to establish the foundation of future precision medicine in B-ALL.
Collapse
Affiliation(s)
- Marie Passet
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rathana Kim
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
6
|
Hidalgo-Gómez G, Tazón-Vega B, Palacio C, Saumell S, Martínez-Morgado N, Navarro V, Murillo L, Velasco P, Murciano T, Díaz de Heredia C, Bosch F, Armengol G, Ortega M. How to combine multiple tools for the genetic diagnosis work-up of pediatric B-cell acute lymphoblastic leukemia. Ann Hematol 2025; 104:2387-2402. [PMID: 39843811 PMCID: PMC12052862 DOI: 10.1007/s00277-024-06151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025]
Abstract
This study investigated the importance of comprehensive genetic diagnosis in pediatric B-cell acute lymphoblastic leukemia (B-ALL). We analyzed 175 B-ALL employing karyotyping, FISH, MLPA, targeted next-generation sequencing (t-NGS), and Optical Genome Mapping (OGM). This approach achieved an 83% classification rate, identifying 17 distinct genetic subtypes. Specifically, within B-other subtype, seven different subgroups were identified (ZNF384, IGH, DUX4, NUTM1 rearrangements, PAX5 alterations, PAX5 P80R, and IKZF1 N159Y). Secondary genetic alterations were observed, with copy number alterations (CNA) present in 60% of cases and mutations detected in 70.6%. While these alterations exhibited specific associations with certain genetic subtypes, CNAs did not appear to significantly impact the prognosis within these genetic groups. HeH, ETV6::RUNX1, ZNF384-r, and PAX5 P80R exhibited excellent outcomes, contrasting with the poor prognoses observed in KMT2A-r, hypodiploidy, and CRLF2-r (5-year overall OS were 50%, 50%, and 52%, respectively). These findings underscore the value of integrated genetic diagnostics for accurate subtyping, risk stratification, and guiding personalized treatment in pediatric B-ALL. Therefore, optimizing diagnostic workflows for routine clinical practice is crucial. Our study confirms the utility of conventional techniques (karyotyping and FISH), combined with t-NGS and OGM, for comprehensive genetic diagnosis.
Collapse
Affiliation(s)
- Gloria Hidalgo-Gómez
- Hematology Service, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autonoma de Barcelona, 08193, Barcelona, Catalonia, Spain
| | - Bárbara Tazón-Vega
- Hematology Service, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Carlos Palacio
- Hematology Service, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Silvia Saumell
- Hematology Service, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Noemi Martínez-Morgado
- Hematology Service, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Víctor Navarro
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Laura Murillo
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Pablo Velasco
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Thais Murciano
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Cristina Díaz de Heredia
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Francesc Bosch
- Hematology Service, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autonoma de Barcelona, 08193, Barcelona, Catalonia, Spain
| | - Margarita Ortega
- Hematology Service, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
7
|
Tamai M, Komatsu C, Kagami K, Kasai S, Akahane K, Goi K, Sugita K, Tomoyasu C, Imamura T, Goto H, Inukai T. Utility of a Large Series of B-Cell Precursor Acute Lymphoblastic Leukemia Cell Lines as a Model System. Cancer Med 2025; 14:e70736. [PMID: 40022573 PMCID: PMC11871424 DOI: 10.1002/cam4.70736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/28/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND In B-cell precursor acute lymphoblastic leukemia (BCP-ALL), chromosomal translocations are strongly associated with prognoses. RNA sequencing (RNA-seq) is a powerful technology that reveals a close correlation between types of translocation and patterns of gene expression in clinical samples of BCP-ALL. Cancer cell lines are powerful research tools, and thus, we built a larger series of BCP-ALL cell lines and performed RNA-seq analysis to confirm their utility as a model system. METHODS We performed RNA-seq in a total of 94 BCP-ALL cell lines, including 80 cell lines with 8 representative types of translocations. RESULTS In the UMAP visualization, a close association was confirmed between the types of fusion genes and patterns of gene expression. In the cluster analysis of the gene expression profile, each type of fusion gene showed a clear association with the expression profile in the top 51 variable genes. Of clinical importance, the majority of the top variable genes in the BCP-ALL cell lines also showed a significant association with the types of fusion genes in the clinical samples. When an association of 125 cell cycle-related genes with the percentage of S and G2/M phases in 67 cell lines was evaluated, a significant positive correlation with cell cycle progression was confirmed in 10 cell cycle-related genes (HDAC2, CDC23, YWHAG, MAD2L1, CCNH, ANAPC7, CDC6, ANAPC5, ORC3, andRBX1). Moreover, significant upregulation and downregulation of 40 and 10 genes, respectively, were observed in the cell lines established at relapse compared with those established at diagnosis. Four (SP6, CCNE1, HIST1H2BH, and DECR2) and two (EVI2B and SYN1) of these genes were also significantly higher and lower, respectively, in the clinical samples at relapse than in those at diagnosis. CONCLUSION Large series of BCP-ALL cell lines is a powerful research tool for studying the mechanisms of leukemogenesis and the disease progression of BCP-ALL.
Collapse
Affiliation(s)
- Minori Tamai
- Global Leukemia Cell‐Line Assembly NetworkUniversity of YamanashiYamanashiJapan
- Department of PediatricsUniversity of YamanashiYamanashiJapan
| | - Chiaki Komatsu
- Global Leukemia Cell‐Line Assembly NetworkUniversity of YamanashiYamanashiJapan
| | - Keiko Kagami
- Global Leukemia Cell‐Line Assembly NetworkUniversity of YamanashiYamanashiJapan
| | - Shin Kasai
- Department of PediatricsUniversity of YamanashiYamanashiJapan
| | - Koshi Akahane
- Global Leukemia Cell‐Line Assembly NetworkUniversity of YamanashiYamanashiJapan
- Department of PediatricsUniversity of YamanashiYamanashiJapan
| | - Kumiko Goi
- Global Leukemia Cell‐Line Assembly NetworkUniversity of YamanashiYamanashiJapan
- Department of PediatricsUniversity of YamanashiYamanashiJapan
| | - Kanji Sugita
- Global Leukemia Cell‐Line Assembly NetworkUniversity of YamanashiYamanashiJapan
| | - Chihiro Tomoyasu
- Department of PediatricsGraduate School of Medical Science, Kyoto Prefectural University of MedicineKyotoJapan
| | - Toshihiko Imamura
- Department of PediatricsGraduate School of Medical Science, Kyoto Prefectural University of MedicineKyotoJapan
| | - Hiroaki Goto
- Hematology/OncologyKanagawa Children's Medical CenterKanagawaJapan
| | - Takeshi Inukai
- Global Leukemia Cell‐Line Assembly NetworkUniversity of YamanashiYamanashiJapan
- Department of PediatricsUniversity of YamanashiYamanashiJapan
| |
Collapse
|
8
|
Li Q, Xing S, Zhang H, Mao X, Xiao M, Wang Y. FISH combined with RT-PCR facilitates classification of Chinese adult patients with B-other ALL through improved identification of ZNF384 rearrangement. Leuk Lymphoma 2025; 66:507-515. [PMID: 39520726 DOI: 10.1080/10428194.2024.2426055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
ZNF384 gene rearrangements are a distinct subtype of adult B cell acute lymphoblastic leukemia (B-ALL). We screened 46 B-other ALL patients for ZNF384 fusions using fluorescent in situ hybridization (FISH) and reverse transcription-polymerase chain reaction (RT-PCR). Clinical data, treatment response, and minimal residual disease (MRD) status were analyzed. Ten (21.7%) patients were ZNF384-r positive (nine by FISH, nine by RT-PCR, eight by both). FISH showed atypical signals, including 3' signal gain and 5' signal deletion. EP300 was the main fusion partner (n = 5). TAF15::ZNF384, SYNRG::ZNF384, CREBBP::ZNF384, and TCF3::ZNF384 fusions were found in one patient each; one case's partner gene is unknown. One patient was MRD-negative at the end of the first induction, lower than in patients without ZNF384-r. ZNF384-r incidence matched B-other ALL incidence in Chinese patients. Combined FISH and RT-PCR improved detection. ALL with ZNF384-r has unique features, and lower MRD-negative response may indicate a negative impact on traditional treatments.
Collapse
Affiliation(s)
- Qinlu Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shugang Xing
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Csizmar CM, Litzow MR, Saliba AN. Antibody-Based and Other Novel Agents in Adult B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2025; 17:779. [PMID: 40075627 PMCID: PMC11899621 DOI: 10.3390/cancers17050779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Despite notable progress in managing B-cell acute lymphoblastic leukemia (B-ALL) over recent decades, particularly in pediatric cohorts where the 5-year overall survival (OS) reaches 90%, outcomes for the 10-15% with relapsed and refractory disease remain unfavorable. This disparity is further accentuated in adults, where individuals over the age of 40 years undergoing aggressive multiagent chemotherapy continue to have lower survival rates. While the adoption of pediatric-inspired treatment protocols has enhanced complete remission (CR) rates among younger adults, 20-30% of these patients experience relapse, resulting in a subsequent 5-year OS rate of 40-50%. For relapsed B-ALL in adults, there is no universally accepted standard salvage therapy, and the median OS is short. The cornerstone of B-ALL treatment continues to be the utilization of combined cytotoxic chemotherapy regimens to maximize early and durable disease control. In this manuscript, we go beyond the multiagent chemotherapy medications developed prior to the 1980s and focus on the incorporation of antibody-based therapy for B-ALL with an eye on existing and upcoming approved indications for blinatumomab, inotuzumab ozogamicin, other monoclonal antibodies, and chimeric antigen receptor (CAR) T cell products in frontline and relapsed/refractory settings. In addition, we discuss emerging investigational therapies that harness the therapeutic vulnerabilities of the disease through targeting apoptosis, modifying epigenetics, and inhibiting the mTOR pathway.
Collapse
Affiliation(s)
- Clifford M. Csizmar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Antoine N. Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
10
|
Péterffy B, Krizsán S, Egyed B, Bedics G, Benard-Slagter A, Palit S, Erdélyi DJ, Müller J, Nagy T, Hegyi LL, Bekő A, Kenéz LA, Jakab Z, Péter G, Zombori M, Csanádi K, Ottóffy G, Csernus K, Vojcek Á, Tiszlavicz LG, Gábor KM, Kelemen Á, Hauser P, Kállay K, Kertész G, Gaál Z, Szegedi I, Barna G, Márk Á, Haltrich I, Hevessy Z, Ujfalusi A, Kajtár B, Timár B, Kiss C, Kriván G, Matolcsy A, Savola S, Kovács G, Bödör C, Alpár D. Molecular Profiling Reveals Novel Gene Fusions and Genetic Markers for Refined Patient Stratification in Pediatric Acute Lymphoblastic Leukemia. Mod Pathol 2025; 38:100741. [PMID: 40010436 DOI: 10.1016/j.modpat.2025.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Risk-adapted treatment protocols conferred remarkable improvement in the survival rates of pediatric acute lymphoblastic leukemia/lymphoma (ALL/LBL). Nevertheless, clinical management is still challenging in certain molecular subgroups and in the presence of alterations associated with an increased rate of relapse. In this study, disease-relevant genomic and transcriptomic profiles were established in a prospective, multicenter, real-world cohort involving 192 children diagnosed with ALL/LBL. Gene fusions were detected in 34.9% of B-ALL and 46.4% of T-ALL patients, with novel chimeric genes involving JAK2, KMT2A, PAX5, RUNX1, and NOTCH1, and with KMT2A-rearranged patients displaying the worst 3-year event-free survival (P = .019). Nonsynonymous mutations were uncovered in 74.9% of the analyzed patients, and pairwise scrutiny of genetic lesions revealed recurrent clonal selection mechanisms commonly converging on the same pathway (eg, Ras, JAK/STAT, and Notch) in individual patients. Investigation of matched diagnostic and relapse samples unraveled complex subclonal variegation, and mutations affecting the NT5C2, TP53, CDKN2A, and PIK3R1 genes, emerging at the time of relapse. TP53 and CREBBP mutations, even as subclonal aberrations, were associated with shorter 3-year event-free survival among all patients with B-ALL (TP53 mutant vs wild-type: P = .008, CREBBP mutant vs wild-type: P = .010), and notably, B-ALL patients showing no measurable residual disease on day 33 could be further stratified based on TP53 mutational status (P < .001). Our in-depth molecular characterization performed across all risk groups identified novel opportunities for molecularly targeted therapy in 55.9% of high-risk and 31.6% of standard/intermediate-risk patients.
Collapse
Affiliation(s)
- Borbála Péterffy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Gábor Bedics
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Sander Palit
- MRC Holland, Department of Oncogenetics, Amsterdam, The Netherlands
| | | | - Judit Müller
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Tibor Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Bekő
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lili Anna Kenéz
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Hungarian Childhood Cancer Registry, Hungarian Pediatric Oncology Network, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Marianna Zombori
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, Oncohaematology Division, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Csernus
- Department of Pediatrics, Oncohaematology Division, University of Pécs Medical School, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, Oncohaematology Division, University of Pécs Medical School, Pécs, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Pediatrics and Pediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Krisztina Mita Gábor
- Department of Pediatrics and Pediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ágnes Kelemen
- Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Péter Hauser
- Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Krisztián Kállay
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Kertész
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Zsuzsanna Gaál
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Barna
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ágnes Márk
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Botond Timár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Kriván
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Suvi Savola
- MRC Holland, Department of Oncogenetics, Amsterdam, The Netherlands
| | - Gábor Kovács
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
11
|
Wang JY, Gui TT, Jiao B, Liu X, Ma XL, Wang C, Qiao J, Liu WY, Peng LJ, Ren JY, Zhu YM, Weng XQ, Wang C, Zhang QQ, Song GX, Dai YT, Wang ZY, Lv G, Gao CX, Qiao N, Zhang M, Tan Y, Liu YF, Wang SY, Hou J, Jing DH, Lyu AK, Mi JQ, Chen Z, Chen WL, Yin T, Fang H, Wang J, Chen SJ. Metabolomic insights into pathogenesis and therapeutic potential in adult acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2025; 122:e2423169122. [PMID: 39946534 PMCID: PMC11848409 DOI: 10.1073/pnas.2423169122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/03/2025] [Indexed: 02/26/2025] Open
Abstract
Acute lymphoblastic leukemia (ALL) poses challenges in adult patients, considering its heterogeneous nature and often suboptimal treatment outcomes. Here, we performed a study on 201 newly diagnosed adult ALL cases (age ≥ 15 y) to generate intracellular and dynamic serum metabolomic profiles. Our findings revealed a predominant increase in bile acid (BA) metabolites in serum, alongside metabolic rewiring that supported highly proliferative states and actively metabolic signaling, such as enriched nucleotide metabolism in leukemic blasts. By integrating intracellular metabolomics and transcriptomics, we constructed the Comprehensive Metabolic Information Dataset (CMID), which facilitated the development of a clustering system to supplement current risk stratification. Furthermore, we explored potential metabolic interventions targeting the serum BA profile and energy metabolism in blasts. The combined use of simvastatin with vincristine and dexamethasone regimen demonstrated a synergistic therapeutic effect in a murine ALL model, effectively lowering key BA levels in serum and suppressing the infiltration of leukemic blasts in the liver. In light of the enhanced intracellular redox metabolism, combining FK866 (a nicotinamide phosphoribosyltransferase inhibitor) and venetoclax significantly prolonged survival in a patient-derived xenograft ALL model. Our findings, along with the resulting resources (http://www.genetictargets.com/MALL), provide a framework for the metabolism-centered management of ALL.
Collapse
Affiliation(s)
- Jun-Yu Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai200032, China
| | - Tuan-Tuan Gui
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200030, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xuan Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao-Lin Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200030, China
| | - Cheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jing Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wei-Yang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Li-Jun Peng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jia-Yi Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yong-Mei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Chao Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Qian-Qian Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Gao-Xian Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Zhen-Yi Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Gang Lv
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Chen-Xu Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Niu Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yuan-Fang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Sheng-Yue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| | - Duo-Hui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - An-Kang Lyu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai200032, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| |
Collapse
|
12
|
Li L, Xiao H, Wu X, Tang Z, Khoury JD, Wang J, Wan S. RanBALL: An Ensemble Random Projection Model for Identifying Subtypes of B-Cell Acute Lymphoblastic Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.24.614777. [PMID: 39386448 PMCID: PMC11463541 DOI: 10.1101/2024.09.24.614777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
As the most common pediatric malignancy, B-cell acute lymphoblastic leukemia (B-ALL) has multiple distinct subtypes characterized by recurrent and sporadic somatic and germline genetic alterations. Identifying B-ALL subtypes can facilitate risk stratification and enable tailored therapeutic design. Existing methods for B-ALL subtyping primarily depend on immunophenotyping, cytogenetic tests and genomic profiling, which would be costly, complicated, and laborious. To overcome these challenges, we present RanBALL (an ensemble Random projection-based model for identifying B-ALL subtypes), an accurate and cost-effective model for B-ALL subtype identification. By leveraging random projection (RP) and ensemble learning, RanBALL can preserve patient-to-patient distances after dimension reduction and yield robustly accurate classification performance for B-ALL subtyping. Benchmarking results based on > 1700 B-ALL patients demonstrated that RanBALL achieved remarkable performance (accuracy: 0.93, F1-score: 0.93, and Matthews correlation coefficient: 0.93), significantly outperforming state-of-the-art methods like ALLSorts in terms of all performance metrics. In addition, RanBALL performs better than tSNE in terms of visualizing B-ALL subtype information. We believe RanBALL will facilitate the discovery of B-ALL subtype-specific marker genes and therapeutic targets to have consequential positive impacts on downstream risk stratification and tailored treatment design. To extend its applicability and impacts, a Python-based RanBALL package is available at https://github.com/wan-mlab/RanBALL.
Collapse
Affiliation(s)
- Lusheng Li
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hanyu Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xinchao Wu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhenya Tang
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Iacobucci I, Papayannidis C. SOHO State of the Art Updates and Next Questions | Approach to BCR::ABL1-Like Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:13-22. [PMID: 39217000 DOI: 10.1016/j.clml.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Philadelphia-like (Ph-like) or BCR::ABL1-like acute lymphoblastic leukemia (ALL) is a common high-risk subtype of B-cell precursor ALL (B-ALL) characterized by a diverse range of genetic alterations that challenge diagnose and converge on distinct kinase and cytokine receptor-activated gene expression profiles, resembling those from BCR::ABL1-positive ALL from which its nomenclature. The presence of kinase-activating genetic drivers has prompted the investigation in preclinical models and clinical settings of the efficacy of tyrosine kinase inhibitor (TKI)-based treatments. This was further supported by an inadequate response to conventional chemotherapy, high rates of induction failure and persistent measurable residual disease (MRD) positivity, which translate in lower survival rates compared to other B-ALL subtypes. Therefore, innovative approaches are underway, including the integration of TKIs with frontline regimens and the early introduction of immunotherapy strategies (monoclonal antibodies, T-cell engagers, drug-conjugates, and CAR-T cells). Allogeneic hematopoietic cell transplantation (HSCT) is currently recommended for adult BCR::ABL1-like ALL patients in first complete remission. However, the incorporation of novel therapies, a more accurate diagnosis and a more sensitive MRD assessment may modify the risk stratification and the indication for transplant in these patients.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia Seragnoli, Bologna, Italy
| |
Collapse
|
14
|
Choi JK, Quintanilla-Martinez L. Pediatric lymphomas: overview and diagnostic challenges. Virchows Arch 2025; 486:81-100. [PMID: 39707053 PMCID: PMC11782321 DOI: 10.1007/s00428-024-03980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Only 10% of new lymphoma diagnoses in the USA occur in children < 15 years. Although the same diagnostic criteria apply to both adult and pediatric lymphomas, there are important differences in some lymphoma subtypes. These differences are recognized by the World Health Organization (WHO) with the recent 2022 classification of pediatric tumors including pediatric hematopoietic tumors. Here, we review the WHO classification scheme for pediatric lymphomas and summarize the diagnostic criteria, recent genetic findings, and differences from their adult counterparts for some subtypes including those yet to be included as a definitive subtype. In general, there are differences in relatively frequency, genetic mutation, and prognosis with the pediatric counterpart often having better prognosis. Emerging B-cell lymphomas with recurrent gene alterations such as IRF4 rearrangement and 11q gain/loss chromosomal alterations will be reviewed. The overlapping pathological, clinical, and molecular features between pediatric-type follicular lymphoma (PTFL) and pediatric nodal marginal zone lymphoma (PNMZL) suggesting one disease with broad morphological spectrum will be discussed. The pathogenetic role of EBV in subclassifying Burkitt lymphoma is highlighted. The revised classification of the EBV-positive lymphoproliferative disorders in children is discussed. This review will focus on novel findings, areas of special interest, and diagnostic challenges in pediatric lymphomas.
Collapse
Affiliation(s)
- John Kim Choi
- Department of Pathology, The University of Alabama at Birmingham, WP P30N, 619 19Th Street South, Birmingham, AL, 35249-7331, USA.
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tuebingen and Comprehensive Cancer Center, University Hospital Tuebingen, Liebermeisterstr. 8, 72076, Tuebingen, Germany.
| |
Collapse
|
15
|
Kismali G, Manyam G, Jain N, Ivan C, Lamothe B, Ayres ML, Iles LR, Wierda WG, Gandhi V. Transcriptomic clustering of chronic lymphocytic leukemia: molecular subtypes based on Bruton's tyrosine kinase expression levels. Blood Cancer J 2024; 14:220. [PMID: 39695112 DOI: 10.1038/s41408-024-01196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Historically, CLL prognostication relied on disease burden, reflected in clinical stage. Later, chromosome abnormalities and genomics suggested several CLL subtypes which were aligned with response to therapy. Gene expression profiling data identified pathways associated with CLL progression. We hypothesized that transcriptome and proteome may identify functional omics associated with CLL nosology. As a test cohort, we utilized publicly available treatment-naïve CLL transcriptomics data (n = 130) and did consensus clustering that identified BTK-expression-based clusters. The BTK-High and BTK-Low clusters were validated in public and our in-house databases (n = >550 CLL patients). To associate with functional relevance, we took samples from 151 previously treated patient with CLL and analyzed them using RNA sequencing and reverse-phase protein array. Transcript levels were strongly correlated with BTK protein levels. BTK-High subtype showed increased CCL3/CCL4 levels and disease burden such as high WBC. BTK-Low subtype showed down-regulated mRNA/proteins of DNA-repair pathway and increased DNA-damage-response, which may have contributed to enrichment of inflammatory pathway. BTK-Low subtype was rich in proapoptotic gene and protein expression and relied less on BCR pathway. High-BTK subgroup was enriched in replication/repair pathway and transcription machinery. In conclusion, profiling of 5 datasets of ~700 patients revealed unique BTK-associated expression clusters in CLL.
Collapse
Affiliation(s)
- Gorkem Kismali
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Ankara University Faculty of Veterinary Medicine, Department of Biochemistry, Ankara, Turkey
| | - Ganiraju Manyam
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Caris Life Sciences, Irving, TX, USA
| | - Betty Lamothe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Incyte Pharmaceuticals, Wilmington, Delaware, USA
| | - Mary L Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - LaKesla R Iles
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Ramírez Maldonado V, Navas Acosta J, Maldonado Marcos I, Villaverde Ramiro Á, Hernández-Sánchez A, Hernández Rivas JM, Benito Sánchez R. Unraveling the Genetic Heterogeneity of Acute Lymphoblastic Leukemia Based on NGS Applications. Cancers (Basel) 2024; 16:3965. [PMID: 39682152 DOI: 10.3390/cancers16233965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological neoplasm characterized by the clonal expansion of abnormal lymphoid precursors in bone marrow, which leads to alterations in the processes of cell differentiation and maturation as a consequence of genetic alterations. The integration of conventional methods, such as cytogenetics and immunophenotyping, and next-generation sequencing (NGS) has led to significant improvements at diagnosis and patient stratification; this has also allowed the discovery of several novel molecular entities with specific genetic variants that may drive the processes of leukemogenesis. Nevertheless, the understanding of the process of leukemogenesis remains a challenge since this disease persists as the most frequent cancer in children; it accounts for approximately one-quarter of adult acute leukemias, and the patient management may take into consideration the high intra- and inter-tumor heterogeneity and the relapse risk due to the various molecular events that can occur during clonal evolution. Some germline variants have been identified as risk factors or have been found to be related to the response to treatment. Therefore, better knowledge of the genetic alterations in B-ALL will have a prognostic impact from the perspective of personalized medicine. This review aims to compare, synthesize, and highlight recent findings concerning ALL obtained through NGS that have led to a better understanding of new molecular subtypes based on immunophenotypic characteristics, mutational profiles, and expression profiles.
Collapse
Affiliation(s)
- Valentina Ramírez Maldonado
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Josgrey Navas Acosta
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Iván Maldonado Marcos
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ángela Villaverde Ramiro
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Hernández-Sánchez
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Jesús M Hernández Rivas
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Rocío Benito Sánchez
- Centro de Investigación del Cáncer, IBMCC, CSIC, Universidad de Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca) Campus, Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
17
|
Liu X, Jiang D, Liu Y, Xie K, Zhao Y, Liu F. Crispr-Cas9-based long non-coding RNA interference and activation identified that the aberrant expression of Myc-regulated ST8SIA6 antisense RNA 1 promotes tumorigenesis and metastasis in hepatocellular carcinoma. Cytojournal 2024; 21:53. [PMID: 39737136 PMCID: PMC11683396 DOI: 10.25259/cytojournal_109_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/26/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Long non-coding RNAs (lncRNAs) participate in the formation, progression, and metastasis of cancer. This study aimed to explore the roles of the lncRNA ST8SIA6 antisense RNA 1 (ST8SIA6-AS1) in tumorigenesis and elucidate the underlying molecular mechanism of its upregulation in hepatocellular carcinoma (HCC). Material and Methods A total of 56 in-house pairs of HCC tissues were examined, and ST8SIA6-AS1 levels were determined through real-time polymerase chain reaction (PCR). The biological behavior of ST8SIA6-AS1 by Crispr-Cas9-based gene repression and activation was determined in vitro and in vivo. The binding sites and biological behavior of Myc proto-oncogene and forkhead box A on chromatin were investigated through luciferase reporter assays, chromatin immunoprecipitation-quantitative PCR, and co-immunoprecipitation (co-IP) assays. The regulatory mechanisms of ST8SIA6-AS1 expression were analyzed with encyclopedia of DNA elements and gene expression profiling interactive analysis. Results The expression of ST8SIA6-AS1 significantly increased in multiple HCC cell lines and the 56 in-house pairs of HCC tissues (P = 0.0018). Functionally, high-efficiency Crispr-Cas9-based knockdown of ST8SIA6-AS1 revealed that ST8SIA6-AS1 knockdown attenuated the proliferation, migration, and infiltration of HCC cells and considerably reduced the growth rate of subcutaneous and orthotopic HCC tumors. Conversely, ST8SIA6-AS1 overexpression considerably improved the oncogenic characteristics of the HCC cells. Furthermore, ST8SIA6-AS1 upregulation was regulated by the direct binding of transcription factor Myc to the -260 bp to+155 bp and +1003 bp to +1312 bp regions of the ST8SIA6-AS1 transcription start site, which is a segment with high level of H3K27 acetylation. Myc knockdown or treatment with the BET bromodomain inhibitor JQ-1 considerably reduced ST8SIA6-AS1 RNA expression in the HCC cells. Conclusion Our study has established the oncogenic role of ST8SIA6-AS1 and elucidated the Myc-dependent upregulation mechanism of ST8SIA6-AS1 in HCC, providing a profound theoretical molecular basis for the carcinogenic function of ST8SIA6-AS1 in HCC.
Collapse
Affiliation(s)
- Xueqian Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dong Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Xie
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yijun Zhao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fubao Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Beck D, Cao H, Tian F, Huang Y, Jiang M, Zhao H, Tai X, Xu W, Kosasih HJ, Kealy DJ, Zhao W, Taylor SJ, Couttas TA, Song G, Chacon-Fajardo D, Walia Y, Wang M, Dowle AA, Holding AN, Bridge KS, Zhang C, Wang J, Mi JQ, Lock RB, de Bock CE, Jing D. PU.1 eviction at lymphocyte-specific chromatin domains mediates glucocorticoid response in acute lymphoblastic leukemia. Nat Commun 2024; 15:9697. [PMID: 39516193 PMCID: PMC11549222 DOI: 10.1038/s41467-024-54096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The epigenetic landscape plays a critical role in cancer progression, yet its therapeutic potential remains underexplored. Glucocorticoids are essential components of treatments for lymphoid cancers, but resistance, driven in part by epigenetic changes at glucocorticoid-response elements, poses a major challenge to effective therapies. Here we show that glucocorticoid treatment induces distinct patterns of chromosomal organization in glucocorticoid-sensitive and resistant acute lymphoblastic leukemia xenograft models. These glucocorticoid-response elements are primed by the pioneer transcription factor PU.1, which interacts with the glucocorticoid receptor. Eviction of PU.1 promotes receptor binding, increasing the expression of genes involved in apoptosis and facilitating a stronger therapeutic response. Treatment with a PU.1 inhibitor enhances glucocorticoid sensitivity, demonstrating the clinical potential of targeting this pathway. This study uncovers a mechanism involving PU.1 and the glucocorticoid receptor, linking transcription factor activity with drug response, and suggesting potential therapeutic strategies for overcoming resistance.
Collapse
Affiliation(s)
- Dominik Beck
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.
| | - Honghui Cao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Tian
- Hebei Key Laboratory of Medical Data Science, Institute of Biomedical Informatics, School of Medicine, Hebei University of Engineering, Handan, Hebei Province, China
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Miao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Tai
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqian Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hansen J Kosasih
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - David J Kealy
- Centre for Blood Research, University of York, England, UK
| | - Weiye Zhao
- York Biomedical Research Institute, University of York, England, UK
| | - Samuel J Taylor
- Department of Cell Biology, Albert Einstein College of Medicine, Randwick, NY, USA
| | - Timothy A Couttas
- Neuroscience Research Australia, Randwick, NSW, Australia
- Brain and Mind Centre, Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gaoxian Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Diego Chacon-Fajardo
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
| | - Yashna Walia
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Meng Wang
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Adam A Dowle
- Metabolomics & Proteomics Laboratory, Bioscience Technology Facility, Department of Biology, University of York, England, UK
| | - Andrew N Holding
- York Biomedical Research Institute, University of York, England, UK
| | | | - Chao Zhang
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Chang TC, Chen W, Qu C, Cheng Z, Hedges D, Elsayed A, Pounds SB, Shago M, Rabin KR, Raetz EA, Devidas M, Cheng C, Angiolillo A, Baviskar P, Borowitz M, Burke MJ, Carroll A, Carroll WL, Chen IM, Harvey R, Heerema N, Iacobucci I, Wang JR, Jeha S, Larsen E, Mattano L, Maloney K, Pui CH, Ramirez NC, Salzer W, Willman C, Winick N, Wood B, Hunger SP, Wu G, Mullighan CG, Loh ML. Genomic Determinants of Outcome in Acute Lymphoblastic Leukemia. J Clin Oncol 2024; 42:3491-3503. [PMID: 39121442 PMCID: PMC11458106 DOI: 10.1200/jco.23.02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 08/11/2024] Open
Abstract
PURPOSE Although cure rates for childhood acute lymphoblastic leukemia (ALL) exceed 90%, ALL remains a leading cause of cancer death in children. Half of relapses arise in children initially classified with standard-risk (SR) disease. MATERIALS AND METHODS To identify genomic determinants of relapse in children with SR ALL, we performed genome and transcriptome sequencing of diagnostic and remission samples of children with SR (n = 1,381) or high-risk B-ALL with favorable cytogenetic features (n = 115) enrolled on Children's Oncology Group trials. We used a case-control study design analyzing 439 patients who relapsed and 1,057 who remained in complete remission for at least 5 years. RESULTS Genomic subtype was associated with relapse, which occurred in approximately 50% of cases of PAX5-altered ALL (odds ratio [OR], 3.31 [95% CI, 2.17 to 5.03]; P = 3.18 × 10-8). Within high-hyperdiploid ALL, gain of chromosome 10 with disomy of chromosome 7 was associated with favorable outcome (OR, 0.27 [95% CI, 0.17 to 0.42]; P = 8.02 × 10-10; St Jude Children's Research Hospital validation cohort: OR, 0.22 [95% CI, 0.05 to 0.80]; P = .009), and disomy of chromosomes 10 and 17 with gain of chromosome 6 was associated with relapse (OR, 7.16 [95% CI, 2.63 to 21.51]; P = 2.19 × 10-5; validation cohort: OR, 21.32 [95% CI, 3.62 to 119.30]; P = .0004). Genomic alterations were associated with relapse in a subtype-dependent manner, including alterations of INO80 in ETV6::RUNX1 ALL, IKZF1, and CREBBP in high-hyperdiploid ALL and FHIT in BCR::ABL1-like ALL. Genomic alterations were also associated with the presence of minimal residual disease, including NRAS and CREBBP in high-hyperdiploid ALL. CONCLUSION Genetic subtype, patterns of aneuploidy, and secondary genomic alterations determine risk of relapse in childhood ALL. Comprehensive genomic analysis is required for optimal risk stratification.
Collapse
Affiliation(s)
- Ti-Cheng Chang
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Wenan Chen
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
- Division of Computational Biology, Mayo Clinic, Rochester, MN
| | - Chunxu Qu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Dale Hedges
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
- Deceased
| | - Abdelrahman Elsayed
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | - Stanley B. Pounds
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | - Mary Shago
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Karen R. Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Elizabeth A. Raetz
- Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Hospital, New York, NY
| | - Meenakshi Devidas
- Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | | | | | - Michael Borowitz
- Department of Pathology, Johns Hopkins University, Baltimore, MD
| | - Michael J. Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Andrew Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - William L. Carroll
- Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Hospital, New York, NY
| | - I-Ming Chen
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - Richard Harvey
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | | | - Ilaria Iacobucci
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Jeremy R. Wang
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sima Jeha
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Eric Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME
| | | | - Kelly Maloney
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado, Aurora, CO
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Nilsa C. Ramirez
- Departments of Pathology and Pediatrics, Institute for Genomic Medicine and Biopathology Center, Nationwide Children's Hospital, Ohio State University, Columbus, OH
| | - Wanda Salzer
- Uniformed Services University, School of Medicine, Bethesda, MD
| | - Cheryl Willman
- Department of Laboratory Medicine and Pathology and Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN
| | - Naomi Winick
- Department of Pediatric Hematology Oncology and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Brent Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Stephen P. Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | | | - Mignon L. Loh
- Department of Pediatrics and the Ben Towne Center for Childhood Cancer Research, Seattle Children's Hospital, University of Washington, Seattle, WA
| |
Collapse
|
20
|
Huang XT, Wang CJ, Gao C, Xue TL, Zhao ZJ, Wang TY, Wu MY, Cui L, Zhang RD, Li ZG. Relationship between subtype-specific minimal residual disease level and long-term prognosis in children with acute lymphoblastic leukemia. Ann Hematol 2024; 103:3657-3665. [PMID: 38494553 DOI: 10.1007/s00277-024-05687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Minimal residual disease (MRD) based risk stratification criteria for specific genetic subtypes remained unclear in childhood acute lymphoblastic leukemia (ALL). Among 723 children with newly diagnosed ALL treated with the Chinese Children Leukemia Group CCLG-2008 protocol, MRD was assessed at time point 1 (TP1, at the end of induction) and TP2 (before consolidation treatment) and the MRD levels significantly differed in patients with different fusion genes or immunophenotypes (P all < 0.001). Moreover, the prognostic impact of MRD varied by distinct molecular subtypes. We stratified patients in each molecular subtype into two MRD groups based on the results. For patients carrying BCR::ABL1 or KMT2A rearrangements, we classified patients with MRD < 10-2 at both TP1 and TP2 as the low MRD group and the others as the high MRD group. ETV6::RUNX1+ patients with TP1 MRD < 10-3 and TP2 MRD-negative were classified as the low MRD group and the others as the high MRD group. For T-ALL, We defined children with TP1 MRD ≥ 10-3 as the high MRD group and the others as the low MRD group. The 10-year relapse-free survival of low MRD group was significantly better than that of high MRD group. We verified the prognostic impact of the subtype-specific MRD-based stratification in patients treated with the BCH-ALL2003 protocol. In conclusion, the subtype-specific MRD risk stratification may contribute to the precise treatment of childhood ALL.
Collapse
Affiliation(s)
- Xiao-Tong Huang
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Chan-Juan Wang
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Chao Gao
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Tian-Lin Xue
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Zi-Jing Zhao
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Tian-You Wang
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Min-Yuan Wu
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Lei Cui
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China.
| | - Rui-Dong Zhang
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China.
| | - Zhi-Gang Li
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
- National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Pediatric Hematology-Oncology, Hematology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Yang M, Tang Y, Zhu P, Lu H, Wan X, Guo Q, Xiao L, Liu C, Guo L, Liu W, Yang Y. The advances of E2A-PBX1 fusion in B-cell acute lymphoblastic Leukaemia. Ann Hematol 2024; 103:3385-3398. [PMID: 38148344 DOI: 10.1007/s00277-023-05595-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
The E2A-PBX1 gene fusion is a common translocation in B-cell acute lymphoblastic leukaemia. Patients harbouring the E2A-PBX1 fusion gene typically exhibit an intermediate prognosis. Furthermore, minimal residual disease has unsatisfactory prognostic value in E2A-PBX1 B-cell acute lymphoblastic leukaemia. However, the mechanism of E2A-PBX1 in the occurrence and progression of B-cell acute lymphoblastic leukaemia is not well understood. Here, we mainly review the roles of E2A and PBX1 in the differentiation and development of B lymphocytes, the mechanism of E2A-PBX1 gene fusion in B-cell acute lymphoblastic leukaemia, and the potential therapeutic approaches.
Collapse
Affiliation(s)
- Mengting Yang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanhui Tang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Peng Zhu
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, People's Republic of China
| | - Haiquan Lu
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohong Wan
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Xiao
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunyan Liu
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenjun Liu
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China.
| | - You Yang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China.
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
22
|
Pan L, Chen Y, Weng K, Guo B, Zhuang S, Huang S, Lian Z, Wang X, Li N, Zheng Y. Prognostic significance and treatment strategies for IKZF1 deletion in pediatric B-cell precursor acute lymphoblastic leukemia. BMC Cancer 2024; 24:1070. [PMID: 39210321 PMCID: PMC11363382 DOI: 10.1186/s12885-024-12828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The predictive importance of IKZF1del in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has shown variability across different studies. Thus, the optimal treatment approach for children with IKZF1del BCP-ALL remains contentious, with the ongoing debate surrounding the use of IKZF1del-based high-risk stratification versus a minimal residual disease (MRD)-guided protocol. METHODS IKZF1 status was reliably determined in 804 patients using multiplex ligation-dependent probe amplification (MLPA) data obtained from four hospitals in Fujian, a province of China. In the Chinese Children Leukemia Group (CCLG)-ALL 2008 cohort, IKZF1 status was included in the risk assignment, with all IKZF1del patients receiving a high-risk regimen. Conversely, in the Chinese Children's Cancer Group (CCCG)-ALL 2015 cohort, IKZF1del was not incorporated into the risk assignment, and patients were treated based on an MRD-guided risk stratification protocol. RESULTS IKZF1del was found in 86 patients (86/804, 10.7%) overall and in 30 (30/46, 65.2%) BCR::ABL1-positive patients. Overall, IKZF1del was a poor prognostic predictor for patients, though the significance diminished upon age adjustment, white blood cell (WBC) count at diagnosis, treatment group, and MRD status. In the CCLG-ALL 2008 cohort, IKZF1del conferred a notably lower 5-year overall survival (OS) and event-free survival (EFS) and a significantly higher 5-year cumulative incidence of relapse (CIR) than IKZF1wt. In the CCLG-ALL 2015 cohort, IKZF1del conferred a lower 5-year OS and EFS and a higher 5-year CIR than IKZF1wt, but the differences were insignificant. The IKZF1del patients treated with higher intensity chemotherapy (CCLG-ALL 2008 high-risk regimen) had a markedly lower 5-year OS and EFS compared with those treated with the MRD-guided protocol (CCCG-ALL 2015 protocol). Furthermore, patients treated with the CCLG-ALL 2008 high-risk regimen experienced a higher frequency of serious adverse events (SAEs), especially infection-related SAEs, compared with those treated with the CCCG-ALL 2015 MRD-guided protocol. CONCLUSIONS The prognostic effect of IKZF1del may vary in different protocols. Compared with higher intensity chemotherapy, the MRD-guided protocol may be a more effective approach to treating BCP-ALL with IKZF1del in children.
Collapse
Affiliation(s)
- Lili Pan
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yiqiao Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kaizhi Weng
- Department of Pediatric Hematology, Rheumatology and Nephrology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Biyun Guo
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Shuquan Zhuang
- Department of Pediatrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Shuxian Huang
- Department of Pediatric Hematology, Rheumatology and Nephrology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Zhulan Lian
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaofang Wang
- Department of Pediatrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Nainong Li
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Yongzhi Zheng
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
23
|
Kang Q, Ma D, Zhao P, Chai X, Huang Y, Gao R, Zhang T, Liu P, Deng B, Feng C, Zhang Y, Lu Y, Li Y, Fang Q, Wang J. BRG1 promotes progression of B-cell acute lymphoblastic leukemia by disrupting PPP2R1A transcription. Cell Death Dis 2024; 15:621. [PMID: 39187513 PMCID: PMC11347705 DOI: 10.1038/s41419-024-06996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Despite advancements in chemotherapy and the availability of novel therapies, the outcome of adult patients with B-cell acute lymphoblastic leukemia (B-ALL) remains unsatisfactory. Therefore, it is necessary to understand the molecular mechanisms underlying the progression of B-ALL. Brahma-related gene 1 (BRG1) is a poor prognostic factor for multiple cancers. Here, the expression of BRG1 was found to be higher in patients with B-ALL, irrespective of the molecular subtype, than in healthy individuals, and its overexpression was associated with a poor prognosis. Upregulation of BRG1 accelerated cell cycle progression into the S phase, resulting in increased cell proliferation, whereas its downregulation facilitated the apoptosis of B-ALL cells. Mechanistically, BRG1 occupies the transcriptional activation site of PPP2R1A, thereby inhibiting its expression and activating the PI3K/AKT signaling pathway to regulate the proto-oncogenes c-Myc and BCL-2. Consistently, silencing of BRG1 and administration of PFI-3 (a specific inhibitor targeting BRG1) significantly inhibited the progression of leukemia and effectively prolonged survival in cell-derived xenograft mouse models of B-ALL. Altogether, this study demonstrates that BRG1-induced overactivation of the PPP2R1A/PI3K/AKT signaling pathway plays an important role in promoting the progression of B-ALL. Therefore, targeting BRG1 represents a promising strategy for the treatment of B-ALL in adults.
Collapse
Affiliation(s)
- Qian Kang
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Dan Ma
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Peng Zhao
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xiao Chai
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yi Huang
- Medical College, Soochow University, Suzhou, 215006, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Rui Gao
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Tianzhuo Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ping Liu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Bo Deng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Cheng Feng
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yan Zhang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yinghao Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yanju Li
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Hematopoietic Stem Cell Transplantation Center of Guizhou Province, Key Laboratory of Hematological Disease Diagnostic & Treat Centre of Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
24
|
Zhuo Z, Wang J, Zhang Y, Meng G. Integrative alternative splicing analysis reveals new prognosis signature in B-cell acute lymphoblastic leukemia. Int J Biol Sci 2024; 20:4496-4512. [PMID: 39247833 PMCID: PMC11380455 DOI: 10.7150/ijbs.98899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
The dysregulation of alternative splicing (AS) is increasingly recognized as a pivotal player in the pathogenesis, progression, and treatment resistance of B-cell acute lymphoblastic leukemia (B-ALL). Despite its significance, the clinical implications of AS events in B-ALL remain largely unexplored. This study developed a prognostic model based on 18 AS events (18-AS), derived from a meticulous integration of bioinformatics methodologies and advanced machine learning algorithms. The 18-AS signature observed in B-ALL distinctly categorized patients into different groups with significant differences in immune infiltration, V(D)J rearrangement, drug sensitivity, and immunotherapy outcomes. Patients classified within the high 18-AS group exhibited lower immune infiltration scores, poorer chemo- and immune-therapy responses, and worse overall survival, underscoring the model's potential in refining therapeutic strategies. To validate the clinical applicability of the 18-AS, we established an SF-AS regulatory network and identified candidate drugs. More importantly, we conducted in vitro cell proliferation assays to confirm our analysis, demonstrating that the High-18AS cell line (SUP-B15) exhibited significantly enhanced sensitivity to Dasatinib, Dovitinib, and Midostaurin compared to the Low-18AS cell line (REH). These findings reveal AS events as novel prognostic biomarkers and therapeutic targets, advancing personalized treatment strategies in B-ALL management.
Collapse
Affiliation(s)
- Zhiyi Zhuo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| | - Junfei Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| | - Yonglei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, P. R. China
- Department of Geriatrics and Medical Center on Aging, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, P. R. China
| |
Collapse
|
25
|
Xu W, Tian F, Tai X, Song G, Liu Y, Fan L, Weng X, Yang E, Wang M, Bornhäuser M, Zhang C, Lock RB, Wong JWH, Wang J, Jing D, Mi JQ. ETV6::ACSL6 translocation-driven super-enhancer activation leads to eosinophilia in acute lymphoblastic leukemia through IL-3 overexpression. Haematologica 2024; 109:2445-2458. [PMID: 38356460 PMCID: PMC11290521 DOI: 10.3324/haematol.2023.284121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
ETV6::ACSL6 represents a rare genetic aberration in hematopoietic neoplasms and is often associated with severe eosinophilia, which confers an unfavorable prognosis requiring additional anti-inflammatory treatment. However, since the translocation is unlikely to produce a fusion protein, the mechanism of ETV6::ACSL6 action remains unclear. Here, we performed multi-omics analyses of primary leukemia cells and patient-derived xenografts from an acute lymphoblastic leukemia (ALL) patient with ETV6::ACSL6 translocation. We identified a super-enhancer located within the ETV6 gene locus, and revealed translocation and activation of the super-enhancer associated with the ETV6::ACSL6 fusion. The translocated super-enhancer exhibited intense interactions with genomic regions adjacent to and distal from the breakpoint at chromosomes 5 and 12, including genes coding inflammatory factors such as IL-3. This led to modulations in DNA methylation, histone modifications, and chromatin structures, triggering transcription of inflammatory factors leading to eosinophilia. Furthermore, the bromodomain and extraterminal domain (BET) inhibitor synergized with standard-of-care drugs for ALL, effectively reducing IL-3 expression and inhibiting ETV6::ACSL6 ALL growth in vitro and in vivo. Overall, our study revealed for the first time a cis-regulatory mechanism of super-enhancer translocation in ETV6::ACSL6ALL, leading to an ALL-accompanying clinical syndrome. These findings may stimulate novel treatment approaches for this challenging ALL subtype.
Collapse
Affiliation(s)
- Wenqian Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Feng Tian
- Hebei Key Laboratory of Medical Data Science, Institute of Biomedical Informatics, School of Medicine, Hebei University of Engineering, Handan, Hebei Province, 056038
| | - Xiaolu Tai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Gaoxian Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Yuanfang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Liquan Fan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Xiangqin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Eunjeong Yang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Meng Wang
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism and MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai.
| | - Martin Bornhäuser
- Medical Clinic I, University Hospital Carl Gustav Carus, TU Dresden, Dresden
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine and Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW
| | - Jason W H Wong
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025.
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025.
| |
Collapse
|
26
|
Mulet-Lazaro R, van Herk S, Nuetzel M, Sijs-Szabo A, Díaz N, Kelly K, Erpelinck-Verschueren C, Schwarzfischer-Pfeilschifter L, Stanewsky H, Ackermann U, Glatz D, Raithel J, Fischer A, Pohl S, Rijneveld A, Vaquerizas JM, Thiede C, Plass C, Wouters BJ, Delwel R, Rehli M, Gebhard C. Epigenetic alterations affecting hematopoietic regulatory networks as drivers of mixed myeloid/lymphoid leukemia. Nat Commun 2024; 15:5693. [PMID: 38972954 PMCID: PMC11228033 DOI: 10.1038/s41467-024-49811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Stanley van Herk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Margit Nuetzel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Aniko Sijs-Szabo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Noelia Díaz
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Renewable Marine Resources Department, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Katherine Kelly
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Erpelinck-Verschueren
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ute Ackermann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Dagmar Glatz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Raithel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Pohl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Anita Rijneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital 8 Campus, London, United Kingdom
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bas J Wouters
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Claudia Gebhard
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| |
Collapse
|
27
|
Aisyi M, Andriastuti M, Kosasih AS, Handoyo Utomo AR, Saputra F, Tjitra Sari T, Sjakti HA, Dwijayanti F, Harimurti K, Gatot D. Unraveling Copy Number Alterations in Pediatric B-Cell Acute Lymphoblastic Leukemia: Correlation with Induction Phase Remission Using MLPA. Asian Pac J Cancer Prev 2024; 25:2421-2426. [PMID: 39068576 PMCID: PMC11480619 DOI: 10.31557/apjcp.2024.25.7.2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE Acute Lymphoblastic Leukemia (ALL) is the most common malignancy occurring in children. Copy number alterations (CNA) like PAX5, CDKN2A/2B, PAR1 Region, ETV6, IKZF1, BTG1, and RB1 gene deletion are important genetic events that define and prognosticate B-cell ALL. Thus, this study aimed to evaluate associations of CNA with induction phase remission status in childhood B-cell ALL. METHODS This study was observational with a cross-sectional design at the Dharmais Cancer Hospital, Harapan Kita Mother and Children Hospital, and Tangerang Regional Public Hospital. We evaluated 74 pediatric B-cell ALL cases with 1-18-year-olds. Genomic DNA was analyzed by Multiplex Ligation Dependent Probe Amplification Assay (MLPA). This study used the P335 ALL-IKZF1 panel kit, which contains several ALL-related genes. The patient's clinical and laboratory characteristics were collected from medical records from January to December 2019. RESULT We observed gene copy number alteration in children with B-Cell ALL. PAX5 was the most commonly observed gene deletion, followed by CDKN21/2B, ETV6, IKZF1, BTG1, RB1, and PAR1 Region. Based on gene mutations, only the PAX5 had a significant association with the remission status of pediatric B-cell ALL (p-value <0.05; OR = 3.91). It showed that patients with PAX5 gene mutations have 3.9 times the risk of no remission and/or relapse compared to those without PAX5 gene mutations. CONCLUSION Patients with mutations in the PAX5 gene have a higher chance of not achieving remission and/or experiencing relapse than those without such mutations. The MLPA method can be utilized for examining copy number alterations, which is valuable for achieving more precise stratification in diagnosis.. Further research is needed to expand upon this finding.
Collapse
Affiliation(s)
- Mururul Aisyi
- Department of Pediatric Hematology-Oncology, Dharmais Cancer Center Hospital. Letjen S Parman Street Kav 84-86, Jakarta, 11420, Indonesia.
| | - Murti Andriastuti
- Department of Child Health, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | | | | | - Fahreza Saputra
- Research and Development Department, Dharmais National Cancer Center Hospital, Jakarta, Indonesia.
| | - Teny Tjitra Sari
- Department of Child Health, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Hikari Ambara Sjakti
- Department of Child Health, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Fifi Dwijayanti
- Department of Research and Development, Dharmais National Cancer Hospital, Jakarta, Indonesia.
| | - Kuntjoro Harimurti
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Djajadiman Gatot
- Department of Child Health, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| |
Collapse
|
28
|
Yamada C, Okada K, Odaira K, Tokoro M, Iwamoto E, Sanada M, Noura M, Okamoto S, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. RGS1 and CREB5 are direct and common transcriptional targets of ZNF384-fusion proteins. Cancer Med 2024; 13:e7471. [PMID: 39015025 PMCID: PMC11252495 DOI: 10.1002/cam4.7471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND ZNF384-fusion (Z-fusion) genes were recently identified in B-cell acute lymphoblastic leukemia (B-ALL) and are frequent in Japanese adult patients. The frequency is about 20% in those with Philadelphia chromosome-negative B-ALL. ZNF384 is a transcription factor and Z-fusion proteins have increased transcriptional activity; however, the detailed mechanisms of leukemogenesis of Z-fusion proteins have yet to be clarified. METHODS We established three transfectants of cell lines expressing different types of Z-fusion proteins, and analyzed their gene expression profile (GEP) by RNA-seq. We also analyzed the GEP of clinical ALL samples using our previous RNA-seq data of 323 Japanese ALL patients. We selected upregulated genes in both Z-fusion gene-expressing transfectants and Z-fusion gene-positive ALL samples, and investigated the binding of Z-fusion proteins to regulatory regions of the candidate genes by ChIP-qPCR. RESULTS We selected six commonly upregulated genes. After the investigation by ChIP-qPCR, we finally identified CREB5 and RGS1 as direct and common target genes. RGS1 is an inhibitor of CXCL12-CXCR4 signaling that is required for the homing of hematopoietic progenitor cells to the bone marrow microenvironment and development of B cells. Consistent with this, Z-fusion gene transfectants showed impaired migration toward CXCL12. CONCLUSIONS We identified CREB5 and RGS1 as direct and common transcriptional targets of Z-fusion proteins. The present results provide novel insight into the aberrant transcriptional regulation by Z-fusion proteins.
Collapse
Affiliation(s)
- Chiharu Yamada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Kentaro Okada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Mahiru Tokoro
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Eisuke Iwamoto
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Syuichi Okamoto
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Hitoshi Kiyoi
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
29
|
Corleone G, Sorino C, Caforio M, Di Giovenale S, De Nicola F, Goeman F, Bertaina V, Pitisci A, Cortile C, Locatelli F, Folgiero V, Fanciulli M. Enhancer engagement sustains oncogenic transformation and progression of B-cell precursor acute lymphoblastic leukemia. J Exp Clin Cancer Res 2024; 43:179. [PMID: 38926853 PMCID: PMC11210131 DOI: 10.1186/s13046-024-03075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Enhancer reprogramming plays a significant role in the heterogeneity of cancer. However, we have limited knowledge about the impact of chromatin remodeling in B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) patients, and how it affects tumorigenesis and drug response. Our research focuses on investigating the role of enhancers in sustaining oncogenic transformation in children with BCP-ALL. METHODS We used ATAC-seq to study the accessibility of chromatin in pediatric BCP-ALL at three different stages-onset, remission, and relapse. Using a combination of computational and experimental methods, we were able to analyze the accessibility landscape and focus on the most significant cis-regulatory sites. These sites were then functionally validated through the use of Promoter capture Hi-C in a primary cell line model called LAL-B, followed by RNA-seq and genomic deletion of target sites using CRISPR-Cas9 editing. RESULTS We found that enhancer activity changes during cancer progression and is mediated by the production of enhancer RNAs (eRNAs). CRISPR-Cas9-mediated validation of previously unknown eRNA productive enhancers demonstrated their capability to control the oncogenic activities of the MYB and DCTD genes. CONCLUSIONS Our findings directly support the notion that productive enhancer engagement is a crucial determinant of the BCP-ALL and highlight the potential of enhancers as therapeutic targets in pediatric BCP-ALL.
Collapse
Affiliation(s)
- Giacomo Corleone
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Cristina Sorino
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Matteo Caforio
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Stefano Di Giovenale
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
- Department of Computer, Control, and Management, Engineering Antonio Ruberti, Sapienza University of Rome, Rome, 00161, Italy
| | - Francesca De Nicola
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Frauke Goeman
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Angela Pitisci
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Clelia Cortile
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy.
| | - Maurizio Fanciulli
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy.
| |
Collapse
|
30
|
Feng L, Zhang H, Liu T. Multifaceted roles of IKZF1 gene, perspectives from bench to bedside. Front Oncol 2024; 14:1383419. [PMID: 38978740 PMCID: PMC11228169 DOI: 10.3389/fonc.2024.1383419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
The IKZF1 gene encodes a transcription factor that belongs to the family of zinc-finger DNA-binding proteins associated with chromatin remodeling. The protein product, IKAROS, had been proved to regulate lymphopoiesis. Subsequent mouse model studies have further confirmed its regulating role in lymphopoiesis as well as in hematopoiesis; besides, it associates with immune function, certain immune disorders like common variable immunodeficiency and dysgammaglobulinemia have been proved to be associated with germline IKZF1 mutations. Dysfunction of IKAROS also bears paramount significance in leukemic transformation and alterations of IKZF1 gene predicts a poor prognosis in hematological malignancies. As an independent prognostic marker, IKZF1 has been incorporated in the risk stratification of BCP-ALL and stratification-guided therapy has also been generated. In this review, we provide a concise and comprehensive overview on the multifaceted roles of IKZF1 gene.
Collapse
Affiliation(s)
| | | | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
32
|
Lao Z, Lam KY, Cheung YMC, Teng CL, Radhakrishnan V, Bhurani D, Ko BS, Goh YT. Recommendations for the treatment and management of adult B-Cell acute lymphoblastic leukemia in Asia-Pacific: Outcomes from a pilot initiative. Asia Pac J Clin Oncol 2024; 20:325-334. [PMID: 38148287 DOI: 10.1111/ajco.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
The outcomes of adult B-cell acute lymphoblastic leukemia (ALL) remain poor. Recent advancements in the field of leukemia research show potential for improved patient care. However, the adoption of research findings into clinical practice is fraught with practice- and country-specific challenges. The continued addition of new findings warrants critical evaluation for the feasibility of incorporation into clinical practice. A uniform set of evidence-based guidelines can favorably assist physicians in making optimal clinical decisions. Such a resource may also serve as a reference point for strategic planning of initiatives aimed at addressing critical barriers in the optimal management of B-cell ALL. This initiative was undertaken to seek a collaborative perspective and understand the existing challenges. Concordance-based recommendations were outlined through a systematic discussion on various aspects of treatment and management of adult B-cell ALL. The outcomes and experiences gained from this exercise will serve as a foundation for future efforts encompassing the more granular aspects of the management of B-cell ALL across the Asia-Pacific region.
Collapse
Affiliation(s)
- Zhentang Lao
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Kwong Yok Lam
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Yuk Man Carol Cheung
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Chieh-Lin Teng
- Department of Medicine, Division of Hematology/Medical Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Vivek Radhakrishnan
- Division of Haematology Oncology and Haematopoietic Cell Transplantation, Tata Medical Center, Kolkata, India
| | - Dinesh Bhurani
- Department of Hematology and Bone Marrow Transplant, Rajiv Gandhi Cancer Institute & Research Centre, New Delhi, India
| | - Bor-Sheng Ko
- Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Yeow Tee Goh
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
33
|
Li X, Huang Z, Zhu L, Lai W, Li Y, Chen H, Liu D, Huang J, Zhou D, Li Y, Weng W, Xu H, Xu L, Luo Z, Fang J. The potential role of RNA sequencing in diagnosing unexplained insensitivity to conventional chemotherapy in pediatric patients with B-cell acute lymphoblastic leukemia. BMC Med Genomics 2024; 17:149. [PMID: 38811988 PMCID: PMC11137891 DOI: 10.1186/s12920-024-01892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Pediatric B-cell acute lymphoblastic leukemia (B-ALL) is a highly heterogeneous disease. According to large-scale RNA sequencing (RNA-seq) data, B-ALL patients can be divided into more than 10 subgroups. However, many genomic defects associated with resistance mechanisms have not yet been identified. As an individual clinical tool for molecular diagnostic risk classification, RNA-seq and gene expression pattern-based therapy could be potential upcoming strategies. In this study, we retrospectively analyzed the RNA-seq gene expression profiles of 45 children whose molecular diagnostic classifications were inconsistent with the response to chemotherapy. The relationship between the transcriptome and chemotherapy response was analyzed. Fusion gene identification was conducted for the included patients who did not have known high-risk associated fusion genes or gene mutations. The most frequently detected fusion gene pair in the high-risk group was the DHRSX duplication, which is a novel finding. Fusions involving ABL1, LMNB2, NFATC1, PAX5, and TTYH3 at onset were more frequently detected in the high-risk group, while fusions involving LFNG, TTYH3, and NFATC1 were frequently detected in the relapse group. According to the pathways involved, the underlying drug resistance mechanism is related to DNA methylation, autophagy, and protein metabolism. Overall, the implementation of an RNA-seq diagnostic system will identify activated markers associated with chemotherapy response, and guide future treatment adjustments.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Zaoli Huang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China
| | - Liwen Zhu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Weixin Lai
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Yunyao Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Han Chen
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Diandian Liu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Dunhua Zhou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Yang Li
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Wenjun Weng
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Honggui Xu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China
| | - Luhong Xu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China.
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China.
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No.107, West Yan Jiang Road, 510120, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China.
| |
Collapse
|
34
|
Saygin C, Zhang P, Stauber J, Aldoss I, Sperling AS, Weeks LD, Luskin MR, Knepper TC, Wanjari P, Wang P, Lager AM, Fitzpatrick C, Segal JP, Gharghabi M, Gurbuxani S, Venkataraman G, Cheng JX, Eisfelder BJ, Bohorquez O, Patel AA, Umesh Nagalakshmi S, Jayaram S, Odenike OM, Larson RA, Godley LA, Arber DA, Gibson CJ, Munshi NC, Marcucci G, Ebert BL, Greally JM, Steidl U, Lapalombella R, Shah BD, Stock W. Acute Lymphoblastic Leukemia with Myeloid Mutations Is a High-Risk Disease Associated with Clonal Hematopoiesis. Blood Cancer Discov 2024; 5:164-179. [PMID: 38150184 PMCID: PMC11061587 DOI: 10.1158/2643-3230.bcd-23-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
Myeloid neoplasms arise from preexisting clonal hematopoiesis (CH); however, the role of CH in the pathogenesis of acute lymphoblastic leukemia (ALL) is unknown. We found that 18% of adult ALL cases harbored TP53, and 16% had myeloid CH-associated gene mutations. ALL with myeloid mutations (MyM) had distinct genetic and clinical characteristics, associated with inferior survival. By using single-cell proteogenomic analysis, we demonstrated that myeloid mutations were present years before the diagnosis of ALL, and a subset of these clones expanded over time to manifest as dominant clones in ALL. Single-cell RNA sequencing revealed upregulation of genes associated with cell survival and resistance to apoptosis in B-ALL with MyM, which responds better to newer immunotherapeutic approaches. These findings define ALL with MyM as a high-risk disease that can arise from antecedent CH and offer new mechanistic insights to develop better therapeutic and preventative strategies. SIGNIFICANCE CH is a precursor lesion for lymphoblastic leukemogenesis. ALL with MyM has distinct genetic and clinical characteristics, associated with adverse survival outcomes after chemotherapy. CH can precede ALL years before diagnosis, and ALL with MyM is enriched with activated T cells that respond to immunotherapies such as blinatumomab. See related commentary by Iacobucci, p. 142.
Collapse
Affiliation(s)
- Caner Saygin
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Pu Zhang
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Jacob Stauber
- Albert Einstein College of Medicine–Montefiore Health System, New York, New York
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Adam S. Sperling
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | - Pankhuri Wanjari
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Peng Wang
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Angela M. Lager
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | | - Jeremy P. Segal
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Mehdi Gharghabi
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | | | | | - Jason X. Cheng
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Bart J. Eisfelder
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Oliver Bohorquez
- Albert Einstein College of Medicine–Montefiore Health System, New York, New York
| | - Anand A. Patel
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | | | | | | | - Richard A. Larson
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Lucy A. Godley
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Daniel A. Arber
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | | | | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | | | - John M. Greally
- Albert Einstein College of Medicine–Montefiore Health System, New York, New York
| | - Ulrich Steidl
- Albert Einstein College of Medicine–Montefiore Health System, New York, New York
| | | | | | - Wendy Stock
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| |
Collapse
|
35
|
Choi JK, Xiao W, Chen X, Loghavi S, Elenitoba-Johnson KS, Naresh KN, Medeiros LJ, Czader M. Fifth Edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues: Acute Lymphoblastic Leukemias, Mixed-Phenotype Acute Leukemias, Myeloid/Lymphoid Neoplasms With Eosinophilia, Dendritic/Histiocytic Neoplasms, and Genetic Tumor Syndromes. Mod Pathol 2024; 37:100466. [PMID: 38460674 DOI: 10.1016/j.modpat.2024.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
This manuscript represents a review of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia/lymphoblastic lymphoma), acute leukemias of ambiguous lineage, mixed-phenotype acute leukemias, myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangements, histiocytic and dendritic neoplasms, and genetic tumor syndromes of the 5th edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues. The diagnostic, clinicopathologic, cytogenetic, and molecular genetic features are discussed. The differences in comparison to the 4th revised edition of the World Health Organization classification of hematolymphoid neoplasms are highlighted.
Collapse
Affiliation(s)
- John K Choi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xueyan Chen
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Kojo S Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - L Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
36
|
Wang C, Li J, Liu W, Zhao L, Yan H, Yan Y, Ren J, Peng L, Zhang J, Liu Y, Weng X, Zhu Y, Jing D, Mi JQ, Wang J. Refined risk stratification helps guiding transplantation choice in adult BCR::ABL1-positive acute lymphoblastic leukemia. Blood Cancer J 2024; 14:71. [PMID: 38658532 PMCID: PMC11043066 DOI: 10.1038/s41408-024-01055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Cheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchen Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Peng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaojiao Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanfang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangqin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongmei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
Garcia-Solorio J, Núñez-Enriquez JC, Jiménez-Olivares M, Flores-Lujano J, Flores-Espino F, Molina-Garay C, Cervera A, Casique-Aguirre D, Peñaloza-Gonzalez JG, Baños-Lara MDR, García-Soto Á, Galván-Díaz CA, Olaya-Vargas A, Aguilar HF, Mata-Rocha M, Garrido-Hernández MÁ, Solís-Poblano JC, Luna-Silva NC, Cano-Cuapio LS, Aristil-Chery PM, Herrera-Quezada F, Carrillo-Sanchez K, Muñoz-Rivas A, Flores-Lagunes LL, Mendoza-Caamal EC, Villegas-Torres BE, González-Osnaya V, Jiménez-Hernández E, Torres-Nava JR, Martín-Trejo JA, Gutiérrez-Rivera MDL, Espinosa-Elizondo RM, Merino-Pasaye LE, Pérez-Saldívar ML, Jiménez-Morales S, Curiel-Quesada E, Rosas-Vargas H, Mejía-Arangure JM, Alaez-Verson C. IKZF1plus is a frequent biomarker of adverse prognosis in Mexican pediatric patients with B-acute lymphoblastic leukemia. Front Oncol 2024; 14:1337954. [PMID: 38634053 PMCID: PMC11022689 DOI: 10.3389/fonc.2024.1337954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Background Recurrent genetic alterations contributing to leukemogenesis have been identified in pediatric B-cell Acute Lymphoblastic Leukemia (B-ALL), and some are useful for refining classification, prognosis, and treatment selection. IKZF1plus is a complex biomarker associated with a poor prognosis. It is characterized by IKZF1 deletion coexisting with PAX5, CDKN2A/2B, or PAR1 region deletions. The mutational spectrum and clinical impact of these alterations have scarcely been explored in Mexican pediatric patients with B-ALL. Here, we report the frequency of the IKZF1plus profile and the mutational spectrum of IKZF1, PAX5, CDKN2A/2B, and ERG genes and evaluate their impact on overall survival (OS) in a group of patients with B-ALL. Methods A total of 206 pediatric patients with de novo B-ALL were included. DNA was obtained from bone marrow samples at diagnosis before treatment initiation. A custom-designed next-generation sequencing panel was used for mutational analysis. Kaplan-Meier analysis was used for OS estimation. Results We identified the IKZF1plus profile in 21.8% of patients, which was higher than that previously reported in other studies. A significantly older age (p=0.04), a trend toward high-risk stratification (p=0.06), and a decrease in 5-year Overall Survival (OS) (p=0.009) were observed, although heterogeneous treatment protocols in our cohort would have impacted OS. A mutation frequency higher than that reported was found for IKZF1 (35.9%) and CDKN2A/2B (35.9%) but lower for PAX5 (26.6%). IKZF1MUT group was older at diagnosis (p=0.0002), and most of them were classified as high-risk (73.8%, p=0.02), while patients with CDKN2A/2BMUT had a higher leukocyte count (p=0.01) and a tendency toward a higher percentage of blasts (98.6%, >50% blasts, p=0.05) than the non-mutated patients. A decrease in OS was found in IKZF1MUT and CDKN2A/2BMUT patients, but the significance was lost after IKZF1plus was removed. Discussion Our findings demonstrated that Mexican patients with B-ALL have a higher prevalence of genetic markers associated with poor outcomes. Incorporating genomic methodologies into the diagnostic process, a significant unmet need in low- and mid-income countries, will allow a comprehensive identification of relevant alterations, improving disease classification, treatment selection, and the general outcome.
Collapse
Affiliation(s)
- Joaquin Garcia-Solorio
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Juan Carlos Núñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Marco Jiménez-Olivares
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Fernanda Flores-Espino
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carolina Molina-Garay
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Alejandra Cervera
- Subdirección de Genómica Poblacional, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City, Mexico
| | - Diana Casique-Aguirre
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
| | | | - Ma. Del Rocío Baños-Lara
- Centro de Investigación Oncológica Una Nueva Esperanza, Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Ángel García-Soto
- Hospital General Centro Médico La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Alberto Olaya-Vargas
- Departamento de Oncologia, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Hilario Flores Aguilar
- Departamento de Inmunogenetica, Instituto de Diagnostico y Referencia Epidemiologicos (InDRE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Juan Carlos Solís-Poblano
- Servicio de Oncohematología Pediátrica, Instituto Mexicano del Seguro (IMSS) Unidad Médica de Alta Especialidad (UMAE) Centro Médico Nacional (CMN) Hospital de Especialidades Dr. Manuel Ávila Camacho, Puebla, Mexico
| | - Nuria Citlalli Luna-Silva
- Servicio de Hemato-Oncología Pediátrica, Hospital de la Niñez Oaxaqueña "Dr. Guillermo Zárate Mijangos", Secretaria de Salud y Servicios de Salud Oaxaca (SSO), Oaxaca, Mexico
| | | | - Pierre Mitchel Aristil-Chery
- Instituto de Seguridad y Servicios Sociales de los Trabajadores al Servicio de los Poderes del Estado (ISSSTE) de Puebla, Departamento de Enseñanza e Investigació, Puebla, Mexico
| | - Fernando Herrera-Quezada
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Karol Carrillo-Sanchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Anallely Muñoz-Rivas
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | | | | | - Vincent González-Osnaya
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Mexico City, Mexico
| | - María de Lourdes Gutiérrez-Rivera
- Servicio de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría “Dr. Silvestre Frenk Freund”, Mexico City, Mexico
| | | | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - María Luisa Pérez-Saldívar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Medicina de Precisión, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Everardo Curiel-Quesada
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional (IPN), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, CMN Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Juan Manuel Mejía-Arangure
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carmen Alaez-Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
38
|
Hou Z, Ren Y, Zhang X, Huang D, Yan F, Sun W, Zhang W, Zhang Q, Fu X, Lang Z, Chu C, Zou B, Gao B, Jin B, Kang Z, Liu Q, Yan J. EP300-ZNF384 transactivates IL3RA to promote the progression of B-cell acute lymphoblastic leukemia. Cell Commun Signal 2024; 22:211. [PMID: 38566191 PMCID: PMC10986138 DOI: 10.1186/s12964-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.
Collapse
Affiliation(s)
- Zhijie Hou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China.
| | - Yifei Ren
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Fanzhi Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Wentao Sun
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Wenjuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Qingqing Zhang
- Department of Pathology, Dalian Medical University, Dalian, 116044, China
| | - Xihui Fu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Zhenghui Lang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Chenyang Chu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Boyang Zou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Beibei Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Zhijie Kang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
39
|
Kubota H, Ueno H, Tasaka K, Isobe T, Saida S, Kato I, Umeda K, Hiwatari M, Hasegawa D, Imamura T, Kakiuchi N, Nannya Y, Ogawa S, Hiramatsu H, Takita J. RNA-seq-based miRNA signature as an independent predictor of relapse in pediatric B-cell acute lymphoblastic leukemia. Blood Adv 2024; 8:1258-1271. [PMID: 38127276 PMCID: PMC10918494 DOI: 10.1182/bloodadvances.2023011583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
ABSTRACT Aberrant micro-RNA (miRNA) expression profiles have been associated with disease progression and clinical outcome in pediatric cancers. However, few studies have analyzed genome-wide dysregulation of miRNAs and messenger RNAs (mRNAs) in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). To identify novel prognostic factors, we comprehensively investigated miRNA and mRNA sequencing (miRNA-seq and mRNA-seq) data in pediatric BCP-ALL samples with poor outcome. We analyzed 180 patients, including 43 matched pairs at diagnosis and relapse. Consensus clustering of miRNA expression data revealed a distinct profile characterized by mainly downregulation of miRNAs (referred to as an miR-low cluster [MLC]). The MLC profile was not associated with any known genetic subgroups. Intriguingly, patients classified as MLC had significantly shorter event-free survival (median 21 vs 33 months; log-rank P = 3 ×10-5). Furthermore, this poor prognosis was retained even in hyperdiploid ALL. This poor prognostic MLC profiling was confirmed in the validation cohort. Notably, non-MLC profiling at diagnosis (n = 9 of 23; Fisher exact test, P = .039) often changed into MLC profiling at relapse for the same patient. Integrated analysis of miRNA-seq and mRNA-seq data revealed that the transcriptional profile of MLC was characterized by enrichment of MYC target and oxidative phosphorylation genes, reduced intron retention, and low expression of DICER1. Thus, our miRNA-mRNA integration approach yielded a truly unbiased molecular stratification of pediatric BCP-ALL cases based on a novel prognostic miRNA signature, which may lead to better clinical outcomes.
Collapse
Affiliation(s)
- Hirohito Kubota
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiji Tasaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoya Isobe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pediatrics, School of Medicine, Teikyo University, Tokyo, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children Hospital, Hyogo, Japan
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
40
|
Chen Y, Zhang K, Tan J, Fan Z, Fu Y, Li X, Liu B, Wang G. Design, synthesis, and pharmacological evaluation of novel benzothiazole derivatives targeting LCK in acute lymphoblastic leukemia. Bioorg Chem 2024; 144:107180. [PMID: 38335758 DOI: 10.1016/j.bioorg.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK), a member of the Src family of tyrosine kinases, is implicated in the pathogenesis of almost all types of leukemia via T cells activation and signal transduction. LCK is highly expressed in acute lymphoblastic leukemia (ALL), and knockdown of the LCK gene can significantly inhibit the proliferation of leukemia cell lines. Here, we designed and synthesized a series of benzothiazole derivatives as novel LCK inhibitors using both docking-based virtual screening and activity assays for structural optimization. Among these compounds, 7 m showed a strong inhibitory activity in the proliferation of leukemia cell lines and LCK kinase activity. Moreover, we found that compound 7 m could induce apoptosis while simultaneously blocking cell cycle via decreasing its phosphorylation at Tyr394 of the LCK. Collectively, these findings shed new light on compound 7 m that would be utilized as a promising drug candidate with apoptosis-triggered and cell cycle arrest activities for the future ALL therapy.
Collapse
Affiliation(s)
- Yanmei Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Kai Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiacheng Tan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhichao Fan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yuqi Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Division of Thyroid and Parathyroid Surgery, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
41
|
Kao TW, Chen HH, Lin J, Wang TL, Shen YA. PBX1 as a novel master regulator in cancer: Its regulation, molecular biology, and therapeutic applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189085. [PMID: 38341110 DOI: 10.1016/j.bbcan.2024.189085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
PBX1 is a critical transcription factor at the top of various cell fate-determining pathways. In cancer, PBX1 stands at the crossroads of multiple oncogenic signaling pathways and mediates responses by recruiting a broad repertoire of downstream targets. Research thus far has corroborated the involvement of PBX1 in cancer proliferation, resisting apoptosis, tumor-associated neoangiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, immune evasion, genome instability, and dysregulating cellular metabolism. Recently, our understanding of the functional regulation of the PBX1 protein has advanced, as increasing evidence has depicted a regulatory network consisting of transcriptional, post-transcriptional, and post-translational levels of control mechanisms. Furthermore, accumulating studies have supported the clinical utilization of PBX1 as a prognostic or therapeutic target in cancer. Preliminary results showed that PBX1 entails vast potential as a targetable master regulator in the treatment of cancer, particularly in those with high-risk features and resistance to other therapeutic strategies. In this review, we will explore the regulation, protein-protein interactions, molecular pathways, clinical application, and future challenges of PBX1.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiao-Han Chen
- Department of General Medicine, National Taiwan University Hospital, Taipei 100224, Taiwan
| | - James Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB2, Room 306, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan.
| |
Collapse
|
42
|
He J, Munir F, Catueno S, Connors JS, Gibson A, Robusto L, McCall D, Nunez C, Roth M, Tewari P, Garces S, Cuglievan B, Garcia MB. Biological Markers of High-Risk Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2024; 16:858. [PMID: 38473221 PMCID: PMC10930495 DOI: 10.3390/cancers16050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) has witnessed substantial improvements in prognosis; however, a subset of patients classified as high-risk continues to face higher rates of relapse and increased mortality. While the National Cancer Institute (NCI) criteria have traditionally guided risk stratification based on initial clinical information, recent advances highlight the pivotal role of biological markers in shaping the prognosis of childhood ALL. This review delves into the emerging understanding of high-risk childhood ALL, focusing on molecular, cytogenetic, and immunophenotypic markers. These markers not only contribute to unraveling the underlying mechanisms of the disease, but also shed light on specific clinical patterns that dictate prognosis. The paradigm shift in treatment strategies, exemplified by the success of tyrosine kinase inhibitors in Philadelphia chromosome-positive leukemia, underscores the importance of recognizing and targeting precise risk factors. Through a comprehensive exploration of high-risk childhood ALL characteristics, this review aims to enhance our comprehension of the disease, offering insights into its molecular landscape and clinical intricacies in the hope of contributing to future targeted and tailored therapies.
Collapse
Affiliation(s)
- Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Faryal Munir
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Jeremy S. Connors
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Lindsay Robusto
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Priti Tewari
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Miriam B. Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| |
Collapse
|
43
|
Hu Z, Kovach AE, Yellapantula V, Ostrow D, Doan A, Ji J, Schmidt RJ, Gu Z, Bhojwani D, Raca G. Transcriptome Sequencing Allows Comprehensive Genomic Characterization of Pediatric B-Acute Lymphoblastic Leukemia in an Academic Clinical Laboratory. J Mol Diagn 2024; 26:49-60. [PMID: 37981088 PMCID: PMC10773144 DOI: 10.1016/j.jmoldx.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023] Open
Abstract
Studies have shown the power of transcriptome sequencing [RNA sequencing (RNA-Seq)] in identifying known and novel oncogenic drivers and molecular subtypes of B-acute lymphoblastic leukemia (B-ALL). The current study investigated whether the clinically validated RNA-Seq assay, coupled with a custom analysis pipeline, could be used for a comprehensive B-ALL classification. Following comprehensive clinical testing, RNA-Seq was performed on 76 retrospective B-ALL cases, 28 of which had known and 48 had undetermined subtype. Subtypes were accurately identified in all 28 known cases, and in 38 of 48 unknown cases (79%). The subtypes of the unknown cases included the following: PAX5alt (n = 12), DUX4-rearranged (n = 6), Philadelphia chromosome-like (n = 5), low hyperdiploid (n = 4), ETV6::RUNX1-like (n = 3), MEF2D-rearranged (n = 2), PAX5 P80R (n = 2), ZEB2/CEBP (n = 1), NUTM1-rearranged (n = 1), ZNF384-rearranged (n = 1), and TCF3::PBX1 (n = 1). In 15 of 38 cases (39%), classification based on expression profile was corroborated by detection of subtype-defining oncogenic drivers missed by clinical testing. RNA-Seq analysis also detected large copy number abnormalities, oncogenic hot-spot sequence variants, and intragenic IKZF1 deletions. This pilot study confirms the feasibility of implementing an RNA-Seq workflow for clinical diagnosis of molecular subtypes in pediatric B-ALL, reinforcing that RNA-Seq represents a promising global genomic assay for this heterogeneous leukemia.
Collapse
Affiliation(s)
- Zunsong Hu
- Department of Computational and Quantitative Medicine and Systems Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Venkata Yellapantula
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Andrew Doan
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine and Systems Biology, Beckman Research Institute of City of Hope, Duarte, California.
| | - Deepa Bhojwani
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California.
| |
Collapse
|
44
|
Zhang P, Lu R. The Molecular and Biological Function of MEF2D in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:379-403. [PMID: 39017853 DOI: 10.1007/978-3-031-62731-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
45
|
Shi ZY, Wang X, Chen WM, Li LD, Hao Y, Li JY, Sun K, Zhao XS, Jiang H, Jiang Q, Huang XJ, Qin YZ. ZNF384 fusion transcript levels for measurable residual disease monitoring in adult B-cell acute lymphoblastic leukemia. Hematol Oncol 2024; 42:e3251. [PMID: 38287528 DOI: 10.1002/hon.3251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Zinc finger protein 384 (ZNF384) rearrangement defined a novel subtype of B-cell acute lymphoblastic leukemia (B-ALL). The prognostic significance of ZNF384 fusion transcript levels represented measurable residual disease remains to be explored. ZNF384 fusions were screened out in 57 adult B-ALL patients at diagnosis by real-time quantitative polymerase chain reaction and their transcript levels were serially monitored during treatment. The reduction of ZNF384 fusion transcript levels at the time of achieving complete remission had no significant impact on survival, whereas its ≥2.5-log reduction were significantly associated with higher relapse free survival (RFS) and overall survival (OS) rates after course 1 consolidation (p = 0.022 and = 0.0083) and course 2 consolidation (p = 0.0025 and = 0.0008). Compared with chemotherapy alone, allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly improved RFS and OS of patients with <2.5-log reduction after course 1 consolidation (p < 0.0001 and = 0.0002) and course 2 consolidation (p = 0.0003 and = 0.019), whereas exerted no significant effects in patients with ≥2.5-log reduction (all p > 0.05). ZNF384 fusion transcript levels after course 1 and course 2 consolidation strongly predict relapse and survival and may guide whether receiving allo-HSCT in adult B-ALL.
Collapse
Affiliation(s)
- Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wen-Min Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ling-Di Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yue Hao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jin-Ying Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
46
|
Pieters R, Mullighan CG, Hunger SP. Advancing Diagnostics and Therapy to Reach Universal Cure in Childhood ALL. J Clin Oncol 2023; 41:5579-5591. [PMID: 37820294 PMCID: PMC10730082 DOI: 10.1200/jco.23.01286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 10/13/2023] Open
Abstract
Systemic combination chemotherapy and intrathecal chemotherapy markedly increased the survival rate of children with ALL. In the past two decades, the use of minimal (measurable) residual disease (MRD) measurements early in therapy improved risk group stratification with subsequent treatment intensifications for patients at high risk of relapse, and enabled a reduction of treatment for low-risk patients. The recent development of more sensitive MRD technologies may further affect risk stratification. Molecular genetic profiling has led to the discovery of many new subtypes and their driver genetic alterations. This increased our understanding of the biological basis of ALL, improved risk classification, and enabled implementation of precision medicine. In the past decade, immunotherapies, including bispecific antibodies, antibody-drug conjugates, and cellular therapies directed against surface proteins, led to more effective and less toxic therapies, replacing intensive chemotherapy courses and allogeneic stem-cell transplantation in patients with relapsed and refractory ALL, and are now being tested in newly diagnosed patients. It has taken 50-60 years to increase the cure rate in childhood ALL from 0% to 90% by stepwise improvements in chemotherapy. This review provides an overview of how the developments over the past 10-15 years mentioned above have significantly changed the diagnostic and treatment approach in ALL, and discusses how the integrated use of molecular and immunotherapeutic insights will very likely direct efforts to cure those children with ALL who are not cured today, and improve the quality of life for survivors who should have decades of life ahead. Future efforts must focus on making effective, yet very expensive, new technologies and therapies available to children with ALL worldwide.
Collapse
Affiliation(s)
- Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Charles G. Mullighan
- Department of Pathology and Hematological Malignancies Program, Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN
| | - Stephen P. Hunger
- Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
47
|
Krali O, Marincevic-Zuniga Y, Arvidsson G, Enblad AP, Lundmark A, Sayyab S, Zachariadis V, Heinäniemi M, Suhonen J, Oksa L, Vepsäläinen K, Öfverholm I, Barbany G, Nordgren A, Lilljebjörn H, Fioretos T, Madsen HO, Marquart HV, Flaegstad T, Forestier E, Jónsson ÓG, Kanerva J, Lohi O, Norén-Nyström U, Schmiegelow K, Harila A, Heyman M, Lönnerholm G, Syvänen AC, Nordlund J. Multimodal classification of molecular subtypes in pediatric acute lymphoblastic leukemia. NPJ Precis Oncol 2023; 7:131. [PMID: 38066241 PMCID: PMC10709574 DOI: 10.1038/s41698-023-00479-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2025] Open
Abstract
Genomic analyses have redefined the molecular subgrouping of pediatric acute lymphoblastic leukemia (ALL). Molecular subgroups guide risk-stratification and targeted therapies, but outcomes of recently identified subtypes are often unclear, owing to limited cases with comprehensive profiling and cross-protocol studies. We developed a machine learning tool (ALLIUM) for the molecular subclassification of ALL in retrospective cohorts as well as for up-front diagnostics. ALLIUM uses DNA methylation and gene expression data from 1131 Nordic ALL patients to predict 17 ALL subtypes with high accuracy. ALLIUM was used to revise and verify the molecular subtype of 281 B-cell precursor ALL (BCP-ALL) cases with previously undefined molecular phenotype, resulting in a single revised subtype for 81.5% of these cases. Our study shows the power of combining DNA methylation and gene expression data for resolving ALL subtypes and provides a comprehensive population-based retrospective cohort study of molecular subtype frequencies in the Nordic countries.
Collapse
Affiliation(s)
- Olga Krali
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gustav Arvidsson
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Pia Enblad
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anders Lundmark
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janne Suhonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Laura Oksa
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
| | - Kaisa Vepsäläinen
- Department of Pediatrics, Kuopio University Hospital, Kuopio, Finland
| | - Ingegerd Öfverholm
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Dept. of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Dept. of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hans O Madsen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trond Flaegstad
- Department of Pediatrics, Tromsø University and University Hospital, Tromsø, Norway
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Erik Forestier
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Department of Medical Biosciences, University of Umeå, Umeå, Sweden
| | - Ólafur G Jónsson
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Pediatric Hematology-Oncology, Children's Hospital, Barnaspitali Hringsins, Landspitali University Hospital, Reykjavik, Iceland
| | - Jukka Kanerva
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- New Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Ulrika Norén-Nyström
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Pediatrics and Adolescent Medicine, Rigshospitalet, and the Medical Faculty, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arja Harila
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Mats Heyman
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
- Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
48
|
Li XP, Dai Y, Zhang WN, Pan MM, Mao J, Zhao B, Jiang L, Gao Y. Single-cell RNA-seq reveals novel immune-associated biomarkers for predicting prognosis in AML patients with RUNX1::RUNX1T1. Int Immunopharmacol 2023; 125:111178. [PMID: 37951201 DOI: 10.1016/j.intimp.2023.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/15/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Acute myeloid leukemia (AML) with t(8;21)(q22;q22);(RUNX1::RUNX1T1) is highly heterogeneous and malignant. It has a relapse rate of nearly 40 %, resulting in clinical resistance or refractoriness to chemotherapy. Immune cells, particularly CD4(+) T and CD8(+) T lymphocytes, have been discovered to be dysfunctional in this condition, and functional recovery shows promising efficiency in preclinical trials. Here, with single-cell transcriptomic data from de novo AML patients with RUNX1::RUNX1T1 and at various stages following disease progression, we investigated the genes correlated with T-cell proliferation and activation. In leukemia cells, ADA, AHCY, GPN3 and LTBR were markedly highly expressed compared to those in T-cell at diagnosis, and they tended to increase with disease progression. Additionally, we discovered that AHCY was an effective biomarker to predict the overall survival as well as relapse-free survival of AML patients with RUNX1::RUNX1T1. The correlation of AHCY with infiltrated immune cells and immune checkpoints was also investigated. AML cohorts from two other independent studies, TCGA LAML (n = 145) and the GEO dataset (n = 104), also demonstrated an inferior outcome for AML patients with high AHCY expression. In conclusion, our research revealed that AHCY might function as a novel indicator to predict the prognosis and efficiency of T-cell proliferation and activation in AML patients with RUNX1::RUNX1T1.
Collapse
Affiliation(s)
- Xue-Ping Li
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Na Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meng-Meng Pan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaying Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Baitian Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
49
|
Lin D, Yang K, Yu L, Huang L, Lai X, Wu L, Xia X, Zhang J, Zheng Q, Yang L. Poor outcome of pediatric B-cell acute lymphoblastic leukemia associated with high level of CRLF2 gene expression in distinct molecular subtypes. Front Oncol 2023; 13:1256054. [PMID: 38023153 PMCID: PMC10661883 DOI: 10.3389/fonc.2023.1256054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Overexpression of the cytokine receptor-like factor 2 (CRLF2) gene is the most common feature in the Philadelphia chromosome (Ph)-like subtype of B-cell acute lymphoblastic leukemia (B-ALL). However, the predictive value of CRLF2 overexpression for the prognosis of pediatric B-ALL patients remain controversial. The molecular mechanisms that upregulate CRLF2 expression level in patients has not been fully elucidated. Methods In this study, the prognostic impact of CRLF2 expression level on molecular types of B-ALL in pediatric patients from Zhujiang Hospital (n = 111) was retrospectively analyzed. Youden index analysis was used to categorize CRLF2 expression into 3 groups, and these categories more precisely described the differences in the prognosis of patients with varying expression levels of CRLF2 in both the Zhujiang Hospital cohort and the TARGET cohort. Results We used the Zhujiang Hospital cohort as a discovery cohort to determine the cutoff value of CRLF2 expression. CRLF2-high patients accounted for approximately 6%. In addition, the percentage of bone marrow blast cells and initial white blood cell count in CRLF2-high patients were higher than those in CRLF2-low patients, and MRD turned negative slower. The results were validated in the TARGET cohort and indicated that CRLF2 overexpression could be subdivided by CRLF2 expression levels into 2 categories: CRLF2-high with a poor survival and CRLF2-medium with a good OS and EFS. Such heterogeneity was attributed to the different molecular mechanisms leading to CLRF2 upregulation, where the CRLF2 overexpression level was high in Ph-like B-ALL and medium in high hyperdiploid B-ALL. Conclusion This study highlights the importance of the molecular mechanisms of the upregulation of CRLF2 expression in predicting the prognosis of pediatric B-ALL patients.
Collapse
Affiliation(s)
- Danna Lin
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Keyan Yang
- Laboratory of Molecular Diagnostics, Beijing GoBroad Boren Hospital, Beijing, China
| | - Lihua Yu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lulu Huang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaorong Lai
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Wu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiayu Xia
- Laboratory of Molecular Diagnostics, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jingwen Zhang
- Department of Clinical Hematology&Flow Cytometry, Guangzhou KingMed Center for Clinical Lab. Co., Ltd., Guangzhou, China
| | - Qinlong Zheng
- Laboratory of Molecular Diagnostics, Beijing GoBroad Boren Hospital, Beijing, China
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Tueur G, Quessada J, De Bie J, Cuccuini W, Toujani S, Lefebvre C, Luquet I, Michaux L, Lafage-Pochitaloff M. Cytogenetics in the management of B-cell acute lymphoblastic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103434. [PMID: 38064905 DOI: 10.1016/j.retram.2023.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Cytogenetic analysis is mandatory at initial assessment of B-cell acute lymphoblastic leukemia (B-ALL) due to its diagnostic and prognostic value. Results from chromosome banding analysis and complementary FISH are taken into account in therapeutic protocols and further completed by other techniques (RT-PCR, SNP-array, MLPA, NGS, OGM). Indeed, new genomic entities have been identified by NGS, mostly RNA sequencing, such as Ph-like ALL that can benefit from targeted therapy. Here, we have attempted to establish cytogenetic guidelines by reviewing the most recent published data including the novel 5th World Health Organization and International Consensus Classifications. We also focused on newly described cytogenomic entities and indicate alternative diagnostic tools such as NGS technology, as its importance is vastly increasing in the diagnostic setting.
Collapse
Affiliation(s)
- Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Saloua Toujani
- Service de cytogénétique et biologie cellulaire, CHU de Rennes, Rennes 35033, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France.
| |
Collapse
|