1
|
Zhang Y, Liu H, Jing H. Community differences and potential function along the particle size spectrum of microbes in the twilight zone. MICROBIOME 2025; 13:121. [PMID: 40369676 PMCID: PMC12076831 DOI: 10.1186/s40168-025-02116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The twilight zone, which extends from the base of the euphotic zone to a depth of 1000 m, is the major area of particulate organic carbon (POC) remineralization in the ocean. However, little is known about the microbial community and metabolic activity that are directly associated with POC remineralization in this consistently underexplored realm. Here, we utilized a large-volume in situ water transfer system to collect the microbes on different-sized particles from the twilight zone in three regions and analyzed their composition and metabolic function by metagenomic analysis. RESULTS Distinct prokaryotic communities with significantly lower diversity and less endemic species were detected on particles in the South East Asian Time-series Study (SEATS) compared with the other two regions, perhaps due to the in situ physicochemical conditions and low labile nutrient availability in this region. Observable transitions in community composition and function at the upper and lower boundaries of the twilight zone suggest that microbes respond differently to (and potentially drive the transformation of) POC through this zone. Substantial variations among different particle sizes were observed, with smaller particles typically exhibiting lower diversity but harboring a greater abundance of carbon degradation-associated genes than the larger particles. Such a pattern might arise due to the relatively larger surface area of the smaller particles relative to their volume, which likely provides more sites for microbial colonization, increasing their chance of being remineralized. This makes them less likely to be transferred to the deep ocean, and thus, they contribute more to carbon recycling than to long-term sequestration. Both contig-based and metagenome-assembled genome-(MAG-) based analyses revealed a high diversity of the Carbohydrate-Active enZymes (CAZy) family. This indicates the versatile carbohydrate metabolisms of the microbial communities associated with sinking particles that modulate the remineralization and export of POC in the twilight zone. CONCLUSION Our study reveals significant shifts in microbial community composition and function in the twilight zone, with clear differences among the three particle sizes. Microbes with diverse metabolic potential exhibited different responses to the POC entering the twilight zone and also collectively drove the transformation of POC through this zone. These findings provided insights into the diversity of prokaryotes in sinking particles and their roles in POC remineralization and export in marine ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Hongmei Jing
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| |
Collapse
|
2
|
Jiao Y, Hang H, Merel J, Kanso E. Sensing flow gradients is necessary for learning autonomous underwater navigation. Nat Commun 2025; 16:3044. [PMID: 40155622 PMCID: PMC11953274 DOI: 10.1038/s41467-025-58125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Aquatic animals are much better at underwater navigation than robotic vehicles. Robots face major challenges in deep water because of their limited access to global positioning signals and flow maps. These limitations, and the changing nature of water currents, support the use of reinforcement learning approaches, where the navigator learns through trial-and-error interactions with the flow environment. But is it feasible to learn underwater navigation in the agent's Umwelt, without any land references? Here, we tasked an artificial swimmer with learning to reach a specific destination in unsteady flows by relying solely on egocentric observations, collected through on-board flow sensors in the agent's body frame, with no reference to a geocentric inertial frame. We found that while sensing local flow velocities is sufficient for geocentric navigation, successful egocentric navigation requires additional information of local flow gradients. Importantly, egocentric navigation strategies obey rotational symmetry and are more robust in unfamiliar conditions and flows not experienced during training. Our work expands underwater robot-centric learning, helps explain why aquatic organisms have arrays of flow sensors that detect gradients, and provides physics-based guidelines for transfer learning of learned policies to unfamiliar and diverse flow environments.
Collapse
Affiliation(s)
- Yusheng Jiao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Haotian Hang
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
| | | | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Sun X, Buchanan PJ, Zhang IH, San Roman M, Babbin AR, Zakem EJ. Ecological dynamics explain modular denitrification in the ocean. Proc Natl Acad Sci U S A 2024; 121:e2417421121. [PMID: 39693347 PMCID: PMC11670096 DOI: 10.1073/pnas.2417421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Microorganisms in marine oxygen minimum zones (OMZs) drive globally impactful biogeochemical processes. One such process is multistep denitrification (NO3-→NO2-→NO→N2O→N2), which dominates OMZ bioavailable nitrogen (N) loss and nitrous oxide (N2O) production. Denitrification-derived N loss is typically measured and modeled as a single step, but observations reveal that most denitrifiers in OMZs contain subsets ("modules") of the complete pathway. Here, we identify the ecological mechanisms sustaining diverse denitrifiers, explain the prevalence of certain modules, and examine the implications for N loss. We describe microbial functional types carrying out diverse denitrification modules by their underlying redox chemistry, constraining their traits with thermodynamics and pathway length penalties, in an idealized OMZ ecosystem model. Biomass yields of single-step modules increase along the denitrification pathway when organic matter (OM) limits growth, which explains the viability of populations respiring NO2- and N2O in a NO3--filled ocean. Results predict denitrifier community succession along environmental gradients: Pathway length increases as the limiting substrate shifts from OM to N, suggesting a niche for the short NO3-→NO2- module in free-living, OM-limited communities, and for the complete pathway in organic particle-associated communities, consistent with observations. The model captures and mechanistically explains the observed dominance and higher oxygen tolerance of the NO3-→NO2- module. Results also capture observations that NO3- is the dominant source of N2O. Our framework advances the mechanistic understanding of the relationship between microbial ecology and N loss in the ocean and can be extended to other processes and environments.
Collapse
Affiliation(s)
- Xin Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA94305
| | - Pearse J. Buchanan
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA94305
- Environment, Commonwealth Scientific and Industrial Research Organization, Hobart TAS7004, Australia
| | - Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Magdalena San Roman
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas & Universidad de Salamanca, Salamanca37007, Spain
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Emily J. Zakem
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA94305
| |
Collapse
|
4
|
Wang X, Li H, Zhang J, Chen J, Xie X, Xie W, Yin K, Zhang D, Ruiz-Pino D, Kao SJ. Seamounts generate efficient active transport loops to nourish the twilight ecosystem. SCIENCE ADVANCES 2024; 10:eadk6833. [PMID: 38924405 PMCID: PMC11636984 DOI: 10.1126/sciadv.adk6833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Seamounts are ecological oases nurturing abundant fisheries resources and epibenthic megafauna in the vast oligotrophic ocean. Despite their significance, the formation mechanisms underlying these seamount ecological oases remain uncertain. To shed light on this phenomenon, this study conducted interdisciplinary in situ observations focusing on a shallow seamount in the oligotrophic ocean. The findings show that the seamount's topography interferes with the oceanic current to generate lee waves, effectively enhancing the nutrient supply to the euphotic layer downstream of the seamount. This continuous supply enhances phytoplankton biomass and subsequently the grazing and diurnal vertical migration of zooplankton, rapidly transporting the augmented phytoplankton biomass to the aphotic layer. Unlike the cyclonic eddies that move in the upper ocean, seamounts stand at fixed locations creating a more efficient and steady active transport loop. This active transport loop connects the euphotic and twilight zones, potentially conveying nourishment to benthic ecosystems to create stereoscopic oases in the oligotrophic ocean.
Collapse
Affiliation(s)
- Xinyang Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jingjing Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiaohui Xie
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Wei Xie
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Kedong Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dongsheng Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Diana Ruiz-Pino
- Sorbonne University (S.U.), CNRS-IRD-MNHN, LOCEAN Laboratory/IPSL, Paris, France
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
5
|
Peoples LM, Gerringer ME, Weston JNJ, León-Zayas R, Sekarore A, Sheehan G, Church MJ, Michel APM, Soule SA, Shank TM. A deep-sea isopod that consumes Sargassum sinking from the ocean's surface. Proc Biol Sci 2024; 291:20240823. [PMID: 39255840 PMCID: PMC11387067 DOI: 10.1098/rspb.2024.0823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024] Open
Abstract
Most deep-ocean life relies on organic carbon from the surface ocean. While settling primary production rapidly attenuates in the water column, pulses of organic material can be quickly transported to depth in the form of food falls. One example of fresh material that can reach great depths across the tropical Atlantic Ocean and Caribbean Sea is the pelagic macroalgae Sargassum. However, little is known about the deep-ocean organisms able to use this food source. Here, we encountered the isopod Bathyopsurus nybelini at depths 5002-6288 m in the Puerto Rico Trench and Mid-Cayman Spreading Center using the Deep Submergence Vehicle Alvin. In most of the 32 observations, the isopods carried fronds of Sargassum. Through an integrative suite of morphological, DNA sequencing, and microbiological approaches, we show that this species is adapted to feed on Sargassum by using a specialized swimming stroke, having serrated and grinding mouthparts, and containing a gut microbiome that provides a dietary contribution through the degradation of macroalgal polysaccharides and fixing nitrogen. The isopod's physiological, morphological, and ecological adaptations demonstrate that vertical deposition of Sargassum is a direct trophic link between the surface and deep ocean and that some deep-sea organisms are poised to use this material.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | | | | | | | - Abisage Sekarore
- Department of Biology, State University of New York at Geneseo, Geneseo, NY, USA
| | - Grace Sheehan
- Biology Department, Willamette University, Salem, OR, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Anna P. M. Michel
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - S. Adam Soule
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Timothy M. Shank
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
6
|
Barry JP, Litvin SY, DeVogelaere A, Caress DW, Lovera CF, Kahn AS, Burton EJ, King C, Paduan JB, Wheat CG, Girard F, Sudek S, Hartwell AM, Sherman AD, McGill PR, Schnittger A, Voight JR, Martin EJ. Abyssal hydrothermal springs-Cryptic incubators for brooding octopus. SCIENCE ADVANCES 2023; 9:eadg3247. [PMID: 37611094 PMCID: PMC10446498 DOI: 10.1126/sciadv.adg3247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
Does warmth from hydrothermal springs play a vital role in the biology and ecology of abyssal animals? Deep off central California, thousands of octopus (Muusoctopus robustus) migrate through cold dark waters to hydrothermal springs near an extinct volcano to mate, nest, and die, forming the largest known aggregation of octopus on Earth. Warmth from the springs plays a key role by raising metabolic rates, speeding embryonic development, and presumably increasing reproductive success; we show that brood times for females are ~1.8 years, far faster than expected for abyssal octopods. Using a high-resolution subsea mapping system, we created landscape-scale maps and image mosaics that reveal 6000 octopus in a 2.5-ha area. Because octopuses die after reproducing, hydrothermal springs indirectly provide a food supplement to the local energy budget. Although localized deep-sea heat sources may be essential to octopuses and other warm-tolerant species, most of these unique and often cryptic habitats remain undiscovered and unexplored.
Collapse
Affiliation(s)
- James P. Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Andrew DeVogelaere
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | - David W. Caress
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Chris F. Lovera
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Amanda S. Kahn
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | - Erica J. Burton
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | - Chad King
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | | | - C. Geoffrey Wheat
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Moss Landing, CA, USA
| | - Fanny Girard
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | - Paul R. McGill
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | - Eric J. Martin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| |
Collapse
|
7
|
Masmitja I, Martin M, O'Reilly T, Kieft B, Palomeras N, Navarro J, Katija K. Dynamic robotic tracking of underwater targets using reinforcement learning. Sci Robot 2023; 8:eade7811. [PMID: 37494462 DOI: 10.1126/scirobotics.ade7811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
To realize the potential of autonomous underwater robots that scale up our observational capacity in the ocean, new techniques are needed. Fleets of autonomous robots could be used to study complex marine systems and animals with either new imaging configurations or by tracking tagged animals to study their behavior. These activities can then inform and create new policies for community conservation. The role of animal connectivity via active movement of animals represents a major knowledge gap related to the distribution of deep ocean populations. Tracking underwater targets represents a major challenge for observing biological processes in situ, and methods to robustly respond to a changing environment during monitoring missions are needed. Analytical techniques for optimal sensor placement and path planning to locate underwater targets are not straightforward in such cases. The aim of this study was to investigate the use of reinforcement learning as a tool for range-only underwater target-tracking optimization, whose promising capabilities have been demonstrated in terrestrial scenarios. To evaluate its usefulness, a reinforcement learning method was implemented as a path planning system for an autonomous surface vehicle while tracking an underwater mobile target. A complete description of an open-source model, performance metrics in simulated environments, and evaluated algorithms based on more than 15 hours of at-sea field experiments are presented. These efforts demonstrate that deep reinforcement learning is a powerful approach that enhances the abilities of autonomous robots in the ocean and encourages the deployment of algorithms like these for monitoring marine biological systems in the future.
Collapse
Affiliation(s)
- I Masmitja
- Institut de Ciències del Mar (ICM), CSIC, Barcelona 95062, Spain
- Research and Development, Bioinspiration Lab, Monterey Bay Aquarium Research Institute MBARI, Moss Landing, CA 95062, USA
| | - M Martin
- Knowledge Engineering and Machine Learning Group, Universitat Politècnica de Catalunya, Barcelona Tech., Barcelona 08034, Spain
- Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - T O'Reilly
- Research and Development, Bioinspiration Lab, Monterey Bay Aquarium Research Institute MBARI, Moss Landing, CA 95062, USA
| | - B Kieft
- Research and Development, Bioinspiration Lab, Monterey Bay Aquarium Research Institute MBARI, Moss Landing, CA 95062, USA
| | - N Palomeras
- Computer vision and Robotics Institute, Universitat de Girona, Girona 17003, Spain
| | - J Navarro
- Institut de Ciències del Mar (ICM), CSIC, Barcelona 95062, Spain
| | - K Katija
- Research and Development, Bioinspiration Lab, Monterey Bay Aquarium Research Institute MBARI, Moss Landing, CA 95062, USA
| |
Collapse
|
8
|
Messié M, Sherlock RE, Huffard CL, Pennington JT, Choy CA, Michisaki RP, Gomes K, Chavez FP, Robison BH, Smith KL. Coastal upwelling drives ecosystem temporal variability from the surface to the abyssal seafloor. Proc Natl Acad Sci U S A 2023; 120:e2214567120. [PMID: 36947518 PMCID: PMC10068760 DOI: 10.1073/pnas.2214567120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Long-term biological time series that monitor ecosystems across the ocean's full water column are extremely rare. As a result, classic paradigms are yet to be tested. One such paradigm is that variations in coastal upwelling drive changes in marine ecosystems throughout the water column. We examine this hypothesis by using data from three multidecadal time series spanning surface (0 m), midwater (200 to 1,000 m), and benthic (~4,000 m) habitats in the central California Current Upwelling System. Data include microscopic counts of surface plankton, video quantification of midwater animals, and imaging of benthic seafloor invertebrates. Taxon-specific plankton biomass and midwater and benthic animal densities were separately analyzed with principal component analysis. Within each community, the first mode of variability corresponds to most taxa increasing and decreasing over time, capturing seasonal surface blooms and lower-frequency midwater and benthic variability. When compared to local wind-driven upwelling variability, each community correlates to changes in upwelling damped over distinct timescales. This suggests that periods of high upwelling favor increase in organism biomass or density from the surface ocean through the midwater down to the abyssal seafloor. These connections most likely occur directly via changes in primary production and vertical carbon flux, and to a lesser extent indirectly via other oceanic changes. The timescales over which species respond to upwelling are taxon-specific and are likely linked to the longevity of phytoplankton blooms (surface) and of animal life (midwater and benthos), which dictate how long upwelling-driven changes persist within each community.
Collapse
Affiliation(s)
- Monique Messié
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
| | - Rob E. Sherlock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
| | | | | | - C. Anela Choy
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA92093
| | | | - Kevin Gomes
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
| | | | | | | |
Collapse
|
9
|
Girard F, Litvin SY, Sherman A, McGill P, Gannon A, Lovera C, DeVogelaere A, Burton E, Graves D, Schnittger A, Barry J. Phenology in the deep sea: seasonal and tidal feeding rhythms in a keystone octocoral. Proc Biol Sci 2022; 289:20221033. [PMID: 36259212 PMCID: PMC9579760 DOI: 10.1098/rspb.2022.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Biological rhythms are widely known in terrestrial and marine systems, where the behaviour or function of organisms may be tuned to environmental variation over periods from minutes to seasons or longer. Although well characterized in coastal environments, phenology remains poorly understood in the deep sea. Here we characterized intra-annual dynamics of feeding activity for the deep-sea octocoral Paragorgia arborea. Hourly changes in polyp activity were quantified using a time-lapse camera deployed for a year on Sur Ridge (1230 m depth; Northeast Pacific). The relationship between feeding and environmental variables, including surface primary production, temperature, acoustic backscatter, current speed and direction, was evaluated. Feeding activity was highly seasonal, with a dormancy period identified between January and early April, reflecting seasonal changes in food availability as suggested by primary production and acoustic backscatter data. Moreover, feeding varied with tides, which likely affected food delivery through cyclic oscillation in current speed and direction. This study provides the first evidence of behavioural rhythms in a coral species at depth greater than 1 km. Information on the feeding biology of this cosmopolitan deep-sea octocoral will contribute to a better understanding of how future environmental change may affect deep-sea coral communities and the ecosystem services they provide.
Collapse
Affiliation(s)
- Fanny Girard
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Steven Y Litvin
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Alana Sherman
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Paul McGill
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Amanda Gannon
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Christopher Lovera
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Andrew DeVogelaere
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
| | - Erica Burton
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
| | - Dale Graves
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Aaron Schnittger
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Jim Barry
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
10
|
Durkin CA, Cetinić I, Estapa M, Ljubešić Z, Mucko M, Neeley A, Omand M. Tracing the path of carbon export in the ocean though DNA sequencing of individual sinking particles. THE ISME JOURNAL 2022; 16:1896-1906. [PMID: 35444263 PMCID: PMC9296562 DOI: 10.1038/s41396-022-01239-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
Surface phytoplankton communities were linked with the carbon they export into the deep ocean by comparing 18 S rRNA gene sequence communities from surface seawater and individually isolated sinking particles. Particles were collected in sediment traps deployed at locations in the North Pacific subtropical gyre and the California Current. DNA was isolated from individual particles, bulk-collected trap particles, and the surface seawater. The relative sequence abundance of exported phytoplankton taxa in the surface water varied across functional groups and ecosystems. Of the sequences detected in sinking particles, about half were present in large (>300 μm), individually isolated particles and primarily belonged to taxa with small cell sizes (<50 µm). Exported phytoplankton taxa detected only in bulk trap samples, and thus presumably packaged in the smaller sinking size fraction, contained taxa that typically have large cell sizes (>500 μm). The effect of particle degradation on the detectable 18 S rRNA gene community differed across taxa, and differences in community composition among individual particles from the same location largely reflected differences in relative degradation state. Using these data and particle imaging, we present an approach that incorporates genetic diversity into mechanistic models of the ocean's biological carbon pump, which will lead to better quantification of the ocean's carbon cycle.
Collapse
Affiliation(s)
- Colleen A Durkin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.
| | - Ivona Cetinić
- Universities Space Research Association, Columbia, MD, USA
- Ocean Ecology Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD, USA
- GESTAR II, Morgan State University, Baltimore, MD, USA
| | - Margaret Estapa
- School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, ME, USA
| | - Zrinka Ljubešić
- Biology Department, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Maja Mucko
- Biology Department, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Aimee Neeley
- Ocean Ecology Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems and Applications, Inc., Lanham, MD, USA
| | - Melissa Omand
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| |
Collapse
|
11
|
Liu R, Wei X, Song W, Wang L, Cao J, Wu J, Thomas T, Jin T, Wang Z, Wei W, Wei Y, Zhai H, Yao C, Shen Z, Du J, Fang J. Novel Chloroflexi genomes from the deepest ocean reveal metabolic strategies for the adaptation to deep-sea habitats. MICROBIOME 2022; 10:75. [PMID: 35538590 PMCID: PMC9088039 DOI: 10.1186/s40168-022-01263-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/24/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND The deep sea harbors the majority of the microbial biomass in the ocean and is a key site for organic matter (OM) remineralization and storage in the biosphere. Microbial metabolism in the deep ocean is greatly controlled by the generally depleted but periodically fluctuating supply of OM. Currently, little is known about metabolic potentials of dominant deep-sea microbes to cope with the variable OM inputs, especially for those living in the hadal trenches-the deepest part of the ocean. RESULTS In this study, we report the first extensive examination of the metabolic potentials of hadal sediment Chloroflexi, a dominant phylum in hadal trenches and the global deep ocean. In total, 62 metagenome-assembled-genomes (MAGs) were reconstructed from nine metagenomic datasets derived from sediments of the Mariana Trench. These MAGs represent six novel species, four novel genera, one novel family, and one novel order within the classes Anaerolineae and Dehalococcoidia. Fragment recruitment showed that these MAGs are globally distributed in deep-sea waters and surface sediments, and transcriptomic analysis indicated their in situ activities. Metabolic reconstruction showed that hadal Chloroflexi mainly had a heterotrophic lifestyle, with the potential to degrade a wide range of organic carbon, sulfur, and halogenated compounds. Our results revealed for the first time that hadal Chloroflexi harbor pathways for the complete hydrolytic or oxidative degradation of various recalcitrant OM, including aromatic compounds (e.g., benzoate), polyaromatic hydrocarbons (e.g., fluorene), polychlorobiphenyl (e.g., 4-chlorobiphenyl), and organochlorine compounds (e.g., chloroalkanes, chlorocyclohexane). Moreover, these organisms showed the potential to synthesize energy storage compounds (e.g., trehalose) and had regulatory modules to respond to changes in nutrient conditions. These metabolic traits suggest that Chloroflexi may follow a "feast-or-famine" metabolic strategy, i.e., preferentially consume labile OM and store the energy intracellularly under OM-rich conditions, and utilize the stored energy or degrade recalcitrant OM for survival under OM-limited condition. CONCLUSION This study expands the current knowledge on metabolic strategies in deep-ocean Chlorolfexi and highlights their significance in deep-sea carbon, sulfur, and halogen cycles. The metabolic plasticity likely provides Chloroflexi with advantages for survival under variable and heterogenic OM inputs in the deep ocean. Video Abstract.
Collapse
Affiliation(s)
- Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China.
| | - Xing Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Weizhi Song
- Centre for Marine Science & Innovation and School of Biological Earth and Environmental Science, University of New South Wales, Kensington, Australia
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Jiaxin Wu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Torsten Thomas
- Centre for Marine Science & Innovation and School of Biological Earth and Environmental Science, University of New South Wales, Kensington, Australia
| | - Tao Jin
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zixuan Wang
- Tidal Flat Research Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Wenxia Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Haofeng Zhai
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Cheng Yao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Ziyi Shen
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Jiangtao Du
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, USA.
| |
Collapse
|
12
|
Nguyen TTH, Zakem EJ, Ebrahimi A, Schwartzman J, Caglar T, Amarnath K, Alcolombri U, Peaudecerf FJ, Hwa T, Stocker R, Cordero OX, Levine NM. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat Commun 2022; 13:1657. [PMID: 35351873 PMCID: PMC8964765 DOI: 10.1038/s41467-022-29297-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
Sinking particulate organic carbon out of the surface ocean sequesters carbon on decadal to millennial timescales. Predicting the particulate carbon flux is therefore critical for understanding both global carbon cycling and the future climate. Microbes play a crucial role in particulate organic carbon degradation, but the impact of depth-dependent microbial dynamics on ocean-scale particulate carbon fluxes is poorly understood. Here we scale-up essential features of particle-associated microbial dynamics to understand the large-scale vertical carbon flux in the ocean. Our model provides mechanistic insight into the microbial contribution to the particulate organic carbon flux profile. We show that the enhanced transfer of carbon to depth can result from populations struggling to establish colonies on sinking particles due to diffusive nutrient loss, cell detachment, and mortality. These dynamics are controlled by the interaction between multiple biotic and abiotic factors. Accurately capturing particle-microbe interactions is essential for predicting variability in large-scale carbon cycling. Micro-scale microbial community dynamics can substantially alter the fate of sinking particulates in the ocean thus playing a key role in setting the vertical flux of particulate carbon in the ocean.
Collapse
|
13
|
Zhu L, Geng D, Pan B, Li W, Jiang S, Xu Q. Trace Elemental Analysis of the Exoskeleton, Leg Muscle, and Gut of Three Hadal Amphipods. Biol Trace Elem Res 2022; 200:1395-1407. [PMID: 34018124 DOI: 10.1007/s12011-021-02728-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Hadal trenches are the deepest areas worldwide. Amphipods are considered a key factor in hadal ecosystems because of their important impacts on the hadal environment. Amphipods have benthic habits, and therefore, serve as good metal biomonitors. However, little is known about the hadal amphipod metal accumulations. In the present study, Alicella gigantea, Hirondellea gigas, and Scopelocheirus schellenbergi were sampled from the New Britain Trench (8824m, 7.02S 149.16E), Mariana Trench (10,839m, 11.38N 142.42E), and Marceau Trench (6690m, 1.42N 148.74E) in the West Pacific Ocean, respectively. The elemental concentrations of the three hadal amphipods were subsequently investigated. Nine trace elements (V, Cr, Mn, Co, Ni, Se, Mo, Ag, and Cd) of three tissues (exoskeleton, leg muscle, and gut) of the hadal amphipods were detected by using inductively coupled plasma mass spectrometry (ICP-MS) method. The concentrations of Cr, Cd, and Mn were comparably higher among those nine examined elements. The greatest accumulations of the elements Cr, Ag, and V in the exoskeleton and leg muscle were observed in H. gigas, and elements Mn, Co, and Se showed the highest accumulations in the gut in H. gigas among the three hadal amphipods. In addition, comparisons of the leg muscle trace element accumulation between the hadal amphipods and non-abyssal and shallow water decapoda and amphipoda species showed that the hadal amphipods possessed comparably higher concentrations of the trace elements Cd, Co, Mo, Ag, and V. This finding suggested a bottom-up effect of food availability and indicated the effects of human activities within the hadal environments. This study reveals the trace element bio-accumulation of three hadal amphipods, and suggests that deep-sea amphipods are potential indicator species for trace element bioavailability in the deep-sea environment.
Collapse
Affiliation(s)
- Lingyue Zhu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Daoqiang Geng
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Bingbing Pan
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhao Li
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China.
- National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
14
|
de Melo Viríssimo F, Martin AP, Henson SA. Influence of Seasonal Variability in Flux Attenuation on Global Organic Carbon Fluxes and Nutrient Distributions. GLOBAL BIOGEOCHEMICAL CYCLES 2022; 36:e2021GB007101. [PMID: 35866103 PMCID: PMC9286473 DOI: 10.1029/2021gb007101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 06/15/2023]
Abstract
The biological carbon pump is a key component of the marine carbon cycle. This surface-to-deep flux of carbon is usually assumed to follow a simple power law function, which imposes that the surface export flux is attenuated throughout subsurface waters at a rate dictated by the parameterization exponent. This flux attenuation exponent is widely assumed as constant. However, there is increasing evidence that the flux attenuation varies both spatially and seasonally. While the former has received some attention, the consequences of the latter have not been explored. Here we aim to fill the gap with a theoretical study of how seasonal changes in both flux attenuation and sinking speed affect nutrient distributions and carbon fluxes. Using a global ocean-biogeochemical model that represents detritus explicitly, we look at different scenarios for how these varies seasonally, particularly the relative "phase" with respect to solar radiation and the "strength" of seasonality. We show that the sole presence of seasonality in the model-imposed flux attenuation and sinking speed leads to a greater transfer efficiency compared to the non-seasonal flux attenuation scenario, resulting in an increase of over 140% in some cases when the amplitude of the seasonality imposed is 60% of the non-seasonal base value. This work highlights the importance of the feedback taking place between the seasonally varying flux attenuation, sinking speed and other processes, suggesting that the assumption of constant-in-time flux attenuation and sinking speed might underestimate how much carbon is sequestered by the biological carbon pump.
Collapse
|
15
|
Sow SLS, Brown MV, Clarke LJ, Bissett A, van de Kamp J, Trull TW, Raes EJ, Seymour JR, Bramucci AR, Ostrowski M, Boyd PW, Deagle BE, Pardo PC, Sloyan BM, Bodrossy L. Biogeography of Southern Ocean prokaryotes: a comparison of the Indian and Pacific sectors. Environ Microbiol 2022; 24:2449-2466. [PMID: 35049099 PMCID: PMC9303206 DOI: 10.1111/1462-2920.15906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
We investigated the Southern Ocean (SO) prokaryote community structure via zero‐radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71–99°E, summer) and Pacific (170–174°W, autumn‐winter) sectors of the SO. At higher taxonomic levels (phylum‐family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus‐zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi‐ and bathy‐abyssopelagic water masses. Common surface bacteria were abundant in several deep‐water masses and vice‐versa suggesting connectivity between surface and deep‐water microbial assemblages. Bacteria from same‐sector Antarctic Bottom Water samples showed patchy, high beta‐diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep‐water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide‐scale SO ecosystem microbial modelling.
Collapse
Affiliation(s)
- Swan L S Sow
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia.,Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, University of Newcastle, New South Wales, 2308, Australia
| | - Laurence J Clarke
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia.,Australian Antarctic Division, Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Thomas W Trull
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Eric J Raes
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, New South Wales, 2007, Australia
| | - Anna R Bramucci
- Climate Change Cluster, University of Technology Sydney, New South Wales, 2007, Australia
| | - Martin Ostrowski
- Climate Change Cluster, University of Technology Sydney, New South Wales, 2007, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Bruce E Deagle
- Australian Antarctic Division, Channel Highway, Kingston, Tasmania, 7050, Australia.,National Collections & Marine Infrastructure, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Paula C Pardo
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Bernadette M Sloyan
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| | - Levente Bodrossy
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
16
|
Harms TK, Groffman PM, Aluwihare L, Craft C, Wieder WR, Hobbie SE, Baer SG, Blair JM, Frey S, Remucal CK, Rudgers JA, Collins SL, Kominoski JS, Ball BA. Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Cathalot C, Roussel EG, Perhirin A, Creff V, Donval JP, Guyader V, Roullet G, Gula J, Tamburini C, Garel M, Godfroy A, Sarradin PM. Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production. Nat Commun 2021; 12:6861. [PMID: 34824206 PMCID: PMC8617075 DOI: 10.1038/s41467-021-26877-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
Carbon budgets of hydrothermal plumes result from the balance between carbon sinks through plume chemoautotrophic processes and carbon release via microbial respiration. However, the lack of comprehensive analysis of the metabolic processes and biomass production rates hinders an accurate estimate of their contribution to the deep ocean carbon cycle. Here, we use a biogeochemical model to estimate the autotrophic and heterotrophic production rates of microbial communities in hydrothermal plumes and validate it with in situ data. We show how substrate limitation might prevent net chemolithoautotrophic production in hydrothermal plumes. Elevated prokaryotic heterotrophic production rates (up to 0.9 gCm-2y-1) compared to the surrounding seawater could lead to 0.05 GtCy-1 of C-biomass produced through chemoorganotrophy within hydrothermal plumes, similar to the Particulate Organic Carbon (POC) export fluxes reported in the deep ocean. We conclude that hydrothermal plumes must be accounted for as significant deep sources of POC in ocean carbon budgets.
Collapse
Affiliation(s)
- Cécile Cathalot
- Laboratoire Cycles Géochimiques et ressources - LCG/GM/REM, Ifremer, Plouzané, France.
| | - Erwan G. Roussel
- grid.4825.b0000 0004 0641 9240Laboratoire de Microbiologie des Environnements Extrêmes – LMEE/EEP/REM, Ifremer, Plouzané, France
| | - Antoine Perhirin
- grid.4825.b0000 0004 0641 9240Laboratoire Environnement Profond – LEP/EEP/REM, IFREMER, Plouzané, France
| | - Vanessa Creff
- grid.4825.b0000 0004 0641 9240Laboratoire de Microbiologie des Environnements Extrêmes – LMEE/EEP/REM, Ifremer, Plouzané, France
| | - Jean-Pierre Donval
- grid.4825.b0000 0004 0641 9240Laboratoire Cycles Géochimiques et ressources – LCG/GM/REM, Ifremer, Plouzané, France
| | - Vivien Guyader
- grid.4825.b0000 0004 0641 9240Laboratoire Cycles Géochimiques et ressources – LCG/GM/REM, Ifremer, Plouzané, France
| | - Guillaume Roullet
- Univ Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, Plouzané, France
| | - Jonathan Gula
- Univ Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, Plouzané, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France (IUF), Paris, France
| | - Christian Tamburini
- Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110 Marseille, France
| | - Marc Garel
- Aix-Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110 Marseille, France
| | - Anne Godfroy
- grid.4825.b0000 0004 0641 9240Laboratoire de Microbiologie des Environnements Extrêmes – LMEE/EEP/REM, Ifremer, Plouzané, France
| | - Pierre-Marie Sarradin
- grid.4825.b0000 0004 0641 9240Laboratoire Environnement Profond – LEP/EEP/REM, IFREMER, Plouzané, France
| |
Collapse
|
18
|
Smith KL, Sherman AD, McGill PR, Henthorn RG, Ferreira J, Connolly TP, Huffard CL. Abyssal Benthic Rover, an autonomous vehicle for long-term monitoring of deep-ocean processes. Sci Robot 2021; 6:eabl4925. [PMID: 34731026 DOI: 10.1126/scirobotics.abl4925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- K L Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - A D Sherman
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - P R McGill
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - R G Henthorn
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - J Ferreira
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - T P Connolly
- Moss Landing Marine Laboratories, San José State University, Moss Landing, CA, USA
| | - C L Huffard
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| |
Collapse
|
19
|
Durkin CA, Buesseler KO, Cetinić I, Estapa ML, Kelly RP, Omand M. A Visual Tour of Carbon Export by Sinking Particles. GLOBAL BIOGEOCHEMICAL CYCLES 2021; 35:e2021GB006985. [PMID: 35865105 PMCID: PMC9286655 DOI: 10.1029/2021gb006985] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 05/09/2023]
Abstract
To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (<100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.
Collapse
Affiliation(s)
- Colleen A. Durkin
- Moss Landing Marine LaboratoriesMoss LandingCAUSA
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
| | | | - Ivona Cetinić
- Universities Space Research AssociationColumbiaMDUSA
- Ocean Ecology Laboratory at NASA/Goddard Space Flight CenterGreenbeltMDUSA
| | - Margaret L. Estapa
- School of Marine Sciences, Darling Marine CenterUniversity of MaineWalpoleMEUSA
- Skidmore CollegeSaratoga SpringsNYUSA
| | - Roger P. Kelly
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRIUSA
| | - Melissa Omand
- Graduate School of OceanographyUniversity of Rhode IslandNarragansettRIUSA
| |
Collapse
|
20
|
Romero-Romero S, Miller LC, Black JA, Popp BN, Drazen JC. Abyssal deposit feeders are secondary consumers of detritus and rely on nutrition derived from microbial communities in their guts. Sci Rep 2021; 11:12594. [PMID: 34131174 PMCID: PMC8206261 DOI: 10.1038/s41598-021-91927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
Trophic ecology of detrital-based food webs is still poorly understood. Abyssal plains depend entirely on detritus and are among the most understudied ecosystems, with deposit feeders dominating megafaunal communities. We used compound-specific stable isotope ratios of amino acids (CSIA-AA) to estimate the trophic position of three abundant species of deposit feeders collected from the abyssal plain of the Northeast Pacific (Station M; ~ 4000 m depth), and compared it to the trophic position of their gut contents and the surrounding sediments. Our results suggest that detritus forms the base of the food web and gut contents of deposit feeders have a trophic position consistent with primary consumers and are largely composed of a living biomass of heterotrophic prokaryotes. Subsequently, deposit feeders are a trophic level above their gut contents making them secondary consumers of detritus on the abyssal plain. Based on δ13C values of essential amino acids, we found that gut contents of deposit feeders are distinct from the surrounding surface detritus and form a unique food source, which was assimilated by the deposit feeders primarily in periods of low food supply. Overall, our results show that the guts of deposit feeders constitute hotspots of organic matter on the abyssal plain that occupy one trophic level above detritus, increasing the food-chain length in this detritus-based ecosystem.
Collapse
Affiliation(s)
- Sonia Romero-Romero
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA.
| | - Lee C Miller
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| | - Jesse A Black
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| | - Brian N Popp
- Department of Earth Sciences, University of Hawaii at Manoa, 1680 East West Road, Honolulu, HI, 96822, USA
| | - Jeffrey C Drazen
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| |
Collapse
|
21
|
Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, Royo-Llonch M, Paoli L, Sunagawa S, Hingamp P, Ogata H, Lima-Mendez G, Roux S, González JM, Arrieta JM, Alam IS, Kamau A, Bowler C, Raes J, Pesant S, Bork P, Agustí S, Gojobori T, Vaqué D, Sullivan MB, Pedrós-Alió C, Massana R, Duarte CM, Gasol JM. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol 2021; 4:604. [PMID: 34021239 PMCID: PMC8139981 DOI: 10.1038/s42003-021-02112-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/16/2021] [Indexed: 02/04/2023] Open
Abstract
The deep sea, the largest ocean's compartment, drives planetary-scale biogeochemical cycling. Yet, the functional exploration of its microbial communities lags far behind other environments. Here we analyze 58 metagenomes from tropical and subtropical deep oceans to generate the Malaspina Gene Database. Free-living or particle-attached lifestyles drive functional differences in bathypelagic prokaryotic communities, regardless of their biogeography. Ammonia and CO oxidation pathways are enriched in the free-living microbial communities and dissimilatory nitrate reduction to ammonium and H2 oxidation pathways in the particle-attached, while the Calvin Benson-Bassham cycle is the most prevalent inorganic carbon fixation pathway in both size fractions. Reconstruction of the Malaspina Deep Metagenome-Assembled Genomes reveals unique non-cyanobacterial diazotrophic bacteria and chemolithoautotrophic prokaryotes. The widespread potential to grow both autotrophically and heterotrophically suggests that mixotrophy is an ecologically relevant trait in the deep ocean. These results expand our understanding of the functional microbial structure and metabolic capabilities of the largest Earth aquatic ecosystem.
Collapse
Affiliation(s)
- Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain.
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Guillem Salazar
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Francisco M Cornejo-Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Pascal Hingamp
- Aix Marseille Univ., Université de Toulon, CNRS, Marseille, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan
| | - Gipsi Lima-Mendez
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute for Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Jesús M Arrieta
- Spanish Institute of Oceanography (IEO), Oceanographic Center of The Canary Islands, Dársena Pesquera, Santa Cruz de Tenerife, Spain
| | - Intikhab S Alam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Allan Kamau
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB Center for Microbiology, Leuven, Belgium
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Susana Agustí
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Matthew B Sullivan
- Department of Microbiology and Civil Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Carlos M Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Centre for Marine Ecosystems Research, School of Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
22
|
Abstract
The ocean’s “biological pump” exports sinking particles containing carbon, nutrients, and energy to the deep sea, contributing centrally to the global carbon cycle. Here, we identify key organisms and biological processes associated with elevated carbon flux to the abyss. Our analyses reveal that, during summer export, specific populations of photosynthetic algae, heterotrophic protists, and bacteria reach the abyss on sinking particles. Deep-sea bacteria respond rapidly to this elevated nutrient delivery to the abyss in summer. During other seasons, different organisms and processes appear responsible for particle export to the deep sea. Our analyses reveal key biota and biological processes that interconnect surface productivity, particle export, and the deep-sea ecosystem, thereby influencing the function and efficiency of the ocean’s biological pump. In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean’s biological pump and help sustain deep-sea ecosystems.
Collapse
|
23
|
Sebastián M, Forn I, Auladell A, Gómez-Letona M, Sala MM, Gasol JM, Marrasé C. Differential recruitment of opportunistic taxa leads to contrasting abilities in carbon processing by bathypelagic and surface microbial communities. Environ Microbiol 2020; 23:190-206. [PMID: 33089653 DOI: 10.1111/1462-2920.15292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023]
Abstract
Different factors affect the way dissolved organic matter (DOM) is processed in the ocean water column, including environmental conditions and the functional capabilities of the communities. Recent studies have shown that bathypelagic prokaryotes are metabolically flexible, but whether this versatility translates into a higher ability to process DOM has been barely explored. Here we performed a multifactorial transplant experiment to compare the growth, activity and changes in DOM quality in surface and bathypelagic waters inoculated with either surface or bathypelagic prokaryotic communities. The effect of nutrient additions to surface waters was also explored. Despite no differences in the cell abundance of surface and deep ocean prokaryotes were observed in any of the treatments, in surface waters with nutrients the heterotrophic production of surface prokaryotes rapidly decreased. Conversely, bathypelagic communities displayed a sustained production throughout the experiment. Incubations with surface prokaryotes always led to a significant accumulation of recalcitrant compounds, which did not occur with bathypelagic prokaryotes, suggesting they have a higher ability to process DOM. These contrasting abilities could be explained by the recruitment of a comparatively larger number of opportunistic taxa within the bathypelagic assemblages, which likely resulted in a broader community capability of substrate utilization.
Collapse
Affiliation(s)
- Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain.,Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, 35214, Spain
| | - Irene Forn
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Markel Gómez-Letona
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, 35214, Spain
| | - M Montserrat Sala
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Cèlia Marrasé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| |
Collapse
|
24
|
Azaroff A, Goñi Urriza M, Gassie C, Monperrus M, Guyoneaud R. Marine mercury-methylating microbial communities from coastal to Capbreton Canyon sediments (North Atlantic Ocean). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114333. [PMID: 32443198 DOI: 10.1016/j.envpol.2020.114333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Microbial mercury (Hg) methylation transforms inorganic mercury to neurotoxic methylmercury (MeHg) mainly in aquatic anoxic environments. Sampling challenges in marine ecosystems, particularly in submarine canyons, leads to a lack of knowledge about the Hg methylating microbia in marine sediments. A previous study showed an enrichment of mercury species in sediments from the Capbreton Canyon where both geochemical parameters and microbial activities constrained the net MeHg production. In order to characterize Hg-methylating microbial communities from coastal to deeper sediments, we analysed the diversity of microorganisms' (16S rDNA-based sequencing) and Hg methylators (hgcA based cloning and sequencing). Both, 16S rDNA and hgcA gene analysis demonstrated that the putative Hg-methylating prokaryotes were likely within the Deltaproteobacteria, dominated by sulfur-compounds based reducing bacteria (mainly sulfate reducers). Additionally, others clades were also identified as carrying HgcA gene, such as, Chloroflexi, Spirochaetes, Elusimicrobia, PVC superphylum (Plantomycetes, Verrucomicrobia and Chlamydiae) and Euryarchaea. Nevertheless, 61% of the hgcA sequences were not assigned to specific clade, indicating that further studies are needed to understand the implication of new microorganisms carrying hgcA in the Hg methylation in marine environments. These first results suggest that sulfur cycle drives the Hg-methylation in marine ecosystem.
Collapse
Affiliation(s)
- Alyssa Azaroff
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600 Anglet, France
| | - Marisol Goñi Urriza
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA Environmental Microbiology, UMR 5254, 64000, Pau, France
| | - Claire Gassie
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA Environmental Microbiology, UMR 5254, 64000, Pau, France
| | - Mathilde Monperrus
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600 Anglet, France
| | - Rémy Guyoneaud
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA Environmental Microbiology, UMR 5254, 64000, Pau, France.
| |
Collapse
|
25
|
Rodríguez-Martínez R, Leonard G, Milner DS, Sudek S, Conway M, Moore K, Hudson T, Mahé F, Keeling PJ, Santoro AE, Worden AZ, Richards TA. Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink. ISME JOURNAL 2020; 14:984-998. [PMID: 31919469 PMCID: PMC7082347 DOI: 10.1038/s41396-019-0581-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022]
Abstract
Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the 'ribosomally active' eukaryotic diversity present in sediments close to the water/sediment interface. We demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms. We also observe many groups that include, or branch close to, osmotrophic-saprotrophic protists (e.g. labyrinthulomycetes and Pseudofungi), microbes likely to be important for detrital decomposition. The sequence data also included a diversity of abundant amplicon-types that branch close to the Fonticula slime moulds. Taken together, our data identifies additional roles for eukaryotic microbes in the marine carbon cycle; where putative osmotrophic-saprotrophic protists represent a significant active microbial-constituent of the upper sediment layer.
Collapse
Affiliation(s)
- Raquel Rodríguez-Martínez
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK. .,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile.
| | - Guy Leonard
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - David S Milner
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Mike Conway
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Karen Moore
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Theresa Hudson
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Frédéric Mahé
- CIRAD, UMR LSTM, Montpellier, France.,Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Thomas A Richards
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK. .,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
26
|
Sebastián M, Estrany M, Ruiz-González C, Forn I, Sala MM, Gasol JM, Marrasé C. High Growth Potential of Long-Term Starved Deep Ocean Opportunistic Heterotrophic Bacteria. Front Microbiol 2019; 10:760. [PMID: 31024513 PMCID: PMC6468046 DOI: 10.3389/fmicb.2019.00760] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/26/2019] [Indexed: 12/04/2022] Open
Abstract
Experiments with bacteria in culture have shown that they often display "feast and famine" strategies that allow them to respond with fast growth upon pulses in resource availability, and enter a growth-arrest state when resources are limiting. Although feast responses have been observed in natural communities upon enrichment, it is unknown whether this blooming ability is maintained after long periods of starvation, particularly in systems that are energy limited like the bathypelagic ocean. Here we combined bulk and single-cell activity measurements with 16S rRNA gene amplicon sequencing to explore the response of a bathypelagic community, that had been starved for 1.6 years, to a sudden organic carbon supply. We observed a dramatic change in activity within 30 h, with leucine incorporation rates increasing over two orders of magnitude and the number of translationally active cells (mostly Gammaproteobacteria) increasing 4-fold. The feast response was driven by a single operational taxonomic unit (OTU) affiliated with the Marinobacter genus, which had remained rare during 7 months of starvation. Our work suggests that bathypelagic communities harbor a seed bank of highly persistent and resourceful "feast and famine" strategists that might disproportionally contribute to carbon fluxes through fast responses to occasional pulses of organic matter.
Collapse
Affiliation(s)
- Marta Sebastián
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, Spain
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Margarita Estrany
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Clara Ruiz-González
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Irene Forn
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Maria Montserrat Sala
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Josep M. Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Celia Marrasé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| |
Collapse
|