1
|
Dasharathy S, Pranay, Devadas SK, Tripathi E, Karyala P. Emerging role of deubiquitinases in modulating cancer chemoresistance. Drug Discov Today 2025; 30:104339. [PMID: 40118446 DOI: 10.1016/j.drudis.2025.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Chemotherapy remains a gold standard in cancer treatment by targeting the rapidly dividing cancer cells. However, chemoresistance is a major obstacle to successful cancer treatment, often leading to recurrence, metastasis, and high mortality. Deubiquitinases (DUBs), enzymes that remove ubiquitin and stabilize proteins, have been implicated in chemoresistance and can either promote therapeutic resistance or enhance sensitivity depending on their targets. In this review, we highlight the chemoresistance mechanisms of DUBs in various cancers, including breast, lung, liver, gastrointestinal, colorectal, ovarian, prostate, and blood cancers. Given these mechanisms, the development of DUB inhibitors has gained considerable attention in cancer therapeutics and combination therapies involving these inhibitors show potential to overcome drug resistance and improving treatment outcomes.
Collapse
Affiliation(s)
- Sukeerthi Dasharathy
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Pranay
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Santhosh K Devadas
- Department of Medical Oncology, Ramaiah Medical College and Hospital, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Ekta Tripathi
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India.
| | - Prashanthi Karyala
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India.
| |
Collapse
|
2
|
Farrokhnazar E, Moghbelinejad S, Najafipour R, Teimoori-Toolabi L. MiR-3664-3p through suppressing ABCG2, CYP3A4, MCL1, and MLH1 increases the sensitivity of colorectal cancer cells to irinotecan. Heliyon 2025; 11:e41933. [PMID: 39931465 PMCID: PMC11808512 DOI: 10.1016/j.heliyon.2025.e41933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 02/13/2025] Open
Abstract
Background Colorectal cancer (CRC) is the third most frequently diagnosed malignancy worldwide. Currently, irinotecan (CPT-11) is used alone or in combination with other drugs to treat patients with advanced CRC. However, the 5-year survival rate for metastatic CRC remains below 10 %, largely due to chemotherapy resistance. Several genes, including ABCG2, CYP3A4, MCL1, and MLH1 contribute to irinotecan resistance. This study aimed to identify microRNAs that simultaneously regulate the expression of these genes in irinotecan-resistant cell lines and study their effect on resistant colorectal cancer cells. Methods Irinotecan-resistant colorectal cancer cell lines were developed by intermittently exposing HCT116 and SW480 cell lines to gradually increasing doses of irinotecan over four generations. These resistant cell lines were designated HCT116-R1, HCT116-R2, HCT116-R3, HCT116-R4 and SW480-R1, SW480-R2, SW480-R3, SW480-R4. The induction of resistance was confirmed using MTT assays, by calculating IC50 values for each generation and comparing them to the parental cells. The expression levels of the ABCG2, CYP3A4, MCL1, and MLH1 genes, along with miR-3664-3p, were initially measured in all resistant and parental cell lines using quantitative real-time PCR. Following transfection of HCT116-R3 and SW480-R3 cells with pre-miR-3664-3p, the expression levels of ABCG2, CYP3A4, MCL1, MLH1, and miR-3664-3p were re-evaluated using real-time PCR. Results In resistant cell lines derived from HCT116 and SW480, increased expression of the ABCG2, CYP3A4, and MCL1 genes was observed. However, a reduction in CYP3A4 expression was noted in the final resistant lines from both cell lines. Additionally, while MLH1 expression increased in HCT116-derived cell lines, no significant increase was observed in SW480-derived lines. A consistent decrease in miR-3664-3p expression was found across all resistant cell lines. When we transfected HCT116-R3 and SW480-R3 cells with pre-miR-3664-3p, there was an increase in miR-3664-3p expression and a reduction in ABCG2, CYP3A4, MCL1, and MLH1 gene expression. This led to increased sensitivity to irinotecan. Conclusion It can be concluded that miR-3664-3p can be considered a regulator of resistance to irinotecan by modulating the expression of ABCG2, CYP3A4, MCL1, and MLH1 genes.
Collapse
Affiliation(s)
- Elham Farrokhnazar
- Research Institute for Prevention of Non-Communicable Diseases, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
- Department of Molecular Medicine, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sahar Moghbelinejad
- Research Institute for Prevention of Non-Communicable Diseases, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| |
Collapse
|
3
|
Zaib S, Javed H, Rana N, Zaib Z, Iqbal S, Khan I. Therapeutic Chemoresistance in Ovarian Cancer: Emerging Hallmarks, Signaling Mechanisms and Alternative Pathways. Curr Med Chem 2025; 32:923-938. [PMID: 38275065 DOI: 10.2174/0109298673276871231205043417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer is the fifth leading cause of mortality and the most lethal gynecologic malignancy among females. It may arise from atypical borderline tumors (Type I) or serous tubal intraepithelial carcinoma (Type II). The diagnosis of cancer at its early stages is difficult because of non-specific symptoms, most patients are diagnosed at the advanced stage. Several drugs and therapeutic strategies are available to treat ovarian cancer such as surgery, chemotherapy, neoadjuvant therapy, and maintenance therapy. However, the cancer cells have developed resistance to a number of available therapies causing treatment failure. This emerging chemoresistance in ovarian cancer cells is becoming an obstacle due to alterations in multiple cellular processes. These processes involve altered drug target response, drug pumps, detoxification systems, lower sensitivity to apoptosis, and altered proliferation, and are responsible for developing resistance to anticancer medicines. Various research reports have evidenced that these altered processes might play a role in the emergence of resistance. This review addresses the recent advances in understanding the underlying mechanisms of ovarian cancer resistance and covers sophisticated alternative pathways to overcome these resistance mechanisms in patients.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Zainab Zaib
- Combined Military Hospital Abbottabad, Abbottabad, 22010, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad, 46000, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
4
|
Nair SG, Benny S, Jose WM, Aneesh TP. Epigenetics as a strategic intervention for early diagnosis and combatting glycolyis-induced chemoresistance in gynecologic cancers. Life Sci 2024; 358:123167. [PMID: 39447732 DOI: 10.1016/j.lfs.2024.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Prospective prediction from the Australian Institute of Health and Welfare (AIHW) showed a likely incidence of 1 in 23 women diagnosed with gynaecological malignancy, where the incidence of relapse with a drug-resistant clone poses a significant challenge in dealing with it even after initial treatment. Glucose metabolism has been exploited as a therapeutic target under anti-metabolomic study, but the non-specificity narrowed its applicability in cancer. Novel updates over epigenetics as a target in gynaecological cancer offer a rational idea of using this in the metabolic rewiring in mutated glycolytic flux-induced drug resistance. This review focuses on the application of epigenetic intervention at a diagnostic and therapeutic level to shift the current treatment paradigm of gynaecological cancers from reactive medicine to predictive, preventive, and personalised medicine. It presents the likely epigenetic targets that can be exploited potentially to prevent the therapeutic failure associated with glucose metabolism-induced chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- Sachin G Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India
| | - Wesley M Jose
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS PO, Kochi 682041, Kerala, India.
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India.
| |
Collapse
|
5
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Yang D, Liu X, Yang Y, Long Y, Nan D, Shi B, Wang J, Yang M, Cong H, Xing L, Zhou F, Yuan Q, Ta N, Zhang Y, Ma R, Liu F, Liu S. Pharmacological USP2 targeting suppresses ovarian cancer growth by potentiating apoptosis and ferroptosis. Arch Biochem Biophys 2024; 762:110193. [PMID: 39486565 DOI: 10.1016/j.abb.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Ovarian cancer is a frequently observed type of gynaecologic malignancy generally associated with poor prognosis around the world. Ubiquitin-specific proteases (USPs) form the largest subfamily of deubiquitylating enzymes and have emerged as potential therapeutic targets against human cancers. Through a systematic analysis of the prognostic significance of USP expression, USP2 was found to be inversely correlated with patient survival in ovarian cancer. Accordingly, we investigated the effects of pharmacological inhibition of USP2 on ovarian cancer by exploiting its small molecule inhibitor ML364. Our findings show that ML364 effectively hindered ovarian cancer growth and migration using a series of in vitro assays. In addition to apoptosis induction, ML364 also sensitized ovarian cancer cells to ferroptosis. Mechanistically, ML364 treatment resulted in cyclin D1 downregulation, increased poly (ADP-ribose) polymerase (PARP) cleavage, and elevated ROS levels in ovarian cancer cells. Collectively, our findings suggest USP2 as a potential therapeutic target in ovarian cancer, and hence, its pharmacological inhibition warrants further investigation.
Collapse
Affiliation(s)
- Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiuxiu Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Department of Gynecology, Zhongshan Hospital of Dalian University, Dalian, China
| | - Yinghui Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yu Long
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ding Nan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Bo Shi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinhao Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mei Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haotian Cong
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lin Xing
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Feixue Zhou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qianhui Yuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Na Ta
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruilan Ma
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, China.
| | - Fang Liu
- Department of Oncology, The Second Affiliated Hospital, Dalian Medical University, China.
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Ni Y, Shi M, Liu L, Lin D, Zeng H, Ong C, Wang Y. G9a in Cancer: Mechanisms, Therapeutic Advancements, and Clinical Implications. Cancers (Basel) 2024; 16:2175. [PMID: 38927881 PMCID: PMC11201431 DOI: 10.3390/cancers16122175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
G9a, also named EHMT2, is a histone 3 lysine 9 (H3K9) methyltransferase responsible for catalyzing H3K9 mono- and dimethylation (H3K9me1 and H3K9me2). G9a contributes to various aspects of embryonic development and tissue differentiation through epigenetic regulation. Furthermore, the aberrant expression of G9a is frequently observed in various tumors, particularly in prostate cancer, where it contributes to cancer pathogenesis and progression. This review highlights the critical role of G9a in multiple cancer-related processes, such as epigenetic dysregulation, tumor suppressor gene silencing, cancer lineage plasticity, hypoxia adaption, and cancer progression. Despite the increased research on G9a in prostate cancer, there are still significant gaps, particularly in understanding its interactions within the tumor microenvironment and its broader epigenetic effects. Furthermore, this review discusses the recent advancements in G9a inhibitors, including the development of dual-target inhibitors that target G9a along with other epigenetic factors such as EZH2 and HDAC. It aims to bring together the existing knowledge, identify gaps in the current research, and suggest future directions for research and treatment strategies.
Collapse
Affiliation(s)
- Yuchao Ni
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mingchen Shi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Liangliang Liu
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Christopher Ong
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
8
|
Nan Y, Wu X, Luo Q, Chang W, Zhao P, Zhang L, Liu Z. OTUB2 silencing promotes ovarian cancer via mitochondrial metabolic reprogramming and can be synthetically targeted by CA9 inhibition. Proc Natl Acad Sci U S A 2024; 121:e2315348121. [PMID: 38701117 PMCID: PMC11087800 DOI: 10.1073/pnas.2315348121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Ovarian cancer is an aggressive gynecological tumor characterized by a high relapse rate and chemoresistance. Ovarian cancer exhibits the cancer hallmark of elevated glycolysis, yet effective strategies targeting cancer cell metabolic reprogramming to overcome therapeutic resistance in ovarian cancer remain elusive. Here, we revealed that epigenetic silencing of Otubain 2 (OTUB2) is a driving force for mitochondrial metabolic reprogramming in ovarian cancer, which promotes tumorigenesis and chemoresistance. Mechanistically, OTUB2 silencing destabilizes sorting nexin 29 pseudogene 2 (SNX29P2), which subsequently prevents hypoxia-inducible factor-1 alpha (HIF-1α) from von Hippel-Lindau tumor suppressor-mediated degradation. Elevated HIF-1α activates the transcription of carbonic anhydrase 9 (CA9) and drives ovarian cancer progression and chemoresistance by promoting glycolysis. Importantly, pharmacological inhibition of CA9 substantially suppressed tumor growth and synergized with carboplatin in the treatment of OTUB2-silenced ovarian cancer. Thus, our study highlights the pivotal role of OTUB2/SNX29P2 in suppressing ovarian cancer development and proposes that targeting CA9-mediated glycolysis is an encouraging strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| | - Xiaowei Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02215
| | - Qingyu Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing100850, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100021, China
| |
Collapse
|
9
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
10
|
Feoli A, Sarno G, Castellano S, Sbardella G. DMSO-Related Effects on Ligand-Binding Properties of Lysine Methyltransferases G9a and SETD8. Chembiochem 2024; 25:e202300809. [PMID: 38205880 DOI: 10.1002/cbic.202300809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Being the standard solvent for preparing stock solutions of compounds for drug discovery, DMSO is always present in assay buffers in concentrations ranging from 0.1 % to 5 % (v/v). Even at the lowest concentrations, DMSO-containing solutions can have significant effects on individual proteins and possible pitfalls cannot be eliminated. Herein, we used two protein systems, the lysine methyltransferases G9a/KMT1 C and SETD8/KMT5 A, to study the effects of DMSO on protein stability and on the binding of the corresponding inhibitors, using different biophysical methods such as nano Differential Scanning Fluorimetry (nanoDSF), Differential Scanning Fluorimetry (DSF), microscale thermophoresis (MST), and surface plasmon resonance (SPR), all widely used in drug discovery screening campaigns. We demonstrated that the effects of DMSO are protein- and technique-dependent and cannot be predicted or extrapolated on the basis of previous studies using different proteins and/or different assays. Moreover, we showed that the application of orthogonal biophysical methods can lead to different binding affinity data, thus confirming the importance of using at least two different orthogonal assays in screening campaigns. This variability should be taken into account in the selection and characterization of hit compounds, in order to avoid data misinterpretation.
Collapse
Affiliation(s)
- Alessandra Feoli
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Giuliana Sarno
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - Sabrina Castellano
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
11
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Watanabe K, Seki N. Biology and Development of DNA-Targeted Drugs, Focusing on Synthetic Lethality, DNA Repair, and Epigenetic Modifications for Cancer: A Review. Int J Mol Sci 2024; 25:752. [PMID: 38255825 PMCID: PMC10815806 DOI: 10.3390/ijms25020752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-targeted drugs constitute a specialized category of pharmaceuticals developed for cancer treatment, directly influencing various cellular processes involving DNA. These drugs aim to enhance treatment efficacy and minimize side effects by specifically targeting molecules or pathways crucial to cancer growth. Unlike conventional chemotherapeutic drugs, recent discoveries have yielded DNA-targeted agents with improved effectiveness, and a new generation is anticipated to be even more specific and potent. The sequencing of the human genome in 2001 marked a transformative milestone, contributing significantly to the advancement of targeted therapy and precision medicine. Anticipated progress in precision medicine is closely tied to the continuous development in the exploration of synthetic lethality, DNA repair, and expression regulatory mechanisms, including epigenetic modifications. The integration of technologies like circulating tumor DNA (ctDNA) analysis further enhances our ability to elucidate crucial regulatory factors, promising a more effective era of precision medicine. The combination of genomic knowledge and technological progress has led to a surge in clinical trials focusing on precision medicine. These trials utilize biomarkers for identifying genetic alterations, molecular profiling for potential therapeutic targets, and tailored cancer treatments addressing multiple genetic changes. The evolving landscape of genomics has prompted a paradigm shift from tumor-centric to individualized, genome-directed treatments based on biomarker analysis for each patient. The current treatment strategy involves identifying target genes or pathways, exploring drugs affecting these targets, and predicting adverse events. This review highlights strategies incorporating DNA-targeted drugs, such as PARP inhibitors, SLFN11, methylguanine methyltransferase (MGMT), and ATR kinase.
Collapse
Affiliation(s)
- Kiyotaka Watanabe
- Department of Medicine, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | | |
Collapse
|
13
|
Biegała Ł, Gajek A, Szymczak-Pajor I, Marczak A, Śliwińska A, Rogalska A. Targeted inhibition of the ATR/CHK1 pathway overcomes resistance to olaparib and dysregulates DNA damage response protein expression in BRCA2 MUT ovarian cancer cells. Sci Rep 2023; 13:22659. [PMID: 38114660 PMCID: PMC10730696 DOI: 10.1038/s41598-023-50151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Olaparib is a PARP inhibitor (PARPi) approved for targeted treatment of ovarian cancer (OC). However, its efficacy is impeded by the inevitable occurrence of resistance. Here, we investigated whether the cytotoxic activity of olaparib could be synergistically enhanced in olaparib-resistant OC cells with BRCA2 reversion mutation by the addition of inhibitors of the ATR/CHK1 pathway. Moreover, we provide insights into alterations in the DNA damage response (DDR) pathway induced by combination treatments. Antitumor activity of olaparib alone or combined with an ATR inhibitor (ATRi, ceralasertib) or CHK1 inhibitor (CHK1i, MK-8776) was evaluated in OC cell lines sensitive (PEO1, PEO4) and resistant (PEO1-OR) to olaparib. Antibody microarrays were used to explore changes in expression of 27 DDR-related proteins. Olaparib in combination with ATR/CHK1 inhibitors synergistically induced a decrease in viability and clonogenic survival and an increase in apoptosis mediated by caspase-3/7 in all OC cells. Combination treatments induced cumulative alterations in expression of DDR-related proteins mediating distinct DNA repair pathways and cell cycle control. In the presence of ATRi and CHK1i, olaparib-induced upregulation of proteins determining cell fate after DNA damage (PARP1, CHK1, c-Abl, Ku70, Ku80, MDM2, and p21) was abrogated in PEO1-OR cells. Overall, the addition of ATRi or CHK1i to olaparib effectively overcomes resistance to PARPi exerting anti-proliferative effect in BRCA2MUT olaparib-resistant OC cells and alters expression of DDR-related proteins. These new molecular insights into cellular response to olaparib combined with ATR/CHK1 inhibitors might help improve targeted therapies for olaparib-resistant OC.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland.
| |
Collapse
|
14
|
Abstract
Ubiquitination is an essential regulator of most, if not all, signalling pathways, and defects in cellular signalling are central to cancer initiation, progression and, eventually, metastasis. The attachment of ubiquitin signals by E3 ubiquitin ligases is directly opposed by the action of approximately 100 deubiquitinating enzymes (DUBs) in humans. Together, DUBs and E3 ligases coordinate ubiquitin signalling by providing selectivity for different substrates and/or ubiquitin signals. The balance between ubiquitination and deubiquitination is exquisitely controlled to ensure properly coordinated proteostasis and response to cellular stimuli and stressors. Not surprisingly, then, DUBs have been associated with all hallmarks of cancer. These relationships are often complex and multifaceted, highlighted by the implication of multiple DUBs in certain hallmarks and by the impact of individual DUBs on multiple cancer-associated pathways, sometimes with contrasting cancer-promoting and cancer-inhibiting activities, depending on context and tumour type. Although it is still understudied, the ever-growing knowledge of DUB function in cancer physiology will eventually identify DUBs that warrant specific inhibition or activation, both of which are now feasible. An integrated appreciation of the physiological consequences of DUB modulation in relevant cancer models will eventually lead to the identification of patient populations that will most likely benefit from DUB-targeted therapies.
Collapse
Affiliation(s)
- Grant Dewson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Pieter J A Eichhorn
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
Jacob M, Wiedemann S, Brücher D, Pieper NM, Birkhold M, Särchen V, Jeroch J, Demes MC, Gretser S, Braun Y, Gradhand E, Rothweiler F, Michaelis M, Cinatl J, Vogler M. Increased MCL1 dependency leads to new applications of BH3-mimetics in drug-resistant neuroblastoma. Br J Cancer 2023; 129:1667-1678. [PMID: 37723317 PMCID: PMC10646009 DOI: 10.1038/s41416-023-02430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric cancer that is characterised by poor prognosis for chemoresistant disease, highlighting the need for better treatment options. Here, we asked whether BH3-mimetics inhibiting BCL2 proteins may eliminate chemoresistant neuroblastoma cells. METHODS We utilised cisplatin-adapted neuroblastoma cell lines as well as patient tissues before and after relapse to study alterations of BCL2 proteins upon chemoresistance. RESULTS In a direct comparison of cisplatin-resistant cells we identified a prominent loss of sensitivity to BCL2/BCL-XL inhibitors that is associated with an increase in MCL1 dependency and high expression of MCL1 in patient tumour tissues. Screening of FDA-approved anti-cancer drugs in chemoresistant cells identified therapeutics that may be beneficial in combination with the clinically tested BH3-mimetic ABT263, but no synergistic drug interactions with the selective MCL1 inhibitor S63845. Further exploration of potential treatment options for chemoresistant neuroblastoma identified immunotherapy based on NK cells as highly promising, since NK cells are able to efficiently kill both parental and chemoresistant cells. CONCLUSIONS These data highlight that the application of BH3-mimetics may differ between first line treatment and relapsed disease. Combination of NK cell-based immunotherapy with BH3-mimetics may further increase killing of chemoresistant neuroblastoma, outlining a new treatment strategy for relapsed neuroblastoma.
Collapse
Affiliation(s)
- Maureen Jacob
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sara Wiedemann
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Daniela Brücher
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Nadja M Pieper
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Moni Birkhold
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Jan Jeroch
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Melanie C Demes
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Steffen Gretser
- Department of Pediatric and Perinatal Pathology, Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yannick Braun
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Elise Gradhand
- Department of Pediatric and Perinatal Pathology, Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Florian Rothweiler
- Institute for Medical Virology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany
| | - Martin Michaelis
- Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany
- School of Biosciences, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institute for Medical Virology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Dr. Petra Joh-Forschungshaus, Frankfurt am Main, Germany
| | - Meike Vogler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
17
|
Min Y, Park HB, Baek KH, Hwang S. Cellular Functions of Deubiquitinating Enzymes in Ovarian Adenocarcinoma. Genes (Basel) 2023; 14:genes14040886. [PMID: 37107644 PMCID: PMC10137459 DOI: 10.3390/genes14040886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In ovarian cancer patients, the 5-year survival rate is 90% for stages I and II, but only 30% for stages III and IV. Unfortunately, as 75% of the patients are diagnosed at stages III and IV, many experience a recurrence. To ameliorate this, it is necessary to develop new biomarkers for early diagnosis and treatment. The ubiquitin-proteasome system is a post-translational modification that plays an important role in regulating protein stability through ubiquitination. In particular, deubiquitinating enzymes (DUBs) regulate protein stability through deubiquitinating substrate proteins. In this review, DUBs and substrates regulated by these enzymes are summarized based on their functions in ovarian cancer cells. This would be useful for the discovery of biomarkers for ovarian cancer and developing new therapeutic candidates.
Collapse
Affiliation(s)
- Yosuk Min
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Hong-Beom Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Sohyun Hwang
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi-do, Republic of Korea
- CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam 13496, Gyeonggi-do, Republic of Korea
| |
Collapse
|
18
|
Nan Y, Luo Q, Wu X, Chang W, Zhao P, Liu S, Liu Z. HCP5 prevents ubiquitination-mediated UTP3 degradation to inhibit apoptosis by activating c-Myc transcriptional activity. Mol Ther 2023; 31:552-568. [PMID: 36245126 PMCID: PMC9931552 DOI: 10.1016/j.ymthe.2022.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Inducing cancer cell apoptosis through cytotoxic reagents is the main therapeutic strategy for diverse cancer types. However, several antiapoptotic factors impede curative cancer therapy by driving cancer cells to resist cytotoxic agent-induced apoptosis, thus leading to refractoriness and relapse. To define critical antiapoptotic factors that contribute to chemoresistance in esophageal squamous cell carcinoma (ESCC), we generated two pairs of parental and apoptosis-resistant cell models through cisplatin (DDP) induction and then performed whole-transcriptome sequencing. We identified the long noncoding RNA (lncRNA) histocompatibility leukocyte antigen complex P5 (HCP5) as the chief culprit for chemoresistance. Mechanistically, HCP5 interacts with UTP3 small subunit processome component (UTP3) and prevents UTP3 degradation from E3 ligase tripartite motif containing 29 (TRIM29)-mediated ubiquitination. UTP3 then recruits c-Myc to activate vesicle-associated membrane protein 3 (VAMP3) expression. Activated VAMP3 suppresses caspase-dependent apoptosis and eventually leads to chemoresistance. Accordingly, the expression level of the HCP5/UTP3/c-Myc/VAMP3 axis in chemoresistant patients is significantly higher than that in chemosensitive patients. Thus, our study demonstrated that the HCP5/UTP3/c-Myc/VAMP3 axis plays an important role in the inhibition of cancer cell apoptosis and that HCP5 may be a promising chemosensitivity target for cancer treatment.
Collapse
Affiliation(s)
- Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
19
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
20
|
Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers (Basel) 2023; 15:448. [PMID: 36672401 PMCID: PMC9856346 DOI: 10.3390/cancers15020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| |
Collapse
|
21
|
Shi K, Lu H, Zhang Z, Fu Y, Wu J, Zhou S, Ma P, Ye K, Zhang S, Shi H, Shi W, Cai MC, Zhao X, Yu Z, Tang J, Zhuang G. Transient targeting of BIM-dependent adaptive MCL1 preservation enhances tumor response to molecular therapeutics in non-small cell lung cancer. Cell Death Differ 2023; 30:195-207. [PMID: 36171331 PMCID: PMC9883455 DOI: 10.1038/s41418-022-01064-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023] Open
Abstract
Despite remarkable efficacy, targeted treatments often yield a subpopulation of residual tumor cells in part due to non-genetic adaptions. Previous mechanistic understanding on the emergence of these drug-tolerant persisters (DTPs) has been limited to epigenetic and transcriptional reprogramming. Here, by comprehensively interrogating therapy-induced early dynamic protein changes in diverse oncogene-addicted non-small cell lung cancer models, we identified adaptive MCL1 increase as a new and universal mechanism to confer apoptotic evasion and DTP formation. In detail, acute MAPK signaling disruption in the presence of genotype-based tyrosine kinase inhibitors (TKIs) prompted mitochondrial accumulation of pro-apoptotic BH3-only protein BIM, which sequestered MCL1 away from MULE-mediated degradation. A small-molecule combination screen uncovered that PI3K-mTOR pathway blockade prohibited MCL1 upregulation. Biochemical and immunocytochemical evidence indicated that mTOR complex 2 (mTORC2) bound and phosphorylated MCL1, facilitating its interaction with BIM. As a result, short-term polytherapy combining antineoplastic TKIs with PI3K, mTOR or MCL1 inhibitors sufficed to prevent DTP development and promote cancer eradication. Collectively, these findings support that upfront and transient targeting of BIM-dependent, mTORC2-regulated adaptive MCL1 preservation holds enormous promise to improve the therapeutic index of molecular targeted agents.
Collapse
Affiliation(s)
- Kaixuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haijiao Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Fu
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shichao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Ma
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhe Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailei Shi
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weiping Shi
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mei-Chun Cai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jian Tang
- Department of Thoracic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Zhou Z, Song X, Kang R, Tang D. The Emerging Role of Deubiquitinases in Cell Death. Biomolecules 2022; 12:1825. [PMID: 36551253 PMCID: PMC9775562 DOI: 10.3390/biom12121825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Regulated cell death (RCD) is a signal-controlled process that not only eliminates infected, damaged, or aged cells but is also implicated in a variety of pathological conditions. The process of RCD is regulated by intracellular proteins that undergo varying levels of post-translational modifications, including mono- or polyubiquitination. Functionally, ubiquitination can affect protein abundance, localization, and activity. Like other post-translational modifications, ubiquitination is a dynamic and reversible process mediated by deubiquitinases, a large class of proteases that cleave ubiquitin from proteins and other substrates. The balance between ubiquitination and deubiquitination machinery determines cell fate under stressful conditions. Here, we review the latest advances in our understanding of the role of deubiquitinases in regulating the main types of RCD, including apoptosis, necroptosis, pyroptosis, and ferroptosis. This knowledge may contribute to identifying new protein degradation-related prognostic markers and therapeutic targets for human disease.
Collapse
Affiliation(s)
| | | | | | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
USP17L2-SIRT7 axis regulates DNA damage repair and chemoresistance in breast cancer cells. Breast Cancer Res Treat 2022; 196:31-44. [PMID: 36040642 DOI: 10.1007/s10549-022-06711-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Sirtuin7 (SIRT7), as a member of the sirtuin and NAD+-dependent protein-modifying enzyme family, plays an important role in regulating cellular metabolism, stress responses, tumorigenesis, and aging. Ubiquitination and deubiquitination are reversible post-translational modifications that regulate protein stability, enzyme activity, protein-protein interactions, and cellular signaling transduction. However, whether SIRT7 is regulated by deubiquitination signaling is unclear. This study aims to elucidate the molecular mechanism of SIRT7 via deubiquitination signaling. METHODS USP17L2 or SIRT7-targeting shRNAs were used to deplete USP17L2 or SIRT7. Western blot was applied to assess the effects of USP17L2 or SIRT7 depletion. A co-immunoprecipitation assay was used to detect the interaction relationship. Cell Counting Kit-8 assays were applied to assess the viability of breast cancer cells. An immunohistochemistry assay was employed to detect the protein level in samples from breast cancer patients, and the TCGA database was applied to analyze the survival rate of breast cancer patients. Statistical analyses were performed with the Student's t test (two-tailed unpaired) and χ2 test. RESULTS We find that the deubiquitinase USP17L2 interacts with and deubiquitinates SIRT7, thereby increasing SIRT7 protein stability. In addition, USP17L2 regulates DNA damage repair through SIRT7. Furthermore, SIRT7 polyubiquitination is increased by knocking down of USP17L2, which leads to cancer cells sensitizing to chemotherapy. In breast cancer patient samples, high expression of USP17L2 is correlated with increased levels of SIRT7 protein. In conclusion, our study demonstrates that the USP17L2-SIRT7 axis is the new regulator in DNA damage response and chemo-response, suggesting that USP17L2 may be a prognostic factor and a potential therapeutic target in breast cancer. CONCLUSION Our results highlighted that USP17L2 regulates the chemoresistance of breast cancer cells in a SIRT7-dependent manner. Moreover, the role of USP17L2 as a potential therapeutic target in breast cancer and a prognostic factor for patients was elucidated.
Collapse
|
24
|
Winder ML, Campbell KJ. MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 2022; 21:1439-1455. [PMID: 35349392 PMCID: PMC9278428 DOI: 10.1080/15384101.2022.2054096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
Pro-survival members of the BCL-2 family, including MCL-1, are emerging as important proteins during the development and therapeutic response of solid tumors. Notably, high levels of MCL-1 occur in breast cancer, where functional dependency has been demonstrated using cell lines and mouse models. The utility of restoring apoptosis in cancer cells through inhibition of pro-survival BCL-2 proteins has been realized in the clinic, where the first specific inhibitor of BCL-2 is approved for use in leukemia. A variety of MCL-1 inhibitors are now undergoing clinical trials for blood cancer treatment and application of this new class of drugs is also being tested in solid cancers. On-target compounds specific to MCL-1 have demonstrated promising efficacy in preclinical models of breast cancer and show potential to enhance the anti-tumor effect of conventional therapies. Taken together, this makes MCL-1 an extremely attractive target for clinical evaluation in the context of breast cancer.Abbreviations: ADC (antibody-drug conjugate); AML (Acute myeloid leukemia); APAF1 (apoptotic protease activating factor 1); bCAFs (breast cancer associated fibroblasts); BCL-2 (B-cell lymphoma 2); BH (BCL-2 homology); CLL (chronic lymphocytic leukemia); EGF (epidermal growth factor); EMT (epithelial to mesenchymal transition); ER (estrogen receptor); FDA (food and drug administration); GEMM (genetically engineered mouse model); HER2 (human epidermal growth factor 2); IL6 (interleukin 6); IMM (inner mitochondrial membrane); IMS (intermembrane space); MCL-1 (myeloid cell leukemia-1); MOMP (mitochondrial outer membrane permeabilisation); MM (multiple myeloma); PDX (patient-derived xenograft); OMM (outer mitochondrial membrane); PROTAC (proteolysis-targeting chimeras) TNBC (triple negative breast cancer); UPS (ubiquitin mediated proteolysis system).
Collapse
Affiliation(s)
- Matthew L Winder
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| |
Collapse
|
25
|
Ge F, Li Y, Yuan T, Wu Y, He Q, Yang B, Zhu H. Deubiquitinating enzymes: promising targets for drug resistance. Drug Discov Today 2022; 27:2603-2613. [DOI: 10.1016/j.drudis.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
|
26
|
Deubiquitinases in cell death and inflammation. Biochem J 2022; 479:1103-1119. [PMID: 35608338 PMCID: PMC9162465 DOI: 10.1042/bcj20210735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Abstract
Apoptosis, pyroptosis, and necroptosis are distinct forms of programmed cell death that eliminate infected, damaged, or obsolete cells. Many proteins that regulate or are a part of the cell death machinery undergo ubiquitination, a post-translational modification made by ubiquitin ligases that modulates protein abundance, localization, and/or activity. For example, some ubiquitin chains target proteins for degradation, while others function as scaffolds for the assembly of signaling complexes. Deubiquitinases (DUBs) are the proteases that counteract ubiquitin ligases by cleaving ubiquitin from their protein substrates. Here, we review the DUBs that have been found to suppress or promote apoptosis, pyroptosis, or necroptosis.
Collapse
|
27
|
Sulkshane P, Teni T. Myeloid cell leukemia-1: a formidable barrier to anticancer therapeutics and the quest of targeting it. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:278-296. [PMID: 36045907 PMCID: PMC9400788 DOI: 10.37349/etat.2022.00083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
The antiapoptotic B cell lymphoma-2 (Bcl-2) family members are apical regulators of the intrinsic pathway of apoptosis that orchestrate mitochondrial outer membrane permeabilization (MOMP) through interactions with their proapoptotic counterparts. Overexpression of antiapoptotic Bcl-2 family proteins has been linked to therapy resistance and poor prognosis in diverse cancers. Among the antiapoptotic Bcl-2 family members, predominant overexpression of the prosurvival myeloid cell leukemia-1 (Mcl-1) has been reported in a myriad of hematological malignancies and solid tumors, contributing to therapy resistance and poor outcomes, thus making it a potential druggable target. The unique structure of Mcl-1 and its complex regulatory mechanism makes it an adaptive prosurvival switch that ensures tumor cell survival despite therapeutic intervention. This review focusses on diverse mechanisms adopted by tumor cells to maintain sustained elevated levels of Mcl-1 and how high Mcl-1 levels contribute to resistance in conventional as well as targeted therapies. Moreover, recent developments in the Mcl-1-targeted therapeutics and the underlying challenges and considerations in designing novel Mcl-1 inhibitors are also discussed.
Collapse
Affiliation(s)
- Prasad Sulkshane
- Glickman Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| |
Collapse
|
28
|
DUB3/KLF4 combats tumor growth and chemoresistance in hepatocellular carcinoma. Cell Death Dis 2022; 8:166. [PMID: 35383144 PMCID: PMC8983766 DOI: 10.1038/s41420-022-00988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/26/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
This study aimed to investigate the role of deubiquitinating enzyme 3 (DUB3) in the regulation of Krüppel-like factor 4 (KLF4) expression in hepatocellular carcinoma (HCC). Gain- and loss-of-function assay, luciferase reporter assay, co-immunoprecipitation, and intracellular and extracellular deubiquitination assays were conducted in vitro. A tumor xenograft mouse model was established. The expression of DUB3 and KLF4 was examined in HCC patient specimens. The results showed that DUB3 upregulated KLF4 expression by deubiquitinating and stabilizing KLF4 protein in HCC cells through binding with KLF4. DUB3 inhibited HCC cell proliferation in vitro and tumor growth in vivo while enhancing the chemosensitivity of HCC cells in a KLF4-dependent manner. Furthermore, KLF4 promoted DUB3 transcription by binding to the DUB3 promoter. In HCC patients, DUB3 expression positively correlated with KLF4 expression in HCC tissues. Low DUB3 expression predicted worse overall survival and recurrence in HCC patients. In conclusion, this study revealed a positive DUB3/KLF4 feedback loop that inhibits tumor growth and chemoresistance in HCC. These results suggest that DUB3/KLF4 activation might be a potential therapeutic approach for HCC treatment.
Collapse
|
29
|
Liu N, Ling R, Tang X, Yu Y, Zhou Y, Chen D. Post-Translational Modifications of BRD4: Therapeutic Targets for Tumor. Front Oncol 2022; 12:847701. [PMID: 35402244 PMCID: PMC8993501 DOI: 10.3389/fonc.2022.847701] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extraterminal (BET) family, is considered to be a major driver of cancer cell growth and a new target for cancer therapy. Over 30 targeted inhibitors currently in preclinical and clinical trials have significant inhibitory effects on various tumors, including acute myelogenous leukemia (AML), diffuse large B cell lymphoma, prostate cancer, breast cancer and so on. However, resistance frequently occurs, revealing the limitations of BET inhibitor (BETi) therapy and the complexity of the BRD4 expression mechanism and action pathway. Current studies believe that when the internal and external environmental conditions of cells change, tumor cells can directly modify proteins by posttranslational modifications (PTMs) without changing the original DNA sequence to change their functions, and epigenetic modifications can also be activated to form new heritable phenotypes in response to various environmental stresses. In fact, research is constantly being supplemented with regards to that the regulatory role of BRD4 in tumors is closely related to PTMs. At present, the PTMs of BRD4 mainly include ubiquitination and phosphorylation; the former mainly regulates the stability of the BRD4 protein and mediates BETi resistance, while the latter is related to the biological functions of BRD4, such as transcriptional regulation, cofactor recruitment, chromatin binding and so on. At the same time, other PTMs, such as hydroxylation, acetylation and methylation, also play various roles in BRD4 regulation. The diversity, complexity and reversibility of posttranslational modifications affect the structure, stability and biological function of the BRD4 protein and participate in the occurrence and development of tumors by regulating the expression of tumor-related genes and even become the core and undeniable mechanism. Therefore, targeting BRD4-related modification sites or enzymes may be an effective strategy for cancer prevention and treatment. This review summarizes the role of different BRD4 modification types, elucidates the pathogenesis in the corresponding cancers, provides a theoretical reference for identifying new targets and effective combination therapy strategies, and discusses the opportunities, barriers, and limitations of PTM-based therapies for future cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Deyu Chen
- *Correspondence: Deyu Chen, ; Yuepeng Zhou,
| |
Collapse
|
30
|
Rezaeian AH, Wei W, Inuzuka H. The regulation of neuronal autophagy and cell survival by MCL1 in Alzheimer's disease. ACTA MATERIA MEDICA 2022; 1:42-55. [PMID: 35233562 DOI: 10.15212/amm-2021-0002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maintaining neuronal integrity and functions requires precise mechanisms controlling organelle and protein quality. Alzheimer's disease (AD) is characterized by functional defects in the clearance and recycling of intracellular components. As such, neuronal homeostasis involves autophagy, mitophagy, and apoptosis. Compromised activity in these cellular processes may cause pathological phenotypes of AD. Dysfunction of mitochondria is one of the hallmarks of AD. Mitophagy is a critical mitochondria quality control system, and the impaired mitophagy is observed in AD. Myeloid cell leukemia 1 (MCL1), a member of the pro-survival B-cell lymphoma protein 2 (BCL2) family, is a mitochondria-targeted protein that contributes to maintaining mitochondrial integrity. Mcl1 knockout mice display peri-implantation lethality. The studies on conditional Mcl1 knockout mice demonstrate that MCL1 plays a central role in neurogenesis and neuronal survival during brain development. Accumulating evidence reveals the critical role of MCL1 as a regulator of neuronal autophagy, mitophagy, and survival. In this review, we discuss the emerging neuroprotective function of MCL1 and how dysregulation of MCL1 signaling is involved in the pathogenesis of AD. As the pro-survival BCL2 family of proteins are promising targets of pharmacological intervention with BH3 mimetic drugs, we also discuss the promise of MCL1-targeting therapy in AD.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Skp2 stabilizes Mcl-1 and confers radioresistance in colorectal cancer. Cell Death Dis 2022; 13:249. [PMID: 35301297 PMCID: PMC8930992 DOI: 10.1038/s41419-022-04685-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022]
Abstract
AbstractOverexpression of Skp2 plays a critical role in tumorigenesis and correlates with poor prognosis in human malignancies. Thus, Skp2 has been proposed as an attractive target for anti-tumor interventions. The expression of Skp2 in human colorectal cancer (CRC) and the role of Skp2 in tumorigenic properties and irradiation sensitivities of CRC cells were examined by anchorage-dependent and -independent growth assays, immunoblot, flow cytometry, immunohistochemical staining, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiments. Skp2 is highly expressed in CRC patient tissues. Blocking Skp2 expression reduces the tumorigenic properties of CRC cells in vitro and in vivo. Depletion of Skp2 confers sensitivity to irradiation of CRC cells. Skp2 deficiency enhances irradiation-induced intrinsic apoptosis by facilitating E3 ligase FBW7-mediated Mcl-1 ubiquitination and degradation. Knockout of Skp2 sensitizes CRC cells to irradiation treatments in vivo. Our findings indicate that Skp2 stabilizes Mcl-1, and targeting Skp2 in combination with traditional radiotherapy might be efficacious in treating CRC.
Collapse
|
32
|
Feng J, Liu P, Li X, Zhang D, Lin H, Hou Z, Guo C, Niu Y, Dai B, Wang O, Qi M, Wang H, Zhou H. The deubiquitinating enzyme USP20 regulates the stability of the MCL1 protein. Biochem Biophys Res Commun 2022; 593:122-128. [DOI: 10.1016/j.bbrc.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 11/02/2022]
|
33
|
Wang Y, Huang Z, Li B, Liu L, Huang C. The Emerging Roles and Therapeutic Implications of Epigenetic Modifications in Ovarian Cancer. Front Endocrinol (Lausanne) 2022; 13:863541. [PMID: 35620395 PMCID: PMC9127157 DOI: 10.3389/fendo.2022.863541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic malignancies globally. In spite of positive responses to initial therapy, the overall survival rates of OC patients remain poor due to the development of drug resistance and consequent cancer recurrence. Indeed, intensive studies have been conducted to unravel the molecular mechanisms underlying OC therapeutic resistance. Besides, emerging evidence suggests a crucial role for epigenetic modifications, namely, DNA methylation, histone modifications, and non-coding RNA regulation, in the drug resistance of OC. These epigenetic modifications contribute to chemoresistance through various mechanisms, namely, upregulating the expression of multidrug resistance proteins (MRPs), remodeling of the tumor microenvironment, and deregulated immune response. Therefore, an in-depth understanding of the role of epigenetic mechanisms in clinical therapeutic resistance may improve the outcome of OC patients. In this review, we will discuss the epigenetic regulation of OC drug resistance and propose the potential clinical implications of epigenetic therapies to prevent or reverse OC drug resistance, which may inspire novel treatment options by targeting resistance mechanisms for drug-resistant OC patients.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lin Liu
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Lin Liu, ; Canhua Huang,
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- *Correspondence: Lin Liu, ; Canhua Huang,
| |
Collapse
|
34
|
Yoon JY, Woo SM, Seo SU, Song SR, Lee SG, Kwon TK. Lucanthone, Autophagy Inhibitor, Enhances the Apoptotic Effects of TRAIL through miR-216a-5p-Mediated DR5 Upregulation and DUB3-Mediated Mcl-1 Downregulation. Int J Mol Sci 2021; 23:ijms23010017. [PMID: 35008442 PMCID: PMC8744864 DOI: 10.3390/ijms23010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
A lucanthone, one of the family of thioxanthenones, has been reported for its inhibitory effects of apurinic endonuclease-1 and autophagy. In this study, we investigated whether lucanthone could enhance tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in various cancer cells. Combined treatment with lucanthone and TRAIL significantly induced apoptosis in human renal carcinoma (Caki and ACHN), prostate carcinoma (PC3), and lung carcinoma (A549) cells. However, combined treatment did not induce apoptosis in normal mouse kidney cells (TCMK-1) and normal human skin fibroblast (HSF). Lucanthone downregulated protein expression of deubiquitinase DUB3, and a decreased expression level of DUB3 markedly led to enhance TRAIL-induced apoptosis. Ectopic expression of DUB3 inhibited combined treatment with lucanthone and TRAIL-induced apoptosis. Moreover, lucanthone increased expression level of DR5 mRNA via downregulation of miR-216a-5p. Transfection of miR-216a-5p mimics suppressed the lucanthone-induced DR5 upregulation. Taken together, these results provide the first evidence that lucanthone enhances TRAIL-induced apoptosis through DR5 upregulation by downregulation of miR-216a-5p and DUB3-dependent Mcl-1 downregulation in human renal carcinoma cells.
Collapse
Affiliation(s)
- Ji Yun Yoon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - So Rae Song
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Seul Gi Lee
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
- Center for Forensic Pharmaceutical Science, College of Pharmacy, Keimyung University, Daegu 42601, Korea
- Correspondence: ; Tel.: +82-53-258-7358
| |
Collapse
|
35
|
Shimizu K, Gi M, Suzuki S, North BJ, Watahiki A, Fukumoto S, Asara JM, Tokunaga F, Wei W, Inuzuka H. Interplay between protein acetylation and ubiquitination controls MCL1 protein stability. Cell Rep 2021; 37:109988. [PMID: 34758305 PMCID: PMC8621139 DOI: 10.1016/j.celrep.2021.109988] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/02/2021] [Accepted: 10/21/2021] [Indexed: 01/29/2023] Open
Abstract
The anti-apoptotic myeloid cell leukemia 1 (MCL1) protein belongs to the pro-survival BCL2 family and is frequently amplified or elevated in human cancers. MCL1 is highly unstable, with its stability being regulated by phosphorylation and ubiquitination. Here, we identify acetylation as another critical post-translational modification regulating MCL1 protein stability. We demonstrate that the lysine acetyltransferase p300 targets MCL1 at K40 for acetylation, which is counteracted by the deacetylase sirtuin 3 (SIRT3). Mechanistically, acetylation enhances MCL1 interaction with USP9X, resulting in deubiquitination and subsequent MCL1 stabilization. Therefore, ectopic expression of acetylation-mimetic MCL1 promotes apoptosis evasion of cancer cells, enhances colony formation potential, and facilitates xenografted tumor progression. We further demonstrate that elevated MCL1 acetylation sensitizes multiple cancer cells to pharmacological inhibition of USP9X. These findings reveal that acetylation of MCL1 is a critical post-translational modification enhancing its oncogenic function and provide a rationale for developing innovative therapeutic strategies for MCL1-dependent tumors. MCL1, an anti-apoptotic BCL2 family protein, is frequently overexpressed in a variety of cancers, and its oncogenic function is finely regulated by post-translational modifications such as phosphorylation and ubiquitination. Shimizu et al. dissect the molecular mechanism of acetylation-mediated MCL1 stability control, providing insights into potential therapeutic intervention targeting the MCL1 protein.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| | - Min Gi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Brian J North
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Asami Watahiki
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoshi Fukumoto
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
36
|
Inhibition of BMI-1 Induces Apoptosis through Downregulation of DUB3-Mediated Mcl-1 Stabilization. Int J Mol Sci 2021; 22:ijms221810107. [PMID: 34576269 PMCID: PMC8472307 DOI: 10.3390/ijms221810107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/11/2023] Open
Abstract
BMI-1, a polycomb ring finger oncogene, is highly expressed in multiple cancer cells and is involved in cancer cell proliferation, invasion, and apoptosis. BMI-1 represents a cancer stemness marker that is associated with the regulation of stem cell self-renewal. In this study, pharmacological inhibition (PTC596) or knockdown (siRNA) of BMI-1 reduced cancer stem-like cells and enhanced cancer cell death. Mechanistically, the inhibition of BMI-1 induced the downregulation of Mcl-1 protein, but not Mcl-1 mRNA. PTC596 downregulated Mcl-1 protein expression at the post-translational level through the proteasome-ubiquitin system. PTC596 and BMI-1 siRNA induced downregulation of DUB3 deubiquitinase, which was strongly linked to Mcl-1 destabilization. Furthermore, overexpression of Mcl-1 or DUB3 inhibited apoptosis by PTC596. Taken together, our findings reveal that the inhibition of BMI-1 induces Mcl-1 destabilization through downregulation of DUB3, resulting in the induction of cancer cell death.
Collapse
|
37
|
Yang GF, Zhang X, Su YG, Zhao R, Wang YY. The role of the deubiquitinating enzyme DUB3/USP17 in cancer: a narrative review. Cancer Cell Int 2021; 21:455. [PMID: 34454495 PMCID: PMC8400843 DOI: 10.1186/s12935-021-02160-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is critical for the degradation, transport, localization, and activity of proteins. Deubiquitinating enzymes (DUBs) greatly contribute to the balance of ubiquitination and deubiquitination, and they have been widely studied due to their fundamental role in cancer. DUB3/ubiquitin-specific protease 17 (USP17) is a type of DUB that has attracted much attention in cancer research. In this review, we summarize the biological functions and regulatory mechanisms of USP17 in central nervous system, head and neck, thoracic, breast, gastrointestinal, genitourinary, and gynecologic cancers as well as bone and soft tissue sarcomas, and we provide new insights into how USP17 can be used in the management of cancer.
Collapse
Affiliation(s)
- Guang-Fei Yang
- Dept. of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xin Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi-Ge Su
- Graduate School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ren Zhao
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Yang Wang
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China. .,Cancer Institute, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
38
|
Duan J, Cai H, Huang Y, Shi L. SNAI2-Induced CircMTO1 Promotes Cell Proliferation and Inhibits Apoptosis Through the miR-320b/MCL1 Axis in Human Granulosa-Like Tumor Cells. Front Genet 2021; 12:689916. [PMID: 34413875 PMCID: PMC8369758 DOI: 10.3389/fgene.2021.689916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), one of the most common types of endocrine diseases, is characterized by a high prevalence among women of reproductive-age. However, its pathogenesis and molecular mechanisms remain unclear. CircMTO1 has been reported to participate in numerous biological processes, but, its role in PCOS progression remains unknown. In the current study, we elucidated the expression and circRNA characterization of circMTO1 in human granulosa-like tumor cells. We found that circMTO1 knockdown promoted human granulosa-like tumor cell proliferation and inhibited its apoptosis rate. Next, we explored the underlying molecular mechanisms by using a series of experiments. Our results revealed the effect of the novel circMTO1/miR-320b/MCL1 axis in human granulosa-like tumor cells. Furthermore, we found that the expression of circMTO1 was induced by Snail family transcriptional repressor 2 (SNAI2) in human granulosa-like tumor cells. Our results may provide potential targets for PCOS research and a novel direction for the diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Jie Duan
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology, Women and Children's Hospital of Hubei Province, Wuhan, China
| | - Hongning Cai
- Department of Gynecology II, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology II, Women and Children's Hospital of Hubei Province, Wuhan, China
| | - Yanming Huang
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology, Women and Children's Hospital of Hubei Province, Wuhan, China
| | - Liangyan Shi
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology, Women and Children's Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
39
|
Zhu X, Zhang Y, Luo Q, Wu X, Huang F, Shu T, Wan Y, Chen H, Liu Z. The deubiquitinase USP11 promotes ovarian cancer chemoresistance by stabilizing BIP. Signal Transduct Target Ther 2021; 6:264. [PMID: 34257276 PMCID: PMC8277857 DOI: 10.1038/s41392-021-00580-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xiaolin Zhu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China ,grid.506261.60000 0001 0706 7839Key Laboratory of Cancer and Microbiome, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yiping Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Qingyu Luo
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiaowei Wu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Furong Huang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Tong Shu
- grid.506261.60000 0001 0706 7839Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yong Wan
- grid.16753.360000 0001 2299 3507Department of Obstetrics and Gynecology, Department of Pharmacology, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL USA
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Key Laboratory of Cancer and Microbiome, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
40
|
Wang Y, Xie Q, Tan H, Liao M, Zhu S, Zheng LL, Huang H, Liu B. Targeting cancer epigenetic pathways with small-molecule compounds: Therapeutic efficacy and combination therapies. Pharmacol Res 2021; 173:105702. [PMID: 34102228 DOI: 10.1016/j.phrs.2021.105702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Epigenetics mainly refers to covalent modifications to DNA or histones without affecting genomes, which ultimately lead to phenotypic changes in cells or organisms. Given the abundance of regulatory targets in epigenetic pathways and their pivotal roles in tumorigenesis and drug resistance, the development of epigenetic drugs holds a great promise for the current cancer therapy. However, lack of potent, selective, and clinically tractable small-molecule compounds makes the strategy to target cancer epigenetic pathways still challenging. Therefore, this review focuses on epigenetic pathways, small molecule inhibitors targeting DNA methyltransferase (DNMT) and small molecule inhibitors targeting histone modification (the main regulatory targets are histone acetyltransferases (HAT), histone deacetylases (HDACs) and histone methyltransferases (HMTS)), as well as the combination strategies of the existing epigenetic therapeutic drugs and more new therapies to improve the efficacy, which will shed light on a new clue on discovery of more small-molecule drugs targeting cancer epigenetic pathways as promising strategies in the future.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China
| | - Qiang Xie
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Huidan Tan
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Minru Liao
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Rd, Xindu Region, Chengdu 610500, PR China.
| | - Haixia Huang
- Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
41
|
Luo Q, Wu X, Zhao P, Nan Y, Chang W, Zhu X, Su D, Liu Z. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002874. [PMID: 33898171 PMCID: PMC8061361 DOI: 10.1002/advs.202002874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/29/2020] [Indexed: 05/25/2023]
Abstract
Apoptosis-inducing factor (AIF) plays a dual role in regulating cell survival and apoptosis, acting as a prosurvival factor in mitochondria via its NADH oxidoreductase activity and activating the caspase-independent apoptotic pathway (i.e., parthanatos) after nuclear translocation. However, whether one factor conjunctively controls the separated functions of AIF is not clear. Here, it is shown that OTU deubiquitinase 1 (OTUD1) acts as a link between the two functions of AIF via deubiquitination events. Deubiquitination of AIF at K244 disrupts the normal mitochondrial structure and compromises oxidative phosphorylation, and deubiquitination of AIF at K255 enhances its DNA-binding ability to promote parthanatos. Moreover, OTUD1 stabilizes DDB1 and CUL4 associated factor 10 (DCAF10) and recruits the cullin 4A (CUL4A)-damage specific DNA binding protein 1 (DDB1) complex to promote myeloid cell leukemia sequence 1 (MCL1) degradation, thereby activating caspase-dependent apoptotic signaling. Collectively, these results reveal the central role of OTUD1 in activating both caspase-independent and caspase-dependent apoptotic signaling and propose decreased OTUD1 expression as a key event promoting chemoresistance in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Qingyu Luo
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xiaowei Wu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Pengfei Zhao
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Yabing Nan
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Wan Chang
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xiaolin Zhu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Dan Su
- Department of PathologyZhejiang Cancer HospitalZhejiang310022China
| | - Zhihua Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| |
Collapse
|
42
|
Senichkin VV, Pervushin NV, Zuev AP, Zhivotovsky B, Kopeina GS. Targeting Bcl-2 Family Proteins: What, Where, When? BIOCHEMISTRY (MOSCOW) 2021; 85:1210-1226. [PMID: 33202206 DOI: 10.1134/s0006297920100090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins of the Bcl-2 family are known as regulators of apoptosis, one of the most studied forms of programmed cell death. The Bcl-2 protein family is represented by both pro- and antiapoptotic members. Antiapoptotic proteins are often exploited by tumor cells to avoid their death, thus playing an important role in carcinogenesis and in acquisition of resistance to various therapeutic agents. Therefore, antiapoptotic proteins represent attractive targets for cancer therapy. A detailed investigation of interactions between Bcl-2 family proteins resulted in the development of highly selective inhibitors of individual antiapoptotic members. These agents are currently being actively studied at the preclinical and clinical stages and represent a promising therapeutic strategy, which is highlighted by approval of venetoclax, a selective inhibitor of Bcl-2, for medical use. Meanwhile, inhibition of antiapoptotic Bcl-2 family proteins has significant therapeutic potential that is yet to be revealed. In the coming era of precision medicine, a detailed study of the mechanisms responsible for the sensitivity or resistance of tumor cells to various therapeutic agents, as well as the search for the most effective combinations, is of great importance. Here, we discuss mechanisms of how the Bcl-2 family proteins function, principles of their inhibition by small molecules, success of this approach in cancer therapy, and, eventually, biochemical features that can be exploited to improve the use of Bcl-2 family inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- V V Senichkin
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - N V Pervushin
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - A P Zuev
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - B Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.,Institute of Environmental Medicine, Karolinska Institute, Stockholm, 171 77, Sweden
| | - G S Kopeina
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.
| |
Collapse
|
43
|
Li LY, Guan YD, Chen XS, Yang JM, Cheng Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front Pharmacol 2021; 11:629266. [PMID: 33628188 PMCID: PMC7898236 DOI: 10.3389/fphar.2020.629266] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
DNA repair pathways are triggered to maintain genetic stability and integrity when mammalian cells are exposed to endogenous or exogenous DNA-damaging agents. The deregulation of DNA repair pathways is associated with the initiation and progression of cancer. As the primary anti-cancer therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to hypersensitivity or resistance of cancer cells to genotoxic agents and targeting DNA repair pathway can increase the tumor sensitivity to cancer therapies. Therefore, targeting DNA repair pathways may be a potential therapeutic approach for cancer treatment. A better understanding of the biology and the regulatory mechanisms of DNA repair pathways has the potential to facilitate the development of inhibitors of nuclear and mitochondria DNA repair pathways for enhancing anticancer effect of DNA damage-based therapy.
Collapse
Affiliation(s)
- Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yi-di Guan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi-Sha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Ming Yang
- Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Li S, Guo W, Wu H. The role of post-translational modifications in the regulation of MCL1. Cell Signal 2021; 81:109933. [PMID: 33508399 DOI: 10.1016/j.cellsig.2021.109933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/25/2022]
Abstract
Apoptosis is an evolutionarily conserved form of programed cell death (PCD) that has a vital effect on early embryonic development, tissue homeostasis and clearance of damaged cells. Dysregulation of apoptosis can lead to many diseases, such as Alzheimer's disease, cancer, AIDS and heart disease. The anti-apoptotic protein MCL1, a member of the BCL2 family, plays important roles in these physiological and pathological processes. Its high expression is closely related to drug resistances in the treatment of tumor. This review summarizes the structure and function of MCL1, the types of post-translational modifications of MCL1 and their effects on the functions of MCL1, as well as the treatment strategies targeting MCL1 in cancer therapy. The research on the fine regulation of MCL1 will be favorable to the provision of a promising future for the design and screening of MCL1 inhibitors.
Collapse
Affiliation(s)
- Shujing Li
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China
| | - Wanping Guo
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China
| | - Huijian Wu
- School of Bioengineering & Province Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, China.
| |
Collapse
|
45
|
Luo Q, Wu X, Nan Y, Chang W, Zhao P, Zhang Y, Su D, Liu Z. TRIM32/USP11 Balances ARID1A Stability and the Oncogenic/Tumor-Suppressive Status of Squamous Cell Carcinoma. Cell Rep 2021; 30:98-111.e5. [PMID: 31914402 DOI: 10.1016/j.celrep.2019.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
Squamous cell carcinoma (SCC) is an aggressive epithelial malignancy, yet the molecular mechanisms underlying SCC development are elusive. ARID1A is frequently mutated in various cancer types, but both mutation rates and expression levels of ARID1A are ubiquitously low in SCCs. Here, we reveal that excessive protein degradation mediated by the ubiquitin-proteasome system (UPS) contributes to the loss of ARID1A expression in SCC. We identify that the E3 ligase TRIM32 and the deubiquitinase USP11 play key roles in controlling ARID1A stability. TRIM32 depletion inhibits SCC cell proliferation, metastasis, and chemoresistance by stabilizing ARID1A, while USP11 depletion promotes SCC development by promoting ARID1A degradation. We show that syndecan-2 (SDC2) is the downstream target of both ARID1A and USP11 and that SDC2 depletion abolishes the oncogenic function of ARID1A loss. In summary, our data reveal UPS-mediated protein degradation as a mechanism underlying ARID1A loss and propose an important role for the TRIM32/USP11-ARID1A-SDC2 axis in SCC.
Collapse
Affiliation(s)
- Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiping Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Zhejiang 310022, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
46
|
Jing C, Duan Y, Zhou M, Yue K, Zhuo S, Li X, Liu D, Ye B, Lai Q, Li L, Yao X, Wei H, Zhang W, Wu Y, Wang X. Blockade of deubiquitinating enzyme PSMD14 overcomes chemoresistance in head and neck squamous cell carcinoma by antagonizing E2F1/Akt/SOX2-mediated stemness. Theranostics 2021; 11:2655-2669. [PMID: 33456565 PMCID: PMC7806466 DOI: 10.7150/thno.48375] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence reveals a close relationship between deubiquitinating enzymes (DUBs) and cancer progression. In this study, we attempted to identify the roles and mechanisms of critical DUBs in head and neck squamous cell carcinoma (HNSCC). Methods: Bioinformatics analysis was performed to screen differentially expressed novel DUBs in HNSCC. Immunohistochemistry assay was used to measure the expression of DUB PSMD14 in HNSCC specimens and adjacent normal tissues. The level of PSMD14 in HNSCC tumorigenesis was investigated using a 4-NQO-induced murine HNSCC model. The function of PSMD14 was determined through loss-of-function assays. Chromatin immunoprecipitation, immunoprecipitation and in vivo ubiquitination assay were conducted to explore the potential mechanism of PSMD14. The anti-tumor activity of PSMD14 inhibitor Thiolutin was assessed by in vitro and in vivo experiments. Results: We identified PSMD14 as one of significantly upregulated DUBs in HNSCC tissues. Aberrant expression of PSMD14 was associated with tumorigenesis and malignant progression of HNSCC and further indicated poor prognosis. The results of in vitro and in vivo experiments demonstrated PSMD14 depletion significantly undermined HNSCC growth, chemoresistance and stemness. Mechanically, PSMD14 inhibited the ubiquitination and degradation of E2F1 to improve the activation of Akt pathway and the transcription of SOX2. Furthermore, PSMD14 inhibitor Thiolutin exhibited a potent anti-tumor effect on HNSCC in vivo and in vitro by impairing DUB activity of PSMD14. Conclusion: Our findings demonstrate the role and mechanism of PSMD14 in HNSCC, and provide a novel and promising target for diagnosis and clinical therapy of HNSCC.
Collapse
|
47
|
USP17-mediated de-ubiquitination and cancer: Clients cluster around the cell cycle. Int J Biochem Cell Biol 2020; 130:105886. [PMID: 33227393 DOI: 10.1016/j.biocel.2020.105886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells perform a range of complex processes, some essential for life, others specific to cell type, all of which are governed by post-translational modifications of proteins. Among the repertoire of dynamic protein modifications, ubiquitination is arguably the most arcane and profound due to its complexity. Ubiquitin conjugation consists of three main steps, the last of which involves a multitude of target-specific ubiquitin ligases that conjugate a range of ubiquitination patterns to protein substrates with diverse outcomes. In contrast, ubiquitin removal is catalysed by a relatively small number of de-ubiquitinating enzymes (DUBs), which can also display target specificity and impact decisively on cell function. Here we review the current knowledge of the intriguing ubiquitin-specific protease 17 (USP17) family of DUBs, which are expressed from a highly copy number variable gene that has been implicated in multiple cancers, although available evidence points to conflicting roles in cell proliferation and survival. We show that key USP17 substrates populate two pathways that drive cell cycle progression and that USP17 activity serves to promote one pathway but inhibit the other. We propose that this arrangement enables USP17 to stimulate or inhibit proliferation depending on the mitogenic pathway that predominates in any given cell and may partially explain evidence pointing to both oncogenic and tumour suppressor properties of USP17.
Collapse
|
48
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
49
|
Li C, Deng C, Pan G, Wang X, Zhang K, Dong Z, Zhao G, Tan M, Hu X, Shi S, Du J, Ji H, Wang X, Yang L, Cui H. Lycorine hydrochloride inhibits cell proliferation and induces apoptosis through promoting FBXW7-MCL1 axis in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:230. [PMID: 33126914 PMCID: PMC7602321 DOI: 10.1186/s13046-020-01743-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Background Lycorine hydrochloride (LH), an alkaloid extracted from the bulb of the Lycoris radiata, is considered to have anti-viral, anti-malarial, and anti-tumorous effects. At present, the underlying mechanisms of LH in gastric cancer remain unclear. MCL1, an anti-apoptotic protein of BCL2 family, is closely related to drug resistance of tumor. Therefore, MCL1 is considered as a potential target for cancer treatment. Methods The effect of LH on gastric cancer was assessed in vitro (by MTT, BrdU, western blotting…) and in vivo (by immunohistochemistry). Results In this study, we showed that LH has an anti-tumorous effect by down-regulating MCL1 in gastric cancer. Besides, we unveiled that LH reduced the protein stability of MCL1 by up-regulating ubiquitin E3 ligase FBXW7, arrested cell cycle at S phase and triggered apoptosis of gastric cancer cells. Meanwhile, we also demonstrated that LH could induce apoptosis of the BCL2-drug-resistant-cell-lines. Moreover, PDX (Patient-Derived tumor xenograft) model experiment proved that LH combined with HA14–1 (inhibitor of BCL2), had a more significant therapeutic effect on gastric cancer. Conclusions The efficacy showed in our data suggests that lycorine hydrochloride is a promising anti-tumor compound for gastric cancer.
Collapse
Affiliation(s)
- Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Xue Wang
- Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400014, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Mengqin Tan
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Shaomin Shi
- The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China.,The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Juan Du
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Haoyan Ji
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China.,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, #1, Tiansheng Rd., Beibei District, Chongqing, 400716, China. .,Cancer center, Medical Research Institute, Southwest University, Chongqing, 400716, China. .,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China. .,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
50
|
Yuan J, Lan H, Jiang X, Zeng D, Xiao S. Bcl‑2 family: Novel insight into individualized therapy for ovarian cancer (Review). Int J Mol Med 2020; 46:1255-1265. [PMID: 32945348 PMCID: PMC7447322 DOI: 10.3892/ijmm.2020.4689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance to platinum‑based chemotherapy for ovarian cancer in the advanced stage remains a formidable concern clinically. Increasing evidence has revealed that apoptosis represents the terminal events of the anti‑tumor mechanisms of a number of chemical drugs and has a close association with chemoresistance in ovarian cancer. The B‑cell lymphoma‑2 (Bcl‑2) family plays a crucial role in apoptosis and has a close association with chemoresistance in ovarian cancer. Some drugs that target Bcl‑2 family members have shown efficacy in overcoming the chemoresistance of ovarian cancer. A BH3 profiling assay was found to be able to predict how primed a cell is when treated with antitumor drugs. The present review summarizes the role of the Bcl‑2 family in mediating cell death in response to antitumor drugs and novel drugs that target Bcl‑2 family members. The application of the new functional assay, BH3 profiling, is also discussed herein. Furthermore, the present review presents the hypothesis that targeting Bcl‑2 family members may prove to be helpful for the individualized therapy of ovarian cancer in clinical practice and in laboratory research.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hua Lan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaoyan Jiang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Da Zeng
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|