1
|
Rajić S, Delerue T, Ronkainen J, Zhang R, Ciantar J, Kostiniuk D, Mishra PP, Lyytikäinen LP, Mononen N, Kananen L, Peters A, Winkelmann J, Kleber ME, Lorkowski S, Kähönen M, Lehtimäki T, Raitakari O, Waldenberger M, Gieger C, März W, Harville EW, Sebert S, Marttila S, Raitoharju E. Regulation of nc886 (vtRNA2-1) RNAs is associated with cardiometabolic risk factors and diseases. Clin Epigenetics 2025; 17:68. [PMID: 40301926 PMCID: PMC12042507 DOI: 10.1186/s13148-025-01871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/01/2025] [Indexed: 05/01/2025] Open
Abstract
Non-coding 886 (nc886, vtRNA2-1) is a polymorphically imprinted gene. The methylation status of this locus has been shown to be associated with periconceptional conditions, and both the methylation status and the levels of nc886 RNAs have been shown to associate with later-life health traits. We have previously shown that nc886 RNA levels are associated not only with the methylation status of the locus, but also with a genetic polymorphism upstream from the locus. In this study, we describe the genetic and epigenetic regulators that predict lifelong nc886 RNA levels, as well as their association with cardiometabolic disease (CMD) risk factors and events. We utilised six population cohorts and one CMD cohort comprising 9058 individuals in total. The association of nc886 RNA levels, as predicted by epigenetic and genetic regulators, with CMD phenotypes was analysed using regression models, with a meta-analysis of the results. The meta-analysis showed that individuals with upregulated nc886 RNA levels have higher diastolic blood pressure (β = 0.07, p = 0.008), lower HDL levels (β = - 0.07, p = 0.006) and an increased incidence of type 2 diabetes (OR = 1.260, p = 0.013). Moreover, CMD patients with upregulated nc886 RNA levels have an increased incidence of stroke (OR = 1.581, p = 0.006) and death (OR = 1.290, p = 0.046). In conclusion, we show that individuals who are predicted to present elevated nc886 RNA levels have poorer cardiovascular health and are at an elevated risk of complications in secondary prevention. This unique mechanism yields metabolic variation in human populations, constituting a CMD risk factor that cannot be modified through lifestyle choices.
Collapse
Affiliation(s)
- Sonja Rajić
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Justiina Ronkainen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ruiyuan Zhang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Joanna Ciantar
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daria Kostiniuk
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Laura Kananen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Faculty of Social Sciences (Health Sciences), Gerontology Research Center, Tampere University, Tampere, Finland
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Information Sciences, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich-Schiller-University, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Mika Kähönen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Augsburg & Mannheim, Germany
| | - Emily W Harville
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Sylvain Sebert
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
- Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland.
| |
Collapse
|
2
|
Oliveira-Rizzo C, Colantuono CL, Fernández-Alvarez AJ, Boccaccio GL, Garat B, Sotelo-Silveira JR, Khan S, Ignatchenko V, Lee YS, Kislinger T, Liu SK, Fort RS, Duhagon MA. Multi-Omics Study Reveals Nc886/vtRNA2-1 as a Positive Regulator of Prostate Cancer Cell Immunity. J Proteome Res 2025; 24:433-448. [PMID: 39723625 DOI: 10.1021/acs.jproteome.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Noncoding RNA 886 has emerged as a pivotal regulatory RNA with distinct functions across tissues, acting as a regulator of protein activity by directly binding to protein partners. While it is well recognized as a tumor suppressor in prostate cancer, the underlying molecular mechanisms remain elusive. To discover the principal pathways regulated by nc886 in prostate cancer, we used a transcriptomic and proteomic approach analyzing malignant DU145, LNCaP, PC3, and benign RWPE-1 prostate cell line models transiently transfected with in vitro transcribed nc886 or antisense oligonucleotides. Multiomics revelead a significant enrichment of immune system-related pathways across the cell lines, including cytokines and interferon signaling. The interferon response provoked by nc886 was validated by functional assays. The invariability of PKR phosphorylation and NF-κB activity in the gain/loss of nc886 function experiments and the positive regulation of innate immunity suggest a PKR-independent mechanism of nc886 action. Accordingly, the GSEA of the PRAD-TCGA data set revealed immune stimulation as the nc886 most associated node also in the clinical setting. Our study showed that the reduction of nc886 leads to a blunted immune response in prostate cancer.
Collapse
Affiliation(s)
- Carolina Oliveira-Rizzo
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Camilla L Colantuono
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana J Fernández-Alvarez
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1405, Argentina
| | - Graciela L Boccaccio
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1405, Argentina
- Departamento de Fisiología y Biología Molecular y Celular (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Beatriz Garat
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
| | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Shahbaz Khan
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | | | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Thomas Kislinger
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Odette Cancer Centre and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Rafael S Fort
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
| | - María A Duhagon
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
3
|
Raitoharju E, Rajić S, Marttila S. Non-coding 886 ( nc886/ vtRNA2-1), the epigenetic odd duck - implications for future studies. Epigenetics 2024; 19:2332819. [PMID: 38525792 DOI: 10.1080/15592294.2024.2332819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Non-coding 886 (nc886, vtRNA2-1) is the only human polymorphically imprinted gene, in which the methylation status is not determined by genetics. Existing literature regarding the establishment, stability and consequences of the methylation pattern, as well as the nature and function of the nc886 RNAs transcribed from the locus, are contradictory. For example, the methylation status of the locus has been reported to be stable through life and across somatic tissues, but also susceptible to environmental effects. The nature of the produced nc886 RNA(s) has been redefined multiple times, and in carcinogenesis, these RNAs have been reported to have conflicting roles. In addition, due to the bimodal methylation pattern of the nc886 locus, traditional genome-wide methylation analyses can lead to false-positive results, especially in smaller datasets. Herein, we aim to summarize the existing literature regarding nc886, discuss how the characteristics of nc886 give rise to contradictory results, as well as to reinterpret, reanalyse and, where possible, replicate the results presented in the current literature. We also introduce novel findings on how the distribution of the nc886 methylation pattern is associated with the geographical origins of the population and describe the methylation changes in a large variety of human tumours. Through the example of this one peculiar genetic locus and RNA, we aim to highlight issues in the analysis of DNA methylation and non-coding RNAs in general and offer our suggestions for what should be taken into consideration in future analyses.
Collapse
Affiliation(s)
- Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Sonja Rajić
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Lee YS, Lee YS. The mystique of epigenetic regulation: the remarkable case of a human noncoding RNA, nc886. Epigenomics 2024; 16:1389-1405. [PMID: 39466123 PMCID: PMC11728332 DOI: 10.1080/17501911.2024.2415278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
nc886 is a regulatory noncoding RNA that is transcribed by RNA polymerase III (Pol III), is variably expressed in different biological contexts, and plays roles in inflammation and cancer. Epigenetic mechanisms play an intriguing role in regulating nc886 expression. As a maternally imprinted gene and metastable epiallele, nc866 exhibits polymorphic imprinting, with a methylation status that is influenced by environmental and biological factors. Consequently, the promoter DNA methylation status and the different resulting RNA expression levels of nc886 are associated with physiological and pathological conditions. In this review, we summarize the literature and explore the significance in relation to diverse roles of nc886.
Collapse
Affiliation(s)
- Yeon-Su Lee
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| |
Collapse
|
5
|
Bui VNV, Daugaard TF, Sorensen BS, Nielsen AL. Expression of the non-coding RNA nc886 facilitates the development of tyrosine kinase inhibitor resistance in EGFR-mutated non-small-cell lung cancer cells. Biochem Biophys Res Commun 2024; 731:150395. [PMID: 39024976 DOI: 10.1016/j.bbrc.2024.150395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Treatment of non-small-cell lung cancer (NSCLC) patients possessing EGFR-activating mutations with tyrosine kinase inhibitors (TKIs) can confer an initial promising response. However, TKI resistance inevitably arises. Numerous TKI resistance mechanisms are identified including EGFR secondary mutations, bypass receptor tyrosine kinase (RTK) signaling, and cellular transition e.g. epithelial-mesenchymal transition (EMT). To increase the knowledge of TKI resistance we performed an epigenetic screen to identify small non-coding (nc) genes with DNA methylation alterations in HCC827 NSCLC EGFR-mutated cells with acquired TKI resistance. We analyzed Infinium Methylation EPIC 850K Array data for DNA methylation changes present in both TKI-resistant HCC827 cells with EMT and MET-amplification. Hereby, we identified that the polymorphic maternal imprinted gene nc886 (vtRNA2-1) has a decrease in promoter DNA methylation in TKI-resistant cells. This epigenetic change was associated with an increase in the expression of nc886. The induction of EMT did not affect nc886 expression. CRISPR/Cas9-mediated distortion of the nc886 sequence increased the sensitivity of HCC827 cells towards TKI. Finally, nc886 sequence distortion hindered MET RTK activation and instead was EMT the endpoint TKI resistance mechanism. In conclusion, the expression of nc886 contributes to TKI resistance in the HCC827 NSCLC cell line by supporting cell survival and selection of the endpoint TKI resistance mechanism. We propose DNA methylation and expression changes for nc886 to constitute a novel TKI resistance contributing mechanism in NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- DNA Methylation
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/drug effects
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Lung Neoplasms/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Mutation
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Tyrosine Kinase Inhibitors/pharmacology
- Tyrosine Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Vivian N V Bui
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| | - Tina F Daugaard
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| | - Boe S Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, 8200, Aarhus, Denmark.
| | - Anders L Nielsen
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
6
|
Ghantous A, Nusslé SG, Nassar FJ, Spitz N, Novoloaca A, Krali O, Nickels E, Cahais V, Cuenin C, Roy R, Li S, Caron M, Lam D, Fransquet PD, Casement J, Strathdee G, Pearce MS, Hansen HM, Lee HH, Lee YS, de Smith AJ, Sinnett D, Håberg SE, McKay JA, Nordlund J, Magnus P, Dwyer T, Saffery R, Wiemels JL, Munthe-Kaas MC, Herceg Z. Epigenome-wide analysis across the development span of pediatric acute lymphoblastic leukemia: backtracking to birth. Mol Cancer 2024; 23:238. [PMID: 39443995 PMCID: PMC11515509 DOI: 10.1186/s12943-024-02118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Cancer is the leading cause of disease-related mortality in children. Causes of leukemia, the most common form, are largely unknown. Growing evidence points to an origin in-utero, when global redistribution of DNA methylation occurs driving tissue differentiation. METHODS Epigenome-wide DNA methylation was profiled in surrogate (blood) and target (bone marrow) tissues at birth, diagnosis, remission and relapse of pediatric pre-B acute lymphoblastic leukemia (pre-B ALL) patients. Double-blinded analyses was performed between prospective cohorts extending from birth to diagnosis and retrospective studies backtracking from clinical disease to birth. Validation was carried out using independent technologies and populations. RESULTS The imprinted and immuno-modulating VTRNA2-1 was hypermethylated (FDR<0.05) at birth in nested cases relative to controls in all tested populations (totaling 317 cases and 483 controls), including European and Hispanic ancestries. VTRNA2-1 methylation was stable over follow-up years after birth and across surrogate, target and other tissues (n=5,023 tissues; 30 types). When profiled in leukemic tissues from two clinical cohorts (totaling 644 cases), VTRNA2-1 methylation exhibited higher levels at diagnosis relative to controls, it reset back to normal levels at remission, and then re-increased to above control levels at relapse. Hypermethylation was significantly associated with worse pre-B ALL patient survival and with reduced VTRNA2-1 expression (n=2,294 tissues; 26 types), supporting a functional and translational role for VTRNA2-1 methylation. CONCLUSION This study provides proof-of-concept to detect at birth epigenetic precursors of pediatric pre-B ALL. These alterations were reproducible with different technologies, in three continents and in two ethnicities, and can offer biomarkers for early detection and prognosis as well as actionable targets for therapy.
Collapse
Affiliation(s)
- Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, (IARC), 25 avenue Tony Garnier, CS 90627, Lyon, Cedex 07 69366, France.
| | | | - Farah J Nassar
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, (IARC), 25 avenue Tony Garnier, CS 90627, Lyon, Cedex 07 69366, France
| | - Natalia Spitz
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, (IARC), 25 avenue Tony Garnier, CS 90627, Lyon, Cedex 07 69366, France
| | - Alexei Novoloaca
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, (IARC), 25 avenue Tony Garnier, CS 90627, Lyon, Cedex 07 69366, France
| | - Olga Krali
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eric Nickels
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, USA
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, USA
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, (IARC), 25 avenue Tony Garnier, CS 90627, Lyon, Cedex 07 69366, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, (IARC), 25 avenue Tony Garnier, CS 90627, Lyon, Cedex 07 69366, France
| | - Ritu Roy
- Computational Biology and Informatics Core, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, USA
| | - Maxime Caron
- Department of Pediatrics, University of Montreal & Research Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montréal, Quebec, Canada
| | - Dilys Lam
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia, 6009, Australia
| | - Peter Daniel Fransquet
- Centre for Social and Early Emotional Development (SEED), School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - John Casement
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Gordon Strathdee
- Newcastle University Centre for Cancer, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mark S Pearce
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Helen M Hansen
- Neuro and Molecular Epidemiology Laboratory, University of California San Francisco, San Francisco, USA
| | - Hwi-Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Adam J de Smith
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, USA
| | - Daniel Sinnett
- Department of Pediatrics, University of Montreal & Research Center, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montréal, Quebec, Canada
| | - Siri Eldevik Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jill A McKay
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Terence Dwyer
- Clinical Sciences Theme, Heart Group, Murdoch Children's Research Institute, Melbourne, Australia
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Joseph Leo Wiemels
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, USA
| | - Monica Cheng Munthe-Kaas
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Pediatric Oncology and Hematology, Oslo University Hospital, Oslo, Norway
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, (IARC), 25 avenue Tony Garnier, CS 90627, Lyon, Cedex 07 69366, France.
| |
Collapse
|
7
|
Hjort L, Bredgaard SS, Manitta E, Marques I, Sørensen AE, Martino D, Grunnet LG, Kelstrup L, Houshmand-Oeregaard A, Clausen TD, Mathiesen ER, Olsen SF, Saffery R, Barrès R, Damm P, Vaag AA, Dalgaard LT. Epigenetics of the non-coding RNA nc886 across blood, adipose tissue and skeletal muscle in offspring exposed to diabetes in pregnancy. Clin Epigenetics 2024; 16:61. [PMID: 38715048 PMCID: PMC11077860 DOI: 10.1186/s13148-024-01673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.
Collapse
Affiliation(s)
- Line Hjort
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark.
| | | | - Eleonora Manitta
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Marques
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | | | - David Martino
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC, Australia
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA, Australia
| | - Louise Groth Grunnet
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Louise Kelstrup
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Gynecology and Obstetrics, Herlev Hospital, Herlev, Denmark
| | - Azadeh Houshmand-Oeregaard
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk A/S, Bagsværd, Denmark
| | - Tine Dalsgaard Clausen
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Reinhardt Mathiesen
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | | | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Metabolic Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women With Diabetes, Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Allan Arthur Vaag
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | |
Collapse
|
8
|
Thomas S, Xu TH, Carpenter B, Pierce S, Dickson B, Liu M, Liang G, Jones P. DNA strand asymmetry generated by CpG hemimethylation has opposing effects on CTCF binding. Nucleic Acids Res 2023; 51:5997-6005. [PMID: 37094063 PMCID: PMC10325916 DOI: 10.1093/nar/gkad293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
CpG methylation generally occurs on both DNA strands and is essential for mammalian development and differentiation. Until recently, hemimethylation, in which only one strand is methylated, was considered to be simply a transitory state generated during DNA synthesis. The discovery that a subset of CCCTC-binding factor (CTCF) binding sites is heritably hemimethylated suggests that hemimethylation might have an unknown biological function. Here we show that the binding of CTCF is profoundly altered by which DNA strand is methylated and by the specific CTCF binding motif. CpG methylation on the motif strand can inhibit CTCF binding by up to 7-fold, whereas methylation on the opposite strand can stimulate binding by up to 4-fold. Thus, hemimethylation can alter binding by up to 28-fold in a strand-specific manner. The mechanism for sensing methylation on the opposite strand requires two critical residues, V454 and S364, within CTCF zinc fingers 7 and 4. Similar to methylation, CpG hydroxymethylation on the motif strand can inhibit CTCF binding by up to 4-fold. However, hydroxymethylation on the opposite strand removes the stimulatory effect. Strand-specific methylation states may therefore provide a mechanism to explain the transient and dynamic nature of CTCF-mediated chromatin interactions.
Collapse
Affiliation(s)
- Stacey L Thomas
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ting-Hai Xu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Steven E Pierce
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Minmin Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
9
|
Gao C, Amador C, Walker RM, Campbell A, Madden RA, Adams MJ, Bai X, Liu Y, Li M, Hayward C, Porteous DJ, Shen X, Evans KL, Haley CS, McIntosh AM, Navarro P, Zeng Y. Phenome-wide analyses identify an association between the parent-of-origin effects dependent methylome and the rate of aging in humans. Genome Biol 2023; 24:117. [PMID: 37189164 PMCID: PMC10184337 DOI: 10.1186/s13059-023-02953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The variation in the rate at which humans age may be rooted in early events acting through the genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions enriched for genetically controlled imprinting effects (the typical type of POE) and regions influenced by environmental effects associated with parents (the atypical POE). This part of the methylome is heavily influenced by early events, making it a potential route connecting early exposures, the epigenome, and aging. We aim to test the association of POE-CpGs with early and later exposures and subsequently with health-related phenotypes and adult aging. RESULTS We perform a phenome-wide association analysis for the POE-influenced methylome using GS:SFHS (Ndiscovery = 5087, Nreplication = 4450). We identify and replicate 92 POE-CpG-phenotype associations. Most of the associations are contributed by the POE-CpGs belonging to the atypical class where the most strongly enriched associations are with aging (DNAmTL acceleration), intelligence, and parental (maternal) smoking exposure phenotypes. A proportion of the atypical POE-CpGs form co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased within-module methylation connectivity with age. The atypical POE-CpGs also display high levels of methylation heterogeneity, fast information loss with age, and a strong correlation with CpGs contained within epigenetic clocks. CONCLUSIONS These results identify the association between the atypical POE-influenced methylome and aging and provide new evidence for the "early development of origin" hypothesis for aging in humans.
Collapse
Affiliation(s)
- Chenhao Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Carmen Amador
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Rosie M Walker
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- School of Psychology, University of Exeter, Perry Road, Exeter, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xiaomeng Bai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ying Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chris S Haley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - Yanni Zeng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Koh XY, Pek JW. Passing down maternal dietary memories through lncRNAs. Trends Genet 2023; 39:91-93. [PMID: 35934591 DOI: 10.1016/j.tig.2022.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
Parental diet is known to influence the offspring in an intergenerational manner, and this has been implicated in species adaptation and general health. Recent studies highlight the role of maternal long noncoding RNAs (lncRNAs) in serving as one of the 'memories' of maternal diet in regulating offspring development and predisposition to metabolic disease.
Collapse
Affiliation(s)
- Xin Yi Koh
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore.
| |
Collapse
|
11
|
Gao C, Amador C, Walker RM, Campbell A, Madden RA, Adams MJ, Bai X, Liu Y, Li M, Hayward C, Porteous DJ, Shen X, Evans KL, Haley CS, McIntosh AM, Navarro P, Zeng Y. Phenome-wide analysis identifies parent-of-origin effects on the human methylome associated with changes in the rate of aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524653. [PMID: 36711749 PMCID: PMC9882261 DOI: 10.1101/2023.01.18.524653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Variation in the rate at which humans age may be rooted in early life events acting through genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions either enriched for genetically controlled imprinting effects (the typical type of POE) or atypical POE introduced by environmental effects associated with parents. This part of the methylome is heavily influenced by early life events, making it a potential route connecting early environmental exposures, the epigenome and the rate of aging. Here, we aim to test the association of POE-influenced methylation of CpG dinucleotides (POE-CpG sites) with early and later environmental exposures and subsequently with health-related phenotypes and adult aging phenotypes. We do this by performing phenome-wide association analyses of the POE-influenced methylome using a large family-based population cohort (GS:SFHS, Ndiscovery=5,087, Nreplication=4,450). At the single CpG level, 92 associations of POE-CpGs with phenotypic variation were identified and replicated. Most of the associations were contributed by POE-CpGs belonging to the atypical class and the most strongly enriched associations were with aging (DNAmTL acceleration), intelligence and parental (maternal) smoking exposure phenotypes. We further found that a proportion of the atypical-POE-CpGs formed co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased internal module connectivity (strength of methylation correlation across constituent CpGs) with age. Atypical POE-CpGs also displayed high levels of methylation heterogeneity and epigenetic drift (i.e. information loss with age) and a strong correlation with CpGs contained within epigenetic clocks. These results identified associations between the atypical-POE-influenced methylome and aging and provided new evidence for the "early development of origin" hypothesis for aging in humans.
Collapse
Affiliation(s)
- Chenhao Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Carmen Amador
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Rosie M. Walker
- Centre for Clinical Brain Sciences, Chancellor’s Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- School of Psychology, University of Exeter, Perry Road, Exeter, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Rebecca A Madden
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Xiaomeng Bai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ying Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chris S. Haley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Yanni Zeng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
12
|
Marttila S, Tamminen H, Rajić S, Mishra PP, Lehtimäki T, Raitakari O, Kähönen M, Kananen L, Jylhävä J, Hägg S, Delerue T, Peters A, Waldenberger M, Kleber ME, März W, Luoto R, Raitanen J, Sillanpää E, Laakkonen EK, Heikkinen A, Ollikainen M, Raitoharju E. Methylation status of VTRNA2-1/ nc886 is stable across populations, monozygotic twin pairs and in majority of tissues. Epigenomics 2022; 14:1105-1124. [PMID: 36200237 DOI: 10.2217/epi-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims & methods: The aim of this study was to characterize the methylation level of a polymorphically imprinted gene, VTRNA2-1/nc886, in human populations and somatic tissues.48 datasets, consisting of more than 30 tissues and >30,000 individuals, were used. Results: nc886 methylation status is associated with twin status and ethnic background, but the variation between populations is limited. Monozygotic twin pairs present concordant methylation, whereas ∼30% of dizygotic twin pairs present discordant methylation in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, except in cerebellum and skeletal muscle. Conclusion: The nc886 imprint may be established in the oocyte, and, after implantation, the methylation status is stable, excluding a few specific tissues.
Collapse
Affiliation(s)
- Saara Marttila
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Gerontology Research Center, Tampere University, Tampere, 33014, Finland
| | - Hely Tamminen
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Sonja Rajić
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Fimlab Laboratories, Arvo Ylpön katu 4, Tampere, 33520, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Fimlab Laboratories, Arvo Ylpön katu 4, Tampere, 33520, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku & Turku University Hospital, Turku, 20014, Finland.,Research Centre of Applied & Preventive Cardiovascular Medicine, University of Turku, Turku, 20014, Finland.,Department of Clinical Physiology & Nuclear Medicine, Turku University Hospital, Turku, 20014, Finland
| | - Mika Kähönen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
| | - Laura Kananen
- Faculty of Medicine & Health Technology, & Gerontology Research Center, Tampere University, Arvo Ylpön katu 34, Tampere, 33520,Finland.,Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden.,Faculty of Social Sciences (Health Sciences), & Gerontology Research Center, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Juulia Jylhävä
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden.,Faculty of Social Sciences (Health Sciences), & Gerontology Research Center, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Sara Hägg
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, D-85764,, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, D-85764, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, D-85764,, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.,SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.,Competence Cluster for Nutrition & Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, 07743, Germany.,SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Augsburg, 86156, Germany.,Clinical Institute of Medical & Chemical Laboratory Diagnostics, Medical University of Graz, Graz, 8010, Austria
| | - Riitta Luoto
- The Social Insurance Institute of Finland (Kela), Helsinki, 00250, Finland.,The UKK Institute for Health Promotion Research, Kaupinpuistonkatu 1, Tampere, 33500, Finland
| | - Jani Raitanen
- The UKK Institute for Health Promotion Research, Kaupinpuistonkatu 1, Tampere, 33500, Finland.,Faculty of Social Sciences (Health Sciences), Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Elina Sillanpää
- Gerontology Research Center & Faculty of Sport & Health Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland.,Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Eija K Laakkonen
- Gerontology Research Center & Faculty of Sport & Health Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| |
Collapse
|
13
|
Ross JP, van Dijk S, Phang M, Skilton MR, Molloy PL, Oytam Y. Batch-effect detection, correction and characterisation in Illumina HumanMethylation450 and MethylationEPIC BeadChip array data. Clin Epigenetics 2022; 14:58. [PMID: 35488315 PMCID: PMC9055778 DOI: 10.1186/s13148-022-01277-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022] Open
Abstract
Background Genomic technologies can be subject to significant batch-effects which are known to reduce experimental power and to potentially create false positive results. The Illumina Infinium Methylation BeadChip is a popular technology choice for epigenome-wide association studies (EWAS), but presently, little is known about the nature of batch-effects on these designs. Given the subtlety of biological phenotypes in many EWAS, control for batch-effects should be a consideration.
Results Using the batch-effect removal approaches in the ComBat and Harman software, we examined two in-house datasets and compared results with three large publicly available datasets, (1214 HumanMethylation450 and 1094 MethylationEPIC BeadChips in total), and find that despite various forms of preprocessing, some batch-effects persist. This residual batch-effect is associated with the day of processing, the individual glass slide and the position of the array on the slide. Consistently across all datasets, 4649 probes required high amounts of correction. To understand the impact of this set to EWAS studies, we explored the literature and found three instances where persistently batch-effect prone probes have been reported in abstracts as key sites of differential methylation. As well as batch-effect susceptible probes, we also discover a set of probes which are erroneously corrected. We provide batch-effect workflows for Infinium Methylation data and provide reference matrices of batch-effect prone and erroneously corrected features across the five datasets spanning regionally diverse populations and three commonly collected biosamples (blood, buccal and saliva). Conclusions Batch-effects are ever present, even in high-quality data, and a strategy to deal with them should be part of experimental design, particularly for EWAS. Batch-effect removal tools are useful to reduce technical variance in Infinium Methylation data, but they need to be applied with care and make use of post hoc diagnostic measures. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01277-9.
Collapse
Affiliation(s)
- Jason P Ross
- Human Health Program, Health and Biosecurity, CSIRO, Sydney, Australia.
| | - Susan van Dijk
- Human Health Program, Health and Biosecurity, CSIRO, Sydney, Australia
| | - Melinda Phang
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Michael R Skilton
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Sydney Institute for Women, Children and Their Families, Sydney Local Health District, Sydney, Australia
| | - Peter L Molloy
- Human Health Program, Health and Biosecurity, CSIRO, Sydney, Australia
| | - Yalchin Oytam
- Clinical Insights and Analytics Unit, South Eastern Sydney Local Health District, Sydney, Australia
| |
Collapse
|
14
|
Kostiniuk D, Tamminen H, Mishra PP, Marttila S, Raitoharju E. Methylation pattern of polymorphically imprinted nc886 is not conserved across mammalia. PLoS One 2022; 17:e0261481. [PMID: 35294436 PMCID: PMC8926257 DOI: 10.1371/journal.pone.0261481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
Background In humans, the nc886 locus is a polymorphically imprinted metastable epiallele. Periconceptional conditions have an effect on the methylation status of nc886, and further, this methylation status is associated with health outcomes in later life, in line with the Developmental Origins of Health and Disease (DOHaD) hypothesis. Animal models would offer opportunities to study the associations between periconceptional conditions, nc886 methylation status and metabolic phenotypes further. Thus, we set out to investigate the methylation pattern of the nc886 locus in non-human mammals. Data We obtained DNA methylation data from the data repository GEO for mammals, whose nc886 gene included all three major parts of nc886 and had sequency similarity of over 80% with the human nc886. Our final sample set consisted of DNA methylation data from humans, chimpanzees, bonobos, gorillas, orangutangs, baboons, macaques, vervets, marmosets and guinea pigs. Results In human data sets the methylation pattern of nc886 locus followed the expected bimodal distribution, indicative of polymorphic imprinting. In great apes, we identified a unimodal DNA methylation pattern with 50% methylation level in all individuals and in all subspecies. In Old World monkeys, the between individual variation was greater and methylation on average was close to 60%. In guinea pigs the region around the nc886 homologue was non-methylated. Results obtained from the sequence comparison of the CTCF binding sites flanking the nc886 gene support the results on the DNA methylation data. Conclusions Our results indicate that unlike in humans, nc886 is not a polymorphically imprinted metastable epiallele in non-human primates or in guinea pigs, thus implying that animal models are not applicable for nc886 research. The obtained data suggests that the nc886 region may be classically imprinted in great apes, and potentially also in Old World monkeys, but not in guinea pigs.
Collapse
Affiliation(s)
- Daria Kostiniuk
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hely Tamminen
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P. Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
15
|
Muthamilselvan S, Raghavendran A, Palaniappan A. Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression. PLoS One 2022; 17:e0249151. [PMID: 35202405 PMCID: PMC8870460 DOI: 10.1371/journal.pone.0249151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant DNA methylation acts epigenetically to skew the gene transcription rate up or down, contributing to cancer etiology. A gap in our understanding concerns the epigenomics of stagewise cancer progression. In this study, we have developed a comprehensive computational framework for the stage-differentiated modelling of DNA methylation landscapes in colorectal cancer (CRC). Methods The methylation β-matrix was derived from the public-domain TCGA data, converted into M-value matrix, annotated with AJCC stages, and analysed for stage-salient genes using an ensemble of approaches involving stage-differentiated modelling of methylation patterns and/or expression patterns. Differentially methylated genes (DMGs) were identified using a contrast against controls (adjusted p-value <0.001 and |log fold-change of M-value| >2), and then filtered using a series of all possible pairwise stage contrasts (p-value <0.05) to obtain stage-salient DMGs. These were then subjected to a consensus analysis, followed by matching with clinical data and performing Kaplan–Meier survival analysis to evaluate the impact of methylation patterns of consensus stage-salient biomarkers on disease prognosis. Results We found significant genome-wide changes in methylation patterns in cancer cases relative to controls agnostic of stage. The stage-differentiated models yielded the following consensus salient genes: one stage-I gene (FBN1), one stage-II gene (FOXG1), one stage-III gene (HCN1) and four stage-IV genes (NELL1, ZNF135, FAM123A, LAMA1). All the biomarkers were significantly hypermethylated in the promoter regions, indicating down-regulation of expression and implying a putative CpG island Methylator Phenotype (CIMP) manifestation. A prognostic signature consisting of FBN1 and FOXG1 survived all the analytical filters, and represents a novel early-stage epigenetic biomarker / target. Conclusions We have designed and executed a workflow for stage-differentiated epigenomic analysis of colorectal cancer progression, and identified several stage-salient diagnostic biomarkers, and an early-stage prognostic biomarker panel. The study has led to the discovery of an alternative CIMP-like signature in colorectal cancer, reinforcing the role of CIMP drivers in tumor pathophysiology.
Collapse
Affiliation(s)
- Sangeetha Muthamilselvan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
| | - Abirami Raghavendran
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
- * E-mail:
| |
Collapse
|
16
|
Silver MJ, Saffari A, Kessler NJ, Chandak GR, Fall CHD, Issarapu P, Dedaniya A, Betts M, Moore SE, Routledge MN, Herceg Z, Cuenin C, Derakhshan M, James PT, Monk D, Prentice AM. Environmentally sensitive hotspots in the methylome of the early human embryo. eLife 2022; 11:e72031. [PMID: 35188105 PMCID: PMC8912923 DOI: 10.7554/elife.72031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/18/2022] [Indexed: 11/26/2022] Open
Abstract
In humans, DNA methylation marks inherited from gametes are largely erased following fertilisation, prior to construction of the embryonic methylome. Exploiting a natural experiment of seasonal variation including changes in diet and nutritional status in rural Gambia, we analysed three datasets covering two independent child cohorts and identified 259 CpGs showing consistent associations between season of conception (SoC) and DNA methylation. SoC effects were most apparent in early infancy, with evidence of attenuation by mid-childhood. SoC-associated CpGs were enriched for metastable epialleles, parent-of-origin-specific methylation and germline differentially methylated regions, supporting a periconceptional environmental influence. Many SoC-associated CpGs overlapped enhancers or sites of active transcription in H1 embryonic stem cells and fetal tissues. Half were influenced but not determined by measured genetic variants that were independent of SoC. Environmental 'hotspots' providing a record of environmental influence at periconception constitute a valuable resource for investigating epigenetic mechanisms linking early exposures to lifelong health and disease.
Collapse
Affiliation(s)
- Matt J Silver
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| | - Ayden Saffari
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| | - Noah J Kessler
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Gririraj R Chandak
- Genomic Research on Complex Diseases, CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Caroline HD Fall
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General HospitalSouthamptonUnited Kingdom
| | - Prachand Issarapu
- Genomic Research on Complex Diseases, CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Akshay Dedaniya
- Genomic Research on Complex Diseases, CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Modupeh Betts
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| | - Sophie E Moore
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
- Department of Women and Children's Health, King's College LondonLondonUnited Kingdom
| | - Michael N Routledge
- School of Medicine, University of LeedsLeedsUnited Kingdom
- School of Food and Biological Engineering, Jiangsu UniversityZhenjiangChina
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency For Research On CancerLyonFrance
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency For Research On CancerLyonFrance
| | - Maria Derakhshan
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| | - Philip T James
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| | - David Monk
- Biomedical Research Centre, University of East AngliaNorwichUnited Kingdom
- Bellvitge Institute for Biomedical ResearchBarcelonaSpain
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical MedicineGambiaUnited Kingdom
| |
Collapse
|
17
|
Ma Q, Liu J, Wu Y, Cui M, Chen M, Ma T, Wang X, Gao D, Li Y, Chen L, Ma Y, Zhang Y, Dong Y, Xing Y, Ma J. Association between parental unhealthy behaviors and offspring's cardiovascular health status: Results from a cross-sectional analysis of parent-offspring pairs in China. Front Pediatr 2022; 10:1052063. [PMID: 36683798 PMCID: PMC9853557 DOI: 10.3389/fped.2022.1052063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cardiovascular health (CVH) in children and adolescents, which might be largely influenced by parental behaviors, may affect the incidence of cardiovascular diseases in adulthood. However, few studies have been conducted to explore the associations between parental behaviors and CVH status of offspring in China. METHODS Data were obtained from a cross-sectional survey conducted in Chinese children and adolescents aged 7-18 years old, with a total of 10,043 parent-offspring pairs included. Parental behaviors included moderate to vigorous physical activity (MVPA), dietary behaviors, and weight status. The CVH status of offspring was consulted by The American Heart Association, including seven factors. The associations between parental behaviors and CVH status of offspring were evaluated by multilevel logistic regression. Stratified analyses were conducted to explore the potential modifying influence of sociodemographic factors. RESULTS Most of the offspring had five ideal CVH factors; only 21.04% had six to seven ideal CVH factors. Parental unhealthy behaviors were associated with high odds of nonideal CVH status of offspring. Parental overweight/obesity, insufficient MVPA, and unhealthy dietary behaviors could increase the odds of owning one to three ideal CVH factors in offspring, with corresponding odds ratios (ORs) (95% confidence interval) of 1.61 (1.32-1.96), 1.31 (1.10-1.56), and 2.05 (1.43-2.94), respectively. There was a dose-response relationship between parental single unhealthy behavior and the odds of nonideal CVH status in offspring (P-trend < 0.001). Offspring with overweight parents had ORs of 1.25 for nonideal CVH status, compared to offspring with normal-weight parents. Among offspring who had the same number of ideal CVH factors, the cumulative association between unhealthy behaviors of parents and offspring's nonideal CVH status increased if parents had more unhealthy behaviors (P-trend < 0.001). CONCLUSIONS Parental overweight/obesity, insufficient MVPA, and unhealthy dietary behaviors were strongly associated with CVH status in offspring. With a cumulative association, more unhealthy parental behaviors were associated with higher odds of offspring's nonideal CVH status, suggesting that targeting parental behaviors might facilitate attainment of improving CVH status of children and adolescents.
Collapse
Affiliation(s)
- Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yu Wu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinxin Wang
- School of Public Health and Management, Ningxia Medical University and Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Di Gao
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Ying Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| |
Collapse
|
18
|
Zeng Y, Amador C, Gao C, Walker RM, Morris SW, Campbell A, Frkatović A, Madden RA, Adams MJ, He S, Bretherick AD, Hayward C, Porteous DJ, Wilson JF, Evans KL, McIntosh AM, Navarro P, Haley CS. Lifestyle and Genetic Factors Modify Parent-of-Origin Effects on the Human Methylome. EBioMedicine 2021; 74:103730. [PMID: 34883445 PMCID: PMC8654798 DOI: 10.1016/j.ebiom.2021.103730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND parent-of-origin effects (POE) play important roles in complex disease and thus understanding their regulation and associated molecular and phenotypic variation are warranted. Previous studies mainly focused on the detection of genomic regions or phenotypes regulated by POE. Understanding whether POE may be modified by environmental or genetic exposures is important for understanding of the source of POE-associated variation, but only a few case studies addressing modifiable POE exist. METHODS in order to understand this high order of POE regulation, we screened 101 genetic and environmental factors such as 'predicted mRNA expression levels' of DNA methylation/imprinting machinery genes and environmental exposures. POE-mQTL-modifier interaction models were proposed to test the potential of these factors to modify POE at DNA methylation using data from Generation Scotland: The Scottish Family Health Study(N=2315). FINDINGS a set of vulnerable/modifiable POE-CpGs were identified (modifiable-POE-regulated CpGs, N=3). Four factors, 'lifetime smoking status' and 'predicted mRNA expression levels' of TET2, SIRT1 and KDM1A, were found to significantly modify the POE on the three CpGs in both discovery and replication datasets. We further identified plasma protein and health-related phenotypes associated with the methylation level of one of the identified CpGs. INTERPRETATION the modifiable POE identified here revealed an important yet indirect path through which genetic background and environmental exposures introduce their effect on DNA methylation, motivating future comprehensive evaluation of the role of these modifiers in complex diseases. FUNDING NSFC (81971270),H2020-MSCA-ITN(721815), Wellcome (204979/Z/16/Z,104036/Z/14/Z), MRC (MC_UU_00007/10, MC_PC_U127592696), CSO (CZD/16/6,CZB/4/276, CZB/4/710), SFC (HR03006), EUROSPAN (LSHG-CT-2006-018947), BBSRC (BBS/E/D/30002276), SYSU, Arthritis Research UK, NHLBI, NIH.
Collapse
Affiliation(s)
- Yanni Zeng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Carmen Amador
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chenhao Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Azra Frkatović
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Rebecca A Madden
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Andrew D Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Chris S Haley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
19
|
Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet 2021; 60:1107-1140. [PMID: 34792705 DOI: 10.1007/s10528-021-10155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
If genetics defines the inheritance of DNA, epigenetics aims to regulate and make it adaptable. Epigenetic alterations include DNA methylation, chromatin remodelling, post-translational modifications of histone proteins and activity of non-coding RNAs. Several studies, especially in animal models, have reported transgenerational inheritance of epigenetic marks. However, evidence of transgenerational inheritance in humans via germline in the absence of any direct exposure to the driving external stimulus remains controversial. Most of the epimutations exist in relation with genetic variants. The present review looks at intergenerational and transgenerational inheritance in humans, (both father and mother) in response to diet, exposure to chemicals, stress, exercise, and disease status. If not transgenerational, at least intergenerational human studies could help to understand early processes of inheritance. In humans, female and male germline development follow separate paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. While DNA methylation alterations are reset during epigenetic reprogramming, non-coding RNAs via human sperm provide evidence of being reliable carriers for transgenerational inheritance. Human studies reveal that one mechanism of epigenetic inheritance cannot be applied to the complete human genome. Multiple factors including time, type, and tissue of exposure determine if the modified epigenetic mark could be transmissible and till which generation. Population-specific differences should also be taken into consideration while associating inheritance to an environmental exposure. A longitudinal study targeting one environmental factor, but different population groups should be conducted at a specific geographical location to pinpoint heritable epigenetic changes.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
20
|
Layton KKS, Bradbury IR. Harnessing the power of multi-omics data for predicting climate change response. J Anim Ecol 2021; 91:1064-1072. [PMID: 34679193 DOI: 10.1111/1365-2656.13619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023]
Abstract
Predicting how species will respond to future climate change is of central importance in the midst of the global biodiversity crisis, and recent work has demonstrated the utility of population genomics for improving these predictions. Here, we suggest a broadening of the approach to include other types of genomic variants that play an important role in adaptation, like structural (e.g. copy number variants) and epigenetic variants (e.g. DNA methylation). These data could provide additional power for forecasting response, especially in weakly structured or panmictic species. Incorporating structural and epigenetic variation into estimates of climate change vulnerability, or maladaptation, may not only improve prediction power but also provide insight into the molecular mechanisms underpinning species' response to climate change.
Collapse
Affiliation(s)
- Kara K S Layton
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ian R Bradbury
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Canada
| |
Collapse
|
21
|
Oocyte age and preconceptual alcohol use are highly correlated with epigenetic imprinting of a noncoding RNA ( nc886). Proc Natl Acad Sci U S A 2021; 118:2026580118. [PMID: 33723081 PMCID: PMC8000112 DOI: 10.1073/pnas.2026580118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genomic imprinting occurs before fertilization, impacts every cell of the developing child, and may be sensitive to environmental perturbations. The noncoding RNA, nc886 (also called VTRNA2-1) is the only known example of the ∼100 human genes imprinted by DNA methylation, that shows polymorphic imprinting in the population. The nc886 gene is part of an ∼1.6-kb differentially methylated region (DMR) that is methylated in the oocyte and silenced on the maternal allele in about 75% of humans worldwide. Here, we show that the presence or absence of imprinting at the nc886 DMR in an individual is consistent across different tissues, confirming that the imprint is established before cellular differentiation and is maintained into adulthood. We investigated the relationships between the frequency of imprinting in newborns and maternal age, alcohol consumption and cigarette smoking before conception in more than 1,100 mother/child pairs from South Africa. The probability of imprinting in newborns was increased in older mothers and decreased in mothers who drank alcohol before conception. On the other hand, cigarette smoking had no apparent relationship with the frequency of imprinting. These data show an epigenetic change during oocyte maturation which is potentially subject to environmental influence. Much focus has been placed on avoiding alcohol consumption during pregnancy, but our data suggest that drinking before conception may affect the epigenome of the newborn.
Collapse
|
22
|
Marttila S, Viiri LE, Mishra PP, Kühnel B, Matias-Garcia PR, Lyytikäinen LP, Ceder T, Mononen N, Rathmann W, Winkelmann J, Peters A, Kähönen M, Hutri-Kähönen N, Juonala M, Aalto-Setälä K, Raitakari O, Lehtimäki T, Waldenberger M, Raitoharju E. Methylation status of nc886 epiallele reflects periconceptional conditions and is associated with glucose metabolism through nc886 RNAs. Clin Epigenetics 2021; 13:143. [PMID: 34294131 PMCID: PMC8296652 DOI: 10.1186/s13148-021-01132-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-coding RNA 886 (nc886) is coded from a maternally inherited metastable epiallele. We set out to investigate the determinants and dynamics of the methylation pattern at the nc886 epiallele and how this methylation status associates with nc886 RNA expression. Furthermore, we investigated the associations between the nc886 methylation status or the levels of nc886 RNAs and metabolic traits in the YFS and KORA cohorts. The association between nc886 epiallele methylation and RNA expression was also validated in induced pluripotent stem cell (iPSC) lines. RESULTS We confirm that the methylation status of the nc886 epiallele is mostly binomial, with individuals displaying either a non- or hemi-methylated status, but we also describe intermediately and close to fully methylated individuals. We show that an individual's methylation status is associated with the mother's age and socioeconomic status, but not with the individual's own genetics. Once established, the methylation status of the nc886 epiallele remains stable for at least 25 years. This methylation status is strongly associated with the levels of nc886 non-coding RNAs in serum, blood, and iPSC lines. In addition, nc886 methylation status associates with glucose and insulin levels during adolescence but not with the indicators of glucose metabolism or the incidence of type 2 diabetes in adulthood. However, the nc886-3p RNA levels also associate with glucose metabolism in adulthood. CONCLUSIONS These results indicate that nc886 metastable epiallele methylation is tuned by the periconceptional conditions and it associates with glucose metabolism through the expression of the ncRNAs coded in the epiallele region.
Collapse
Grants
- 755320 Horizon 2020 (Taxinomisis)
- WA 4081/1-1 German Research Foundation
- BB/S020845/1 Biotechnology and Biological Sciences Research Council
- 134309, 126925, 121584, 124282, 129378, 117787, 41071 Academy of Finland
- 286284 and 322098 Academy of Finland
- 01EA1902A Joint Programming Initiative A healthy diet for a healthy life (DIMENSION)
- 848146 Horizon 2020 (To_Aition)
- 9X047, 9S054, and 9AB059 Tampere University Hospital Medical Funds
- 742927 European Research Council (MULTIEPIGEN)
- 285902, 330809 and 338395 academy of finland
- X51001 Tampere University Hospital Medical Funds
- the Social Insurance Institution of Finland
- Kuopio, Tampere, and Turku University Hospital Medical Funds
- Juho Vainion Säätiö
- Paavo Nurmen Säätiö
- Sydäntutkimussäätiö
- Suomen Kulttuurirahasto
- Tampereen Tuberkuloosisäätiö
- Emil Aaltosen Säätiö
- Yrjö Jahnssonin Säätiö
- Signe ja Ane Gyllenbergin Säätiö
- Diabetesliitto
- the Tampere University Hospital Supporting Foundation
- the Finnish Society of Clinical Chemistry
- Foundation of Clinical Chemistry
- Laboratoriolääketieteen edistämissäätiö sr.
- Orionin Tutkimussäätiö
- the Paulo Foundation
- Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München
- German Federal Ministry of Education and Research
- State of Bavaria
Collapse
Affiliation(s)
- Saara Marttila
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland.
- Gerontology Research Center, Tampere University, Tampere, Finland.
| | - Leena E Viiri
- Heart Group, Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Brigitte Kühnel
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Tiina Ceder
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research At Heinrich Heine University, Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Neurogenetics and Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Annette Peters
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Nina Hutri-Kähönen
- Tampere Centre for Skills Training and Simulation, Tampere University, Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Department of Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Hospital, Tampere University Hospital, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emma Raitoharju
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland.
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland.
| |
Collapse
|
23
|
Marttila S, Viiri LE, Mishra PP, Kühnel B, Matias-Garcia PR, Lyytikäinen LP, Ceder T, Mononen N, Rathmann W, Winkelmann J, Peters A, Kähönen M, Hutri-Kähönen N, Juonala M, Aalto-Setälä K, Raitakari O, Lehtimäki T, Waldenberger M, Raitoharju E. Methylation status of nc886 epiallele reflects periconceptional conditions and is associated with glucose metabolism through nc886 RNAs. Clin Epigenetics 2021. [PMID: 34294131 DOI: 10.1186/s13148‐021‐01132‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Non-coding RNA 886 (nc886) is coded from a maternally inherited metastable epiallele. We set out to investigate the determinants and dynamics of the methylation pattern at the nc886 epiallele and how this methylation status associates with nc886 RNA expression. Furthermore, we investigated the associations between the nc886 methylation status or the levels of nc886 RNAs and metabolic traits in the YFS and KORA cohorts. The association between nc886 epiallele methylation and RNA expression was also validated in induced pluripotent stem cell (iPSC) lines. RESULTS We confirm that the methylation status of the nc886 epiallele is mostly binomial, with individuals displaying either a non- or hemi-methylated status, but we also describe intermediately and close to fully methylated individuals. We show that an individual's methylation status is associated with the mother's age and socioeconomic status, but not with the individual's own genetics. Once established, the methylation status of the nc886 epiallele remains stable for at least 25 years. This methylation status is strongly associated with the levels of nc886 non-coding RNAs in serum, blood, and iPSC lines. In addition, nc886 methylation status associates with glucose and insulin levels during adolescence but not with the indicators of glucose metabolism or the incidence of type 2 diabetes in adulthood. However, the nc886-3p RNA levels also associate with glucose metabolism in adulthood. CONCLUSIONS These results indicate that nc886 metastable epiallele methylation is tuned by the periconceptional conditions and it associates with glucose metabolism through the expression of the ncRNAs coded in the epiallele region.
Collapse
Affiliation(s)
- Saara Marttila
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland. .,Gerontology Research Center, Tampere University, Tampere, Finland.
| | - Leena E Viiri
- Heart Group, Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Brigitte Kühnel
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Tiina Ceder
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research At Heinrich Heine University, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Neurogenetics and Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Annette Peters
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Nina Hutri-Kähönen
- Tampere Centre for Skills Training and Simulation, Tampere University, Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Department of Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Heart Hospital, Tampere University Hospital, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emma Raitoharju
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland. .,Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland.
| |
Collapse
|
24
|
Rodriguez N, Martinez-Pinteño A, Blázquez A, Ortiz AE, Moreno E, Gassó P, Lafuente A, Lazaro L, Mas S. Integrative DNA Methylation and Gene Expression Analysis of Cognitive Behavioral Therapy Response in Children and Adolescents with Obsessive-Compulsive Disorder; a Pilot Study. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:757-766. [PMID: 34234515 PMCID: PMC8254600 DOI: 10.2147/pgpm.s313015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 11/28/2022]
Abstract
Purpose Here, we propose an integrative analysis of genome-wide methylation and gene expression to provide new insight into the biological mechanisms of Cognitive behavioral therapy (CBT) in pediatric obsessive-compulsive disorder (OCD). Patients and Methods Twelve children and adolescents with OCD receiving CBT for the first time were classified as responders or non-responders after eight weeks of CBT. Differentially methylated positions (DMPs) and gene co-expression modules were identified using specific R software packages. Correlations between the DMPs and gene co-expression modules were investigated. Results Two genes were enriched with significant DMPs (Δβ > ± 0.2, FDR-adjusted p-value < 0.05): PIWIL1 and MIR886. The yellowgreen module of co-expressed genes was associated with CBT response (FDR-adjusted p-value = 0.0003). Significant correlations were observed between the yellowgreen module and the CpGs in PIWIL1 and MIR886 (p < 0.008). Patients showing hypermethylation in these CpGs presented an upregulation in the genes in the yellowgreen module. Conclusion Taken together, the preliminary results of this systems-level approach, despite the study limitations, provide evidence that the epigenetic regulation of ncRNAs could be a predictor of CBT response. Limitations The sample size limited the statistical power, and given that the study was hypothesis-driven, our results should be seen as preliminary.
Collapse
Affiliation(s)
- Natalia Rodriguez
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Albert Martinez-Pinteño
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Ana Blázquez
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Barcelona, Spain.,Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ana Encarnación Ortiz
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Barcelona, Spain.,Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Elena Moreno
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Patricia Gassó
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain.,Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Amalia Lafuente
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain.,Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic de Barcelona, Barcelona, Spain.,Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, Barcelona, Spain.,Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
25
|
Fort RS, Duhagon MA. Pan-cancer chromatin analysis of the human vtRNA genes uncovers their association with cancer biology. F1000Res 2021; 10:182. [PMID: 34354812 PMCID: PMC8287541 DOI: 10.12688/f1000research.28510.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The vault RNAs (vtRNAs) are a class of 84-141-nt eukaryotic non-coding RNAs transcribed by RNA polymerase III, associated to the ribonucleoprotein complex known as vault particle. Of the four human vtRNA genes, vtRNA1-1, vtRNA1-2 and vtRNA1-3, clustered at locus 1, are integral components of the vault particle, while vtRNA2-1 is a more divergent homologue located in a second locus. Gene expression studies of vtRNAs in large cohorts have been hindered by their unsuccessful sequencing using conventional transcriptomic approaches. Methods: VtRNA expression in The Cancer Genome Atlas (TCGA) Pan-Cancer cohort was estimated using the genome-wide DNA methylation and chromatin accessibility data (ATAC-seq) of their genes as surrogate variables. The association between vtRNA expression and patient clinical outcome, immune subtypes and transcriptionally co-regulated gene programs was analyzed in the dataset. Results: VtRNAs promoters are enriched in transcription factors related to viral infection. VtRNA2-1 is likely the most independently regulated homologue. VtRNA1-1 has the most accessible chromatin, followed by vtRNA1-2, vtRNA2-1 and vtRNA1-3. VtRNA1-1 and vtRNA1-3 chromatin status does not significantly change in cancer tissues. Meanwhile, vtRNA2-1 and vtRNA1-2 expression is widely deregulated in neoplastic tissues and its alteration is compatible with a broad oncogenic role for vtRNA1-2, and both tumor suppressor and oncogenic functions for vtRNA2-1. Yet, vtRNA1-1, vtRNA1-2 and vtRNA2-1 promoter DNA methylation predicts a shorter patient overall survival cancer-wide. In addition, gene ontology analyses of vtRNAs co-regulated genes identify a chromosome regulatory domain, epithelial differentiation, immune and thyroid cancer gene sets for specific vtRNAs. Furthermore, vtRNA expression patterns are associated with cancer immune subtypes and vtRNA1-2 expression is positively associated with cell proliferation and wound healing. Conclusions: Our study presents the landscape of vtRNA chromatin status cancer-wide, identifying co-regulated gene networks and ontological pathways associated with the different vtRNA genes that may account for their diverse roles in cancer.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay.,Depto. de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Montevideo, 11600, Uruguay
| | - María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay.,Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Montevideo, 11400, Uruguay
| |
Collapse
|
26
|
VTRNA2-1: Genetic Variation, Heritable Methylation and Disease Association. Int J Mol Sci 2021; 22:ijms22052535. [PMID: 33802562 PMCID: PMC7961504 DOI: 10.3390/ijms22052535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
VTRNA2-1 is a metastable epiallele with accumulating evidence that methylation at this region is heritable, modifiable and associated with disease including risk and progression of cancer. This study investigated the influence of genetic variation and other factors such as age and adult lifestyle on blood DNA methylation in this region. We first sequenced the VTRNA2-1 gene region in multiple-case breast cancer families in which VTRNA2-1 methylation was identified as heritable and associated with breast cancer risk. Methylation quantitative trait loci (mQTL) were investigated using a prospective cohort study (4500 participants with genotyping and methylation data). The cis-mQTL analysis (334 variants ± 50 kb of the most heritable CpG site) identified 43 variants associated with VTRNA2-1 methylation (p < 1.5 × 10−4); however, these explained little of the methylation variation (R2 < 0.5% for each of these variants). No genetic variants elsewhere in the genome were found to strongly influence VTRNA2-1 methylation. SNP-based heritability estimates were consistent with the mQTL findings (h2 = 0, 95%CI: −0.14 to 0.14). We found no evidence that age, sex, country of birth, smoking, body mass index, alcohol consumption or diet influenced blood DNA methylation at VTRNA2-1. Genetic factors and adult lifestyle play a minimal role in explaining methylation variability at the heritable VTRNA2-1 cluster.
Collapse
|
27
|
Lin CH, Lee YS, Huang YY, Tsai CN. Methylation status of vault RNA 2-1 promoter is a predictor of glycemic response to glucagon-like peptide-1 analog therapy in type 2 diabetes mellitus. BMJ Open Diabetes Res Care 2021; 9:9/1/e001416. [PMID: 33674278 PMCID: PMC7938984 DOI: 10.1136/bmjdrc-2020-001416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Therapeutic efficiency of glucagon-like peptide-1 (GLP-1) analog is about 50%-70% in type 2 diabetes mellitus (T2DM). Discovery of potential genetic biomarkers for prediction of treatment efficiency of GLP-1 analog before therapy is still necessary. We assess whether DNA methylation was associated with glycemic response to GLP-1 analog therapy in patients with poorly controlled T2DM. RESEARCH DESIGN AND METHODS Genomic DNA was extracted from the peripheral blood of training (n=10) and validation (n=128) groups of patients with T2DM receiving GLP-1 analogs. DNA methylome was analyzed using Infinium Human Methylation EPIC Bead Chip in the training group. The candidate genes were examined using a pyrosequencing platform in the validation group. The association between DNA methylation status and glycemic response to GLP-1 was analyzed in these patients. RESULTS The most differential methylation region between those with a good (responsive) and poor (unresponsive) glycemic response to GLP-1 analog therapy was located on chromosome 5q31.1 (135415693 to 135416613), the promoter of VTRNA2-1 in the training group. The methylation status of the VTRNA2-1 promoter was examined in the validation group via pyrosequencing reaction, and the hypomethylation of VTRNA2-1 (<40% methylation) was significantly associated with poor glycemic response to GLP-1 treatment (OR 2.757, 95% CI 1.240 to 6.130, p=0.011). Since the VTRNA2-1 promoter region was previously reported maternal imprinting extended to the adjacent centromeric CCCTC-binding factor site that contained an A/C polymorphism (rs2346018), which was associated with methylation density of VTRNA2-1, this A/C polymorphism was also integrated to analyze association with glycemic response to GLP-1 analog therapy. In patients with the A allele of rs2346018 and hypomethylation (<40%) on the VTRNA2-1 promoter, the OR increased to 4.048 (95% CI 1.438 to 11.389, p=0.007). CONCLUSIONS The glycemic response to GLP-1 analog treatment is associated with the methylation status of the VTRNA2-1 promoter and polymorphism of rs2346018.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Yu-Yao Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan
| |
Collapse
|
28
|
Muchira JM, Gona PN, Mogos MF, Stuart-Shor E, Leveille SG, Piano MR, Hayman LL. Parental cardiovascular health predicts time to onset of cardiovascular disease in offspring. Eur J Prev Cardiol 2020; 29:883-891. [PMID: 33624039 DOI: 10.1093/eurjpc/zwaa072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/18/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) risk factors are transmitted from parents to children. We prospectively examined the association between parental cardiovascular health (CVH) and time to onset of CVD in the offspring. METHODS AND RESULTS The study consisted of a total of 5967 offspring-mother-father trios derived from the Framingham Heart Study. Cardiovascular health score was defined using the seven American Heart Association's CVH metrics attained at ideal levels: poor (0-2), intermediate (3-4), and ideal CVH (5-7). Multivariable-adjusted Cox proportional hazards regression models, Kaplan-Meier plots, and Irwin's restricted mean were used to examine the association and sex-specific differences between parental CVH and offspring's CVD-free survival. In a total of 71 974 person-years of follow-up among the offspring, 718 incident CVD events occurred. The overall CVD incidence rate was 10 per 1000 person-years [95% confidence interval (CI) 9.3-10.7]. Offspring of mothers with ideal CVH lived 9 more years free of CVD than offspring of mothers with poor CVH (P < 0.001). Maternal poor CVH was associated with twice as high hazard of early onset of CVD compared with maternal ideal CVH (adjusted Hazard Ratio 2.09, 95% CI 1.50-2.92). No statistically significant association was observed in the hazards of CVD-free survival by paternal CVH categories. CONCLUSIONS We found that offspring of parents with ideal CVH had a greater CVD-free survival. Maternal CVH was a more robust predictor of offspring's CVD-free survival than paternal CVH, underscoring the need for clinical and policy interventions that involve mothers to break the intergenerational cycle of CVD-related morbidity and mortality.
Collapse
Affiliation(s)
- James M Muchira
- Center for Research Development and Scholarship, Vanderbilt University, School of Nursing, 461 21st Ave S, Nashville, TN 37240, USA.,College of Nursing and Health Sciences, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, USA
| | - Philimon N Gona
- College of Nursing and Health Sciences, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, USA
| | - Mulubrhan F Mogos
- Center for Research Development and Scholarship, Vanderbilt University, School of Nursing, 461 21st Ave S, Nashville, TN 37240, USA
| | - Eileen Stuart-Shor
- College of Nursing and Health Sciences, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, USA.,Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA
| | - Suzanne G Leveille
- College of Nursing and Health Sciences, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, USA.,Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Mariann R Piano
- Center for Research Development and Scholarship, Vanderbilt University, School of Nursing, 461 21st Ave S, Nashville, TN 37240, USA
| | - Laura L Hayman
- College of Nursing and Health Sciences, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, USA.,Division of Preventive & Behavioral Medicine, Department of Population & Quantitative Health Sciences, UMass Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
29
|
Vincenz C, Lovett JL, Wu W, Shedden K, Strassmann BI. Loss of Imprinting in Human Placentas Is Widespread, Coordinated, and Predicts Birth Phenotypes. Mol Biol Evol 2020; 37:429-441. [PMID: 31639821 PMCID: PMC6993844 DOI: 10.1093/molbev/msz226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genomic imprinting leads to mono-allelic expression of genes based on parent of origin. Therian mammals and angiosperms evolved this mechanism in nutritive tissues, the placenta, and endosperm, where maternal and paternal genomes are in conflict with respect to resource allocation. We used RNA-seq to analyze allelic bias in the expression of 91 known imprinted genes in term human placentas from a prospective cohort study in Mali. A large fraction of the imprinted exons (39%) deviated from mono-allelic expression. Loss of imprinting (LOI) occurred in genes with either maternal or paternal expression bias, albeit more frequently in the former. We characterized LOI using binomial generalized linear mixed models. Variation in LOI was predominantly at the gene as opposed to the exon level, consistent with a single promoter driving the expression of most exons in a gene. Some genes were less prone to LOI than others, particularly lncRNA genes were rarely expressed from the repressed allele. Further, some individuals had more LOI than others and, within a person, the expression bias of maternally and paternally imprinted genes was correlated. We hypothesize that trans-acting maternal effect genes mediate correlated LOI and provide the mother with an additional lever to control fetal growth by extending her influence to LOI of the paternally imprinted genes. Limited evidence exists to support associations between LOI and offspring phenotypes. We show that birth length and placental weight were associated with allelic bias, making this the first comprehensive report of an association between LOI and a birth phenotype.
Collapse
Affiliation(s)
- Claudius Vincenz
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Jennie L Lovett
- Department of Anthropology, University of Michigan, Ann Arbor, MI
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI
| | - Beverly I Strassmann
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI
- Department of Anthropology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
30
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
31
|
Gunasekara CJ, Scott CA, Laritsky E, Baker MS, MacKay H, Duryea JD, Kessler NJ, Hellenthal G, Wood AC, Hodges KR, Gandhi M, Hair AB, Silver MJ, Moore SE, Prentice AM, Li Y, Chen R, Coarfa C, Waterland RA. A genomic atlas of systemic interindividual epigenetic variation in humans. Genome Biol 2019; 20:105. [PMID: 31155008 PMCID: PMC6545702 DOI: 10.1186/s13059-019-1708-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA methylation is thought to be an important determinant of human phenotypic variation, but its inherent cell type specificity has impeded progress on this question. At exceptional genomic regions, interindividual variation in DNA methylation occurs systemically. Like genetic variants, systemic interindividual epigenetic variants are stable, can influence phenotype, and can be assessed in any easily biopsiable DNA sample. We describe an unbiased screen for human genomic regions at which interindividual variation in DNA methylation is not tissue-specific. RESULTS For each of 10 donors from the NIH Genotype-Tissue Expression (GTEx) program, CpG methylation is measured by deep whole-genome bisulfite sequencing of genomic DNA from tissues representing the three germ layer lineages: thyroid (endoderm), heart (mesoderm), and brain (ectoderm). We develop a computational algorithm to identify genomic regions at which interindividual variation in DNA methylation is consistent across all three lineages. This approach identifies 9926 correlated regions of systemic interindividual variation (CoRSIVs). These regions, comprising just 0.1% of the human genome, are inter-correlated over long genomic distances, associated with transposable elements and subtelomeric regions, conserved across diverse human ethnic groups, sensitive to periconceptional environment, and associated with genes implicated in a broad range of human disorders and phenotypes. CoRSIV methylation in one tissue can predict expression of associated genes in other tissues. CONCLUSIONS In addition to charting a previously unexplored molecular level of human individuality, this atlas of human CoRSIVs provides a resource for future population-based investigations into how interindividual epigenetic variation modulates risk of disease.
Collapse
Affiliation(s)
- Chathura J Gunasekara
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - C Anthony Scott
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Eleonora Laritsky
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maria S Baker
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Harry MacKay
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jack D Duryea
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Noah J Kessler
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, The Gambia
- Department of Women and Children's Health, King's College London, London, UK
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kelly R Hodges
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Manisha Gandhi
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Amy B Hair
- Department of Pediatrics - Neonatology, Baylor College of Medicine, Houston, TX, USA
| | - Matt J Silver
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, The Gambia
| | - Sophie E Moore
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, The Gambia
- Department of Women and Children's Health, King's College London, London, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, The Gambia
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Robert A Waterland
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|