1
|
Dai Q, Su W, Zhou Z, Yuan J, Wei X, Su J, Zhu J. DDR2 alleviates retinal vaso-obliteration and pathological neovascularization by modulating microglia M1/M2 phenotypic polarization in a mouse model of proliferative retinopathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167787. [PMID: 40064060 DOI: 10.1016/j.bbadis.2025.167787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025]
Abstract
Retinopathy of prematurity (ROP), a leading cause of blindness in premature infants, is characterized by retinal vaso-obliteration during hyperoxia and pathological neovascularization (NV) in relative hypoxia phase. Current treatments, which focus on the late stages of pathological neovascularization, are associated with numerous side effects. Studies demonstrated that discoidin domain receptor 2 (DDR2), a collagen-binding receptor tyrosine kinase, inhibits the experimental choroidal neovascularization and participates in tumor angiogenesis. However, the role of DDR2 in ROP and underlying mechanisms is unclear. In this study, we initially found that DDR2 expressed during mouse physiological retinal vascular development and significantly decreased in vaso-obliteration phase followed by increase during pathological neovascularization phase in mouse oxygen-induced retinopathy (OIR) model. Early upregulation of DDR2 before hyperoxia attenuates oxygen-induced vaso-obliteration, reduces pathological neovascularization, and promotes retinal vascular maturation. Additionally, DDR2 upregulation increased the number of microglia around retinal blood vessels and induced anti-inflammatory M2 polarization. Furthermore, the STAT6/TGF-β signaling pathway suppressed during hyperoxia was activated after DDR2 upregulation. In conclusion, DDR2 attenuated vaso-obliteration and inhibited pathological neovascularization by switching the microglia polarization from M1 to M2 phenotype via the STAT6/TGF-β signaling pathway in OIR. This suggests that DDR2 could be a novel target for the early treatment of ROP.
Collapse
Affiliation(s)
- Qinjin Dai
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wenqi Su
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiaguo Yuan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xinru Wei
- Guangzhou Medical University, Guangzhou 510623, China
| | - Jin Su
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jie Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
2
|
Chen F, Zhou Y, Du X, Lin S, Wan W, Liu Y, Zou H, Xue Y. In situ sustained and pH-responsive Gas6-loaded microspheres for alleviating acute gouty arthritis by immunoregulation. Colloids Surf B Biointerfaces 2025; 254:114809. [PMID: 40412288 DOI: 10.1016/j.colsurfb.2025.114809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/18/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
Acute gouty arthritis is characterized by sudden, severe attacks of pain, swelling, redness, and tenderness in joints. Managing acute gout attacks requires timely and effective control of the inflammatory reaction caused by monosodium urate (MSU) crystals. In clinical practice, intra-articular drug injection is a common treatment which partially reduces the side effects of oral administration. However, due to the low retention time and persistence of small-molecule drugs in the joints, the effects are often minimal. Therefore, a sustainable and on-demand drug delivery system is warranted. In the present study, a novel in situ sustained and pH-responsive hydrogel microsphere loaded with Gas6 (CMCS@SAG) was fabricated for acute gouty arthritis treatment, and the therapeutic effect was evaluated in vitro and in vivo. The results showed that CMCS@SAG was a spherical porous structure with a diameter of 100 μm. The loaded Gas6 was slowly released and referred to release under acidic pH conditions. In vitro, it was observed that CMCS@SAG effectively inhibited acute inflammatory response induced by macrophages, and enhanced mitochondrial function. In vivo, the joint swelling level decreased, infiltration of inflammation decreased, and multiple immunofluorescences showed significantly increased M2 polarization and anti-inflammatory effects in CMCS@SAG group. These results indicated that CMCS@SAG may be a promising avenue for alleviating acute gouty arthritis.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| | - Yingzi Zhou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xingchen Du
- Department of Rheumatology, First Affiliated Hospital of Soochow University, China
| | - Sang Lin
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weiguo Wan
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Cao Q, Wang Y, Chen J, Wang R, Chen T, Gloss B, Read SA, Wang X, Lee VWS, Clancy L, Rogers NM, Alexander SI, Zheng G, Yu D, Harris DCH. Targeting inflammation with chimeric antigen receptor macrophages using a signal switch. Nat Biomed Eng 2025:10.1038/s41551-025-01387-8. [PMID: 40335685 DOI: 10.1038/s41551-025-01387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapy has shown great success in clinical cancer, bringing hope to apply CAR strategies to other clinical settings. Here we developed a CAR macrophage (CAR-M) that recognizes the major inflammatory molecule tumour necrosis factor (TNF) and activates an intracellular IL-4 signalling pathway, thereby programming engineered macrophages for an anti-inflammatory function. CAR-M therapy has exhibited efficacy in mouse models of both acute and chronic inflammatory diseases. In kidney ischaemia reperfusion injury (IRI), infused CAR-Ms switched to an anti-inflammatory phenotype in inflamed kidney and attenuated kidney IRI. The anti-inflammatory phenotype of infused CAR-Ms switched off during the recovery phase of kidney IRI, coinciding with the disappearance of TNF. In Adriamycin-induced nephropathy, a model of chronic inflammatory disease, infused CAR-Ms maintained an anti-inflammatory phenotype for several weeks in response to sustained high levels of TNF and improved kidney function and structure. CAR-Ms also effectively reduced tissue injury in another organ, the liver. Human anti-TNF CAR-Ms exhibit anti-inflammatory phenotype and function in response to TNF. The CAR-M design, using signal switching, holds promise for the treatment of a broad range of acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Jianwei Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Titi Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Sydney, New South Wales, Australia
| | - Brian Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Scott A Read
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Xuerong Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Vincent W S Lee
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Sydney, New South Wales, Australia
| | - Leighton Clancy
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology-ICPMR Westmead, Sydney, New South Wales, Australia
- Bone Marrow Transplant & Cell Therapies, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Sydney, New South Wales, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Di Yu
- Faculty of Medicine, The University of Queensland Diamantina Institute, St Lucia, Queensland, Australia
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.
- Department of Renal Medicine, Westmead Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
4
|
Wang X, Zhao H, Lin W, Fan W, Zhuang T, Wang X, Li Q, Wei X, Wang Z, Chen K, Yang L, Ding L. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156513. [PMID: 40010033 DOI: 10.1016/j.phymed.2025.156513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe inflammatory condition characterized by dysregulated immune responses and high mortality rates, with limited effective therapeutic options currently available. Panax notoginseng saponins (PNS), bioactive compounds derived from Panax notoginseng, have shown promise in mitigating lipopolysaccharide (LPS)-induced ALI. However, the molecular mechanisms underlying their therapeutic effects remain poorly understood. Given the critical role of M2-like macrophage polarization in resolving inflammation and promoting tissue repair, we investigated whether PNS exerts its protective effects in ALI by modulating this process. Furthermore, we explored the specific involvement of the signal transducer and activator of transcription 6 (STAT6) pathway in mediating these effects. METHODS Chemical profiling of PNS was performed using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), followed by quantitative analysis of its major bioactive components via high-performance liquid chromatography (HPLC). To evaluate the therapeutic efficacy of PNS and its principal constituents, we established an ALI mouse model through intratracheal administration of LPS. Comprehensive assessments included lung field shadowing, oxygen saturation levels, pulmonary function, and systematic histopathological examination. The regulatory effects of PNS on macrophage polarization were examined in THP-1 cells and bone marrow-derived macrophages (BMDMs), with cellular phenotypes analyzed by flow cytometry. To elucidate the mechanistic role of STAT6 in PNS-mediated protection, experiments were conducted using Stat6-deficient BMDMs and Stat6 knockout mice. RESULTS UPLC-Q-TOF-MS and HPLC identified and quantified the principal components of PNS: Notoginsenoside R1, Ginsenoside Rg1, Ginsenoside Re, and Ginsenoside Rb1. PNS treatment dose-dependently reduced inflammatory responses in LPS-induced ALI mice, as evidenced by decreased cytokine levels. Each of the four major PNS components independently alleviated ALI symptoms in mice. Pathway analysis revealed 56 potential ALI-related targets, with Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggesting that PNS exerts its protective effects by modulating inflammatory signaling pathways. In vitro studies demonstrated that PNS promoted STAT6 phosphorylation and nuclear translocation, enhancing M2-like macrophage polarization and interleukin-10 (IL-10) secretion in a STAT6-dependent manner. Genetic ablation of Stat6 partially reversed the protective effects of PNS on ALI, macrophage polarization, and IL-10 production, confirming the pivotal role of STAT6 in mediating PNS activity. CONCLUSION This study demonstrates that PNS alleviates LPS-induced ALI by promoting STAT6-dependent M2-like macrophage polarization, highlighting its potential as a therapeutic agent for ALI. These findings provide mechanistic insights into the anti-inflammatory actions of PNS and underscore the importance of STAT6 signaling in its protective effects.
Collapse
Affiliation(s)
- Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Hanyang Zhao
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wenyuan Lin
- Endocrinology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Wenxiang Fan
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Xu Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Qi Li
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Xiaohui Wei
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Kaixian Chen
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| |
Collapse
|
5
|
Huang Y, Wang B, Ma Z, Chen T, Zou H, Chen Y, Dong Z, Chen J, Zhang H, Ding Y, Tan Q. Sulforaphane promotes diabetic wound healing by regulating macrophage efferocytosis and polarization. Int Immunopharmacol 2025; 150:114243. [PMID: 39938166 DOI: 10.1016/j.intimp.2025.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Delayed wound healing frequently occurs as a complication of diabetes. Diabetic wounds that are difficult to heal are associated with chronic, persistent inflammation, characterized by impaired efferocytosis and a sustained pro-inflammatory state of macrophages at the wound site. Sulforaphane (SFN), a bioactive compound found in cruciferous vegetables, possesses anti-inflammatory and antioxidant activities. Numerous studies have shown that SFN can inhibit various inflammatory diseases such as atherosclerosis and psoriasis; however, its potential in treating diabetic wounds remains unknown. PURPOSE This study investigates the effects and potential mechanisms of SFN on diabetic wound healing. METHODS Network pharmacology approaches were employed to identify potential targets of SFN for diabetic wound treatment. Additionally, an STZ-induced diabetic mouse model (C57/B6) was used in in vivo studies to examine SFN's impact on diabetic wound healing. Simultaneously, immunofluorescence staining, immunohistochemical staining, Western blotting, and qPCR analysis were employed to detect phenotypes associated with macrophage efferocytosis and M2 polarization. Subsequently, the mechanism underlying SFN treatment was explored through in vitro experiments utilizing the THP-1 human monocyte cell line. RESULTS The results demonstrated that topical SFN application accelerated wound healing in diabetic mice, partly through the enhancement of impaired macrophage efferocytosis and the promotion of M2 macrophage polarization, thereby reducing the inflammatory response at the wound site. SFN promoted the phagocytosis of apoptotic Jurkat cells by THP-1 differentiated macrophages, reducing the resulting inflammatory response. Mechanistic studies revealed that SFN promotes macrophage efferocytosis by activating nuclear factor E2-related factor 2 (Nrf2), leading to upregulation of heme oxygenase 1 (HO-1) expression and subsequent enhancement of mer proto-oncogene tyrosine kinase (MERTK), a recognition receptor for efferocytosis. Furthermore, SFN enhanced macrophage polarization toward the M2 phenotype and reduced the lipopolysaccharide (LPS)-induced inflammatory response in vitro. CONCLUSION These data suggest that SFN could serve as an effective adjunct or novel therapeutic agent for treating chronic non-healing wounds in diabetes.
Collapse
Affiliation(s)
- Yumeng Huang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Clinical College, Jiangsu University, Nanjing, China
| | - Beizhi Wang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhouji Ma
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University
| | - Tianzhe Chen
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haiting Zou
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yutong Chen
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zheng Dong
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jingyi Chen
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Clinical College, Jiangsu University, Nanjing, China; Department of Emergency Surgery, The Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People's Hospital), Zhenjiang, China.
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Clinical College, Jiangsu University, Nanjing, China; Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Clinical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
de Jager C, Soliman E, Theus MH. Interrogating mediators of single-cell transcriptional changes in the acute damaged cerebral cortex: Insights into endothelial-astrocyte interactions. Mol Cell Neurosci 2025; 133:104003. [PMID: 40090391 DOI: 10.1016/j.mcn.2025.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Traumatic brain injury (TBI) induces complex cellular and molecular changes, challenging recovery and therapeutic development. Although molecular pathways have been implicated in TBI pathology, the cellular specificity of these mechanisms remains underexplored. Here, we investigate the role of endothelial cell (EC) EphA4, a receptor tyrosine kinase receptor involved in axonal guidance, in modulating cell-specific transcriptomic changes within the damaged cerebral cortex. Utilizing single-cell RNA sequencing (scRNA-seq) in an experimental TBI model, we mapped transcriptional changes across various cell types, with a focus on astrocytes and ECs. Our analysis reveals that EC-specific knockout (KO) of EphA4 triggers significant alterations in astrocyte gene expression and shifts predominate subclusters. We identified six distinct astrocyte clusters (C0-C5) in the damaged cortex including as C0-Mobp/Plp1+; C1-Slc1a3/Clu+; C2-Hbb-bs/Hba-a1/Ndrg2+; C3-GFAP/Lcn2+; C4-Gli3/Mertk+, and C5-Cox8a+. We validate a new Sox9+ cluster expressing Mertk and Gas, which mediates efferocytosis to facilitate apoptotic cell clearance and anti-inflammatory responses. Transcriptomic and CellChat analyses of EC-KO cells highlights upregulation of neuroprotective pathways, including increased amyloid precursor protein (APP) and Gas6. Key pathways predicted to be modulated in astrocytes from EC-KO mice include oxidative phosphorylation and FOXO signaling, mitochondrial dysfunction and ephrin B signaling. Concurrently, metabolic and signaling pathways in endothelial cells-such as ceramide and sphingosine phosphate metabolism and NGF-stimulated transcription-indicate an adaptive response to a metabolically demanding post-injury hypoxic environment. These findings elucidate potential interplay between astrocytic and endothelial responses as well as transcriptional networks underlying cortical tissue damage.
Collapse
Affiliation(s)
- Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Blacksburg, VA 24061, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA; Center for Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
7
|
Yang Z, Ren C, He Z, Luo B, Chen X, Xu E, Guan W, Xia X. Identification of AXL as a novel positive regulator of lipid raft in gastric cancer. Cell Signal 2025; 127:111573. [PMID: 39708896 DOI: 10.1016/j.cellsig.2024.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Lipid rafts are highly heterogeneous and dynamic microdomains involved in molecule trafficking and signaling transduction. This study investigates the role of lipid rafts in gastric cancer and their key regulators. Analyzing FFPE samples from 111 gastric cancer patients, we found that high lipid raft levels predict poor prognosis. Modulating these levels in gastric cancer cell lines significantly impacted cell proliferation, migration, and invasion. Weighted Gene Co-expression Network Analysis identified AXL as a hub gene associated with lipid rafts. AXL knockdown experiments revealed its interaction with Caveolin-1, a caveolae lipid raft protein, which regulates lipid raft levels and promotes AKT and ERK signaling, enhancing cancer development and metastasis. In vivo tumorigenesis assays and survival analyses further supported these findings. This study underscores the significance of lipid rafts in gastric cancer and identifies AXL as a novel regulator, offering new insights into the molecular mechanisms of cancer progression and suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Zhi Yang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chuanfu Ren
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Ziyun He
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Banxin Luo
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Chen
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - En Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China; Department of General Surgery, Taikang Xianlin DrumTower Hospital, Nanjing, China.
| | - Xuefeng Xia
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China; Department of General Surgery, Taikang Xianlin DrumTower Hospital, Nanjing, China.
| |
Collapse
|
8
|
Wang G, Zhang D, He Z, Mao B, Hu X, Chen L, Yang Q, Zhou Z, Zhang Y, Linghu K, Tang C, Xu Z, Liu D, Song J, Wang H, Lin Y, Li R, Lin JW, Chen L. Machine learning-based prediction reveals kinase MAP4K4 regulates neutrophil differentiation through phosphorylating apoptosis-related proteins. PLoS Comput Biol 2025; 21:e1012877. [PMID: 40096134 PMCID: PMC11957395 DOI: 10.1371/journal.pcbi.1012877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/31/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Neutrophils, an essential innate immune cell type with a short lifespan, rely on continuous replenishment from bone marrow (BM) precursors. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the molecular regulators involved in the differentiation process remain poorly understood. Here we developed a random forest-based machine-learning pipeline, NeuRGI (Neutrophil Regulatory Gene Identifier), which utilized Positive-Unlabeled Learning (PU-learning) and neural network-based in silico gene knockout to identify neutrophil regulators. We interrogated features including gene expression dynamics, physiological characteristics, pathological relatedness, and gene conservation for the model training. Our identified pipeline leads to identifying Mitogen-Activated Protein Kinase-4 (MAP4K4) as a novel neutrophil differentiation regulator. The loss of MAP4K4 in hematopoietic stem cells and progenitors in mice induced neutropenia and impeded the differentiation of neutrophils in the bone marrow. By modulating the phosphorylation level of proteins involved in cell apoptosis, such as STAT5A, MAP4K4 delicately regulates cell apoptosis during the process of neutrophil differentiation. Our work presents a novel regulatory mechanism in neutrophil differentiation and provides a robust prediction model that can be applied to other cellular differentiation processes.
Collapse
Affiliation(s)
- Guihua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhifeng He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Chen
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingxin Yang
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yating Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kepan Linghu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Tang
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zijie Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Defu Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junwei Song
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiying Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yishan Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruihan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing-Wen Lin
- Biosafety Laboratory of West China Hospital, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Urakami H, Yoshikawa S, Nagao K, Miyake K, Fujita Y, Komura A, Nakashima M, Umene R, Sano S, Hu Z, Nishii E, Fujimura A, Hiyama TY, Naruse K, Karasuyama H, Inoue T, Tominaga M, Takamori K, Morizane S, Miyake S. Stress-experienced monocytes/macrophages lose anti-inflammatory function via β 2-adrenergic receptor in skin allergic inflammation. J Allergy Clin Immunol 2025; 155:865-879. [PMID: 39566608 DOI: 10.1016/j.jaci.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Psychological stress can exacerbate the development of allergies; however, the underlying mechanisms remain poorly understood. IgE-mediated cutaneous allergic inflammation (IgE-CAI) is a basophil-dependent skin allergy with eosinophil infiltration at inflammatory sites. Its resolution involves anti-inflammatory programmed death ligand 2 (PD-L2)-positive macrophages. OBJECTIVE This study sought to elucidate the cellular and molecular mechanisms by which psychological stress exacerbates IgE-CAI. METHODS Neural tissue involved in stress-induced IgE-CAI exacerbation was identified by performing denervation and brain destruction experiments in mice. Immune cell transplantation, RNA sequencing, flow cytometry, and ELISA were used to identify and characterize immune cells with stress-altered functioning, followed by identification of key factors involved in IgE-CAI exacerbation. RESULTS Stress-induced exacerbation of IgE-CAI was found to be sympathetic and β2-adrenergic receptor (Adrb2)-dependent. Adoptive transfer experiments revealed that stress diminished the anti-inflammatory functions of PD-L2-positive macrophages through Adrb2, exacerbating the inflammation. RNA sequencing analysis indicated that PD-L2-positive macrophages in stressed mice exhibit reduced expression of efferocytosis-related genes, including Gas6 and MerTK. Consequently, the efferocytic capacity of these macrophages decreased, resulting in increased numbers of dead cells in the lesions. The exacerbation and upregulation of Ccl24 expression in IgE-CAI skin lesions were countered by a Caspase-1 inhibitor. CONCLUSIONS Psychological stress diminishes the efferocytotic capacity of PD-L2-positive macrophages, causing an accumulation of dead cells. This, in turn, heightens eosinophil infiltration through Caspase-1-dependent production of CCL24, exacerbating IgE-CAI.
Collapse
Affiliation(s)
- Hitoshi Urakami
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Soichiro Yoshikawa
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan; Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate school of Medicine, Chiba, Japan.
| | - Kei Nagao
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan; Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate school of Medicine, Chiba, Japan
| | - Kensuke Miyake
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Fujita
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Ayaka Komura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Miho Nakashima
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shuhei Sano
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Zheyu Hu
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Emi Nishii
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Y Hiyama
- Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Yonago, Japan; International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
| | - Keiji Naruse
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hajime Karasuyama
- Inflammation, Infection & Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate school of Medicine, Chiba, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate school of Medicine, Chiba, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | - Sachiko Miyake
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan.
| |
Collapse
|
10
|
Jeong S, Yang K, Lee Y, Park JW, Park EM, Kang JL. Gas6 induces AIM to suppress acute lung injury in mice by inhibiting NLRP3 inflammasome activation and inducing autophagy. Front Immunol 2025; 16:1523166. [PMID: 40034700 PMCID: PMC11873840 DOI: 10.3389/fimmu.2025.1523166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Growth arrest-specific 6 (Gas6) protein signaling plays a critical role in maintaining immune homeostasis and regulating inflammation. However, novel mechanisms for modulating macrophage activity through the Gas6 axis are being identified. Gas6 enhances the production of apoptosis inhibitor of macrophages (AIM), a protein with potent anti-inflammatory properties. This study investigates whether Gas6-induced AIM suppresses acute lung injury (ALI) in mice by modulating key inflammatory pathways, including inflammasome activation, autophagy, reactive oxygen species (ROS) generation, and efferocytosis. Methods ALI was induced in wild-type (WT) and AIM-/- mice via intratracheal administration of LPS. To evaluate the effects of the Gas6-AIM axis on lung inflammation, recombinant Gas6 (rGas6) was treated intraperitoneally. Inflammatory responses were evaluated using enzyme-linked immunosorbent assay, a cell-sizing analyzer, and Bicinchoninic acid assays. Lung pathology was assessed using hematoxylin-eosin staining. NLRP3 inflammasome activation and autophagy were evaluated using western blot, quantitative real-time PCR, and immunofluorescence. Reactive oxygen species (ROS) levels in alveolar macrophages were measured via fluorescence microscopy, while efferocytosis was assessed in cytospin-stained BAL cells and cultured alveolar macrophages co-cultured with apoptotic Jurkat cells. Additionally, rGas6-mediated effects on NLRP3 inflammasome activation and autophagy were validated in mouse bone marrow-derived macrophages (BMDMs) using siRNAs targeting AIM, Axl, LXRα, or LXRβ. Results Proinflammatory cytokine production, neutrophil infiltration, and protein levels in BALF were significantly reduced by rGas6 administration in WT mice but not in AIM-/- mice. Specifically, rGas6 reduced IL-1β and IL-18 levels, caspase-1 activity, and the production of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) in alveolar macrophages. Additionally, rGas6 promoted autophagy and efferocytosis in alveolar macrophages while reducing ROS levels through AIM production. These protective effects were absent in AIM-/- mice. Furthermore, siRNA-mediated silencing of Axl, LXRα, LXRβ, or AIM reversed the inhibitory effects of rGas6 on NLRP3 inflammasome activation in BMDMs, and AIM was essential for rGas6-induced autophagy. Conclusion Gas6-induced AIM production protects against LPS-induced ALI by inhibiting NLRP3 inflammasome activation, enhancing autophagy and efferocytosis, and reducing oxidative stress. These findings highlight the Gas6-AIM axis as a potential therapeutic target for mitigating inflammatory lung diseases.
Collapse
Affiliation(s)
- Seonghee Jeong
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyungwon Yang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ye‐Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Lantz C, Becker A, DeBerge M, Filipp M, Glinton K, Ananthakrishnan A, Urbanczyk J, Cetlin M, Alzamroon A, Abdel-Latif A, Spite M, Ge ZD, Thorp EB. Early-age efferocytosis directs macrophage arachidonic acid metabolism for tissue regeneration. Immunity 2025; 58:344-361.e7. [PMID: 39938482 PMCID: PMC11839170 DOI: 10.1016/j.immuni.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2024] [Accepted: 11/21/2024] [Indexed: 02/14/2025]
Abstract
In response to organ injury in adults, macrophages often promote scarring, yet during early life, they are required for tissue regeneration. To elucidate the mechanisms underlying age-associated regeneration, we compared the macrophage injury response in newborn versus adult hearts. Single-cell analysis revealed an accumulation of tissue-resident macrophages in neonates that were selectively polarized for apoptotic cell recognition and uptake (efferocytosis). Ablation of the apoptotic cell recognition receptor Mertk in newborns prevented cardiac regeneration. These findings could be attributed to reprogramming of macrophage gene expression that was required for biosynthesis of the eicosanoid thromboxane A2, which unexpectedly activated parenchymal cell proliferation. Markers of thromboxane A2 production were suppressed in adult macrophages after efferocytosis. Moreover, macrophage-neighboring neonatal cardiomyocytes expressed the thromboxane A2 receptor, whose activation induced a metabolic shift that supported cellular proliferation. Our data reveal a fundamental age-defined macrophage response in which lipid mitogens produced during efferocytosis support receptor-mediated tissue regeneration.
Collapse
Affiliation(s)
- Connor Lantz
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA; Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Amanda Becker
- Department of Pediatrics, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mallory Filipp
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristofor Glinton
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Jessica Urbanczyk
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Madeline Cetlin
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhi-Dong Ge
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Chicago, IL 60611, USA; Heart Center, Stanley Manne Children's Research Institute, Ann & Robert Lurie Children's Hospital, Chicago, IL 60611, USA; Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Wu X, Gu R, Tang M, Mu X, He W, Nie X. Elucidating the dual roles of apoptosis and necroptosis in diabetic wound healing: implications for therapeutic intervention. BURNS & TRAUMA 2025; 13:tkae061. [PMID: 39845196 PMCID: PMC11752647 DOI: 10.1093/burnst/tkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 01/24/2025]
Abstract
Wound healing is a complex and multistep biological process that involves the cooperation of various cell types. Programmed cell death, including apoptosis and necrotizing apoptosis, plays a crucial role in this process. Apoptosis, a controlled and orderly programmed cell death regulated by genes, helps eliminate unnecessary or abnormal cells and maintain internal environmental stability. It also regulates various cell functions and contributes to the development of many diseases. In wound healing, programmed cell death is essential for removing inflammatory cells and forming scars. On the other hand, necroptosis, another form of programmed cell death, has not been thoroughly investigated regarding its role in wound healing. This review explores the changes and apoptosis of specific cell groups during wound healing after an injury and delves into the potential underlying mechanisms. Furthermore, it briefly discusses the possible mechanisms linking wound inflammation and fibrosis to apoptosis in wound healing. By understanding the relationship between apoptosis and wound healing and investigating the molecular mechanisms involved in apoptosis regulation, new strategies for the clinical treatment of wound healing may be discovered.
Collapse
Affiliation(s)
- Xingqian Wu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, United States
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
13
|
Li J, Ma W, Tang Z, Li Y, Zheng R, Xie Y, Li G. Macrophage‑driven pathogenesis in acute lung injury/acute respiratory disease syndrome: Harnessing natural products for therapeutic interventions (Review). Mol Med Rep 2025; 31:16. [PMID: 39513609 PMCID: PMC11551695 DOI: 10.3892/mmr.2024.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common respiratory disease characterized by hypoxemia and respiratory distress. It is associated with high morbidity and mortality. Due to the complex pathogenesis of ALI, the clinical management of patients with ALI/ARDS is challenging, resulting in numerous post‑treatment sequelae and compromising the quality of life of patients. Macrophages, as a class of innate immune cells, play an important role in ALI/ARDS. In recent years, the functions and phenotypes of macrophages have been better understood due to the development of flow cytometry, immunofluorescence, single‑cell sequencing and spatial genomics. However, no macrophage‑targeted drugs for the treatment of ALI/ARDS currently exist in clinical practice. Natural products are important for drug development, and it has been shown that numerous natural compounds from herbal medicine can alleviate ALI/ARDS caused by various factors by modulating macrophage abnormalities. In the present review, the natural products from herbal medicine that can modulate macrophage abnormalities in ALI/ARDS to treat ALI/ARDS are introduced, and their mechanisms of action, discovered in the previous five years (2019‑2024), are presented. This will provide novel ideas and directions for further research, to develop new drugs for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Jincun Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wenyu Ma
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Zilei Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yingming Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Ruiyu Zheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yuhuan Xie
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Gang Li
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
14
|
Kannan R, Koh AJ, Kent RN, Bhutada K, Wasi F, Wagner L, Kozloff K, Baker BM, Roca H, McCauley LK. CCL2/CCR2 Signalling in Mesenchymal Stem/Progenitor Cell Recruitment and Fracture Healing in Mice. J Cell Mol Med 2024; 28:e70300. [PMID: 39721002 DOI: 10.1111/jcmm.70300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Macrophage efferocytosis (clearance of apoptotic cells) is crucial for tissue homeostasis and wound repair, where macrophages secrete factors that promote resolution of inflammation and regenerative signalling. This study examined the role of efferocytic macrophage-associated CCL2 secretion, its influence on mesenchymal stem/progenitor cell (MSPC) chemotaxis, and in vivo cell recruitment using Ccr2-/- (KO) mice with disrupted CCL2 receptor signalling in two regenerative models: ossicle implants and ulnar stress fractures. Single cell RNA sequencing and PCR validation indicated that efferocytosis of various apoptotic cells at bone injury sites (osteoblasts, pre-osteoblasts, MSPC) upregulated CCL2. CCL2 gradients enhanced MSPC migration through type I collagen matrices. In vivo, MSPC (LepR+) infiltration was significantly reduced while macrophage (F4/80+) infiltration increased in KO ossicle implants versus WT. In ulnar stress fractures, micro-CT revealed increased mineralized callus incidence in CCR2 KO male mice 5 days post injury (dpi) versus WT. By 7-dpi callus fractional bone volume, trabecular thickness, and bone mineral density were increased versus WT. Immunohistochemistry of mice 5-dpi confirmed an increase in callus area (including soft tissue); however, the percent of osteoprogenitors (%Osx+) within the callus was not different. These findings suggest that CCL2 differentially impacts MSPC recruitment depending on bone wound healing model.
Collapse
Affiliation(s)
- Rahasudha Kannan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Kaira Bhutada
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Fatima Wasi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Leon Wagner
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Kenneth Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Jie H, Wang B, Zhang J, Wang X, Song X, Yang F, Fu C, Dong B, Yan F. Uncovering SPP1 + Macrophage, Neutrophils and Their Related Diagnostic Biomarkers in Intracranial Aneurysm and Subarachnoid Hemorrhage. J Inflamm Res 2024; 17:8569-8587. [PMID: 39539729 PMCID: PMC11559423 DOI: 10.2147/jir.s493828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Intracranial aneurysms (IA) frequently cause subarachnoid hemorrhage (SAH) and have poor prognosis. However, the molecular mechanisms and diagnostic biomarkers associated with IA and ruptured IA (rIA) remain poorly understood. Methods In this study, single-cell and transcriptome datasets were obtained from the GEO database. The cell populations were annotated to identify potential pathogenic subpopulations, followed by intercellular communication, pseudotime, and SCENIC analyses. Proteome-wide and transcriptome-wide Mendelian randomization (MR) analyses were conducted to identify risk factors for IA and SAH. The major pathological changes and diagnostic biomarkers of IA and SAH were identified based on the transcriptome datasets. A clinical cohort was established to identify the diagnostic biomarkers and validate the results. Results Macrophages and neutrophils were predominantly increased in IA and rIA tissues, and neutrophils were markedly upregulated in the blood of SAH patients. SPP1+ Macrophage was progressively elevated in aneurysms, promoting vascular smooth muscle cell (VSMC) phenotypic transformation and collagen matrix remodeling through the SPP1 and TGF-β pathways. Furthermore, HIF1α regulon was enriched in SPP1+ Macrophage, mediating inflammation and metabolic reprogramming, which contributed to IA progression. Integrated MR analysis identified CD36 as a risk factor for both IA and SAH, and it has been recognized as an effective blood biomarker for SAH. Neutrophils and their related indicators have emerged as excellent biomarkers of SAH in clinical cohorts. Conclusion This study highlighted the detrimental role of SPP1+ Macrophage in IA and SAH using single-cell sequencing and MR analyses. CD36 was identified as a risk factor for IA and SAH and was also an efficient blood biomarker for SAH. In a clinical cohort, neutrophils and related indicators were valuable for the early diagnosis of SAH.
Collapse
Affiliation(s)
- Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Boyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Jingjing Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Xinzhao Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- REMEGEN, LTD, Yantai Economic & Technological Development Area, Yantai, People’s Republic of China
| | - Xiang Song
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Changning Fu
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
16
|
Xie XD, Dong SS, Liu RJ, Shi LL, Zhu T. Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution-Diving into Microglia/Macrophage Functions and Therapeutic Modality. Mol Neurobiol 2024; 61:7583-7602. [PMID: 38409642 DOI: 10.1007/s12035-024-04060-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.
Collapse
Affiliation(s)
- Xiao-Di Xie
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
| | - Shan-Shan Dong
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ru-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu-Liu Shi
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Zhu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
17
|
Wang J, Hashimoto Y, Hiemori-Kondo M, Nakamoto A, Sakai T, Ye W, Abe-Kanoh N. Resveratrol and piceid enhance efferocytosis by increasing the secretion of MFG-E8 in human THP-1 macrophages. Biosci Biotechnol Biochem 2024; 88:1090-1101. [PMID: 38830798 DOI: 10.1093/bbb/zbae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Abstract
The process of apoptotic cell clearance by phagocytes, known as efferocytosis, plays an essential role in maintaining homeostasis. Defects in efferocytosis can lead to inflammatory diseases such as atherosclerosis and autoimmune disorders. Therefore, the maintenance and promotion of efferocytosis are considered crucial for preventing these diseases. In this study, we observed that resveratrol, a representative functional food ingredient, and its glycoside, piceid, promoted efferocytosis in both human THP-1 macrophages differentiated with phorbol 12-myristate 13-acetate and peritoneal macrophages from thioglycolate-elicited mice. Resveratrol and piceid significantly increased mRNA expression and protein secretion of MFG-E8 in THP-1 macrophages. Furthermore, the activation of efferocytosis and the increment in MFG-E8 protein secretion caused by resveratrol or piceid treatment were canceled by MFG-E8 knockdown in THP-1 macrophages. In conclusion, we have demonstrated for the first time that resveratrol and piceid promote efferocytosis through the upregulation of MFG-E8 excretion in human THP-1 macrophages.
Collapse
Affiliation(s)
- Jing Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| | - Yuki Hashimoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Miki Hiemori-Kondo
- Department of Nutrition, Faculty of Nutrition, University of Kochi, Kochi, Japan
| | - Akiko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Wenxiu Ye
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang Key Laboratory of Grapevine Improvement and Utilization, Weifang, Shandong, China
| | - Naomi Abe-Kanoh
- Department of Food, Life and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| |
Collapse
|
18
|
Niu Q, Wang M, Liu XS. The evolving landscape of IL-10, IL-22 and IL-26 in pleurisy especially in tuberculous pleurisy. Respir Res 2024; 25:275. [PMID: 39003443 PMCID: PMC11245850 DOI: 10.1186/s12931-024-02896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024] Open
Abstract
Pleurisy can be categorized as primary or secondary, arising from immunological, tumorous, or microbial conditions. It often results in lung structure damage and the development of various respiratory issues. Among the different types, tuberculous pleurisy has emerged as a prominent focus for both clinical and scientific investigations. The IL-10 family, known for its anti-inflammatory properties in the human immune system, is increasingly being studied for its involvement in the pathogenesis of pleurisy. This review aims to present a detailed overview of the intricate role of IL-10 family members (specifically IL-10, IL-22, and IL-26) in human and animal pleuritic diseases or relevant animal models. These insights could serve as valuable guidance and references for further studies on pleurisy and potential therapeutic strategies.
Collapse
Affiliation(s)
- Qian Niu
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology, Baoji Gaoxin Hospital, Baoji, 721000, China
| | - Xian-Sheng Liu
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
19
|
Yu L, Deng Y, Wang X, Santos C, Davis IJ, Earp HS, Liu P. Co-targeting JAK1/STAT6/GAS6/TAM signaling improves chemotherapy efficacy in Ewing sarcoma. Nat Commun 2024; 15:5292. [PMID: 38906855 PMCID: PMC11192891 DOI: 10.1038/s41467-024-49667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Ewing sarcoma is a pediatric bone and soft tissue tumor treated with chemotherapy, radiation, and surgery. Despite intensive multimodality therapy, ~50% patients eventually relapse and die of the disease due to chemoresistance. Here, using phospho-profiling, we find Ewing sarcoma cells treated with chemotherapeutic agents activate TAM (TYRO3, AXL, MERTK) kinases to augment Akt and ERK signaling facilitating chemoresistance. Mechanistically, chemotherapy-induced JAK1-SQ phosphorylation releases JAK1 pseudokinase domain inhibition allowing for JAK1 activation. This alternative JAK1 activation mechanism leads to STAT6 nuclear translocation triggering transcription and secretion of the TAM kinase ligand GAS6 with autocrine/paracrine consequences. Importantly, pharmacological inhibition of either JAK1 by filgotinib or TAM kinases by UNC2025 sensitizes Ewing sarcoma to chemotherapy in vitro and in vivo. Excitingly, the TAM kinase inhibitor MRX-2843 currently in human clinical trials to treat AML and advanced solid tumors, enhances chemotherapy efficacy to further suppress Ewing sarcoma tumor growth in vivo. Our findings reveal an Ewing sarcoma chemoresistance mechanism with an immediate translational value.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaodong Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charlene Santos
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Medicine and Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
20
|
Hedley KE, Gomez HM, Kecelioglu E, Carroll OR, Jobling P, Horvat JC, Tadros MA. Neonatal Chlamydia muridarum respiratory infection causes neuroinflammation within the brainstem during the early postnatal period. J Neuroinflammation 2024; 21:158. [PMID: 38879567 PMCID: PMC11179230 DOI: 10.1186/s12974-024-03150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.
Collapse
Affiliation(s)
- Kateleen E Hedley
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Eda Kecelioglu
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Olivia R Carroll
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jay C Horvat
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
21
|
Yamamoto Y, Yamaguchi T, Egashira K, Saiki S, Kimura M, Chikazawa T, Yamamoto Y, Kurita K. Dipotassium glycyrrhizate and hinokitiol enhance macrophage efferocytosis by regulating recognition, uptake, and metabolism of apoptotic cells in vitro. J Periodontal Res 2024; 59:542-551. [PMID: 38146226 DOI: 10.1111/jre.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Efferocytosis is a process whereby macrophages remove apoptotic cells, such as neutrophils, that have accumulated in tissues, which is required for resolution of inflammation. Efferocytosis is impaired in individuals with increasing age and in those with various systemic diseases. Recently, efferocytosis has been reported to be related to the pathogenesis and progression of periodontitis, and enhancement of efferocytosis, especially in the subjects with impaired efferocytosis, was suggested to lead to periodontitis prevention and care. Various anti-inflammatory ingredients are used in oral care products, but their effect on efferocytosis is unclear. Here, we aimed to identify ingredients contained in oral care products that are effective for efferocytosis regulation. METHODS The ability of dead cells to induce inflammation in human gingival fibroblast (HGF) cells were evaluated by measuring IL-6 secretion. Six ingredients in oral care products used as anti-inflammatory agents were evaluated for their effect on efferocytosis using flow cytometry. The expression of various efferocytosis-related molecules, such as MERTK and LRP1 involved in recognition, and LXRα and ABCA1 that function in metabolism, were measured in RAW264.7 cells with or without ingredient treatment. Rac1 activity, which is related to the uptake of dead cells, was measured using the G-LISA kit. RESULTS Dead cells elicited IL-6 secretion in HGF cells. Among the six ingredients, GK2 and hinokitiol enhanced efferocytosis activity. GK2 and hinokitiol significantly increased the expression of MERTK and LRP1, and also enhanced LXRα and ABCA1 expression after efferocytosis. Furthermore, they increased Rac1 activity in the presence of dead cells. CONCLUSION Among the six ingredients tested, GK2 and hinokitiol promoted efferocytosis by regulating apoptotic cell recognition, uptake, and metabolism-related molecules. Efferocytosis upregulation may be one of the mechanisms of GK2 and hinokitiol in the treatment of inflammatory diseases, such as periodontitis.
Collapse
Affiliation(s)
- Yu Yamamoto
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | | | | | - Shuhei Saiki
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | | | | | | | - Kei Kurita
- R&D Headquarters, LION Corporation, Tokyo, Japan
| |
Collapse
|
22
|
Zhang Q, Hu C, Feng J, Long H, Wang Y, Wang P, Hu C, Yue Y, Zhang C, Liu Z, Zhou X. Anti-inflammatory mechanisms of neutrophil membrane-coated nanoparticles without drug loading. J Control Release 2024; 369:12-24. [PMID: 38508526 DOI: 10.1016/j.jconrel.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Neutrophil membrane-coated nanoparticles (NM-NPs) are nanomedicines with traits of mimicking the surface properties and functions of neutrophils, which are the most abundant type of white blood cells in the human body. NM-NPs have been widely used as targeted drug delivery systems for various inflammatory diseases, but their intrinsic effects on inflammation are not fully characterized yet. This study found that NM-NPs could modulate inflammation by multiple mechanisms without drug loading. NM-NPs could inhibit the recruitment of neutrophils and macrophages to the inflamed site by capturing chemokines and blocking their adhesion to inflamed endothelial cells. After internalized by macrophages and other phagocytic cells, NM-NPs could alter their phenotype by phosphatidylserine and simultaneously degrade the sequestered and neutralized cytokines and chemokines by lysosomal degradation. Under these effects, NM-NPs exhibited significant anti-inflammatory effects on LPS-induced inflammatory liver injury in vivo without drug loading. Our study unveiled the anti-inflammatory effects and mechanisms of NM-NPs without drug loading, and provided new insights and evidence for understanding their biological effects and safety, as well as developing more effective and safe targeted drug delivery systems.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jinwei Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hongyan Long
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ying Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pan Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chenglu Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuqin Yue
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chengyuan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Zhirui Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing 400038, China.
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
23
|
Deng Y, Xia L, Zhang J, Deng S, Wang M, Wei S, Li K, Lai H, Yang Y, Bai Y, Liu Y, Luo L, Yang Z, Chen Y, Kang R, Gan F, Pu Q, Mei J, Ma L, Lin F, Guo C, Liao H, Zhu Y, Liu Z, Liu C, Hu Y, Yuan Y, Zha Z, Yuan G, Zhang G, Chen L, Cheng Q, Shen S, Liu L. Multicellular ecotypes shape progression of lung adenocarcinoma from ground-glass opacity toward advanced stages. Cell Rep Med 2024; 5:101489. [PMID: 38554705 PMCID: PMC11031428 DOI: 10.1016/j.xcrm.2024.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/26/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Lung adenocarcinoma is a type of cancer that exhibits a wide range of clinical radiological manifestations, from ground-glass opacity (GGO) to pure solid nodules, which vary greatly in terms of their biological characteristics. Our current understanding of this heterogeneity is limited. To address this gap, we analyze 58 lung adenocarcinoma patients via machine learning, single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing, and we identify six lung multicellular ecotypes (LMEs) correlating with distinct radiological patterns and cancer cell states. Notably, GGO-associated neoantigens in early-stage cancers are recognized by CD8+ T cells, indicating an immune-active environment, while solid nodules feature an immune-suppressive LME with exhausted CD8+ T cells, driven by specific stromal cells such as CTHCR1+ fibroblasts. This study also highlights EGFR(L858R) neoantigens in GGO samples, suggesting potential CD8+ T cell activation. Our findings offer valuable insights into lung adenocarcinoma heterogeneity, suggesting avenues for targeted therapies in early-stage disease.
Collapse
Affiliation(s)
- Yulan Deng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Liang Xia
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Jian Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Senyi Deng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Mengyao Wang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China; Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong, China
| | - Shiyou Wei
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Kaixiu Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China; Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong, China
| | - Hongjin Lai
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yunhao Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yuquan Bai
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yongcheng Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Lanzhi Luo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Zhenyu Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Ran Kang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Fanyi Gan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Qiang Pu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Jiandong Mei
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Lin Ma
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Feng Lin
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Chenglin Guo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Hu Liao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yunke Zhu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Zheng Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Chengwu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yang Hu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Zhengyu Zha
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Gang Yuan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Qing Cheng
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Shensi Shen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China.
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China; Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Li Q, Liu H, Yin G, Xie Q. Efferocytosis: Current status and future prospects in the treatment of autoimmune diseases. Heliyon 2024; 10:e28399. [PMID: 38596091 PMCID: PMC11002059 DOI: 10.1016/j.heliyon.2024.e28399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Billions of apoptotic cells are swiftly removed from the human body daily. This clearance process is regulated by efferocytosis, an active anti-inflammatory process during which phagocytes engulf and remove apoptotic cells. However, impaired clearance of apoptotic cells is associated with the development of various autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease. In this review, we conducted a comprehensive search of relevant studies published from January 1, 2000, to the present, focusing on efferocytosis, autoimmune disease pathogenesis, regulatory mechanisms governing efferocytosis, and potential treatments targeting this process. Our review highlights the key molecules involved in different stages of efferocytosis-namely, the "find me," "eat me," and "engulf and digest" phases-while elucidating their relevance to autoimmune disease pathology. Furthermore, we explore the therapeutic potential of modulating efferocytosis to restore immune homeostasis and mitigate autoimmune responses. By providing theoretical underpinnings for the targeting of efferocytosis in the treatment of autoimmune diseases, this review contributes to the advancement of therapeutic strategies in this field.
Collapse
Affiliation(s)
- Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
25
|
Xu YD, Liang XC, Li ZP, Wu ZS, Yang J, Jia SZ, Peng R, Li ZY, Wang XH, Luo FJ, Chen JJ, Cheng WX, Zhang P, Zha ZG, Zeng R, Zhang HT. Apoptotic body-inspired nanotherapeutics efficiently attenuate osteoarthritis by targeting BRD4-regulated synovial macrophage polarization. Biomaterials 2024; 306:122483. [PMID: 38330742 DOI: 10.1016/j.biomaterials.2024.122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/16/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) is the most well-studied BET protein that is important for the innate immune response. We recently revealed that targeting BRD4 triggers apoptosis in tumor-associated macrophages, but its role in synovial macrophages and joint inflammation is largely unknown. Herein, we demonstrated that BRD4 was highly expressed in the iNOS-positive M1 macrophages in the human and mouse osteoarthritis (OA) synovium, and conditional knockout of BRD4 in the myeloid lineage using Lyz2-cre; BRD4flox/flox mice significantly abolished anterior cruciate ligament transection (ACLT)-induced M1 macrophage accumulation and synovial inflammation. Accordingly, we successfully constructed apoptotic body-inspired phosphatidylserine-containing nanoliposomes (PSLs) loaded with the BRD4 inhibitor JQ1 to regulate inflammatory macrophages. JQ1-loaded PSLs (JQ1@PSLs) exhibited a higher cellular uptake by macrophages than fibroblast-like synoviocytes (FLSs) in vitro and in vivo, as well as the reduction in proinflammatory M1 macrophage polarization. Intra-articular injections of JQ1@PSLs showed prolonged retention within the joint, and remarkably reduced synovial inflammation and joint pain via suppressing M1 polarization accompanied by reduced TRPA1 expression by targeted inhibition of BRD4 in the macrophages, thus attenuating cartilage degradation during OA development. The results show that BRD4-inhibiting JQ1@PSLs can targeted-modulate macrophage polarization, which opens a new avenue for efficient OA therapy via a "Trojan horse".
Collapse
Affiliation(s)
- Yi-Di Xu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Xiang-Chao Liang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhi-Peng Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhao-Sheng Wu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Jie Yang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Shi-Zhen Jia
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, Guangdong 510632, China
| | - Rui Peng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Xiao-He Wang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Fang-Ji Luo
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Jia-Jing Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China
| | - Wen-Xiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China.
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
26
|
Gong D, Liu X, Wu P, Chen Y, Xu Y, Gao Z, Qian H, Wang G, He B. Rab26 alleviates sepsis-induced immunosuppression as a master regulator of macrophage ferroptosis and polarization shift. Free Radic Biol Med 2024; 212:271-283. [PMID: 38169213 DOI: 10.1016/j.freeradbiomed.2023.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Macrophage dysfunction is a significant contributor to more than 70 % of sepsis-related deaths, specifically secondary bacterial infections, during the immunosuppression stage of sepsis. Nevertheless, the role of Rab26 in this context remains unclear. In this study, we observed a substantial decrease in Rab26 expression in macrophages during the immunosuppressive phase of sepsis, which was also found to be suppressed by high extracellular levels of HMGB1. During the progression of sepsis, Rab26 deficiency promotes a polarization shift from the M1 to the M2-like phenotype in macrophages, rendering them susceptible to ferroptosis. Subsequent experimentation has revealed that Rab26 deficiency facilitates the degradation of GPX4, thereby aggravating macrophage ferroptosis through the upregulation of levels of lipid ROS, MDA, and ferrous iron induced by RSL3, a ferroptosis inducer. Additionally, Rab26-deficient mice in the immunosuppressed phase of sepsis exhibit heightened susceptibility to secondary infections, leading to exacerbated lung tissue damage and increased mortality rate. Overall, these findings indicate that Rab26 plays a crucial role in sepsis-induced macrophage immunosuppression by regulating macrophage ferroptosis and polarization. Hence, it represents a potential novel target for sepsis therapy.
Collapse
Affiliation(s)
- Daohui Gong
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Xueping Liu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Pengfei Wu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yue Chen
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Yuhang Xu
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Zhan Gao
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Hang Qian
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| | - Binfeng He
- Department of General Practice, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| |
Collapse
|
27
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Lv JJ, Wang H, Zhang C, Zhang TJ, Wei HL, Liu ZK, Ma YH, Yang Z, He Q, Wang LJ, Duan LL, Chen ZN, Bian H. CD147 Sparks Atherosclerosis by Driving M1 Phenotype and Impairing Efferocytosis. Circ Res 2024; 134:165-185. [PMID: 38166463 DOI: 10.1161/circresaha.123.323223] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.
Collapse
Affiliation(s)
- Jian-Jun Lv
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Hao Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Cong Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Tian-Jiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Hao-Lin Wei
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Ze-Kun Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Yi-Hui Ma
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of Radiation Oncology, Xijing Hospital (Z.Y.), Fourth Military Medical University, Xi'an, China
| | - Qian He
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Li-Juan Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Li-Li Duan
- Department of Gastrointestinal Surgery, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases (L.-L.D.), Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine (J.-J.L., H.W., C.Z., T.-J.Z., H.-L.W., Z.-K.L., Y.-H.M., Q.H., L.-J.W., Z.-N.C., H.B.), Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Jha PK, Aikawa M, Aikawa E. Macrophage Heterogeneity and Efferocytosis: Beyond the M1/M2 Dichotomy. Circ Res 2024; 134:186-188. [PMID: 38236949 PMCID: PMC10798221 DOI: 10.1161/circresaha.123.324011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Affiliation(s)
- Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
30
|
Tao Y, Xu L, Liu X, Wang P, Wei S, Huang Y, Gu W, Bo R, Liu M, Yu J, Li J. Chitosan-coated artesunate protects against ulcerative colitis via STAT6-mediated macrophage M2 polarization and intestinal barrier protection. Int J Biol Macromol 2024; 254:127680. [PMID: 37890744 DOI: 10.1016/j.ijbiomac.2023.127680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Oral delivery of chitosan-coated artesunate (CPA) has been proven to be effective at preventing ulcerative colitis (UC) in mice. However, the anti-inflammatory mechanism is not fully understood. STAT6 is a key transcription factor that promotes anti-inflammatory effects by inducing M2 and Th2 dominant phenotypes, therefore we hypothesized STAT6 might play a key role in the process. To prove it, a STAT6 gene knockout macrophage cell line (STAT6-/- RAW264.7, by CRISPR/Cas9 method), and its corresponding Caco-2/RAW264.7 co-culture system combined with the STAT6 inhibitor (AS1517499, AS) in a mouse UC model were established and studied. The results showed that CPA remarkably suppressed the activation of TLR-4/NF-κB pathway and the mRNA levels of proinflammatory cytokines, while increased the IL-10 levels in RAW264.7. This effect of CPA contributed to the protection of the ZO-1 in Caco-2 which was disrupted upon the stimulation to macrophages. Simultaneously, CPA reduced the expression of CD86 but increase the expression of CD206 and p-STAT6 in LPS-stimulated RAW264.7 cells. However, above alterations were not obvious as in STAT6-/- RAW264.7 and its co-culture system, suggesting STAT6 plays a key role. Furthermore, CPA treatment significantly inhibited TLR-4/NF-κB activation, intestinal macrophage M1 polarization and mucosal barrier injury induced by DSS while promoted STAT6 phosphorylation in the UC mouse model, but this effect was also prominently counteracted by AS. Therefore, our data indicate that STAT6 is a major regulator in the balance of M1/M2 polarization, intestinal barrier integrity and then anti-colitis effects of CPA. These findings broaden our understanding of how CPA fights against UC and imply an alternative treatment strategy for UC via this pathway.
Collapse
Affiliation(s)
- Ya Tao
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Lei Xu
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiaopan Liu
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Peijia Wang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Simin Wei
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yinmo Huang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Ruonan Bo
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Mingjiang Liu
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jie Yu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, PR China.
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
31
|
Zhou S, Zhao T, Chen X, Zhang W, Zou X, Yang Y, Wang Q, Zhang P, Zhou T, Feng T. Runx1 Deficiency Promotes M2 Macrophage Polarization Through Enhancing STAT6 Phosphorylation. Inflammation 2023; 46:2241-2253. [PMID: 37530929 DOI: 10.1007/s10753-023-01874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023]
Abstract
Our previous study had demonstrated that Runx1 promoted LPS-induced macrophage inflammatory response, however, the role of Runx1 in M2 macrophage polarization still remains largely unknown. This study was conducted to investigate the role of Runx1 in IL-4/IL-13-induced M2 macrophage polarization and its potential regulatory mechanism. We found that exposure of macrophages to IL-4/IL-13 induced a remarkable increasement in Runx1 expression level. Specifically, we established genetically modified mice lacking Runx1 in myeloid cells, including macrophages. RNA-Seq was performed to identify differentially expressed genes (DEGs) between Runx1 knockout and WT control bone marrow-derived macrophages (BMDMs). We identified 686 DEGs, including many genes which were highly expressed in M2 macrophage. In addition, bioinformatics analysis indicated that these DEGs were significantly enriched in extracellular matrix-related processes. Moreover, RT-qPCR analysis showed that there was an obvious upregulation in the relative expression levels of M2 marker genes, including Arg1, Ym1, Fizz1, CD71, Mmp9, and Tgm2, in Runx1 knockout macrophages, as compared to WT controls. Consistently, similar results were obtained in the protein and enzymatic activity levels of Arg1. Finally, we found that the STAT6 phosphorylation level was significantly enhanced in Runx1 knockout macrophages, and the STAT6 inhibitor AS1517499 partly reduced the upregulated effect of Runx1 deficiency on the M2 macrophage polarization. Taken together, Runx1 deficiency facilitates IL-4/IL-13-induced M2 macrophage polarization through enhancing STAT6 phosphorylation.
Collapse
Affiliation(s)
- Siyuan Zhou
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Ting Zhao
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Xuqiong Chen
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Wuwen Zhang
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Xiaoyi Zou
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Yi Yang
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Qinshi Wang
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Ping Zhang
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Tong Zhou
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Tongbao Feng
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
32
|
Zheng W, Zhou Z, Guo X, Zuo X, Zhang J, An Y, Zheng H, Yue Y, Wang G, Wang F. Efferocytosis and Respiratory Disease. Int J Mol Sci 2023; 24:14871. [PMID: 37834319 PMCID: PMC10573909 DOI: 10.3390/ijms241914871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Cells are the smallest units that make up living organisms, which constantly undergo the processes of proliferation, differentiation, senescence and death. Dead cells need to be removed in time to maintain the homeostasis of the organism and keep it healthy. This process is called efferocytosis. If the process fails, this may cause different types of diseases. More and more evidence suggests that a faulty efferocytosis process is closely related to the pathological processes of respiratory diseases. In this review, we will first introduce the process and the related mechanisms of efferocytosis of the macrophage. Secondly, we will propose some methods that can regulate the function of efferocytosis at different stages of the process. Next, we will discuss the role of efferocytosis in different lung diseases and the related treatment approaches. Finally, we will summarize the drugs that have been applied in clinical practice that can act upon efferocytosis, in order to provide new ideas for the treatment of lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqiang Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.Z.); (Z.Z.); (X.G.); (X.Z.); (J.Z.); (Y.A.); (H.Z.); (Y.Y.)
| | - Fang Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.Z.); (Z.Z.); (X.G.); (X.Z.); (J.Z.); (Y.A.); (H.Z.); (Y.Y.)
| |
Collapse
|
33
|
Yang J, Zhang X, Lu B, Mei J, Xu L, Zhang X, Su Z, Xu W, Fang S, Zhu C, Xu D, Zhu W. Inflammation-Responsive Hydrogel Spray for Synergistic Prevention of Traumatic Heterotopic Ossification via Dual-Homeostatic Modulation Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302905. [PMID: 37635177 PMCID: PMC10602522 DOI: 10.1002/advs.202302905] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Traumatic heterotopic ossification (THO) represents one of the most prominent contributors to post-traumatic joint dysfunction, which currently lacks an effective and definitive preventative approach. Inflammatory activation due to immune dyshomeostasis during the early stages of trauma is believed to be critical in initiating the THO disease process. This study proposes a dual-homeostatic modulation (DHM) strategy to synergistically prevent THO without compromising normal trauma repair by maintaining immune homeostasis and inducing stem cell homeostasis. A methacrylate-hyaluronic acid-based hydrogel spray device encapsulating a curcumin-loaded zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, CZC) nanoparticles (CZCH) is designed. Photo-crosslinked CZCH is used to form hydrogel films fleetly in periosteal soft tissues to achieve sustained curcumin and CeO2 nanoparticles release in response to acidity and reactive oxygen species (ROS) in the inflammatory microenvironment. In vitro experiments and RNA-seq results demonstrated that CZCH achieved dual-homeostatic regulation of inflammatory macrophages and stem cells through immune repolarization and enhanced efferocytosis, maintaining immune cell homeostasis and normal differentiation. These findings of the DHM strategy are also validated by establishing THO mice and rat models. In conclusion, the CZCH hydrogel spray developed based on the DHM strategy enables synergistic THO prevention, providing a reference for a standard procedure of clinical operations.
Collapse
Affiliation(s)
- Jiazhao Yang
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Xudong Zhang
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Baoliang Lu
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Jiawei Mei
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Lei Xu
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Xianzuo Zhang
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Zheng Su
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Wei Xu
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Shiyuan Fang
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Chen Zhu
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Dongdong Xu
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233P. R. China
| | - Wanbo Zhu
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233P. R. China
| |
Collapse
|
34
|
Khan MJ, Singh P, Jha P, Nayek A, Malik MZ, Bagler G, Kumar B, Ponnusamy K, Ali S, Chopra M, Dohare R, Singh IK, Syed MA. Investigating the link between miR-34a-5p and TLR6 signaling in sepsis-induced ARDS. 3 Biotech 2023; 13:282. [PMID: 37496978 PMCID: PMC10366072 DOI: 10.1007/s13205-023-03700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/10/2023] [Indexed: 07/28/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are lung complications diagnosed by impaired gaseous exchanges leading to mortality. From the diverse etiologies, sepsis is a prominent contributor to ALI/ARDS. In the present study, we retrieved sepsis-induced ARDS mRNA expression profile and identified 883 differentially expressed genes (DEGs). Next, we established an ARDS-specific weighted gene co-expression network (WGCN) and picked the blue module as our hub module based on highly correlated network properties. Later we subjected all hub module DEGs to form an ARDS-specific 3-node feed-forward loop (FFL) whose highest-order subnetwork motif revealed one TF (STAT6), one miRNA (miR-34a-5p), and one mRNA (TLR6). Thereafter, we screened a natural product library and identified three lead molecules that showed promising binding affinity against TLR6. We then performed molecular dynamics simulations to evaluate the stability and binding free energy of the TLR6-lead molecule complexes. Our results suggest these lead molecules may be potential therapeutic candidates for treating sepsis-induced ALI/ARDS. In-silico studies on clinical datasets for sepsis-induced ARDS indicate a possible positive interaction between miR-34a and TLR6 and an antagonizing effect on STAT6 to promote inflammation. Also, the translational study on septic mice lungs by IHC staining reveals a hike in the expression of TLR6. We report here that miR-34a actively augments the effect of sepsis on lung epithelial cell apoptosis. This study suggests that miR-34a promotes TLR6 to heighten inflammation in sepsis-induced ALI/ARDS. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03700-1.
Collapse
Affiliation(s)
- Mohd Junaid Khan
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007 India
| | - Arnab Nayek
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Md. Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, 15462 Kuwait City, Kuwait
| | - Ganesh Bagler
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020 India
| | - Bhupender Kumar
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, 110036 India
| | - Kalaiarasan Ponnusamy
- Biotechnology and Viral Hepatitis Division, National Centre for Disease Control, Sham Nath Marg, New Delhi, 110054 India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, 110062 India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007 India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019 India
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019 India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
35
|
Purnama CA, Meiliana A, Barliana MI, Lestari K. Update of cellular responses to the efferocytosis of necroptosis and pyroptosis. Cell Div 2023; 18:5. [PMID: 37032375 PMCID: PMC10084608 DOI: 10.1186/s13008-023-00087-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/01/2023] [Indexed: 04/11/2023] Open
Abstract
Cell death is a basic physiological process that occurs in all living organisms. A few key players in these mechanisms, as well as various forms of cell death programming, have been identified. Apoptotic cell phagocytosis, also known as apoptotic cell clearance, is a well-established process regulated by a number of molecular components, including 'find-me', 'eat-me' and engulfment signals. Efferocytosis, or the rapid phagocytic clearance of cell death, is a critical mechanism for tissue homeostasis. Despite having similar mechanism to phagocytic clearance of infections, efferocytosis differs from phagocytosis in that it induces a tissue-healing response and is immunologically inert. However, as field of cell death has rapid expanded, much attention has recently been drawn to the efferocytosis of additional necrotic-like cell types, such as necroptosis and pyroptosis. Unlike apoptosis, this method of cell suicide allows the release of immunogenic cellular material and causes inflammation. Regardless of the cause of cell death, the clearance of dead cells is a necessary function to avoid uncontrolled synthesis of pro-inflammatory molecules and inflammatory disorder. We compare and contrast apoptosis, necroptosis and pyroptosis, as well as the various molecular mechanisms of efferocytosis in each type of cell death, and investigate how these may have functional effects on different intracellular organelles and signalling networks. Understanding how efferocytic cells react to necroptotic and pyroptotic cell uptake can help us understand how to modulate these cell death processes for therapeutic purposes.
Collapse
Affiliation(s)
- Chandra Agung Purnama
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Prodia Clinical Laboratory, Jl. Supratman No. 43, Bandung, 40114, Indonesia
| | - Anna Meiliana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Prodia Clinical Laboratory, Jl. Supratman No. 43, Bandung, 40114, Indonesia
- Prodia Education and Research Institute, Jl. Kramat Raya No 150, Jakarta, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia.
- Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia.
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
| |
Collapse
|
36
|
He X, Xiao J, Li Z, Ye M, Lin J, Liu Z, Liang Y, Dai H, Jing R, Lin F. Inhibition of PD-1 Alters the SHP1/2-PI3K/Akt Axis to Decrease M1 Polarization of Alveolar Macrophages in Lung Ischemia-Reperfusion Injury. Inflammation 2023; 46:639-654. [PMID: 36357527 PMCID: PMC10024672 DOI: 10.1007/s10753-022-01762-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Polarization of alveolar macrophages (AMs) into the M1 phenotype contributes to inflammatory responses and tissue damage that occur during lung ischemia-reperfusion injury (LIRI). Programmed cell death factor-1 (PD-1) regulates polarization of macrophages, but its role in LIRI is unknown. We examined the role of PD-1 in AM polarization in models of LIRI in vivo and in vitro. Adult Sprague-Dawley rats were subjected to ischemia-reperfusion with or without pretreatment with a PD-1 inhibitor, SHP1/2 inhibitor, or Akt activator. Lung tissue damage and infiltration by M1-type AMs were assessed. As an in vitro complement to the animal studies, rat alveolar macrophages in culture were subjected to oxygen/glucose deprivation and reoxygenation. Levels of SHP1/2 and Akt proteins were evaluated using Western blots, while levels of pro-inflammatory cytokines were measured using enzyme-linked immunosorbent assays. Injury upregulated PD-1 both in vivo and in vitro. Inhibiting PD-1 reduced the number of M1-type AMs, expression of SHP1 and SHP2, and levels of inflammatory cytokines. At the same time, it partially restored Akt activation. Similar results were observed after inhibition of SHP1/2 or activation of the PI3K/Akt pathway. PD-1 promotes polarization of AMs to the M1 phenotype and inflammatory responses through the SHP1/2-PI3K/Akt axis. Inhibiting PD-1 may be an effective therapeutic strategy to limit LIRI.
Collapse
Affiliation(s)
- Xiaojing He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Jingyuan Xiao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mengling Ye
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinyuan Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Zhen Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Yubing Liang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Ren Jing
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China.
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China.
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China.
| |
Collapse
|
37
|
Di YX, Bao YJ, Zhu ZQ, Sun SL, Tian FX, Wang FR, Yu G, Zhang MF, Han J, Zhou LL. Tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116429. [PMID: 37011736 DOI: 10.1016/j.jep.2023.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xanthium sibiricum Patrin ex Widder (X. sibiricum) are widely used traditional herbal medicines for arthritis treatment in China. Rheumatoid arthritis (RA) is characterized by progressive destructions of joints, which is accompanied by chronic, progressive inflammatory disorder. According to our previous research, tomentosin was isolated from X. sibiricum and revealed anti-inflammatory activity. However, the potential therapeutic effect of tomentosin on RA and the anti-inflammatory mechanism of tomentosin remain to be clarified. The present study lays theoretical support for X. sibiricum in RA treatment, also provides reference for further development of X. sibiricum in clinic. AIM OF THE STUDY To investigate the effect of tomentosin in collagen-induced arthritis (CIA) mice and reveal its underlying mechanism. MATERIALS AND METHODS In vivo, tomentosin (10, 20 and 40 mg/kg) was given to CIA mice for seven consecutive days, to evaluate its therapeutic effect and anti-inflammatory activity. In vitro, THP-1-derived macrophages were used to verify the effect of tomentosin on inflammation. Then, molecular docking and experiments in vitro was conducted to predict and explore the mechanism of tomentosin inhibiting inflammation. RESULTS Tomentosin attenuated the severity of arthritis in CIA mice, which was evidenced by the swelling of the hind paws, arthritis scores, and pathological changes. Particularly, tomentosin effectively reduced the ratio of M1 macrophage and TNF-α levels in vitro and vivo. Then, molecular docking and experiments in vitro was carried out, indicating that tomentosin inhibited M1 polarization and TNF-α levels accompanied by the increase of MERTK and up-regulated GAS6 levels. Moreover, it has been proved that GAS6 was necessary for MERTK activation and tomentosin could up-regulate GAS6 levels effectively in transwell system. Further mechanistic studies revealed that tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6 in transwell system. CONCLUSION Tomentosin relieved the severity of CIA mice by inhibiting M1 polarization. Furthermore, tomentosin suppressed M1 polarization via increasing MERTK activation mediated by regulation of GAS6.
Collapse
Affiliation(s)
- Yu-Xi Di
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Yu-Jie Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Zhi-Qi Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Shan-Liang Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Feng-Xiang Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Fu-Rong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Ge Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Ming-Fei Zhang
- Department of Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou University, 45 Taizhou Road, 225003, Yangzhou, PR China.
| | - Jing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| | - Ling-Ling Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, NO.138 Xianlin Road, 210023, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
38
|
Ma Y, Kemp SS, Yang X, Wu MH, Yuan SY. Cellular mechanisms underlying the impairment of macrophage efferocytosis. Immunol Lett 2023; 254:41-53. [PMID: 36740099 PMCID: PMC9992097 DOI: 10.1016/j.imlet.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
The phagocytosis and clearance of dying cells by macrophages, a process termed efferocytosis, is essential for both maintaining homeostasis and promoting tissue repair after infection or sterile injury. If not removed in a timely manner, uncleared cells can undergo secondary necrosis, and necrotic cells lose membrane integrity, release toxic intracellular components, and potentially induce inflammation or autoimmune diseases. Efferocytosis also initiates the repair process by producing a wide range of pro-reparative factors. Accumulating evidence has revealed that macrophage efferocytosis defects are involved in the development and progression of a variety of inflammatory and autoimmune diseases. The underlying mechanisms of efferocytosis impairment are complex, disease-dependent, and incompletely understood. In this review, we will first summarize the current knowledge about the normal signaling and metabolic processes of macrophage efferocytosis and its importance in maintaining tissue homeostasis and repair. We then will focus on analyzing the molecular and cellular mechanisms underlying efferocytotic abnormality (impairment) in disease or injury conditions. Next, we will discuss the potential molecular targets for enhanced efferocytosis in animal models of disease. To provide a balanced view, we will also discuss some deleterious effects of efferocytosis.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
39
|
Metabolomic Analysis of Stephania tetrandra- Astragalus membranaceus Herbal Pair-Improving Nephrotic Syndrome Identifies Activation of IL-13/STAT6 Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:ph16010088. [PMID: 36678585 PMCID: PMC9863900 DOI: 10.3390/ph16010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The Stephania tetrandra−Astragalus membranaceus herbal pair (FH) is a classic herbal pair widely used in the treatment of nephrotic syndrome (NS). The effects of Stephania tetrandra (FJ) and Astragalus membranaceus (HQ) on NS have been reported, but the mechanism of their combination on the improvement of NS are still unclear. The NS model was established by injecting adriamycin into the tail vein. FH intervention reduced the levels of serum triglyceride, total cholesterol, interleukin-6 (IL-6), blood urea nitrogen (BUN), urinary protein, and the gene expression levels of aquaporin 2 (AQP2) and arginine vasopressin (AVP) in NS rats. In addition, FH improved kidney injury in NS rats by inhibiting the expression of interleukin 13 (IL-13), phospho-signal transducers, and activators of transcription 6 (p-STAT6), Bax, cleaved-caspase3, while promoting the expression of Bcl-2. By comprehensive comparison of multiple indexes, the effects of FH on lipid metabolism, glomerular filtration rate, and inflammation were superior to that of FJ and HQ. Metabonomic studies showed that, compared with FJ and HQ, FH intervention significantly regulated tricarboxylic acid (TCA) cycle, cysteine and methionine metabolism, and alanine, aspartic acid and glutamic acid metabolism. Pearson correlation analysis showed that succinic acid and L-aspartic acid were negatively correlated with urinary protein, cystatin C (Cys C) and BUN (p < 0.05). In summary, FH could reduce renal injury and improve NS through inhibiting the IL-13/STAT6 signal pathway, regulating endogenous metabolic pathways, such as TCA cycle, and inhibiting the expression of AQP2 and AVP genes. This study provides a comprehensive strategy to reveal the mechanism of FH on the treatment of NS, and also provides a reasonable way to clarify the compatibility of traditional Chinese medicine.
Collapse
|
40
|
Mu R, Zhang Z, Han C, Niu Y, Xing Z, Liao Z, Xu J, Shao N, Chen G, Zhang J, Dong L, Wang C. Tumor-associated macrophages-educated reparative macrophages promote diabetic wound healing. EMBO Mol Med 2022; 15:e16671. [PMID: 36541165 PMCID: PMC9906426 DOI: 10.15252/emmm.202216671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Nonhealing diabetic wounds, with persistent inflammation and damaged vasculature, have failed conventional treatments and require comprehensive interference. Here, inspired by tumor-associated macrophages (TAMs) that produce abundant immunosuppressive and proliferative factors in tumor development, we generate macrophages to recapitulate TAMs' reparative functions, by culturing normal macrophages with TAMs' conditional medium (TAMs-CM). These TAMs-educated macrophages (TAMEMs) outperform major macrophage phenotypes (M0, M1, or M2) in suppressing inflammation, stimulating angiogenesis, and activating fibroblasts in vitro. When delivered to skin wounds in diabetic mice, TAMEMs efficiently promote healing. Based on TAMs-CM's composition, we further reconstitute a nine-factor cocktail to train human primary monocytes into TAMEMsC-h , which fully resemble TAMEMs' functions without using tumor components, thereby having increased safety and enabling the preparation of autologous cells. Our study demonstrates that recapitulating TAMs' unique reparative activities in nontumor cells can lead to an effective cell therapeutic approach with high translational potential for regenerative medicine.
Collapse
Affiliation(s)
- Ruoyu Mu
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese MedicineUniversity of MacauMacau SARChina
| | - Zhe Zhang
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese MedicineUniversity of MacauMacau SARChina,Zhuhai UM Science & Technology Research InstituteUniversity of MacauHengqinChina
| | - Congwei Han
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese MedicineUniversity of MacauMacau SARChina,School of Life Sciences & State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Yiming Niu
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese MedicineUniversity of MacauMacau SARChina,School of Life Sciences & State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Zhen Xing
- School of Life Sciences & State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Zhencheng Liao
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese MedicineUniversity of MacauMacau SARChina
| | - Jinzhi Xu
- School of Life Sciences & State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Ningyi Shao
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauMacau SARChina
| | - Guokai Chen
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauMacau SARChina
| | - Junfeng Zhang
- School of Life Sciences & State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Lei Dong
- School of Life Sciences & State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Chunming Wang
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese MedicineUniversity of MacauMacau SARChina,Zhuhai UM Science & Technology Research InstituteUniversity of MacauHengqinChina,Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacau SARChina
| |
Collapse
|
41
|
Liu J, Gong W, Liu P, Li Y, Jiang H, Wu X, Zhao Y, Ren J. Macrophages-microenvironment crosstalk in fibrostenotic inflammatory bowel disease: from basic mechanisms to clinical applications. Expert Opin Ther Targets 2022; 26:1011-1026. [PMID: 36573664 DOI: 10.1080/14728222.2022.2161889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD) with no available drugs. The current therapeutic principle is surgical intervention as the core. Intestinal macrophages contribute to both the progression of inflammation and fibrosis. Understanding the role of macrophages in the intestinal microenvironment could bring new hope for fibrosis prevention or even reversal. AREAS COVERED This article reviewed the most relevant reports on macrophage in the field of intestinal fibrosis. The authors discussed current opinions about how intestinal macrophages function and interact with surrounding mediators during inflammation resolution and fibrostenotic IBD. Based on biological mechanisms findings, authors summarized related clinical trial outcomes. EXPERT OPINION The plasticity of intestinal macrophages allows them to undergo dramatic alterations in their phenotypes or functions when exposed to gastrointestinal environmental stimuli. They exhibit distinct metabolic characteristics, secrete various cytokines, express unique surface markers, and transmit different signals. Nevertheless, the specific mechanism through which the intestinal macrophages contribute to intestinal fibrosis remains unclear. It should further elucidate a novel therapeutic approach by targeting macrophages, especially distinct mechanisms in specific subgroups of macrophages involved in the progression of fibrogenesis in IBD.
Collapse
Affiliation(s)
- Juanhan Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Wenbin Gong
- Department of General Surgery, Southeast University, 210096, Nanjing, P. R. China
| | - Peizhao Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yangguang Li
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Xiuwen Wu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Jianan Ren
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| |
Collapse
|
42
|
Li Y, Li Y, Xu S, Chen Y, Zhou P, Hu T, Li H, Liu Y, Xu Y, Ren J, Qiu Y, Lu C. N-Acylethanolamine acid amidase (NAAA) exacerbates psoriasis inflammation by enhancing dendritic cell (DCs) maturation. Pharmacol Res 2022; 185:106491. [DOI: 10.1016/j.phrs.2022.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
43
|
Sim MM, Wood JP. Dysregulation of Protein S in COVID-19. Best Pract Res Clin Haematol 2022; 35:101376. [PMID: 36494145 PMCID: PMC9395234 DOI: 10.1016/j.beha.2022.101376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) has been widely associated with increased thrombotic risk, with many different proposed mechanisms. One such mechanism is acquired deficiency of protein S (PS), a plasma protein that regulates coagulation and inflammatory processes, including complement activation and efferocytosis. Acquired PS deficiency is common in patients with severe viral infections and has been reported in multiple studies of COVID-19. This deficiency may be caused by consumption, degradation, or clearance of the protein, by decreased synthesis, or by binding of PS to other plasma proteins, which block its anticoagulant activity. Here, we review the functions of PS, the evidence of acquired PS deficiency in COVID-19 patients, the potential mechanisms of PS deficiency, and the evidence that those mechanisms may be occurring in COVID-19.
Collapse
Affiliation(s)
- Martha M.S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA,Gill Heart and Vascular Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA,Corresponding author. University of Kentucky, 741 S Limestone, BBSRB B359, Lexington, KY, 40536, USA
| |
Collapse
|
44
|
STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway. Cell Death Dis 2022; 13:530. [PMID: 35668064 PMCID: PMC9169029 DOI: 10.1038/s41419-022-04971-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023]
Abstract
Compelling evidences have revealed the emerging role of ferroptosis in the pathophysiological process of acute lung injury (ALI), but its modulation is not clear. Here, we identified that STAT6 acted as a critical regulator of epithelium ferroptosis during ALI. Firstly, STAT6 expression and activity were increased in the ALI mice models caused by crystalline silica (CS), LPS and X-ray exposure. Followed by confirming the contribution of ferroptosis in the above ALI with ferrostatin-1 and deferoxamine intervention, bioinformatic analyses revealed that STAT6 expression was negatively correlated with ferroptosis. Consistently, lung epithelium-specific depletion of STAT6 in mice or STAT6 knockdown in cultured epithelial cells exacerbated ferroptosis in the above ALI. While overexpression of STAT6 in lung epithelial cells attenuated the ferroptosis. Mechanistically, SLC7A11 is a typical ferroptosis-related gene and negatively regulated by P53. CREB-binding protein (CBP) is a critical acetyltransferase of P53 acetylation, showing valuable regulation on targets' transcription. Herein, we found that STAT6 negatively regulates ferroptosis through competitively binding with CBP, which inhibits P53 acetylation and transcriptionally restores SLC7A11 expression. Finally, pulmonary-specific STAT6 overexpression decreased the ferroptosis and attenuated CS and LPS induced lung injury. Our findings revealed that STAT6 is a pivotal regulator of ferroptosis, which may be a potential therapeutic target for the treatment of acute lung injury.
Collapse
|
45
|
Shen Q, Zhao L, Pan L, Li D, Chen G, Chen Z, Jiang Z. Soluble SIRP-Alpha Promotes Murine Acute Lung Injury Through Suppressing Macrophage Phagocytosis. Front Immunol 2022; 13:865579. [PMID: 35634325 PMCID: PMC9133620 DOI: 10.3389/fimmu.2022.865579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Soluble signal regulatory protein-alpha (SIRP-alpha) is elevated in bronchoalveolar lavage (BAL) of mice with lipopolysaccharides (LPS)-induced acute lung injury (ALI). To define the role of soluble SIRP-alpha in the pathogenesis of ALI, we established murine ALI in wild-type (WT) and SIRP-alpha knock-out (KO) mice by intratracheal administration of LPS. The results indicated that lack of SIRP-alpha significantly reduced the pathogenesis of ALI, in association with attenuated lung inflammation, infiltration of neutrophils and expression of pro-inflammatory cytokines in mice. In addition, lack of SIRP-alpha reduced the expression of pro-inflammatory cytokines in LPS-treated bone marrow-derived macrophages (BMDMs) from KO mice, accompanied with improved macrophage phagocytosis. Blockade of soluble SIRP-alpha activity in ALI BAL by anti-SIRP-alpha antibody (aSIRP) effectively reduced the expression of TNF-alpha and IL-6 mRNA transcripts and proteins, improved macrophage phagocytosis in vitro. In addition, lack of SIRP-alpha reduced activation of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) and improved activation of signal transducer and activator of transcription-3 (STAT3) and STAT6. Suppression of SHP-1 activity by tyrosine phosphatase inhibitor 1 (TPI-1) increased activation of STAT3 and STAT6, and improved macrophage phagocytosis, that was effectively reversed by STAT3 and STAT6 inhibitors. Thereby, SIRP-alpha suppressed macrophage phagocytosis through activation of SHP-1, subsequently inhibiting downstream STAT3 and STAT6 signaling. Lack of SIRP-alpha attenuated murine ALI possibly through increasing phagocytosis, and improving STAT3 and STAT6 signaling in macrophages. SIRP-alpha would be promising biomarker and molecular target in the treatment of murine ALI and patients with acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Qinjun Shen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linyue Pan
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Li
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihong Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Hu L, Shao C, Pan L, Jiang Z. Lack of STAT6 enhances murine acute lung injury through NLRP3/p38 MAPK signaling pathway in macrophages. BMC Immunol 2022; 23:25. [PMID: 35606692 PMCID: PMC9126100 DOI: 10.1186/s12865-022-00500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Signal transducer and activator of transcription 6 (STAT6) is an intracelluar transcriotion factor and NLRP3 (Nod-like receptor containing a pyrin domain 3) is a component of NLRP3 inflammasome in pyroptotic cells. There was increased activation of STAT6 and expression of NLRP3 in mice with murine acute lung injury (ALI). However, it is unknown their roles in the development of murine ALI. We in this study, investigated the effects of STAT6 signaling on murine ALI and pyroptosis in STAT6 knock-out (KO) mice and macrophages. Results STAT6 was activated in the lung tissues of mice 2 days after intratracheal treatmemt with 5 mg/kg LPS. Lack of STAT6 expression in KO mice induced more severe lung inflammation, associated with elevated neutrophil influx and expression of TNF-alpha, IL-6 and IL-1beta in the inflamed lung tissues. In addition, the expression of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD), p-p38 MAPK (p38 mitogen-activated protein kinase) and ratio of LC3-II/I (microtubule-associated protein-1 light chain-3) was increased, accompanied with the increased polarization of Siglec-F(−) subtype macrophages in KO mice with ALI. Further studies in bone marrow-derived macrophages (BMDMs) revealed that lack of STAT6 increased the expression of NLRP3 and p-p38 MAPK, in association with elevated expression of TNF-alpha, IL-1beta and Calreticulin in LPS-treated KO BMDMs. Conclusions Lack of STAT6 exacerbated murine ALI through improving the expression of NLRP3 and activation of p38 MAPK in macrophages. STAT6 has an immune suppressive role in the development of ALI and would be a promising therapeutic target in the treatment of ALI and possibly among patients with acute respiratory distress syndrome (ARDS). Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00500-9.
Collapse
Affiliation(s)
- Lu Hu
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.,Department of Respiratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Changzhou Shao
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Linyue Pan
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
47
|
Sylvester M, Son A, Schwartz DM. The Interactions Between Autoinflammation and Type 2 Immunity: From Mechanistic Studies to Epidemiologic Associations. Front Immunol 2022; 13:818039. [PMID: 35281022 PMCID: PMC8907424 DOI: 10.3389/fimmu.2022.818039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Autoinflammatory diseases are a group of clinical syndromes characterized by constitutive overactivation of innate immune pathways. This results in increased production of or responses to monocyte- and neutrophil-derived cytokines such as interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Type 1 interferon (IFN). By contrast, clinical allergy is caused by dysregulated type 2 immunity, which is characterized by expansion of T helper 2 (Th2) cells and eosinophils, as well as overproduction of the associated cytokines IL-4, IL-5, IL-9, and IL-13. Traditionally, type 2 immune cells and autoinflammatory effectors were thought to counter-regulate each other. However, an expanding body of evidence suggests that, in some contexts, autoinflammatory pathways and cytokines may potentiate type 2 immune responses. Conversely, type 2 immune cells and cytokines can regulate autoinflammatory responses in complex and context-dependent manners. Here, we introduce the concepts of autoinflammation and type 2 immunity. We proceed to review the mechanisms by which autoinflammatory and type 2 immune responses can modulate each other. Finally, we discuss the epidemiology of type 2 immunity and clinical allergy in several monogenic and complex autoinflammatory diseases. In the future, these interactions between type 2 immunity and autoinflammation may help to expand the spectrum of autoinflammation and to guide the management of patients with various autoinflammatory and allergic diseases.
Collapse
Affiliation(s)
- McKella Sylvester
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
48
|
von Ehr A, Bode C, Hilgendorf I. Macrophages in Atheromatous Plaque Developmental Stages. Front Cardiovasc Med 2022; 9:865367. [PMID: 35548412 PMCID: PMC9081876 DOI: 10.3389/fcvm.2022.865367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the main pathomechanism leading to cardiovascular diseases such as myocardial infarction or stroke. There is consensus that atherosclerosis is not only a metabolic disorder but rather a chronic inflammatory disease influenced by various immune cells of the innate and adaptive immune system. Macrophages constitute the largest population of inflammatory cells in atherosclerotic lesions. They play a critical role in all stages of atherogenesis. The heterogenous macrophage population can be subdivided on the basis of their origins into resident, yolk sac and fetal liver monocyte-derived macrophages and postnatal monocyte-derived, recruited macrophages. Recent transcriptomic analyses revealed that the major macrophage populations in atherosclerosis include resident, inflammatory and foamy macrophages, representing a more functional classification. The aim of this review is to provide an overview of the trafficking, fate, and functional aspects of the different macrophage populations in the "life cycle" of an atheromatous plaque. Understanding the chronic inflammatory state in atherosclerotic lesions is an important basis for developing new therapeutic approaches to abolish lesion growth and promote plaque regression in addition to general cholesterol lowering.
Collapse
Affiliation(s)
- Alexander von Ehr
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Lee YJ, Kim K, Kim M, Ahn YH, Kang JL. Inhibition of STAT6 Activation by AS1517499 Inhibits Expression and Activity of PPARγ in Macrophages to Resolve Acute Inflammation in Mice. Biomolecules 2022; 12:447. [PMID: 35327639 PMCID: PMC8946515 DOI: 10.3390/biom12030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
Signal transducer and activator of transcription 6 (STAT6) promotes an anti-inflammatory process by inducing the development of M2 macrophages. We investigated whether modulating STAT6 activity in macrophages using AS1517499, the specific STAT6 inhibitor, affects the restoration of homeostasis after an inflammatory insult by regulating PPARγ expression and activity. Administration of AS1517499 suppressed the enhanced STAT6 phosphorylation and nuclear translocation observed in peritoneal macrophages after zymosan injection. In addition, AS1517499 delayed resolution of acute inflammation as evidenced by enhanced secretion of pro-inflammatory cytokines, reduced secretion of anti-inflammatory cytokines in PLF and supernatants from peritoneal macrophages, and exaggerated neutrophil numbers and total protein levels in PLF. We demonstrate temporal increases in annexin A1 (AnxA1) protein and mRNA levels in peritoneal lavage fluid (PLF), peritoneal macrophages, and spleen in a murine model of zymosan-induced acute peritonitis. In vitro priming of mouse bone marrow-derived macrophages (BMDM) and peritoneal macrophages with AnxA1 induced STAT6 activation with enhanced PPARγ expression and activity. Using AS1517499, we demonstrate that inhibition of STAT6 activation delayed recovery of PPARγ expression and activity, as well as impaired efferocytosis. Taken together, these results suggest that activation of the STAT6 signaling pathway mediates PPARγ expression and activation in macrophages to resolve acute inflammation.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| | - Kiyoon Kim
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| | - Minsuk Kim
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Young-Ho Ahn
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| |
Collapse
|
50
|
Ortmayr G, Brunnthaler L, Pereyra D, Huber H, Santol J, Rumpf B, Najarnia S, Smoot R, Ammon D, Sorz T, Fritsch F, Schodl M, Voill-Glaninger A, Weitmayr B, Födinger M, Klimpfinger M, Gruenberger T, Assinger A, Mikulits W, Starlinger P. Immunological Aspects of AXL/GAS-6 in the Context of Human Liver Regeneration. Hepatol Commun 2022; 6:576-592. [PMID: 34951136 PMCID: PMC8870037 DOI: 10.1002/hep4.1832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
AXL and its corresponding ligand growth arrest-specific 6 (GAS-6) are critically involved in hepatic immunomodulation and regenerative processes. Pleiotropic inhibitory effects on innate inflammatory responses might essentially involve the shift of macrophage phenotype from a pro-inflammatory M1 to an anti-inflammatory M2. We aimed to assess the relevance of the AXL/GAS-6-pathway in human liver regeneration and, consequently, its association with clinical outcome after hepatic resection. Soluble AXL (sAXL) and GAS-6 levels were analyzed at preoperative and postoperative stages in 154 patients undergoing partial hepatectomy and correlated with clinical outcome. Perioperative dynamics of interleukin (IL)-6, soluble tyrosine-protein kinase MER (sMerTK), soluble CD163 (sCD163), and cytokeratin (CK) 18 were assessed to reflect pathophysiological processes. Preoperatively elevated sAXL and GAS-6 levels predicted postoperative liver dysfunction (area under the curve = 0.721 and 0.722; P < 0.005) and worse clinical outcome. These patients failed to respond with an immediate increase of sAXL and GAS-6 upon induction of liver regeneration. Abolished AXL pathway response resulted in a restricted increase of sCD163, suggesting a disrupted phenotypical switch to regeneratory M2 macrophages. No association with sMerTK was observed. Concomitantly, a distinct association of IL-6 levels with an absent increase of AXL/GAS-6 signaling indicated pronounced postoperative inflammation. This was further supported by increased intrahepatic secondary necrosis as reflected by CK18M65. sAXL and GAS-6 represent not only potent and easily accessible preoperative biomarkers for the postoperative outcome but also AXL/GAS-6 signaling might be of critical relevance in human liver regeneration. Refractory AXL/GAS-6 signaling, due to chronic overactivation/stimulation in the context of underlying liver disease, appears to abolish their immediate release following induction of liver regeneration, causing overwhelming immune activation, presumably via intrahepatic immune regulation.
Collapse
Affiliation(s)
- Gregor Ortmayr
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Laura Brunnthaler
- Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - David Pereyra
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria.,Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Heidemarie Huber
- Department of Medicine IInstitute of Cancer ResearchComprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Jonas Santol
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Benedikt Rumpf
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Sina Najarnia
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Rory Smoot
- Department of SurgeryMayo ClinicRochesterMNUSA
| | - Daphni Ammon
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Thomas Sorz
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Fabian Fritsch
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Michael Schodl
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Astrid Voill-Glaninger
- Department of Laboratory MedicineViennese Health Network, Clinic LandstraßeViennaAustria
| | - Barbara Weitmayr
- Department of PathologyViennese Health Network, Clinic LandstraßeViennaAustria
| | - Manuela Födinger
- Department of Laboratory MedicineViennese Health NetworkClinic FavoritenViennaAustria
| | - Martin Klimpfinger
- Department of PathologyViennese Health NetworkClinic FavoritenViennaAustria
| | - Thomas Gruenberger
- Department of SurgeryHPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private UniversityViennaAustria
| | - Alice Assinger
- Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Wolfgang Mikulits
- Department of Medicine IInstitute of Cancer ResearchComprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Patrick Starlinger
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria.,Department of SurgeryMayo ClinicRochesterMNUSA
| |
Collapse
|