1
|
Nguyen MT, Pannell JR. The evolution and maintenance of trioecy with cytoplasmic male sterility. Heredity (Edinb) 2025; 134:1-9. [PMID: 39397113 PMCID: PMC11723941 DOI: 10.1038/s41437-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Trioecy, the co-existence of females, males and hermaphrodites, is a rare sexual system in plants that may be an intermediate state in transitions between hermaphroditism and dioecy. Previous models have identified pollen limitation as a necessary condition for the evolution of trioecy from hermaphroditism. In these models, the seed-production and pollen production of females and males relative to those of hermaphrodites, respectively, are compromised by self-fertilization by hermaphrodites under pollen- limitation. Here, we investigate the evolution of trioecy via the invasion of cytoplasmic male sterility (CMS) into androdioecious populations in which hermaphrodites co-occur with males and where the male determiner is linked to a (partial) fertility restorer. We show that the presence of males in a population renders invasion by CMS more difficult. However, the presence of males also facilitates the maintenance of trioecy even in the absence of pollen limitation by negative frequency-dependent selection, because males reduce the transmission of CMS by females by siring sons (which cannot transmit CMS). We discuss our results in light of empirical observations of trioecy in plants and its potential role in the evolution of dioecy.
Collapse
Affiliation(s)
- M T Nguyen
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - J R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Williams AM, Itgen MW, Broz AK, Carter OG, Sloan DB. Long-read transcriptome and other genomic resources for the angiosperm Silene noctiflora. G3 (BETHESDA, MD.) 2021; 11:jkab189. [PMID: 34849814 PMCID: PMC8496259 DOI: 10.1093/g3journal/jkab189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
The angiosperm genus Silene is a model system for several traits of ecological and evolutionary significance in plants, including breeding system and sex chromosome evolution, host-pathogen interactions, invasive species biology, heavy metal tolerance, and cytonuclear interactions. Despite its importance, genomic resources for this large genus of approximately 850 species are scarce, with only one published whole-genome sequence (from the dioecious species Silene latifolia). Here, we provide genomic and transcriptomic resources for a hermaphroditic representative of this genus (S. noctiflora), including a PacBio Iso-Seq transcriptome, which uses long-read, single-molecule sequencing technology to analyze full-length mRNA transcripts. Using these data, we have assembled and annotated high-quality full-length cDNA sequences for approximately 14,126 S. noctiflora genes and 25,317 isoforms. We demonstrated the utility of these data to distinguish between recent and highly similar gene duplicates by identifying novel paralogous genes in an essential protease complex. Furthermore, we provide a draft assembly for the approximately 2.7-Gb genome of this species, which is near the upper range of genome-size values reported for diploids in this genus and threefold larger than the 0.9-Gb genome of Silene conica, another species in the same subgenus. Karyotyping confirmed that S. noctiflora is a diploid, indicating that its large genome size is not due to polyploidization. These resources should facilitate further study and development of this genus as a model in plant ecology and evolution.
Collapse
Affiliation(s)
- Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael W Itgen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olivia G Carter
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Abstract
Cooperation has been essential to the evolution of biological complexity, but many societies struggle to overcome internal conflicts and divisions. Dictyostelium discoideum, or the social amoeba, has been a useful model system for exploring these conflicts and how they can be resolved. When starved, these cells communicate, gather into groups, and build themselves into a multicellular fruiting body. Some cells altruistically die to form the rigid stalk, while the remainder sit atop the stalk, become spores, and disperse. Evolutionary theory predicts that conflict will arise over which cells die to form the stalk and which cells become spores and survive. The power of the social amoeba lies in the ability to explore how cooperation and conflict work across multiple levels, ranging from proximate mechanisms (how does it work?) to ultimate evolutionary answers (why does it work?). Recent studies point to solutions to the problem of ensuring fairness, such as the ability to suppress selfishness and to recognize and avoid unrelated individuals. This work confirms a central role for kin selection, but also suggests new explanations for how social amoebae might enforce cooperation. New approaches based on genomics are also enabling researchers to decipher for the first time the evolutionary history of cooperation and conflict and to determine its role in shaping the biology of multicellular organisms.
Collapse
Affiliation(s)
- Elizabeth A Ostrowski
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand.
| |
Collapse
|
4
|
Krüger M, Abeyawardana OAJ, Juříček M, Krüger C, Štorchová H. Variation in plastid genomes in the gynodioecious species Silene vulgaris. BMC PLANT BIOLOGY 2019; 19:568. [PMID: 31856730 PMCID: PMC6921581 DOI: 10.1186/s12870-019-2193-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/10/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Gynodioecious species exist in two sexes - male-sterile females and hermaphrodites. Male sterility in higher plants often results from mitonuclear interaction between the CMS (cytoplasmic male sterility) gene(s) encoded by mitochondrial genome and by nuclear-encoded restorer genes. Mitochondrial and nuclear-encoded transcriptomes in females and hermaphrodites are intensively studied, but little is known about sex-specific gene expression in plastids. We have compared plastid transcriptomes between females and hermaphrodites in two haplotypes of a gynodioecious species Silene vulgaris with known CMS candidate genes. RESULTS We generated complete plastid genome sequences from five haplotypes S. vulgaris including the haplotypes KRA and KOV, for which complete mitochondrial genome sequences were already published. We constructed a phylogenetic tree based on plastid sequences of S. vulgaris. Whereas lowland S. vulgaris haplotypes including KRA and KOV clustered together, the accessions from high European mountains diverged early in the phylogram. S. vulgaris belongs among Silene species with slowly evolving plastid genomes, but we still detected 212 substitutions and 112 indels between two accessions of this species. We estimated elevated Ka/Ks in the ndhF gene, which may reflect the adaptation of S. vulgaris to high altitudes, or relaxed selection. We compared depth of coverage and editing rates between female and hermaphrodite plastid transcriptomes and found no significant differences between the two sexes. We identified 51 unique C to U editing sites in the plastid genomes of S. vulgaris, 38 of them in protein coding regions, 2 in introns, and 11 in intergenic regions. The editing site in the psbZ gene was edited only in one of two plastid genomes under study. CONCLUSIONS We revealed no significant differences between the sexes in plastid transcriptomes of two haplotypes of S. vulgaris. It suggests that gene expression of plastid genes is not affected by CMS in flower buds of S. vulgaris, although both sexes may still differ in plastid gene expression in specific tissues. We revealed the difference between the plastid transcriptomes of two S. vulgaris haplotypes in editing rate and in the coverage of several antisense transcripts. Our results document the variation in plastid genomes and transcriptomes in S. vulgaris.
Collapse
Affiliation(s)
- Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Oushadee A. J. Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Miloslav Juříček
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | | | - Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| |
Collapse
|
5
|
Adhikari B, Caruso CM, Case AL. Beyond balancing selection: frequent mitochondrial recombination contributes to high-female frequencies in gynodioecious Lobelia siphilitica (Campanulaceae). THE NEW PHYTOLOGIST 2019; 224:1381-1393. [PMID: 31442304 DOI: 10.1111/nph.16136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Gynodioecy is a sexual system in which females and hermaphrodites co-occur. In most gynodioecious angiosperms, sex is determined by an interaction between mitochondrial male-sterility genes (CMS) that arise via recombination and nuclear restorer alleles that evolve to suppress them. In theory, gynodioecy occurs when multiple CMS types are maintained at equilibrium frequencies by balancing selection. However, some gynodioecious populations contain very high frequencies of females. High female frequencies are not expected under balancing selection, but could be explained by the repeated introduction of novel CMS types. To test for balancing selection and/or the repeated introduction of novel CMS, we characterised cytoplasmic haplotypes from 61 populations of Lobelia siphilitica that vary widely in female frequency. We confirmed that mitotype diversity and female frequency were positively correlated across populations, consistent with balancing selection. However, while low-female populations hosted mostly common mitotypes, high-female populations and female plants hosted mostly rare, recombinant mitotypes likely to carry novel CMS types. Our results suggest that balancing selection maintains established CMS types across this species, but extreme female frequencies result from frequent invasion by novel CMS types. We conclude that balancing selection alone cannot account for extreme population sex-ratio variation within a gynodioecious species.
Collapse
Affiliation(s)
- Binaya Adhikari
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, 23909, USA
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Andrea L Case
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
| |
Collapse
|
6
|
Havird JC, Noe GR, Link L, Torres A, Logan DC, Sloan DB, Chicco AJ. Do angiosperms with highly divergent mitochondrial genomes have altered mitochondrial function? Mitochondrion 2019; 49:1-11. [PMID: 31229574 PMCID: PMC6885534 DOI: 10.1016/j.mito.2019.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Angiosperm mitochondrial (mt) genes are generally slow-evolving, but multiple lineages have undergone dramatic accelerations in rates of nucleotide substitution and extreme changes in mt genome structure. While molecular evolution in these lineages has been investigated, very little is known about their mt function. Some studies have suggested altered respiration in individual taxa, although there are several reasons why mt variation might be neutral in others. Here, we develop a new protocol to characterize respiration in isolated plant mitochondria and apply it to species of Silene with mt genomes that are rapidly evolving, highly fragmented, and exceptionally large (~11 Mbp). This protocol, complemented with traditional measures of plant fitness, cytochrome c oxidase activity assays, and fluorescence microscopy, was also used to characterize inter- and intraspecific variation in mt function. Contributions of the individual "classic" OXPHOS complexes, the alternative oxidase, and external NADH dehydrogenases to overall mt respiratory flux were found to be similar to previously studied angiosperms with more typical mt genomes. Some differences in mt function could be explained by inter- and intraspecific variation. This study suggests that Silene species with peculiar mt genomes still show relatively normal mt respiration. This may be due to strong purifying selection on mt variants, coevolutionary responses in the nucleus, or a combination of both. Future experiments should explore such questions using a comparative framework and investigating other lineages with unusual mitogenomes.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA; Department of Integrative Biology, The University of Texas, Austin, TX, USA.
| | - Gregory R Noe
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Luke Link
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Amber Torres
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - David C Logan
- IRHS, INRA, Université d'Angers, AGROCAMPUS-Ouest, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
7
|
Johri P, Marinov GK, Doak TG, Lynch M. Population Genetics of Paramecium Mitochondrial Genomes: Recombination, Mutation Spectrum, and Efficacy of Selection. Genome Biol Evol 2019; 11:1398-1416. [PMID: 30980669 PMCID: PMC6505448 DOI: 10.1093/gbe/evz081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
The evolution of mitochondrial genomes and their population-genetic environment among unicellular eukaryotes are understudied. Ciliate mitochondrial genomes exhibit a unique combination of characteristics, including a linear organization and the presence of multiple genes with no known function or detectable homologs in other eukaryotes. Here we study the variation of ciliate mitochondrial genomes both within and across 13 highly diverged Paramecium species, including multiple species from the P. aurelia species complex, with four outgroup species: P. caudatum, P. multimicronucleatum, and two strains that may represent novel related species. We observe extraordinary conservation of gene order and protein-coding content in Paramecium mitochondria across species. In contrast, significant differences are observed in tRNA content and copy number, which is highly conserved in species belonging to the P. aurelia complex but variable among and even within the other Paramecium species. There is an increase in GC content from ∼20% to ∼40% on the branch leading to the P. aurelia complex. Patterns of polymorphism in population-genomic data and mutation-accumulation experiments suggest that the increase in GC content is primarily due to changes in the mutation spectra in the P. aurelia species. Finally, we find no evidence of recombination in Paramecium mitochondria and find that the mitochondrial genome appears to experience either similar or stronger efficacy of purifying selection than the nucleus.
Collapse
Affiliation(s)
- Parul Johri
- Department of Biology, Indiana University, Bloomington
| | - Georgi K Marinov
- Department of Biology, Indiana University, Bloomington.,Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington.,National Center for Genome Analysis Support, Indiana University, Bloomington
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington.,Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe
| |
Collapse
|
8
|
Wu Z, Sloan DB. Recombination and intraspecific polymorphism for the presence and absence of entire chromosomes in mitochondrial genomes. Heredity (Edinb) 2019; 122:647-659. [PMID: 30356223 PMCID: PMC6461862 DOI: 10.1038/s41437-018-0153-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/08/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022] Open
Abstract
Although mitochondrial genomes are typically thought of as single circular molecules, these genomes are fragmented into multiple chromosomes in many eukaryotes, raising intriguing questions about inheritance and (in)stability of mtDNA in such systems. A previous comparison of mitochondrial genomes from two different individuals of the angiosperm species Silene noctiflora found variation in the presence of entire mitochondrial chromosomes. Here, we expand on this work with a geographically diverse sampling of 25 S. noctiflora populations and the closely related species S. turkestanica and S. undulata. Using a combination of deep sequencing and PCR-based screening for the presence of 22 different mitochondrial chromosomes, we found extensive variation in the complement of chromosomes across individuals. Much of this variation could be attributed to recent chromosome loss events, suggesting that the massively expanded and fragmented mitochondrial genomes of S. noctiflora may have entered a phase of genome reduction in which they are losing entire chromosomes at a rapid rate. Sequence analysis of mitochondrial and plastid genomes revealed genealogical differences both between these organelles and within the mitochondrial genome, indicating a history of recombination. Evidence that recombination has generated novel combinations of alleles was more frequent between loci on different mitochondrial chromosomes than it was within chromosomes. Therefore, the fragmentation of mitochondrial genomes and the assortment of chromosomes during mitochondrial inheritance appears to have contributed to a history of sexual-like recombination in the mtDNA of this species.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
9
|
Nugent JM, Byrne T, McCormack G, Quiwa M, Stafford E. Progressive programmed cell death inwards across the anther wall in male sterile flowers of the gynodioecious plant Plantago lanceolata. PLANTA 2019; 249:913-923. [PMID: 30483868 DOI: 10.1007/s00425-018-3055-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
A cell death signal is perceived and responded to by epidermal cells first before being conveyed inwards across the anther wall in male sterile Plantago lanceolata flowers. In gynodioecious plants, floral phenotype is determined by an interplay between cytoplasmic male sterility (CMS)-promoting factors and fertility-restoring genes segregating in the nuclear background. Plantago lanceolata exhibits at least four different sterilizing cytoplasms. MS1, a "brown-anther" male sterile phenotype, segregates with a CMSI cytoplasm and a non-restoring nuclear background in P. lanceolata populations. The aim of this study was to investigate the cytology of early anther development in segregating hermaphrodite and male sterile flowers sharing the same CMSI cytoplasm, and to determine if the sterility phenotype correlates with any changes to the normal pattern of programmed cell death (PCD) that occurs during anther development. Cytology shows cellular abnormalities in all four anther wall layers (epidermis, endothecium, middle layer and tapetum), the persistence and enlargement of middle layer and tapetal cells, and the failure of microspore mother cells to complete meiosis in male sterile anthers. In these anthers, apoptotic-PCD occurs earlier than in fertile anthers and is detected in all four cell layers of the anther wall before the middle layer and tapetal cells become enlarged. PCD is separated spatially and temporally within the anther wall, occurring first in epidermal cells before extending radially to cells in the inner anther wall layers. This is the first evidence of a cell death signal being perceived and responded to by epidermal cells first before being conveyed inwards across the anther wall in male sterile plants.
Collapse
Affiliation(s)
- Jacqueline M Nugent
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Tómas Byrne
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Grace McCormack
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Marc Quiwa
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Elaine Stafford
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
10
|
Katju V, Bergthorsson U. Old Trade, New Tricks: Insights into the Spontaneous Mutation Process from the Partnering of Classical Mutation Accumulation Experiments with High-Throughput Genomic Approaches. Genome Biol Evol 2019; 11:136-165. [PMID: 30476040 PMCID: PMC6330053 DOI: 10.1093/gbe/evy252] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Mutations spawn genetic variation which, in turn, fuels evolution. Hence, experimental investigations into the rate and fitness effects of spontaneous mutations are central to the study of evolution. Mutation accumulation (MA) experiments have served as a cornerstone for furthering our understanding of spontaneous mutations for four decades. In the pregenomic era, phenotypic measurements of fitness-related traits in MA lines were used to indirectly estimate key mutational parameters, such as the genomic mutation rate, new mutational variance per generation, and the average fitness effect of mutations. Rapidly emerging next-generating sequencing technology has supplanted this phenotype-dependent approach, enabling direct empirical estimates of the mutation rate and a more nuanced understanding of the relative contributions of different classes of mutations to the standing genetic variation. Whole-genome sequencing of MA lines bears immense potential to provide a unified account of the evolutionary process at multiple levels-the genetic basis of variation, and the evolutionary dynamics of mutations under the forces of selection and drift. In this review, we have attempted to synthesize key insights into the spontaneous mutation process that are rapidly emerging from the partnering of classical MA experiments with high-throughput sequencing, with particular emphasis on the spontaneous rates and molecular properties of different mutational classes in nuclear and mitochondrial genomes of diverse taxa, the contribution of mutations to the evolution of gene expression, and the rate and stability of transgenerational epigenetic modifications. Future advances in sequencing technologies will enable greater species representation to further refine our understanding of mutational parameters and their functional consequences.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458
| |
Collapse
|
11
|
Štorchová H, Stone JD, Sloan DB, Abeyawardana OAJ, Müller K, Walterová J, Pažoutová M. Homologous recombination changes the context of Cytochrome b transcription in the mitochondrial genome of Silene vulgaris KRA. BMC Genomics 2018; 19:874. [PMID: 30514207 PMCID: PMC6280394 DOI: 10.1186/s12864-018-5254-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background Silene vulgaris (bladder campion) is a gynodioecious species existing as two genders – male-sterile females and hermaphrodites. Cytoplasmic male sterility (CMS) is generally encoded by mitochondrial genes, which interact with nuclear fertility restorer genes. Mitochondrial genomes of this species vary in DNA sequence, gene order and gene content. Multiple CMS genes are expected to exist in S. vulgaris, but little is known about their molecular identity. Results We assembled the complete mitochondrial genome from the haplotype KRA of S. vulgaris. It consists of five chromosomes, two of which recombine with each other. Two small non-recombining chromosomes exist in linear, supercoiled and relaxed circle forms. We compared the mitochondrial transcriptomes from females and hermaphrodites and confirmed the differentially expressed chimeric gene bobt as the strongest CMS candidate gene in S. vulgaris KRA. The chimeric gene bobt is co-transcribed with the Cytochrome b (cob) gene in some genomic configurations. The co-transcription of a CMS factor with an essential gene may constrain transcription inhibition as a mechanism for fertility restoration because of the need to maintain appropriate production of the necessary protein. Homologous recombination places the gene cob outside the control of bobt, which allows for the suppression of the CMS gene by the fertility restorer genes. We found the loss of three editing sites in the KRA mitochondrial genome and identified four sites with highly distinct editing rates between KRA and another S. vulgaris haplotypes (KOV). Three of these highly differentially edited sites were located in the transport membrane protein B (mttB) gene. They resulted in differences in MttB protein sequences between haplotypes. Conclusions Frequent homologous recombination events that are widespread in plant mitochondrial genomes may change chromosomal configurations and also the control of gene transcription including CMS gene expression. Posttranscriptional processes, e.g. RNA editing shall be evaluated in evolutionary and co-evolutionary studies of mitochondrial genes, because they may change protein composition despite the sequence identity of the respective genes. The investigation of natural populations of wild species such as S. vulgaris are necessary to reveal important aspects of CMS missed in domesticated crops, the traditional focus of the CMS studies. Electronic supplementary material The online version of this article (10.1186/s12864-018-5254-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - James D Stone
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Oushadee A J Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Karel Müller
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Jana Walterová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Marie Pažoutová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| |
Collapse
|
12
|
Mollion M, Ehlers BK, Figuet E, Santoni S, Lenormand T, Maurice S, Galtier N, Bataillon T. Patterns of Genome-Wide Nucleotide Diversity in the Gynodioecious Plant Thymus vulgaris Are Compatible with Recent Sweeps of Cytoplasmic Genes. Genome Biol Evol 2018; 10:239-248. [PMID: 29272394 PMCID: PMC5815141 DOI: 10.1093/gbe/evx272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Gynodioecy is a sexual dimorphism where females coexist with hermaphrodite individuals. In most cases, this dimorphism involves the interaction of cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Two scenarios can account for how these interactions maintain gynodioecy. Either CMS genes recurrently enter populations at low frequency via mutation or migration and go to fixation unimpeded (successive sweeps), or CMS genes maintain polymorphism over evolutionary time through interactions with a nuclear restorer allele (balanced polymorphism). To distinguish between these scenarios, we used transcriptome sequencing in gynodioecious Thymus vulgaris and surveyed genome-wide diversity in 18 naturally occurring individuals sampled from populations at a local geographic scale. We contrast the amount and patterns of nucleotide diversity in the nuclear and cytoplasmic genome, and find ample diversity at the nuclear level (π = 0.019 at synonymous sites) but reduced genetic diversity and an excess of rare polymorphisms in the cytoplasmic genome relative to the nuclear genome. Our finding is incompatible with the maintenance of gynodioecy via scenarios invoking long-term balancing selection, and instead suggests the recent fixation of CMS lineages in the populations studied.
Collapse
Affiliation(s)
- Maeva Mollion
- Bioinformatics Research Center, Aarhus University, C.F. Møllers Alle 8, Building 1110, 8000 Aarhus C, Denmark
| | - Bodil K Ehlers
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Emeric Figuet
- Institut des Sciences de l'Evolution, UMR5554 - Université de Montpellier - CNRS - IRD - EPHE, Place E. Bataillon - CC64, 34095 Montpellier, France
| | - Sylvain Santoni
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, 1919, route de Mende 34293 Montpellier, France
| | - Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, 1919, route de Mende 34293 Montpellier, France
| | - Sandrine Maurice
- Institut des Sciences de l'Evolution, UMR5554 - Université de Montpellier - CNRS - IRD - EPHE, Place E. Bataillon - CC64, 34095 Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, UMR5554 - Université de Montpellier - CNRS - IRD - EPHE, Place E. Bataillon - CC64, 34095 Montpellier, France
| | - Thomas Bataillon
- Bioinformatics Research Center, Aarhus University, C.F. Møllers Alle 8, Building 1110, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Yang L, Ouyang H, Fang Z, Zhu W, Wu E, Luo G, Shang L, Zhan J. Evidence for intragenic recombination and selective sweep in an effector gene of Phytophthora infestans. Evol Appl 2018; 11:1342-1353. [PMID: 30151044 PMCID: PMC6099815 DOI: 10.1111/eva.12629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a critical role in the antagonistic interaction between plant hosts and pathogens through their dual functions in regulating host immune systems and pathogen infection capability. In this study, evolution in effector genes was investigated through population genetic analysis of Avr3a sequences generated from 96 Phytophthora infestans isolates collected from six locations representing a range of thermal variation and cropping systems in China. We found high genetic variation in the Avr3a gene resulting from diverse mechanisms extending beyond point mutations, frameshift, and defeated start and stop codons to intragenic recombination. A total of 51 nucleotide haplotypes encoding 38 amino acid isoforms were detected in the 96 full sequences with nucleotide diversity in the pathogen populations ranging from 0.007 to 0.023 (mean = 0.017). Although haplotype and nucleotide diversity were high, the effector gene was dominated by only three haplotypes. Evidence for a selective sweep was provided by (i) the population genetic differentiation (GST) of haplotypes being lower than the population differentiation (FST) of SSR marker loci; and (ii) negative values of Tajima's D and Fu's FS. Annual mean temperature in the collection sites was negatively correlated with the frequency of the virulent form (Avr3aEM), indicating Avr3a may be regulated by temperature. These results suggest that elevated air temperature due to global warming may hamper the development of pathogenicity traits in P. infestans and further study under confined thermal regimes may be required to confirm the hypothesis.
Collapse
Affiliation(s)
- Lina Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hai‐Bing Ouyang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi‐Guo Fang
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Xiangyang Academy of Agricultural SciencesXiangyangChina
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - E‐Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gui‐Huo Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
14
|
Stone JD, Koloušková P, Sloan DB, Štorchová H. Non-coding RNA may be associated with cytoplasmic male sterility in Silene vulgaris. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1599-1612. [PMID: 28369520 PMCID: PMC5444436 DOI: 10.1093/jxb/erx057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cytoplasmic male sterility (CMS) is a widespread phenomenon in flowering plants caused by mitochondrial (mt) genes. CMS genes typically encode novel proteins that interfere with mt functions and can be silenced by nuclear fertility-restorer genes. Although the molecular basis of CMS is well established in a number of crop systems, our understanding of it in natural populations is far more limited. To identify CMS genes in a gynodioecious plant, Silene vulgaris, we constructed mt transcriptomes and compared transcript levels and RNA editing patterns in floral bud tissue from female and hermaphrodite full siblings. The transcriptomes from female and hermaphrodite individuals were very similar overall with respect to variation in levels of transcript abundance across the genome, the extent of RNA editing, and the order in which RNA editing and intron splicing events occurred. We found only a single genomic region that was highly overexpressed and differentially edited in females relative to hermaphrodites. This region is not located near any other transcribed elements and lacks an open-reading frame (ORF) of even moderate size. To our knowledge, this transcript would represent the first non-coding mt RNA associated with CMS in plants and is, therefore, an important target for future functional validation studies.
Collapse
Affiliation(s)
- James D Stone
- Institute of Experimental Botany v.v.i, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague, 16502 Czech Republic
- Institute of Botany v.v.i, Academy of Sciences of the Czech Republic, Průhonice, Central Bohemia, 25243 Czech Republic
| | - Pavla Koloušková
- Institute of Experimental Botany v.v.i, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague, 16502Czech Republic
| | - Daniel B Sloan
- Colorado State University, Department of Biology, Fort Collins, CO 80523, USA
| | - Helena Štorchová
- Institute of Experimental Botany v.v.i, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague, 16502Czech Republic
| |
Collapse
|
15
|
Donnelly K, Cottrell J, Ennos RA, Vendramin GG, A'Hara S, King S, Perry A, Wachowiak W, Cavers S. Reconstructing the plant mitochondrial genome for marker discovery: a case study using Pinus. Mol Ecol Resour 2017; 17:943-954. [DOI: 10.1111/1755-0998.12646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin Donnelly
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
- Institute of Evolutionary Biology; School of Biological Sciences; Ashworth Laboratories; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Joan Cottrell
- Forest Research, Northern Research Station; Roslin Midlothian EH25 9SY UK
| | - Richard A. Ennos
- Institute of Evolutionary Biology; School of Biological Sciences; Ashworth Laboratories; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Giovanni Giuseppe Vendramin
- Institute of Biosciences and BioResources; Division of Florence; National Research Council; Via Madonna del Piano, 10 50019 Sesto Fiorentino (Firenze) Italy
| | - Stuart A'Hara
- Forest Research, Northern Research Station; Roslin Midlothian EH25 9SY UK
| | - Sarah King
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
| | - Annika Perry
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
| | - Witold Wachowiak
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
- Institute of Dendrology; Polish Academy of Sciences; Parkowa 5 62-035 Kórnik Poland
| | - Stephen Cavers
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
| |
Collapse
|
16
|
Simeone MC, Grimm GW, Papini A, Vessella F, Cardoni S, Tordoni E, Piredda R, Franc A, Denk T. Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 2016; 4:e1897. [PMID: 27123376 PMCID: PMC4846808 DOI: 10.7717/peerj.1897] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/15/2016] [Indexed: 01/27/2023] Open
Abstract
Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not leave imprints in the nuclear genome of modern species and infrageneric lineages.
Collapse
Affiliation(s)
- Marco Cosimo Simeone
- Department of Agricultural and Forestry Science (DAFNE), Università degli Studi della Tuscia , Viterbo , Italy
| | - Guido W Grimm
- Department of Palaeontology, University of Wien , Wien , Austria
| | - Alessio Papini
- Dipartimento di Biologia, Università degli studi di Firenze , Firenze , Italy
| | - Federico Vessella
- Department of Agricultural and Forestry Science (DAFNE), Università degli Studi della Tuscia , Viterbo , Italy
| | - Simone Cardoni
- Department of Agricultural and Forestry Science (DAFNE), Università degli Studi della Tuscia , Viterbo , Italy
| | - Enrico Tordoni
- Department of Life Science, Università degli studi di Trieste , Trieste , Italy
| | | | - Alain Franc
- INRA, UMR BIOGECO-1202, Cestas, France; UMR BIOGECO-1202, Université Bordeaux, Talence, France
| | - Thomas Denk
- Department of Palaeobiology, Swedish Museum of Natural History , Stockholm , Sweden
| |
Collapse
|
17
|
Simeone MC, Grimm GW, Papini A, Vessella F, Cardoni S, Tordoni E, Piredda R, Franc A, Denk T. Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 2016. [PMID: 27123376 DOI: 10.7287/peerj.preprints.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not leave imprints in the nuclear genome of modern species and infrageneric lineages.
Collapse
Affiliation(s)
- Marco Cosimo Simeone
- Department of Agricultural and Forestry Science (DAFNE), Università degli Studi della Tuscia , Viterbo , Italy
| | - Guido W Grimm
- Department of Palaeontology, University of Wien , Wien , Austria
| | - Alessio Papini
- Dipartimento di Biologia, Università degli studi di Firenze , Firenze , Italy
| | - Federico Vessella
- Department of Agricultural and Forestry Science (DAFNE), Università degli Studi della Tuscia , Viterbo , Italy
| | - Simone Cardoni
- Department of Agricultural and Forestry Science (DAFNE), Università degli Studi della Tuscia , Viterbo , Italy
| | - Enrico Tordoni
- Department of Life Science, Università degli studi di Trieste , Trieste , Italy
| | | | - Alain Franc
- INRA, UMR BIOGECO-1202, Cestas, France; UMR BIOGECO-1202, Université Bordeaux, Talence, France
| | - Thomas Denk
- Department of Palaeobiology, Swedish Museum of Natural History , Stockholm , Sweden
| |
Collapse
|
18
|
Kuijper B, Lane N, Pomiankowski A. Can paternal leakage maintain sexually antagonistic polymorphism in the cytoplasm? J Evol Biol 2015; 28:468-80. [PMID: 25653025 PMCID: PMC4413368 DOI: 10.1111/jeb.12582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/05/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022]
Abstract
A growing number of studies in multicellular organisms highlight low or moderate frequencies of paternal transmission of cytoplasmic organelles, including both mitochondria and chloroplasts. It is well established that strict maternal inheritance is selectively blind to cytoplasmic elements that are deleterious to males – ’mother's curse’. But it is not known how sensitive this conclusion is to slight levels of paternal cytoplasmic leakage. We assess the scope for polymorphism when individuals bear multiple cytoplasmic alleles in the presence of paternal leakage, bottlenecks and recurrent mutation. When fitness interactions among cytoplasmic elements within an individual are additive, we find that sexually antagonistic polymorphism is restricted to cases of strong selection on males. However, when fitness interactions among cytoplasmic elements are nonlinear, much more extensive polymorphism can be supported in the cytoplasm. In particular, mitochondrial mutants that have strong beneficial fitness effects in males and weak deleterious fitness effects in females when rare (i.e. ’reverse dominance’) are strongly favoured under paternal leakage. We discuss how such epistasis could arise through preferential segregation of mitochondria in sex-specific somatic tissues. Our analysis shows how paternal leakage can dampen the evolution of deleterious male effects associated with predominant maternal inheritance of cytoplasm, potentially explaining why ’mother's curse’ is less pervasive than predicted by earlier work.
Collapse
Affiliation(s)
- B Kuijper
- CoMPLEX, Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK; Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | | |
Collapse
|
19
|
Wang Z, Wilson A, Xu J. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii. Fungal Genet Biol 2015; 75:1-10. [DOI: 10.1016/j.fgb.2015.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/18/2014] [Accepted: 01/02/2015] [Indexed: 01/19/2023]
|
20
|
Wang B, Wang XR. Mitochondrial DNA capture and divergence in Pinus provide new insights into the evolution of the genus. Mol Phylogenet Evol 2014; 80:20-30. [PMID: 25106134 DOI: 10.1016/j.ympev.2014.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/18/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022]
Abstract
The evolution of the mitochondrial (mt) genome is far from being fully understood. Systematic investigations into the modes of inheritance, rates and patterns of recombination, nucleotide substitution, and structural changes in the mt genome are still lacking in many groups of plants. In this study, we sequenced >11kbp mtDNA segments from multiple accessions of 36 pine species to characterize the evolutionary patterns of mtDNA in the genus Pinus. We found extremely low substitution rates and complex repetitive sequences scattered across different genome regions, as well as chimeric structures that were probably generated by multiple intergenomic recombinations. The mtDNA-based phylogeny of the genus differed from that based on chloroplast and nuclear DNA in the placement of several groups of species. Such discordances suggest a series of mtDNA capture events during past range shifts of the pine species and that both vertical and horizontal inheritance are implicated in the evolution of mtDNA in Pinus. MtDNA dating revealed that most extant lineages of the genus originated during Oligocene-Miocene radiation and subgenus Strobus diversified earlier than subgenus Pinus. Our findings illustrate a reticular evolutionary pathway for the mt genome through capture and recombination in the genus Pinus, and provide new insights into the evolution of the genus.
Collapse
Affiliation(s)
- Baosheng Wang
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden.
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
21
|
Szklarczyk M, Szymański M, Wójcik-Jagła M, Simon PW, Weihe A, Börner T. Mitochondrial atp9 genes from petaloid male-sterile and male-fertile carrots differ in their status of heteroplasmy, recombination involvement, post-transcriptional processing as well as accumulation of RNA and protein product. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1689-701. [PMID: 24913361 PMCID: PMC4110418 DOI: 10.1007/s00122-014-2331-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/12/2014] [Indexed: 05/25/2023]
Abstract
Petaloid cytoplasmic male-sterile carrots exhibit overexpression of the mitochondrial atp9 genes which is associated with specific features in organization and expression of these sequences. In carrots, the Sp-cytoplasm causes transformation of stamens into petal-like organs, while plants carrying normal N-cytoplasm exhibit normal flower morphology. Our work was aimed at characterization of distinct features both cytoplasms display with respect to organization and expression of the mitochondrial atp9 genes. We show that two carrot atp9 genes, previously reported as cytoplasm-specific, in fact occur in heteroplasmic condition. In the Sp-cytoplasm the atp9-1 version dominates over atp9-3, while in N-cytoplasmic plants this proportion is reversed. Herein, we also indicate the presence and recombination activity of a 130-/172-bp sequence repeat which likely shaped the present organization of carrot atp9 loci. Furthermore, cDNA sequence examination revealed that the atp9 open reading frames (ORFs) were C to U edited in 4 nucleotide positions. One of the editing events turns a glutamine triplet into the stop codon, thereby equalizing ORFs of atp9-1 and atp9-3. A certain fraction of partially edited molecules was identified-they all represented the atp9-3 sequence. In either Sp- or N-cytoplasmic plants multiple 5' transcript termini were observed. Of these, the ones mapping more distantly from the atp9 ORF were more pronounced in case of petaloid accessions. It was also shown that despite comparable copy number of the genomic atp9 sequences, the level of the respective mRNAs was approximately 3 times higher in case of petaloid carrots. The latter fact corresponded to the elevated content of the ATP9 protein in plants carrying Sp-cytoplasm. The semi-fertile phenotype of such plants is associated with a drop in ATP9 accumulation.
Collapse
Affiliation(s)
- Marek Szklarczyk
- Unit of Genetics, Plant Breeding and Seed Science, Institute of Plant Biology and Biotechnology, Faculty of Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425, Kraków, Poland,
| | | | | | | | | | | |
Collapse
|
22
|
Castric V, Billiard S, Vekemans X. Trait transitions in explicit ecological and genomic contexts: plant mating systems as case studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:7-36. [PMID: 24277293 DOI: 10.1007/978-94-007-7347-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Plants are astonishingly diverse in how they reproduce sexually, and the study of plant mating systems provides some of the most compelling cases of parallel and independent evolutionary transitions. In this chapter, we review how the massive amount of genomic data being produced is allowing long-standing predictions from ecological and evolutionary theory to be put to test. After a review of theoretical predictions about the importance of considering the genomic architecture of the mating system, we focus on a set of recent discoveries on how the mating system is controlled in a variety of model and non-model species. In parallel, genomic approaches have revealed the complex interaction between the evolution of genes controlling mating systems and genome evolution, both genome-wide and in the mating system control region. In several cases, major transitions in the mating system can be clearly associated with important ecological changes, hence illuminating an important interplay between ecological and genomic approaches. We also list a number of major unsolved questions that remain for the field, and highlight foreseeable conceptual developments that are likely to play a major role in our understanding of how plant mating systems evolve in Nature.
Collapse
Affiliation(s)
- Vincent Castric
- Laboratoire de Génétique et Evolution des Populations Végétales (GEPV), UMR 8198; CNRS, Université Lille 1, Sciences et Technologies, Cité Scientifique, Villeneuve d'Ascq, France,
| | | | | |
Collapse
|
23
|
Delph LF, Kelly JK. On the importance of balancing selection in plants. THE NEW PHYTOLOGIST 2014; 201:45-56. [PMID: 23952298 PMCID: PMC3886833 DOI: 10.1111/nph.12441] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/05/2013] [Indexed: 05/18/2023]
Abstract
Balancing selection refers to a variety of selective regimes that maintain advantageous genetic diversity within populations. We review the history of the ideas regarding the types of selection that maintain such polymorphism in flowering plants, notably heterozygote advantage, negative frequency-dependent selection, and spatial heterogeneity. One shared feature of these mechanisms is that whether an allele is beneficial or detrimental is conditional on its frequency in the population. We highlight examples of balancing selection on a variety of discrete traits. These include the well-referenced case of self-incompatibility and recent evidence from species with nuclear-cytoplasmic gynodioecy, both of which exhibit trans-specific polymorphism, a hallmark of balancing selection. We also discuss and give examples of how spatial heterogeneity in particular, which is often thought unlikely to allow protected polymorphism, can maintain genetic variation in plants (which are rooted in place) as a result of microhabitat selection. Lastly, we discuss limitations of the protected polymorphism concept for quantitative traits, where selection can inflate the genetic variance without maintaining specific alleles indefinitely. We conclude that while discrete-morph variation provides the most unambiguous cases of protected polymorphism, they represent only a fraction of the balancing selection at work in plants.
Collapse
Affiliation(s)
- Lynda F. Delph
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
24
|
Blanc-Mathieu R, Sanchez-Ferandin S, Eyre-Walker A, Piganeau G. Organellar inheritance in the green lineage: insights from Ostreococcus tauri. Genome Biol Evol 2013; 5:1503-11. [PMID: 23873918 PMCID: PMC3762196 DOI: 10.1093/gbe/evt106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Along the green lineage (Chlorophyta and Streptophyta), mitochondria and chloroplast are mainly uniparentally transmitted and their evolution is thus clonal. The mode of organellar inheritance in their ancestor is less certain. The inability to make clear phylogenetic inference is partly due to a lack of information for deep branching organisms in this lineage. Here, we investigate organellar evolution in the early branching green alga Ostreococcus tauri using population genomics data from the complete mitochondrial and chloroplast genomes. The haplotype structure is consistent with clonal evolution in mitochondria, while we find evidence for recombination in the chloroplast genome. The number of recombination events in the genealogy of the chloroplast suggests that recombination, and thus biparental inheritance, is not rare. Consistent with the evidence of recombination, we find that the ratio of the number of nonsynonymous to the synonymous polymorphisms per site is lower in chloroplast than in the mitochondria genome. We also find evidence for the segregation of two selfish genetic elements in the chloroplast. These results shed light on the role of recombination and the evolutionary history of organellar inheritance in the green lineage.
Collapse
Affiliation(s)
- Romain Blanc-Mathieu
- UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls-sur-Mer, France.
| | | | | | | |
Collapse
|
25
|
McCauley DE. Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes. THE NEW PHYTOLOGIST 2013; 200:966-77. [PMID: 23952142 DOI: 10.1111/nph.12431] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/25/2013] [Indexed: 05/25/2023]
Abstract
Plant mitochondrial genomes are usually transmitted to the progeny from the maternal parent. However, cases of paternal transmission are known and are perhaps more common than once thought. This review will consider recent evidence, both direct and indirect, of paternal transmission (leakage) of the mitochondrial genome of seed plants, especially in natural populations, and how this can result in offspring that carry a mixture of maternally and paternally derived copies of the genome; a type of heteroplasmy. It will further consider how this heteroplasmy facilitates recombination between genetically distinct partners; a process that can enhance mitochondrial genotypic diversity. This will then form the basis for a discussion of five evolutionary questions that arise from these observations. Questions include how plant mitochondrial genome evolution can be placed on a sexual to asexual continuum, whether cytoplasmic male sterility (CMS) facilitates the evolution of paternal leakage, whether paternal leakage is more likely in populations undergoing admixture, how leakage influences patterns of gene flow, and whether heteroplasmy occurs in natural populations at a frequency greater than predicted by crossing experiments. It is proposed that each of these questions offers fertile ground for future research on a diversity of plant species.
Collapse
Affiliation(s)
- David E McCauley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
26
|
Sloan DB. One ring to rule them all? Genome sequencing provides new insights into the 'master circle' model of plant mitochondrial DNA structure. THE NEW PHYTOLOGIST 2013; 200:978-85. [PMID: 24712049 DOI: 10.1111/nph.12395] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The in vivo molecular structure of plant mitochondrial DNA (mtDNA) has been a long-standing source of intrigue and controversy. Recent deep sequencing analyses of mitochondrial genomes from numerous plant species have provided the opportunity to revisit this decades-old question from a novel perspective. Whole-genome sequencing approaches have yielded new lines of evidence that the 'master circle' is not the predominant form of plant mtDNA and have revealed striking structural variation both within and among species. Here, I review these recent studies,including the discovery that at least two independent angiosperm lineages have evolved multichromosomal mitochondrial genome structures. These findings raise fascinating questions regarding the mechanisms of plant mtDNA replication and inheritance.
Collapse
|
27
|
Dong Z, Yang Y, Li Y, Zhang K, Lou H, An X, Dong L, Gu YQ, Anderson OD, Liu X, Qin H, Wang D. Haplotype variation of Glu-D1 locus and the origin of Glu-D1d allele conferring superior end-use qualities in common wheat. PLoS One 2013; 8:e74859. [PMID: 24098671 PMCID: PMC3786984 DOI: 10.1371/journal.pone.0074859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/06/2013] [Indexed: 01/01/2023] Open
Abstract
In higher plants, seed storage proteins (SSPs) are frequently expressed from complex gene families, and allelic variation of SSP genes often affects the quality traits of crops. In common wheat, the Glu-D1 locus, encoding 1Dx and 1Dy SSPs, has multiple alleles. The Glu-D1d allele frequently confers superior end-use qualities to commercial wheat varieties. Here, we studied the haplotype structure of Glu-D1 genomic region and the origin of Glu-D1d. Using seven diagnostic DNA markers, 12 Glu-D1 haplotypes were detected among common wheat, European spelt wheat (T. spelta, a primitive hexaploid relative of common wheat), and Aegilops tauschii (the D genome donor of hexaploid wheat). By comparatively analyzing Glu-D1 haplotypes and their associated 1Dx and 1Dy genes, we deduce that the haplotype carrying Glu-D1d was likely differentiated in the ancestral hexaploid wheat around 10,000 years ago, and was subsequently transmitted to domesticated common wheat and T. spelta. A group of relatively ancient Glu-D1 haplotypes was discovered in Ae. tauschii, which may serve for the evolution of other haplotypes. Moreover, a number of new Glu-D1d variants were found in T. spelta. The main steps in Glu-D1d differentiation are proposed. The implications of our work for enhancing the utility of Glu-D1d in wheat quality improvement and studying the SSP alleles in other crop species are discussed.
Collapse
Affiliation(s)
- Zhenying Dong
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yushuang Yang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kunpu Zhang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Haijuan Lou
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xueli An
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lingli Dong
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yong Qiang Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Olin D. Anderson
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Xin Liu
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Disentangling the effects of mating systems and mutation rates on cytoplasmic [correction of cytoplamic] diversity in gynodioecious Silene nutans and dioecious Silene otites. Heredity (Edinb) 2013; 111:157-64. [PMID: 23591518 DOI: 10.1038/hdy.2013.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/14/2013] [Accepted: 03/05/2013] [Indexed: 01/11/2023] Open
Abstract
Many flowering plant species exhibit a variety of distinct sexual morphs, the two most common cases being the co-occurrence of females and males (dioecy) or the co-occurrence of hermaphrodites and females (gynodioecy). In this study, we compared DNA sequence variability of the three genomes (nuclear, mitochondrial and chloroplastic) of a gynodioecious species, Silene nutans, with that of a closely related dioecious species, Silene otites. In the light of theoretical models, we expect cytoplasmic diversity to differ between the two species due to the selective dynamics that acts on cytoplasmic genomes in gynodioecious species: under an epidemic scenario, the gynodioecious species is expected to exhibit lower cytoplasmic diversity than the dioecious species, while the opposite is expected in the case of balancing selection maintaining sterility cytoplasms in the gynodioecious species. We found no difference between the species for nuclear gene diversity, but, for the cytoplasmic loci, the gynodioecious S. nutans had more haplotypes, and higher nucleotide diversity, than the dioecious relative, S. otites, even though the latter has a relatively high rate of mitochondrial synonymous substitutions, and therefore presumably a higher mutation rate. Therefore, as the mitochondrial mutation rate cannot account for the higher cytoplasmic diversity found in S. nutans, our findings support the hypothesis that gynodioecy in S. nutans has been maintained by balancing selection rather than by epidemic-like dynamics.
Collapse
|
29
|
Apitz J, Weihe A, Pohlheim F, Börner T. Biparental inheritance of organelles in Pelargonium: evidence for intergenomic recombination of mitochondrial DNA. PLANTA 2013; 237:509-515. [PMID: 23053540 DOI: 10.1007/s00425-012-1768-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
While uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.e. between the parental mitochondrial genomes. We have analyzed these Pelargonium hybrids for mitochondrial intergenomic recombination events by examining differences in DNA blot hybridization patterns of the mitochondrial genes atp1 and cob. Further investigation of these genes and their flanking regions using nucleotide sequence polymorphisms and PCR revealed DNA segments in the progeny, which contained both P. zonale and P. inquinans sequences suggesting an intergenomic recombination in hybrids of Pelargonium. This turns Pelargonium into an interesting subject for studies of recombination and evolutionary dynamics of mitochondrial genomes.
Collapse
Affiliation(s)
- Janina Apitz
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | | | |
Collapse
|
30
|
Sloan DB, Müller K, McCauley DE, Taylor DR, Štorchová H. Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. THE NEW PHYTOLOGIST 2012; 196:1228-1239. [PMID: 23009072 DOI: 10.1111/j.1469-8137.2012.04340.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/17/2012] [Indexed: 05/04/2023]
Abstract
In angiosperms, mitochondrial-encoded genes can cause cytoplasmic male sterility (CMS), resulting in the coexistence of female and hermaphroditic individuals (gynodioecy). We compared four complete mitochondrial genomes from the gynodioecious species Silene vulgaris and found unprecedented amounts of intraspecific diversity for plant mitochondrial DNA (mtDNA). Remarkably, only about half of overall sequence content is shared between any pair of genomes. The four mtDNAs range in size from 361 to 429 kb and differ in gene complement, with rpl5 and rps13 being intact in some genomes but absent or pseudogenized in others. The genomes exhibit essentially no conservation of synteny and are highly repetitive, with evidence of reciprocal recombination occurring even across short repeats (< 250 bp). Some mitochondrial genes exhibit atypically high degrees of nucleotide polymorphism, while others are invariant. The genomes also contain a variable number of small autonomously mapping chromosomes, which have only recently been identified in angiosperm mtDNA. Southern blot analysis of one of these chromosomes indicated a complex in vivo structure consisting of both monomeric circles and multimeric forms. We conclude that S. vulgaris harbors an unusually large degree of variation in mtDNA sequence and structure and discuss the extent to which this variation might be related to CMS.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Karel Müller
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Lysolaje, 16502, Czech Republic
| | - David E McCauley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Helena Štorchová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Lysolaje, 16502, Czech Republic
| |
Collapse
|
31
|
Pilgrim BL, Perry RC, Barron JL, Marshall HD. Nucleotide variation in the mitochondrial genome provides evidence for dual routes of postglacial recolonization and genetic recombination in the northeastern brook trout (Salvelinus fontinalis). GENETICS AND MOLECULAR RESEARCH 2012; 11:3466-81. [PMID: 23079840 DOI: 10.4238/2012.september.26.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Levels and patterns of mitochondrial DNA (mtDNA) variation were examined to investigate the population structure and possible routes of postglacial recolonization of the world's northernmost native populations of brook trout (Salvelinus fontinalis), which are found in Labrador, Canada. We analyzed the sequence diversity of a 1960-bp portion of the mitochondrial genome (NADH dehydrogenase 1 gene and part of cytochrome oxidase 1) of 126 fish from 32 lakes distributed throughout seven regions of northeastern Canada. These populations were found to have low levels of mtDNA diversity, a characteristic trait of populations at northern extremes, with significant structuring at the level of the watershed. Upon comparison of northeastern brook trout sequences to the publicly available brook trout whole mitochondrial genome (GenBank AF154850), we infer that the GenBank sequence is from a fish whose mtDNA has recombined with that of Arctic charr (S. alpinus). The haplotype distribution provides evidence of two different postglacial founding groups contributing to present-day brook trout populations in the northernmost part of their range; the evolution of the majority of the haplotypes coincides with the timing of glacier retreat from Labrador. Our results exemplify the strong influence that historical processes such as glaciations have had on shaping the current genetic structure of northern species such as the brook trout.
Collapse
Affiliation(s)
- B L Pilgrim
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland and Labrador, Canada.
| | | | | | | |
Collapse
|
32
|
Mandel JR, McAssey EV, Roland KM, McCauley DE. Mitochondrial gene diversity associated with the atp9 stop codon in natural populations of wild carrot (Daucus carota ssp. carota). ACTA ACUST UNITED AC 2012; 103:418-25. [PMID: 22337997 DOI: 10.1093/jhered/esr142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial genomes extracted from the wild populations of Daucus carota have been used as a genetic resource by breeders of cultivated carrot, yet little is known concerning the extent of their diversity in nature. Of special interest is an SNP in the putative stop codon of the mitochondrial gene atp9 that has been associated previously with male-sterile and male-fertile phenotypic variants. In this study, either the sequence or PCR/RFLP genotypes were obtained from the mitochondrial genes atp1, atp9, and cox1 found in D. carota individuals collected from 24 populations in the eastern United States. More than half of the 128 individuals surveyed had a CAA or AAA, rather than TAA, genotype at the position usually thought to function as an atp9 stop codon in this species. We also found no evidence for mitochondrial RNA editing (Cytosine to Uridine) of the CAA stop codon in either floral or leaf tissue. Evidence for intragenic recombination, as opposed to the more common intergenic recombination in plant mitochondrial genomes, in our data set is presented. Indel and SNP variants elsewhere in atp9, and in the other 2 genes surveyed, were nonrandomly associated with the 3 atp9 stop codon variants, though further analysis suggested that multilocus genotypic diversity had been enhanced by recombination. Overall the mitochondrial genetic diversity was only modestly structured among populations with an F(ST) of 0.34.
Collapse
Affiliation(s)
- Jennifer R Mandel
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| | | | | | | |
Collapse
|
33
|
Wang B, Mao JF, Gao J, Zhao W, Wang XR. Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata. Mol Ecol 2011; 20:3796-811. [PMID: 21689188 DOI: 10.1111/j.1365-294x.2011.05157.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pinus densata is an intriguingly successful homoploid hybrid species that occupies vast areas of the southeastern Tibetan Plateau in which neither of its parental species are present, but the colonization processes involved are poorly understood. To shed light on how this species colonized and became established on the plateau, we surveyed paternally inherited chloroplast (cp) and maternally inherited mitochondrial (mt) DNA variation within and among 54 populations of P. densata and its putative parental species throughout their respective ranges. Strong spatial genetic structure of both cp and mtDNA were detected in P. densata populations. Mitotypes specific to P. densata were likely generated by complex recombination events. A putative ancestral hybrid zone in the northeastern periphery of P. densata was identified, and we propose that the species then colonized the plateau by migrating westwards. Along the colonization route, consecutive bottlenecks and surfing of rare alleles caused a significant reduction in genetic diversity and strong population differentiation. The direction and intensity of introgression from parental species varied among geographic regions. In western parts of its range, the species seems to have been isolated from seed and pollen flow from its parent species for a long time. The observed spatial distribution of genetic diversity in P. densata also appears to reflect the persistence of this species on the plateau during the last glaciation. Our results indicate that both ancient and contemporary population dynamics have contributed to the spatial distribution of genetic diversity in P. densata, which accordingly reflects its evolutionary history.
Collapse
Affiliation(s)
- Baosheng Wang
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
34
|
Garraud C, Brachi B, Dufay M, Touzet P, Shykoff JA. Genetic determination of male sterility in gynodioecious Silene nutans. Heredity (Edinb) 2011; 106:757-64. [PMID: 20808324 PMCID: PMC3186230 DOI: 10.1038/hdy.2010.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/30/2010] [Accepted: 07/30/2010] [Indexed: 11/08/2022] Open
Abstract
Gynodioecy, the coexistence of female and hermaphrodite plants within a species, is often under nuclear-cytoplasmic sex determination, involving cytoplasmic male sterility (CMS) genes and nuclear restorers. A good knowledge of CMS and restorer polymorphism is essential for understanding the evolution and maintenance of gynodioecy, but reciprocal crossing studies remain scarce. Although mitochondrial diversity has been studied in a few gynodioecious species, the relationship between mitotype diversity and CMS status is poorly known. From a French sample of Silene nutans, a gynodioecious species whose sex determination remains unknown, we chose the four most divergent mitotypes that we had sampled at the cytochrome b gene and tested by reciprocal crosses whether they carry distinct CMS genes. We show that gynodioecy in S. nutans is under nuclear-cytoplasmic control, with at least two different CMSs and up to four restorers with epistatic interactions. Female occurrence and frequency were highly dependent on the mitotype, suggesting that the level of restoration varies greatly among CMSs. Two of the mitotypes, which have broad geographic distributions, represent different CMSs and are very unequally restored. We discuss the dynamics of gynodioecy at the large-scale meta-population level.
Collapse
Affiliation(s)
- C Garraud
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079 Univ Paris-Sud, Orsay, France.
| | | | | | | | | |
Collapse
|
35
|
Tan Y, Li S, Xie H, Duan S, Wang T, Zhu Y. Genetical and molecular analysis reveals a cooperating relationship between cytoplasmic male sterility- and fertility restoration-related genes in Oryza species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:9-19. [PMID: 20714705 DOI: 10.1007/s00122-010-1418-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/17/2010] [Indexed: 05/08/2023]
Abstract
Although the characterization of genes associated with cytoplasmic male sterility (CMS) and fertility restoration (Rf) has been well documented, the evolutionary relationship between nuclear Rf and CMS factors in mitochondria in Oryza species is still less understood. Here, 41 accessions from 7 Oryza species with AA genome were employed for analyzing the evolutionary relationships between the CMS factors and Rf candidates on chromosome 10. The phylogenetic tree based on restriction fragment length polymorphism patterns of CMS-associated mitochondrial genes showed that these 41 Oryza accessions fell into 3 distinct groups. Another phylogenetic tree based on PCR profiles of the nuclear Rf candidates on chromosome 10 was also established, and three groups were distinctively grouped. The accessions in each subgroup/group of the two phylogenetic trees are well parallel to each other. Furthermore, the 41 investigated accessions were test-crossed with Honglian (gametophytic type) and Wild-abortive (sporophytic type) CMS, and 5 groups were classified according to their restoring ability. The accessions in the same subgroup of the two phylogenetic trees shared similar fertility restoring pattern. Therefore, we conclude that the CMS-associated mitotypes are compatible to the Rf candidate-related nucleotypes, CMS and Rf have a parallel evolutionary relation in the Oryza species.
Collapse
Affiliation(s)
- YanPing Tan
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Science, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | |
Collapse
|
36
|
Sloan DB, Alverson AJ, Storchová H, Palmer JD, Taylor DR. Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 2010; 10:274. [PMID: 20831793 PMCID: PMC2942850 DOI: 10.1186/1471-2148-10-274] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/10/2010] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial gene loss and functional transfer to the nucleus is an ongoing process in many lineages of plants, resulting in substantial variation across species in mitochondrial gene content. The Caryophyllaceae represents one lineage that has experienced a particularly high rate of mitochondrial gene loss relative to other angiosperms. Results In this study, we report the first complete mitochondrial genome sequence from a member of this family, Silene latifolia. The genome can be mapped as a 253,413 bp circle, but its structure is complicated by a large repeated region that is present in 6 copies. Active recombination among these copies produces a suite of alternative genome configurations that appear to be at or near "recombinational equilibrium". The genome contains the fewest genes of any angiosperm mitochondrial genome sequenced to date, with intact copies of only 25 of the 41 protein genes inferred to be present in the common ancestor of angiosperms. As observed more broadly in angiosperms, ribosomal proteins have been especially prone to gene loss in the S. latifolia lineage. The genome has also experienced a major reduction in tRNA gene content, including loss of functional tRNAs of both native and chloroplast origin. Even assuming expanded wobble-pairing rules, the mitochondrial genome can support translation of only 17 of the 61 sense codons, which code for only 9 of the 20 amino acids. In addition, genes encoding 18S and, especially, 5S rRNA exhibit exceptional sequence divergence relative to other plants. Divergence in one region of 18S rRNA appears to be the result of a gene conversion event, in which recombination with a homologous gene of chloroplast origin led to the complete replacement of a helix in this ribosomal RNA. Conclusions These findings suggest a markedly expanded role for nuclear gene products in the translation of mitochondrial genes in S. latifolia and raise the possibility of altered selective constraints operating on the mitochondrial translational apparatus in this lineage.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
37
|
Paternal leakage and heteroplasmy of mitochondrial genomes in Silene vulgaris: evidence from experimental crosses. Genetics 2010; 185:961-8. [PMID: 20421605 DOI: 10.1534/genetics.110.115360] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inheritance of mitochondrial genetic (mtDNA) markers in the gynodioecious plant Silene vulgaris was studied using a series of controlled crosses between parents of known mtDNA genotype followed by quantitative PCR assays of offspring genotype. Overall, approximately 2.5% of offspring derived from crosses between individuals that were homoplasmic for different mtDNA marker genotypes showed evidence of paternal leakage. When the source population of the pollen donor was considered, however, population-specific rates of leakage varied significantly around this value, ranging from 10.3% to zero. When leakage did occur, the paternal contribution ranged from 0.5% in some offspring (i.e., biparental inheritance resulting in a low level of heteroplasmy) to 100% in others. Crosses between mothers known to be heteroplasmic for one of the markers and homoplasmic fathers showed that once heteroplasmy enters a maternal lineage it is retained by approximately 17% of offspring in the next generation, but lost from the others. The results are discussed with regard to previous studies of heteroplasmy in open-pollinated natural populations of S. vulgaris and with regard to the potential impact of mitochondrial paternal leakage and heteroplasmy on both the evolution of the mitochondrial genome and the evolution of gynodioecy.
Collapse
|
38
|
Marques I, Feliner GN, Draper Munt D, Martins-Loução MA, Aguilar JF. Unraveling cryptic reticulate relationships and the origin of orphan hybrid disjunct populations in Narcissus. Evolution 2010; 64:2353-68. [PMID: 20199565 DOI: 10.1111/j.1558-5646.2010.00983.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Evolutionary consequences of natural hybridization between species may vary so drastically depending on spatial, genetic, and ecological factors that multiple approaches are required to uncover them. To unravel the evolutionary history of a controversial hybrid (Narcissus x perezlarae), here we use four approaches: DNA sequences from five regions (four organellar, one nuclear), cytological studies (chromosome counts and genome size), crossing experiments, and niche modeling. We conclude that (1) it actually consists of two different hybrid taxa, N.xperezlarae s.s. (N. cavanillesii x N. miniatus) and N.xalentejanus (N. cavanillesii x N. serotinus); (2) both have been formed several times independently, that is, polytopically; (3) N. cavanillesii was the mother progenitor in most hybridization events. We also address the origin of orphan hybrid populations of N.xperezlarae in eastern Spain, hundreds of kilometers away from N. cavanillesii. Although long-distance dispersal of already formed hybrids cannot be completely rejected, extirpation of N. cavanillesii via demographic competition is a more likely explanation. Low-reproductive barriers to fertilization by foreign pollen in N. cavanillesii, molecular footprints of the former presence of this species in the area, active asexual propagation by bulbs in N.xperezlarae, and overlapping ecological niches are consistent with the extirpation scenario.
Collapse
Affiliation(s)
- Isabel Marques
- Universidade de Lisboa. Museu Nacional de História Natural, Jardim Botânico, Rua da Escola Politécnica 58. 1280-102 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
39
|
Woloszynska M. Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes--though this be madness, yet there's method in't. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:657-71. [PMID: 19995826 DOI: 10.1093/jxb/erp361] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondrial heteroplasmy is defined as the coexistence of divergent mitochondrial genotypes in a cell. The ratio of the alternative genomes may be variable, but in plants, the usually prevalent main genome is accompanied by sublimons--substoichiometric mitochondrial DNA (mtDNA) molecules. Plant mitochondrial heteroplasmy was originally viewed as being associated with pathological mutations or was found in non-natural plant populations. Currently, it is considered to be a common situation in plants. Recent years have changed the previous view on the role of homologous recombination, small-scale mutations, and paternal leakage of mtDNA in the generation of heteroplasmy. Newly developed sensitive techniques have allowed the precise estimation of mtDNA stoichiometry. Mechanisms of maintenance and transmission of heteroplasmic genomes, including DNA recombination and replication, as well as mitochondrial fusion and fission, have been studied. This review describes the high level of plant mitochondrial genome complication--the 'madness' resulting from the heteroplasmic state and explains the method hidden in this madness. Heteroplasmy is described as the evolutionary strategy of uniparentally inherited plant mitochondrial genomes which do not undergo sexual recombination. In order to compensate for this deficiency, alternative types of mtDNA are substoichiometrically accumulated as a reservoir of genetic variability and may undergo accelerated evolution. Occasionally, sublimons are selected and amplified in the process called substoichiometric shifting, to take over the role of the main genome. Alternative mitochondrial genomes may recombine, yielding new mtDNA variants, or segregate during plant growth resulting in plants with mosaic phenotypes. Two opposite roles of mitochondrial heteroplasmy with respect to acceleration or counteracting of mutation accumulation are also discussed. Finally, nuclear control of heteroplasmy and substoichiometric shifting is described.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Laboratory of Molecular Cell Biology, Faculty of Biotechnology, University of Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
40
|
Sloan DB, Oxelman B, Rautenberg A, Taylor DR. Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae. BMC Evol Biol 2009; 9:260. [PMID: 19878576 PMCID: PMC2777880 DOI: 10.1186/1471-2148-9-260] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 10/31/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent phylogenetic studies have revealed that the mitochondrial genome of the angiosperm Silene noctiflora (Caryophyllaceae) has experienced a massive mutation-driven acceleration in substitution rate, placing it among the fastest evolving eukaryotic genomes ever identified. To date, it appears that other species within Silene have maintained more typical substitution rates, suggesting that the acceleration in S. noctiflora is a recent and isolated evolutionary event. This assessment, however, is based on a very limited sampling of taxa within this diverse genus. RESULTS We analyzed the substitution rates in 4 mitochondrial genes (atp1, atp9, cox3 and nad9) across a broad sample of 74 species within Silene and related genera in the tribe Sileneae. We found that S. noctiflora shares its history of elevated mitochondrial substitution rate with the closely related species S. turkestanica. Another section of the genus (Conoimorpha) has experienced an acceleration of comparable magnitude. The phylogenetic data remain ambiguous as to whether the accelerations in these two clades represent independent evolutionary events or a single ancestral change. Rate variation among genes was equally dramatic. Most of the genus exhibited elevated rates for atp9 such that the average tree-wide substitution rate for this gene approached the values for the fastest evolving branches in the other three genes. In addition, some species exhibited major accelerations in atp1 and/or cox3 with no correlated change in other genes. Rates of non-synonymous substitution did not increase proportionally with synonymous rates but instead remained low and relatively invariant. CONCLUSION The patterns of phylogenetic divergence within Sileneae suggest enormous variability in plant mitochondrial mutation rates and reveal a complex interaction of gene and species effects. The variation in rates across genomic and phylogenetic scales raises questions about the mechanisms responsible for the evolution of mutation rates in plant mitochondrial genomes.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Bengt Oxelman
- Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anja Rautenberg
- Department of Systematic Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
41
|
McCauley DE, Bailey MF. Recent advances in the study of gynodioecy: the interface of theory and empiricism. ANNALS OF BOTANY 2009; 104:611-20. [PMID: 19515690 PMCID: PMC2729626 DOI: 10.1093/aob/mcp141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 03/25/2009] [Accepted: 04/29/2009] [Indexed: 05/08/2023]
Abstract
BACKGROUND In this review we report on recent literature concerned with studies of gynodioecy, or the co-occurrence of female and hermaphrodite individuals in natural plant populations. Rather than review this literature in its entirety, our focus is on the interplay between theoretical and empirical approaches to the study of gynodioecy. SCOPE Five areas of active inquiry are considered. These are the cost of restoration, the influence of population structure on spatial sex-ratio variation, the influence of inbreeding on sex expression, the signature of cyto-nuclear coevolution on the mitochondrial genome, and the consequences of mitochondrial paternal leakage. CONCLUSIONS Recent advances in the study of gynodioecy have been made by considering both the ecology of female:hermaphrodite fitness differences and the genetics of sex expression. Indeed theory has guided empiricism and empiricism has guided theory. Future advances will require that some of the methods currently available only for model organisms be applied to a wider range of species.
Collapse
Affiliation(s)
- David E McCauley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
42
|
Abstract
Interactions between cytoplasmic (generally organelle) and nuclear genomes may be relatively common and could potentially have major fitness consequences. As in the case of within-genome epistasis, this cytonuclear epistasis can favor the evolutionary coadaptation of high-fitness combinations of nuclear and cytoplasmic alleles. Because cytoplasmic factors are generally uniparentally inherited, the cytoplasmic genome is inherited along with only one of the nuclear haplotypes, and therefore, coadaptation is expected to evolve through the interaction of these coinherited (usually maternally inherited) genomes. Here I show that, as a result of this coinheritance of the two genomes, cytonuclear epistasis can favor the evolution of genomic imprinting such that, when the cytoplasmic factor is maternally inherited, selection favors maternal expression of the nuclear locus and when the factor is paternally inherited selection favors paternal expression. Genomic imprinting evolves in this model because it leads to a pattern of gene expression in the nuclear haplotype that is coadapted with (i.e., adaptively coordinated with) gene expression in the coinherited cytoplasmic genome.
Collapse
Affiliation(s)
- Jason B Wolf
- The University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
43
|
Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF, Filatov D, Giraud T, Hood ME, Marais GAB, McCauley D, Pannell JR, Shykoff JA, Vyskot B, Wolfe LM, Widmer A. Silene as a model system in ecology and evolution. Heredity (Edinb) 2009; 103:5-14. [PMID: 19367316 DOI: 10.1038/hdy.2009.34] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The genus Silene, studied by Darwin, Mendel and other early scientists, is re-emerging as a system for studying interrelated questions in ecology, evolution and developmental biology. These questions include sex chromosome evolution, epigenetic control of sex expression, genomic conflict and speciation. Its well-studied interactions with the pathogen Microbotryum has made Silene a model for the evolution and dynamics of disease in natural systems, and its interactions with herbivores have increased our understanding of multi-trophic ecological processes and the evolution of invasiveness. Molecular tools are now providing new approaches to many of these classical yet unresolved problems, and new progress is being made through combining phylogenetic, genomic and molecular evolutionary studies with ecological and phenotypic data.
Collapse
Affiliation(s)
- G Bernasconi
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Gynodioecy is a breeding system characterized by the co-occurrence of hermaphrodite and female individuals, generally as the result of nuclear-cytoplasmic interactions. The question remains whether the genetic factors controlling gynodioecy are maintained in species over long evolutionary timescales by balancing selection or are continually arising and being replaced in epidemic sweeps. If balancing selection maintains these factors, then neutral cytoplasmic diversity should be greater in gynodioecious than hermaphroditic species. In contrast, epidemic sweeps of factors controlling gynodioecy should decrease cytoplasmic diversity in gynodioecious relative to hermaphroditic species. We took a comparative approach in which we sequenced two mitochondrial genes, cytochrome b (cob) and cytochrome oxidase (cox1), for multiple populations of several hermaphroditic, gynodioecious, and dioecious species in the genus Silene. Breeding system was predictive of polymorphism. Gynodioecious species harbor many old haplotypes while hermaphroditic and dioecious species have little to no nucleotide diversity. The genealogical structure of neither gene departed from neutral expectations. Taken together, our results suggest that balancing selection acts on cytoplasmic male-sterility factors in several gynodioecious species in the genus.
Collapse
|
45
|
Pearl SA, Welch ME, McCauley DE. Mitochondrial heteroplasmy and paternal leakage in natural populations of Silene vulgaris, a gynodioecious plant. Mol Biol Evol 2008; 26:537-45. [PMID: 19033259 DOI: 10.1093/molbev/msn273] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is currently thought that most angiosperms transmit their mitochondrial genomes maternally. Maternal transmission limits opportunities for genetic heterogeneity (heteroplasmy) of the mitochondrial genome within individuals. Recent studies of the gynodioecious species Silene vulgaris and Silene acaulis, however, document both direct and indirect evidence of mitochondrial heteroplasmy, suggesting that the mitochondrial genome is at times transmitted via paternal leakage. This heteroplasmy allows the generation of multi-locus recombinants, as documented in recent studies of both species. A prior study that employed quantitative PCR (q-PCR) on a limited sample provided direct evidence of heteroplasmy in the mitochondrial gene atp1 in S. vulgaris. Here, we apply the q-PCR methods to a much larger sample and extend them to incorporate the study of an additional atp1 haplotype along with two other haplotypes of the mitochondrial gene cox1 to evaluate the origin, extent, and transmission of mitochondrial genome heteroplasmy in S. vulgaris. We first calibrate our q-PCR methods experimentally and then use them to quantify heteroplasmy in 408 S. vulgaris individuals sampled from 22 natural populations located in Virginia, New York, and Tennessee. Sixty-one individuals exhibit heteroplasmy, including five that exhibited the joint heteroplasmy at both loci that is a prerequisite for effective recombination. The heteroplasmic individuals were distributed among 18 of the populations studied, demonstrating that heteroplasmy is a widespread phenomenon in this species. Further, we compare mother and offspring from 71 families to determine the rate of heteroplasmy gained and lost via paternal leakage and vegetative sorting across generations. Of 17 sibships exhibiting cox1 heteroplasmy and 14 sibships exhibiting atp1 heteroplasmy, more than half of the observations of heteroplasmy are generated via paternal leakage at the time of fertilization, with the rest being inherited from a heteroplasmic mother. Moreover, we show that the average paternal contribution during paternal leakage is about 12%. These findings are surprising, given that the current understanding of gynodioecy assumes that mitochondrial cytoplasmic male sterility elements are strictly maternally inherited. Knowledge of the dynamics of mitochondrial populations within individuals plays an important role in understanding the evolution of gynodioecy, and we discuss our findings within this context.
Collapse
Affiliation(s)
- Stephanie A Pearl
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
46
|
Ujvari B, Dowton M, Madsen T. Mitochondrial DNA recombination in a free-ranging Australian lizard. Biol Lett 2008; 3:189-92. [PMID: 17251121 PMCID: PMC2375962 DOI: 10.1098/rsbl.2006.0587] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is the traditional workhorse for reconstructing evolutionary events. The frequent use of mtDNA in such analyses derives from the apparent simplicity of its inheritance: maternal and lacking bi-parental recombination. However, in hybrid zones, the reproductive barriers are often not completely developed, resulting in the breakdown of male mitochondrial elimination mechanisms, leading to leakage of paternal mitochondria and transient heteroplasmy, resulting in an increased possibility of recombination. Despite the widespread occurrence of heteroplasmy and the presence of the molecular machinery necessary for recombination, we know of no documented example of recombination of mtDNA in any terrestrial wild vertebrate population. By sequencing the entire mitochondrial genome (16761bp), we present evidence for mitochondrial recombination in the hybrid zone of two mitochondrial haplotypes in the Australian frillneck lizard (Chlamydosaurus kingii).
Collapse
Affiliation(s)
- Beata Ujvari
- School of Biological Sciences, University of WollongongNew South Wales 2522, Australia
| | - Mark Dowton
- School of Biological Sciences, University of WollongongNew South Wales 2522, Australia
| | - Thomas Madsen
- School of Biological Sciences, University of WollongongNew South Wales 2522, Australia
- Department of Animal Ecology, Ecology Building, Lund University22362 Lund, Sweden
- Author for correspondence ()
| |
Collapse
|
47
|
Wang ZW, Zhang YJ, Xiang CP, Mei SY, Zhou Y, Chen GP, Wang T. A new fertility restorer locus linked closely to the Rfo locus for cytoplasmic male sterility in radish. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:313-20. [PMID: 18542910 DOI: 10.1007/s00122-008-0776-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 04/12/2008] [Indexed: 05/11/2023]
Abstract
In this study, we have investigated a new fertility restorer (Rf) locus for cytoplasmic male sterility (CMS) in radish. We have obtained a CMS-Rf system consisting of sterile line '9802A1', maintainer line '9802B1' and restorer line '9802H'. F(1) plants from cross between sterile line '9802A1' and restorer line '9802H' were all male fertile, self pollination of F(1) plants produced an F(2) segregating population consisting of 600 individuals. The segregating population was found to fit a segregation ratio 3:1 for male fertile and sterile types, indicating that male fertility is restored by a single dominant gene (termed Rfo2) in the CMS-Rf system. Based on the DNA sequence of Rfo/Rfk1 (AJ535623), just one full length gene in the sterile line '9802A1', in the restorer line '9802H' and in the male fertile line '2006H', was cloned, respectively. The three sequences correspond to the same gene with two alleles: Rfob in '9802H' and rfob in '9802A1' and '2006H'. These two alleles differ from Rfo/Rfk1 and rfk1 (AJ535624) alleles by two synonymous base substitutions, respectively. Based on the differences between the Rfob and rfob genes, one PCR-based marker was developed, and designated Marker 1, which is identical to the corresponding region of Rfob by sequence analysis. In the F(2) segregating population described above, the Marker 1 was present in 5 sterile plants and in 453 fertile plants, absent in 4 fertile plants and in 138 sterile plants, and was found to fit a segregation ratio 3:1 indicating that Rfob was single copy in '9802H'. Linkage analysis showed that the Rfo2 locus for our CMS-Rf system was distant from the Rfo locus by about 1.6 cM. The sterile line '9802A1' was pollinated by the male fertile line '2006H' and the resulting F(1) plants were all male fertile. These results indicated that the male fertility of radish CMS can be restored by a new Rf locus, which linked tightly to the Rfo locus.
Collapse
Affiliation(s)
- Zhi Wei Wang
- Wuhan Botanical Garden/Wuhan Institute of Botany, The Chinese Academy of Sciences, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Toräng P, Ehrlén J, Ågren J. MUTUALISTS AND ANTAGONISTS MEDIATE FREQUENCY-DEPENDENT SELECTION ON FLORAL DISPLAY. Ecology 2008; 89:1564-72. [DOI: 10.1890/07-1283.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Abstract
While reproductive caste in eusocial insects is usually determined by environmental factors, in some populations of the harvester ants, Pogonomyrmex barbatus and P. rugosus, caste has been shown to have a strong genetic component. This system of genetic caste determination (GCD) is characterized by between-caste nuclear variation and high levels of mitochondrial haplotype variation between alternative maternal lineages. Two previous genetic models, involving a single nuclear caste-determining locus or interactions between two nuclear loci, respectively, have been proposed to explain the GCD system. We propose a new model based on interactions between nuclear and mitochondrial genes that can better explain the co-maintenance of distinct nuclear and mitochondrial lineages. In our model, females with coevolved cyto-nuclear gene complexes, derived from intra-lineage mating, develop into gynes, while females with disrupted cyto-nuclear complexes, derived from inter-lineage mating, develop into workers. Both haplodiploidy and inbreeding facilitate the buildup of such coevolved cyto-nuclear complexes within lineages. In addition, the opportunity for both intra-lineage and inter-lineage mating in polyandrous populations facilitates the accumulation of gyne-biasing genes. This model may also help to explain the evolution of workerless social, parasites. We discuss similarities of GCD and cytoplasmic male sterility in plants and how worker production of males would affect the stability of GCD. Finally, we propose experiments and observations that might help resolve the origin and maintenance of this unusual system of caste determination.
Collapse
|
50
|
Reticulate or tree-like chloroplast DNA evolution in Sileneae (Caryophyllaceae)? Mol Phylogenet Evol 2008; 48:313-25. [PMID: 18490181 DOI: 10.1016/j.ympev.2008.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 11/23/2022]
Abstract
Despite sampling of up to 25kb of chloroplast DNA sequence from 24 species in Sileneae a number of nodes in the phylogeny remain poorly supported and it is not expected that additional sequence sampling will converge to a reliable phylogenetic hypothesis in these parts of the tree. The main reason for this is probably a combination of rapid radiation and substitution rate heterogeneity. Poor resolution among closely related species are often explained by low levels of variation in chloroplast data, but the problem with our data appear to be high levels of homoplasy. Tree-like cpDNA evolution cannot be rejected, but apparent incongruent patterns between different regions are evaluated with the possibility of ancient interspecific chloroplast recombination as explanatory model. However, several major phylogenetic relationships, previously not recognized, are confidently resolved, e.g. the grouping of the two SW Anatolian taxa S. cryptoneura and S. sordida strongly disagrees with previous studies on nuclear DNA sequence data, and indicate a possible case of homoploid hybrid origin. The closely related S. atocioides and S. aegyptiaca form a sister group to Lychnis and the rest of Silene, thus suggesting that Silene may be paraphyletic, despite recent revisions based on molecular data.
Collapse
|