1
|
Kleszcz R, Majchrzak-Celińska A, Baer-Dubowska W. Tannins in cancer prevention and therapy. Br J Pharmacol 2025; 182:2075-2093. [PMID: 37614022 DOI: 10.1111/bph.16224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Tannins are a heterogenous class of polyphenolic natural products with promising cancer chemopreventive and therapeutic potential. Studies undertaken over the last 30 years have demonstrated their capacity to target many cellular pathways and molecules important in the development of cancer. Recently, new mechanisms that might be important in anti-carcinogenic activity, such as inhibition of epithelial-to-mesenchymal transition, reduction of cancer stem cell creation, and modulation of cancer cells metabolism have been described. Along with the mechanisms underlying the anti-cancer activity of tannins, this review focuses on their possible application as chemosensitizers in adjuvant therapy and countering multidrug resistance. Furthermore, characteristic physicochemical properties of some tannins, particularly tannic acid, are useful in the formation of nanovehicles for anticancer drugs or the isolation of circulating cancer cells. These new potential applications of tannins deserve further studies. Well-designed clinical trials, which are scarce, are needed to assess the therapeutic effects of tannins themselves or as adjuvants in cancer treatment. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Elias ML, Israeli AF, Madan R. Caffeine in Skincare: Its Role in Skin Cancer, Sun Protection, and Cosmetics. Indian J Dermatol 2023; 68:546-550. [PMID: 38099120 PMCID: PMC10718232 DOI: 10.4103/ijd.ijd_166_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Caffeine is ubiquitous in our society-not only in the drinks consumed but also increasingly in dermatologic topicals. Given that coffee and caffeine are increasingly used for the production of many dermatologic anti-cancer topicals, sunscreens, and cosmetics, it is of imperative importance to review the basic science and clinical evidence for such claims. In this concise review, we outline the current evidence.
Collapse
Affiliation(s)
- Marcus L. Elias
- From the Department of Dermatology, Northwell Health, North New Hyde Park, New York, United States
| | - Alexa F. Israeli
- From the Department of Dermatology, Northwell Health, North New Hyde Park, New York, United States
| | - Raman Madan
- From the Department of Dermatology, Northwell Health, North New Hyde Park, New York, United States
| |
Collapse
|
3
|
Lee H, Hyun Jeong J, Lee T, Chong Y, Choo H, Lee S. Identification of (-)-Epigallocateshin Gallate Derivatives promoting innate immune activation via 2' 3'-cyclic GMP-AMP-stimulator of interferon genes pathway. Bioorg Med Chem Lett 2023; 90:129325. [PMID: 37182610 DOI: 10.1016/j.bmcl.2023.129325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
(-)-Epigallocatehin-3-gallate (EGCG) is a catechin derived from green tea, which has been widely studied for its anti-oxidant and anti-tumor properties. Although EGCG plays important roles in various biological processes, the its effect on the immune system is not fully understood. In this study, we investigated the potential of EGCG as an activator of the stimulator of interferon genes (STING) pathway in the immune system. The cyclic GMP-AMP synthase (cGAS)-2'-3'-cyclic GMP-AMP (cGAMP)-STING pathway is crucial in the innate immune response to microbial infections, autoimmunity, and anticancer immunity. We confirmed that EGCG enhanced the immune response of cGAMP and identified E2 from 13 synthetic derivatives of EGCG. E2 specifically activated the interferon (IFN) signaling pathway specifically through STING- and cGAMP-dependent mechanisms. These results demonstrate the potential of EGCG and its derivatives as new STING activators that can stimulate the type I interferon response by boosting cGAMP-mediated STING activity.
Collapse
Affiliation(s)
- Hyelim Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jeong Hyun Jeong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Taegum Lee
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Youhoon Chong
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sanghee Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department for HY-KIST Bio-convergence, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Karimi-Shahri M, Alalikhan A, Hashemian P, Hashemzadeh A, Javid H. The applications of epigallocatechin gallate (EGCG)-nanogold conjugate in cancer therapy. NANOTECHNOLOGY 2023; 34:212001. [PMID: 36535007 DOI: 10.1088/1361-6528/acaca3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Cancer has recently increased the death toll worldwide owing to inadequate therapy and decreased drug bioavailability. Long-term and untargeted chemotherapeutic exposure causes toxicity to healthy cells and drug resistance. These challenges necessitate the development of new methods to increase drug efficacy. Nanotechnology is an emerging field in the engineering of new drug delivery platforms. The phytochemical epigallocatechin gallate (EGCG), the main component of green tea extract and its most bioactive component, offers novel approaches to cancer cell eradication. The current review focuses on the nanogold-based carriers containing EGCG, with an emphasis on the chemotherapeutic effects of EGCG in cancer treatment. The nanoscale vehicle may improve the EGCG solubility and bioavailability while overcoming constraints and cellular barriers. This article reviewed the phytochemical EGCG-based gold nanoplatforms and their major anticancer applications, both individually, and in combination therapy in a few cases.
Collapse
Affiliation(s)
- Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abbas Alalikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Photoprotective Effects of Cannabidiol against Ultraviolet-B-Induced DNA Damage and Autophagy in Human Keratinocyte Cells and Mouse Skin Tissue. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196740. [PMID: 36235276 PMCID: PMC9572435 DOI: 10.3390/molecules27196740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 01/18/2023]
Abstract
Cannabidiol (CBD) has emerged as a phytocannabinoid with various beneficial effects for the skin, including anti-photoaging effects, but its mechanisms of action are not fully elucidated. The study assessed CBD’s photoprotective effects against acute ultraviolet B (UVB)-induced damage in HaCaT human keratinocyte cells and murine skin tissue. CBD (8 μM) alleviated UVB-induced cytotoxicity, apoptosis, and G2/M cell cycle arrest in HaCaT cells. The contents of γH2AX and cyclobutane pyrimidine dimers were decreased after CBD treatment. CBD reduced the production of reactive oxygen species and modulated the expression of antioxidant-related proteins such as nuclear factor erythroid 2-related factor 2 in UVB-stimulated HaCaT cells. Furthermore, CBD mitigated the UVB-induced cytotoxicity by activating autophagy. In addition, a cream containing 5% CBD showed effectiveness against UVB-induced photodamage in a murine model. The CBD cream improved the skin’s condition by lowering the photodamage scores, reducing abnormal skin proliferation, and decreasing expression of the inflammation-related protein cyclooxygenase-2 in UVB-irradiated skin tissue. These findings indicate that CBD might be beneficial in alleviating UVB-induced skin damage in humans. The photoprotective effects of CBD might be attributed to its modulatory effects on redox homeostasis and autophagy.
Collapse
|
7
|
Multiple Basal Cell Carcinomas in Immunocompetent Patients. Cancers (Basel) 2022; 14:cancers14133211. [PMID: 35804983 PMCID: PMC9264959 DOI: 10.3390/cancers14133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary It is widely known that long-term treatment with immunosuppressive drugs represents a risk factor for the onset of malignancies, including multiple basal cell carcinomas. However, multiple basal carcinomas are ao found in the general population, and even in the absence of specific predisposing genetic mutations. This paper aims, through the retrospective evaluation of all patients diagnosed and surgically treated for basal cell carcinomas during 5 years at our Dermatological Division, to identify the characteristics of these subjects and any possible risk factors, useful for outlining specific surveillance programs. In our experience, multiple carcinomas were identified in over 24% of the subjects analyzed, with several lesions removed, ranging from 2 to 11, confirming the relevance of this phenomenon. Abstract Background: The onset of multiple BCCs is a relatively common condition, not only among patients undergoing chronic treatment with immunosuppressant drugs, but also in the general population, although specific risk factors for immunocompetent patients have not been identified. A putative role of somatic mutations in the hedgehog pathway should be considered. Methods: This study is a retrospective observation of all patients diagnosed and surgically treated for BCCs during 5 years at our Dermatological Division. For these patients, we evaluated clinical and histopathological characteristics and data about possible risk factors for BCC. Results: Five-hundred and six patients affected by multiple BCCs, accounting for the 24.2% of the entire sample, have been identified. In these patients, the total number of BCCs was 1516, ranging from 2 to 11. Subjects affected by multiple BCCs were more frequently males, with an older age at diagnosis; multiple BCCs developed mainly on the trunk and were often represented by a nodular histotype. The multivariate analysis highlighted that male gender, older age, nodular BCC, or face involvement at the first diagnosis are risk factors for the development of multiple BCCs. Conclusions: The frequency of multiple BCCs even among the non-immunocompromised population underlines the need to subject patients to a close surveillance program, to allow early diagnosis and treatment of additional cancers.
Collapse
|
8
|
Seleem M, Abulfadl YS, Hoffy N, Lotfy NM, Ewida HA. Promising role of topical caffeine mesoporous gel in collagen resynthesis and UV protection through proline assessment. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Caffeine, an alkaloid agent, has been globally used regularly in drinks, for the reduction in skin cancers and wrinkle formation. As a result of the previous, attempts have been carried out to use caffeine in cosmetology due to its antioxidant and UV ray protection effects. Our aim was to evaluate the effect of caffeine on collagen resynthesis via its effect on proline and prolidase biosynthesis on mice, orally and topically as mesoporous silica at three levels, and the influence on UV protection. In skin biopsies of orally and topically treated mice, the following was assessed using ELISA and Western blot techniques, the activity of prolidase, together with the concentrations of proline, beta integrin, insulin growth factor, protein kinases beta, and mitogen-activated protein kinase. Moreover, we loaded the caffeine on mesoporous silica and assessed the aforementioned parameters together with checkpoint kinase 1 and Rad3-related protein.
Results
Caffeine promoted collagen resynthesis in a dose-dependent manner. The mechanism of this process was found at the level of prolidase activity as caffeine significantly increased the enzyme activity. Caffeine also had a protective effect against UV exhibited by the over-expression of beta integrin, insulin growth factor together with the under-expression of protein kinases beta, mitogen-activated protein kinase, checkpoint kinase 1, and Rad3-related protein.
Conclusions
Our study revealed the superiority of SYL-C12 (mesoporous silica-loaded caffeine gel), compromising the high level of the three independent factors, in terms of the measured responses in mesoporous silica with caffeine. Moreover, caffeine promoted collagen resynthesis with significant protective effect against UV apoptotic damage.
Collapse
|
9
|
Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, Aggarwal D, Barwal TS, Jain A, Kaur G, Sak K, Varol M, Bishayee A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin Cancer Biol 2022; 80:256-275. [PMID: 32461153 DOI: 10.1016/j.semcancer.2020.05.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka 1205, Bangladesh
| | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Erin E Ritzer
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400 056, Maharastra, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Muğla TR48000, Turkey
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA.
| |
Collapse
|
10
|
Rosmarinus officinalis L. Leaf Extracts and Their Metabolites Inhibit the Aryl Hydrocarbon Receptor (AhR) Activation In Vitro and in Human Keratinocytes: Potential Impact on Inflammatory Skin Diseases and Skin Cancer. Molecules 2022; 27:molecules27082499. [PMID: 35458697 PMCID: PMC9029298 DOI: 10.3390/molecules27082499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 12/02/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) activation by environmental agents and microbial metabolites is potentially implicated in a series of skin diseases. Hence, it would be very important to identify natural compounds that could inhibit the AhR activation by ligands of microbial origin as 6-formylindolo[3,2-b]carbazole (FICZ), indirubin (IND) and pityriazepin (PZ) or the prototype ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Five different dry Rosmarinus officinalis L. extracts (ROEs) were assayed for their activities as antagonists of AhR ligand binding with guinea pig cytosol in the presence of [3H]TCDD. The methanolic ROE was further assayed towards CYP1A1 mRNA induction using RT-PCR in human keratinocytes against TCDD, FICZ, PZ, and IND. The isolated metabolites, carnosic acid, carnosol, 7-O-methyl-epi-rosmanol, 4′,7-O-dimethylapigenin, and betulinic acid, were assayed for their agonist and antagonist activity in the presence and absence of TCDD using the gel retardation assay (GRA). All assayed ROE extracts showed similar dose-dependent activities with almost complete inhibition of AhR activation by TCDD at 100 ppm. The methanol ROE at 10 ppm showed 99%, 50%, 90%, and 85% inhibition against TCDD, FICZ, IND, and PZ, respectively, in human keratinocytes. Most assayed metabolites exhibited dose-dependent antagonist activity. ROEs inhibit AhR activation by TCDD and by the Malassezia metabolites FICZ, PZ, and IND. Hence, ROE could be useful for the prevention or treatment of skin diseases mediated by activation of AhR.
Collapse
|
11
|
Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, Ngowi EE, Wu DD, Ji XY. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36:223-247. [PMID: 35127174 PMCID: PMC8799916 DOI: 10.1016/j.jare.2021.06.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- AIDS, Acquired immune deficiency syndrome
- BCC, Basal cell carcinoma
- BCCs, Basal cell carcinomas
- Basal cell carcinoma
- CREB, response element-binding protein
- DDS, Drug delivery system
- DIM-D, Di indolyl methane derivative
- Drug delivery
- GNR-PEG-MN, PEGylated gold nanorod microneedle
- Gd, Gadolinium
- Gene delivery
- HH, Hedgehog
- HPMC, Hydroxypropyl methylcellulose
- IPM, Isopropyl myristate
- MCIR, Melanocortin-1 receptor
- MNPs, Magnetic nanoparticle
- MNs, Microneedles
- MRI, Magnetic Resonance Imaging
- MSC, Melanoma skin cancer
- Microneedles
- Mn, Manganese
- NMSC, Non melanoma skin cancer
- NPs, Nano Particles
- OTR, Organ transplant recipients
- PAMAM, Poly-amidoamines
- PAN, Polyacrylonitrile
- PATCH1, Patch
- PCL, Poly (ε-caprolactone)
- PDT, Photodynamic therapy
- PEG, Polyethylene glycol
- PLA, Poly lactic acid
- PLA-HPG, Poly (d-l-lactic acid)-hyperbranched polyglycerol
- PLGA, Poly (lactide-co-glycolide) copolymers
- PLL, Poly (L-lysine)
- Polymeric nanocarriers
- QDs, Quantum dots
- SC, Skin cancer
- SCC, Squamous cell Carcinoma
- SMO, Smoothen
- SPIO, Superparamagnetic iron oxide
- Squamous cell carcinoma
- UV, Ultra Violet
- cAMP, Cyclic adenosine monophosphate
- dPG, Dendritic polyglycerol
- hTERT, Human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences. Henan University, Kaifeng, Henan 475004, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mahnoor Baloch
- School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim-ur- Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
12
|
Cote B, Elbarbry F, Bui F, Su JW, Seo K, Nguyen A, Lee M, Rao DA. Mechanistic Basis for the Role of Phytochemicals in Inflammation-Associated Chronic Diseases. Molecules 2022; 27:molecules27030781. [PMID: 35164043 PMCID: PMC8838908 DOI: 10.3390/molecules27030781] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases occur in a large portion of the population and are associated with a poor diet. Key natural products found in fruits and vegetables may assist in lowering inflammation associated with chronic diseases such as obesity, diabetes, cardiovascular diseases, and cancer. This review seeks to examine the roles of several natural products, resveratrol (RES), quercetin (QUE), curcumin (CUR), piperine (PIP), epigallocatechin gallate (EGCG), and gingerol (GIN), in their ability to attenuate inflammatory markers in specific diseases states. Additionally, we will discuss findings in past and ongoing clinical trials, detail possible phytochemical–drug interactions, and provide a brief resource for researchers and healthcare professionals on natural product and supplement regulation as well as names of databases with information on efficacy, indications, and natural product–drug interactions. As diet and over-the-counter supplement use are modifiable factors and patients are interested in using complementary and alternative therapies, understanding the mechanisms by which natural products have demonstrated efficacy and the types of drugs they interact with and knowing where to find information on herbs and supplements is important for practicing healthcare providers and researchers interested in this field.
Collapse
Affiliation(s)
- Brianna Cote
- College of Pharmacy, Oregon State University, Portland, OR 97201, USA;
| | - Fawzy Elbarbry
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Fiona Bui
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Joe W. Su
- School of Pharmacy, West Coast University, Los Angeles, CA 90004, USA;
| | - Karen Seo
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Arthur Nguyen
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Max Lee
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Deepa A. Rao
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
- Correspondence:
| |
Collapse
|
13
|
Jones VA, Patel PM, Wilson C, Wang H, Ashack KA. Complementary and alternative medicine treatments for common skin diseases: A systematic review and meta-analysis. JAAD Int 2021; 2:76-93. [PMID: 34409356 PMCID: PMC8362305 DOI: 10.1016/j.jdin.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Background Complementary and alternative medicine (CAM) treatments are growing in popularity as alternative treatments for common skin conditions. Objectives To perform a systematic review and meta-analysis to determine the tolerability and treatment response to CAM treatments in acne, atopic dermatitis (AD), and psoriasis. Methods PubMed/Medline and Embase databases were searched to identify eligible studies measuring the effects of CAM in acne, AD, and psoriasis. Effect size with 95% confidence interval (CI) was estimated using the random-effect model. Results The search yielded 417 articles; 40 studies met the inclusion criteria. The quantitative results of CAM treatment showed a standard mean difference (SMD) of 3.78 (95% CI [−0.01, 7.57]) and 0.58 (95% CI [−6.99, 8.15]) in the acne total lesion count, a SMD of −0.70 (95% CI [−1.19, −0.21]) in the eczema area and severity index score and a SMD of 0.94 (95% CI [−0.83, 2.71]) in the scoring of atopic dermatitis score for AD, and a SMD of 3.04 (95% CI [−0.35, 6.43]) and 5.16 (95% CI [−0.52, 10.85]) in the Psoriasis Area Severity Index score for psoriasis. Limitations Differences between the study designs, sample sizes, outcome measures, and treatment durations limit the generalizability of data. Conclusions Based on our quantitative findings we conclude that there is insufficient evidence to support the efficacy and the recommendation of CAM for acne, AD, and psoriasis.
Collapse
Key Words
- AD, atopic dermatitis
- AV, aloe vera
- CAM, complementary and alternative medicine
- CCO, coconut oil
- GT, green tea
- PASI, psoriasis area and severity index
- SCORAD, scoring of atopic dermatitis
- SMD, standardized mean difference
- SSO, sunflower seed oil
- TCS, topical corticosteroid
- TLC, total lesion count
- TTO, tea tree oil
- acne vulgaris
- aloe vera
- atopic dermatitis
- coconut oil
- colloidal oatmeal
- complementary alternative medicine
- curcumin
- eczema
- green tea
- honey
- meta-analysis
- natural ingredients
- psoriasis
- shea butter
- sunflower seed oil
- systematic review
- tea tree oil
- turmeric
- witch hazel
Collapse
Affiliation(s)
- Virginia A. Jones
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois
| | - Payal M. Patel
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois
| | - Claire Wilson
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois
| | - Hongnan Wang
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois
| | - Kurt A. Ashack
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois
- Dermatology Associates of West Michigan, Grand Rapids, Michigan
- Correspondence to: Kurt A. Ashack, MD, MHS, Dermatology Associates of West Michigan, 1740 East Paris Ave SE, Grand Rapids, MI 49546.
| |
Collapse
|
14
|
Pathogenesis of Keratinocyte Carcinomas and the Therapeutic Potential of Medicinal Plants and Phytochemicals. Molecules 2021; 26:molecules26071979. [PMID: 33915735 PMCID: PMC8037492 DOI: 10.3390/molecules26071979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/24/2022] Open
Abstract
Keratinocyte carcinoma (KC) is a form of skin cancer that develops in keratinocytes, which are the predominant cells present in the epidermis layer of the skin. Keratinocyte carcinoma comprises two sub-types, namely basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). This review provides a holistic literature assessment of the origin, diagnosis methods, contributing factors, and current topical treatments of KC. Additionally, it explores the increase in KC cases that occurred globally over the past ten years. One of the principal concepts highlighted in this article is the adverse effects linked to conventional treatment methods of KC and how novel treatment strategies that combine phytochemistry and transdermal drug delivery systems offer an alternative approach for treatment. However, more in vitro and in vivo studies are required to fully assess the efficacy, mechanism of action, and safety profile of these phytochemical based transdermal chemotherapeutics.
Collapse
|
15
|
Chung WH. Pleiotropic Effects of Caffeine Leading to Chromosome Instability and Cytotoxicity in Eukaryotic Microorganisms. J Microbiol Biotechnol 2021; 31:171-180. [PMID: 33397827 PMCID: PMC9706025 DOI: 10.4014/jmb.2011.11042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women’s University, Seoul 0369, Republic of Korea,Innovative Drug Center, Duksung Women’s University, Seoul 01369, Republic of Korea,Corresponding author Phone: +82-2-901-8737 Fax: +82-2-901-8386 E-mail:
| |
Collapse
|
16
|
Jackson J, Pandey R, Schmitt V. Part 1. Evaluation of Epigallocatechin Gallate or Tannic Acid Formulations of Hydrophobic Drugs for Enhanced Dermal and Bladder Uptake or for Local Anesthesia Effects. J Pharm Sci 2020; 110:796-806. [PMID: 33039439 DOI: 10.1016/j.xphs.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
Abstract
Epigallocatechin gallate (EGCG) and tannic acid (TA) are known to increase the aqueous solubility and cellular uptake of the hydrophobic drugs docetaxel, paclitaxel, amphotericin B, and curcumin. In this study the practical application of gallate-based solubilization phenomena for the uptake of these drugs into dermal and bladder tissue and of lidocaine for wound healing application was studied. The penetration of all these drugs into pig skin or docetaxel into pig bladder using EGCG or TA formulations was measured. Overall, EGCG and TA particulate or propylene glycol paste formulations of drugs allowed for greatly increased levels of drug uptake into skin as compared to control formulations. EGCG/propylene glycol pastes allowed for rapid lidocaine uptake into skin. EGCG and TA formulations of docetaxel allowed for approximately 10 fold increases in bladder tissue uptake of docetaxel over tween based solutions. Morphologically, both EGCG and TA caused a mild, dose dependent exfoliation of the bladder wall. Both EGCG and TA formed injectable viscous pastes with propylene glycol which solidified in water and degraded and released lidocaine over 2-35 days. These data support the use of EGCG and TA based formulations of certain drugs for improved dermal, bladder and wound applications.
Collapse
Affiliation(s)
- John Jackson
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2045 Wesbrook Mall, Vancouver, BC, Canada.
| | - Rakhi Pandey
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2045 Wesbrook Mall, Vancouver, BC, Canada
| | - Veronika Schmitt
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2045 Wesbrook Mall, Vancouver, BC, Canada
| |
Collapse
|
17
|
Man GCW, Wang J, Song Y, Wong JH, Zhao Y, Lau TS, Leung KT, Chan TH, Wang H, Kwong J, Ng TB, Wang CC. Therapeutic potential of a novel prodrug of green tea extract in induction of apoptosis via ERK/JNK and Akt signaling pathway in human endometrial cancer. BMC Cancer 2020; 20:964. [PMID: 33023525 PMCID: PMC7539473 DOI: 10.1186/s12885-020-07455-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Previous studies have shown a major green tea polyphenol (−)-epigallocatechin-3-gallate ((−)-EGCG) as a powerful anti-cancer agent. However, its poor bioavailability and requirement of a high dosage to manifest activity have restricted its clinical application. Recently, our team synthesized a peracetate-protected derivative of EGCG, which can act as a prodrug of (−)-EGCG (ProEGCG) with enhanced stability and improved bioavailability in vitro and in vivo. Herein, we tested the therapeutic efficacy of this novel ProEGCG, in comparison to EGCG, toward human endometrial cancer (EC). Methods In this study, the effects of ProEGCG and EGCG treatments on cell growth, cell survival and modulation of intracellular signaling pathways in RL95–2 and AN3 CA EC cells were compared. The antiproliferative effect was evaluated by cell viability assay. Apoptosis was measured by annexin/propidium iodide staining. Expression of mitogen-activated protein kinases, markers of proliferation and apoptosis were measured by immunoblot analysis. In addition, the effects of ProEGCG and EGCG on tumor growth, vessel formation and gene expression profiles on xenograft models of the EC cells were investigated. Results We found that treatment with ProEGCG, but not EGCG, inhibited, in a time- and dose-dependent manner, the proliferation and increased apoptosis of EC cells. Treatment with low-dose ProEGCG significantly enhanced phosphorylation of JNK and p38 MAPK and inhibited phosphorylation of Akt and ERK which are critical mediators of apoptosis. ProEGCG, but not EGCG, elicited a significant decrease in the growth of the EC xenografts, promoted apoptotic activity of tumour cells in the EC xenografts, and decreased microvessel formation, by differentially suppressing anti-apoptotic molecules, NOD1 and NAIP. Notably, no obvious adverse effects were detected. Conclusions Taken together, ProEGCG at a low dose exhibited anticancer activity in EC cells through its anti-proliferative, pro-apoptotic and anti-tumor actions on endometrial cancer in vitro and in vivo. In contrast, a low dose of EGCG did not bring about similar effects. Importantly, our data demonstrated the efficacy and safety of ProEGCG which manifests the potential of a novel anticancer agent for the management of endometrial cancer.
Collapse
Affiliation(s)
- Gene Chi Wai Man
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Jianzhang Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Song
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yu Zhao
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Tat San Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Pediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Joseph Kwong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China. .,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
18
|
Völker JM, Koch N, Becker M, Klenk A. Caffeine and Its Pharmacological Benefits in the Management of Androgenetic Alopecia: A Review. Skin Pharmacol Physiol 2020; 33:93-109. [PMID: 32599587 DOI: 10.1159/000508228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
Abstract
Caffeine, particularly after ingestion, is well known to exert various pharmacological effects. A growing body of evidence implicates the ingestion of caffeine with beneficial effects on several diseases. The easy penetration of caffeine across the skin barrier and into human skin makes caffeine an ideal compound for topical application. Hair loss is known to negatively affect the quality of life and predispose to depression and anxiety. Androgenetic alopecia (AGA) is the most common type of hair loss in both men and women. To date, only few approved drug-based treatments for AGA exist, and these are inevitably associated with side effects. Therefore, the development of topical treatments based on well-tolerated natural ingredients such as caffeine to alleviate hair loss may provide a much-needed alternative to drug-based approaches.
Collapse
Affiliation(s)
| | - Nadine Koch
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Maike Becker
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Adolf Klenk
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| |
Collapse
|
19
|
Li S, Yang Y, Sargsyan D, Wu R, Yin R, Kuo HCD, Yang I, Wang L, Cheng D, Ramirez CN, Hudlikar R, Lu Y, Kong AN. Epigenome, Transcriptome, and Protection by Sulforaphane at Different Stages of UVB-Induced Skin Carcinogenesis. Cancer Prev Res (Phila) 2020; 13:551-562. [PMID: 32161072 PMCID: PMC7272261 DOI: 10.1158/1940-6207.capr-19-0522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Sulforaphane (SFN), a potent antioxidant and antiinflammatory agent, has been shown to protect against cancers especially at early stages. However, how SFN affects UVB-mediated epigenome/DNA methylome and transcriptome changes in skin photodamage has not been fully assessed. Herein, we investigated the transcriptomic and DNA methylomic changes during tumor initiation, promotion, and progression and its impact and reversal by SFN using next-generation sequencing (NGS) technology. The results show that SFN reduced tumor incidence and tumor number. SFN's protective effects were more dramatic in the early stages than with later stages. Bioinformatic analysis of RNA sequencing (RNA-seq) data shows differential expressed genes and identifies the top canonical pathways related to SFN treatment of UVB-induced different stages of epidermal carcinogenesis. These pathways include p53 signaling, cell cycle: G2-M DNA damage checkpoint regulation, Th1, and Th2 activation pathway, and PTEN signaling pathways. The top upstream regulators related to UVB and SFN treatment as time progressed include dextran sulfate, TP53, NFE2L2 (Nrf2), IFNB1, and IL10RA. Bioinformatic analysis of Methyl-seq data shows several differential methylation regions induced by UVB were attenuated by SFN. These include Notch1, Smad6, Gnai3, and Apc2 Integrative analysis of RNA-seq and DNA-seq/CpG methylome yields a subgroup of genes associated with ultraviolet B (UVB) and SFN treatment. The changes in gene expression were inversely correlated with promoter CpG methylation status. These genes include Pik3cd, Matk, and Adm2 In conclusion, our study provides novel insights on the impact of SFN on the transcriptomic and DNA methylomic of UVB-induced different stages of skin cancer in mice.
Collapse
MESH Headings
- Acetone/toxicity
- Animals
- Anticarcinogenic Agents/therapeutic use
- CpG Islands/drug effects
- DNA Methylation/drug effects
- DNA, Neoplasm/genetics
- Disease Progression
- Epigenome/drug effects
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Isothiocyanates/therapeutic use
- Mice
- Mice, Hairless
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasms, Radiation-Induced/etiology
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/prevention & control
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA-Seq
- Radiation-Sensitizing Agents/toxicity
- Random Allocation
- Skin Neoplasms/etiology
- Skin Neoplasms/genetics
- Skin Neoplasms/prevention & control
- Sulfoxides/therapeutic use
- Transcriptome/drug effects
- Ultraviolet Rays/adverse effects
Collapse
Affiliation(s)
- Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Irene Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Christina N Ramirez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Yaoping Lu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
20
|
Lee JW, Ratnakumar K, Hung KF, Rokunohe D, Kawasumi M. Deciphering UV-induced DNA Damage Responses to Prevent and Treat Skin Cancer. Photochem Photobiol 2020; 96:478-499. [PMID: 32119110 DOI: 10.1111/php.13245] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) radiation is among the most prevalent environmental factors that influence human health and disease. Even 1 h of UV irradiation extensively damages the genome. To cope with resulting deleterious DNA lesions, cells activate a multitude of DNA damage response pathways, including DNA repair. Strikingly, UV-induced DNA damage formation and repair are affected by chromatin state. When cells enter S phase with these lesions, a distinct mutation signature is created via error-prone translesion synthesis. Chronic UV exposure leads to high mutation burden in skin and consequently the development of skin cancer, the most common cancer in the United States. Intriguingly, UV-induced oxidative stress has opposing effects on carcinogenesis. Elucidating the molecular mechanisms of UV-induced DNA damage responses will be useful for preventing and treating skin cancer with greater precision. Excitingly, recent studies have uncovered substantial depth of novel findings regarding the molecular and cellular consequences of UV irradiation. In this review, we will discuss updated mechanisms of UV-induced DNA damage responses including the ATR pathway, which maintains genome integrity following UV irradiation. We will also present current strategies for preventing and treating nonmelanoma skin cancer, including ATR pathway inhibition for prevention and photodynamic therapy for treatment.
Collapse
Affiliation(s)
- Jihoon W Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kajan Ratnakumar
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Kai-Feng Hung
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Daiki Rokunohe
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masaoki Kawasumi
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
21
|
Frasheri L, Schielein MC, Tizek L, Mikschl P, Biedermann T, Zink A. Great green tea ingredient? A narrative literature review on epigallocatechin gallate and its biophysical properties for topical use in dermatology. Phytother Res 2020; 34:2170-2179. [PMID: 32189392 DOI: 10.1002/ptr.6670] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/08/2020] [Accepted: 03/01/2020] [Indexed: 11/09/2022]
Abstract
The purpose of this review is to examine epigallocatechin-3-gallate (EGCG) regarding its stability in different conditions (pH-value, concentration, temperature), its interactions with common cosmetic ingredients, and its application in the dermatological field. The literature research considered published journal articles (clinical trials and scientific reviews). Studies were identified by searching electronic databases (MEDLINE and PubMed) and reference lists of respective articles. Higher concentrations of EGCG were reported to correlate with better stability and the same can be said for low temperatures and pH values. The interaction between EGCG and hyaluronic acid strengthens its antioxidant activities. Titanium dioxide coated with EGCG proved a suitable ingredient in sunscreens. The polyphenol possesses antioxidant properties, which proved effective in the prevention of UV-induced skin damage and to alleviate the symptoms of Imiquimod-induced psoriasis. The three endpoints of this review not only showed interesting results but also highlighted some limitations of EGCG. Studies show that the molecule is unstable, which may hinder its dermatological and cosmetic applications. The reported interactions with cosmetic ingredients were limited. As the health aspects of EGCG are well-reported, ECGC has become a focus of interest for health professionals trying to treat common dermatological diseases.
Collapse
Affiliation(s)
- Lorenz Frasheri
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | | | - Linda Tizek
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | | | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Alexander Zink
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| |
Collapse
|
22
|
Cao H, Li X, Wang F, Zhang Y, Xiong Y, Yang Q. Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems. Curr Med Chem 2020; 27:599-629. [PMID: 31400262 DOI: 10.2174/0929867326666190809221332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 03/15/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023]
Abstract
Glioma, especially its most malignant type, Glioblastoma (GBM), is the most common and the most aggressive malignant tumour in the central nervous system. Currently, we have no specific therapies that can significantly improve its dismal prognosis. Recent studies have reported promising in vitro experimental results of several novel glioma-targeting drugs; these studies are encouraging to both researchers and patients. However, clinical trials have revealed that novel compounds that focus on a single, clear glioma genetic alteration may not achieve a satisfactory outcome or have side effects that are unbearable. Based on this consensus, phytochemicals that exhibit multiple bioactivities have recently attracted much attention. Traditional Chinese medicine and traditional Indian medicine (Ayurveda) have shown that phytocompounds inhibit glioma angiogenesis, cancer stem cells and tumour proliferation; these results suggest a novel drug therapeutic strategy. However, single phytocompounds or their direct usage may not reverse comprehensive malignancy due to poor histological penetrability or relatively unsatisfactory in vivo efficiency. Recent research that has employed temozolomide combination treatment and Nanoparticles (NPs) with phytocompounds has revealed a powerful dual-target therapy and a high blood-brain barrier penetrability, which is accompanied by low side effects and strong specific targeting. This review is focused on major phytocompounds that have contributed to glioma-targeting treatment in recent years and their role in drug resistance inhibition, as well as novel drug delivery systems for clinical strategies. Lastly, we summarize a possible research strategy for the future.
Collapse
Affiliation(s)
- Hang Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Feiyifan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yueqi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Zan L, Chen Q, Zhang L, Li X. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered 2020; 10:374-382. [PMID: 31431131 PMCID: PMC6738446 DOI: 10.1080/21655979.2019.1657327] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to investigate the anticancer effects and potential mechanisms of polyphenol epigallocatechin-3-gallate (EGCG) on breast cancer MCF-7 cells in vitro and in vivo. Our results showed that EGCG significantly inhibited MCF-7 cell viability in a time- and dose-dependent manner. Flow cytometry analysis indicated that EGCG induced apoptosis and disrupted cell cycle progression at G2/M phase. Moreover, EGCG inhibited miR-25 expression and increased PARP, pro-caspase-3 and pro-caspase-9 at protein levels. Restoration of miR-25 inhibited EGCG-induced cell apoptosis. Furthermore, EGCG suppressed tumor growth in vivo by downregulating the expression of miR-25 and proteins associated with apoptosis, which was further confirmed by a reduction of Ki-67 and increase of pro-apoptotic PARP expression as determined by immunohistochemistry staining. These findings indicate that EGCG possesses chemopreventive potential in breast cancer which may serve as a promising anticancer agent for clinical applications.
Collapse
Affiliation(s)
- Lingling Zan
- Department of Breast Oncology, Linyi Cancer Hospital , Linyi , Shandong , China
| | - Qingfeng Chen
- Department of Breast Surgery, the affiliated hospital of Qingdao University , Qingdao , China
| | - Lei Zhang
- Department of Breast Surgery, the affiliated hospital of Qingdao University , Qingdao , China
| | - Xiaona Li
- Department of Breast Oncology, Linyi Cancer Hospital , Linyi , Shandong , China
| |
Collapse
|
24
|
Cullen JK, Simmons JL, Parsons PG, Boyle GM. Topical treatments for skin cancer. Adv Drug Deliv Rev 2020; 153:54-64. [PMID: 31705912 DOI: 10.1016/j.addr.2019.11.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023]
Abstract
Skin cancer is a broad term used to describe a number of different malignant indications of the skin. Skin cancers mostly comprise of the keratinocyte cancers [Basal Cell Carcinoma (BCC) and cutaneous Squamous Cell Carcinoma (SCC)], and melanoma. Surgical excision of these malignancies has been the preferred treatment of patients for decades. However, the decision to perform surgery can be affected by various considerations, including co-morbidities of the patient, the anatomical site of the lesion and potential intolerance for repeated excisions. Topical treatment of skin cancer may therefore be more appropriate in certain instances. Topical treatment potentially allows for higher drug levels at the tumor site, and may result in less overall toxicity than systemic agents. This review will specifically address the current agents used in topical treatment of skin cancers, and introduce emerging treatments from the natural product field that may also find utility in these indications.
Collapse
|
25
|
Yang Y, Yin R, Wu R, Ramirez CN, Sargsyan D, Li S, Wang L, Cheng D, Wang C, Hudlikar R, Kuo HC, Lu Y, Kong AN. DNA methylome and transcriptome alterations and cancer prevention by triterpenoid ursolic acid in UVB-induced skin tumor in mice. Mol Carcinog 2019; 58:1738-1753. [PMID: 31237383 PMCID: PMC6722003 DOI: 10.1002/mc.23046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Nonmelanoma skin cancers (NMSCs) are the most common type of skin cancers. Major risk factors for NMSCs include exposure to ultraviolet (UV) irradiation. Ursolic acid (UA) is a natural triterpenoid enriched in blueberries and herbal medicinal products, and possess anticancer activities. This study focuses on the impact of UA on epigenomic, genomic mechanisms and prevention of UVB-mediated NMSC. CpG methylome and RNA transcriptome alterations of early, promotion and late stages of UA treated on UVB-induced NMSC in SKH-1 hairless mice were conducted using CpG methyl-seq and RNA-seq. Samples were collected at weeks 2, 15, and 25, and integrated bioinformatic analyses were performed to identify key pathways and genes modified by UA against UVB-induced NMSC. Morphologically, UA significantly reduced NMSC tumor volume and tumor number. DNA methylome showed inflammatory pathways IL-8, NF-κB, and Nrf2 pathways were highly involved. Antioxidative stress master regulator Nrf2, cyclin D1, DNA damage, and anti-inflammatory pathways were induced by UA. Nrf2, cyclin D1, TNFrsf1b, and Mybl1 at early (2 weeks) and late (25 weeks) stages were identified and validated by quantitative polymerase chain reaction. In summary, integration of CpG methylome and RNA transcriptome studies show UA alters antioxidative, anti-inflammatory, and anticancer pathways in UVB-induced NMSC carcinogenesis. Particularly, UA appears to drive Nrf2 and its upstream/downstream genes, anti-inflammatory (at early stages) and cell cycle regulatory (both early and late stages) genes, of which might contribute to the overall chemopreventive effects of UVB-induced MNSC. This study may provide potential biomarkers/targets for chemoprevention of early stage of UVB-induced NMSC in human.
Collapse
Affiliation(s)
- Yuqing Yang
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Christina N. Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Cellular and Molecular Pharmacology Program, Rutgers Robert
Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Lujing Wang
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - David Cheng
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Hsiao-Chen Kuo
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Yaoping Lu
- Center for Phytochemicals Epigenome Studies, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Chemical Biology, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| |
Collapse
|
26
|
Harwansh RK, Deshmukh R, Rahman MA. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Rosado C, Tokunaga VK, Sauce R, de Oliveira CA, Sarruf FD, Parise-Filho R, Maurício E, de Almeida TS, Velasco MVR, Baby AR. Another Reason for Using Caffeine in Dermocosmetics: Sunscreen Adjuvant. Front Physiol 2019; 10:519. [PMID: 31130869 PMCID: PMC6509748 DOI: 10.3389/fphys.2019.00519] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The excessive exposure to ultraviolet (UV) radiation is the main cause of skin cancer, the most commonly diagnosed cancer in the world. In this context, the development of innovative and more effective sunscreens, with bioactive compounds like caffeine, displaying antioxidant and anticancer potential, is required. This research work assessed in vitro and in vivo the efficacy and safety of topical sunscreen formulations containing caffeine as an adjuvant of the UV filters. Sunscreens were prepared with 2.5% w/w caffeine or in the absence of this compound. In order to evaluate the safety of these formulations, stratum corneum hydration, skin barrier and colorimetry were assessed in vivo in healthy subjects before and after skin treatment with the samples. The efficacy of the sunscreens was assessed in vitro, using PMMA plates and a spectrophotometer equipped with an integrating sphere; and in vivo by the determination of the sun protection factor (SPF). None of the formulations caused erythema or impaired the skin barrier function. The in vitro functional characterization showed higher SPF values for the caffeine formulation. The in vivo studies also confirmed the higher SPF value of the formulation combining caffeine with the filters, compared to the caffeine-free sample. This improvement contributed to an increase of, approximately, 25% in the in vivo anti-UVB protection. In conclusion, caffeine was well tolerated by the skin and increased the photoprotective activity, being a new alternative adjuvant in sunscreens formulation.
Collapse
Affiliation(s)
- Catarina Rosado
- CBIOS – Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisbon, Portugal
| | - Viviane Kaori Tokunaga
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rafael Sauce
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Areias de Oliveira
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Roberto Parise-Filho
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisabete Maurício
- CBIOS – Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisbon, Portugal
| | - Tânia Santos de Almeida
- CBIOS – Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisbon, Portugal
| | | | - André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Yang Y, Wu R, Sargsyan D, Yin R, Kuo HC, Yang I, Wang L, Cheng D, Wang C, Li S, Hudlikar R, Lu Y, Kong AN. UVB drives different stages of epigenome alterations during progression of skin cancer. Cancer Lett 2019; 449:20-30. [PMID: 30771437 PMCID: PMC6411449 DOI: 10.1016/j.canlet.2019.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023]
Abstract
Exposure to ultraviolet B (UVB) irradiation results in multitude of cellular responses including generation of reactive oxygen species and DNA damage and is responsible for non-melanoma skin cancers (NMSCs). Although genetic mutation is well documented, the epi-mutation, the alteration in epigenetics, remains elusive. In this study, we utilized CpG Methyl-seq to identify a genome-wide DNA CpG methylation, to profile the DNA methylation in UVB-irradiated SKH-1 mouse skin epidermis and non-melanoma skin papillomas at various stages. Methyl-seq and RNA-seq were performed to examine the methylation and corresponding transcriptome alterations. The methylation profiles in mouse epidermis were altered by UVB-irradiation as time progresses. Ingenuity Pathways Analysis (IPA) identified many cancer related pathways including PTEN, p53, Nrf2 and inflammatory signaling in UVB-irradiation induced carcinogenesis. Additionally, some novel genes involved in skin carcinogenesis that were not previously reported were differentially methylated, including Enf2, Mgst2, Vegfa, and Cdk4. Taken together, the current study provides novel profiles and insights of methylation and transcriptomic changes at different stages of carcinogenesis in UVB-irradiation induced NMSC and offers potential targets for prevention and treatment of NMSC at different stages of human skin cancer.
Collapse
Affiliation(s)
- Yuqing Yang
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hsiao-Chen Kuo
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Irene Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Lujing Wang
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David Cheng
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yaoping Lu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
29
|
Li K, Xiao G, Richardson JJ, Tardy BL, Ejima H, Huang W, Guo J, Liao X, Shi B. Targeted Therapy against Metastatic Melanoma Based on Self-Assembled Metal-Phenolic Nanocomplexes Comprised of Green Tea Catechin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801688. [PMID: 30886799 PMCID: PMC6402403 DOI: 10.1002/advs.201801688] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/09/2018] [Indexed: 02/05/2023]
Abstract
The targeted therapy of metastatic melanoma is an important yet challenging goal that has received only limited attention to date. Herein, green tea polyphenols, (-)-epigallocatechin-3-gallate (EGCG), and lanthanide metal ions (Sm3+) are used as building blocks to engineer self-assembled SmIII-EGCG nanocomplexes with synergistically enhanced tumor inhibitory properties. These nanocomplexes have negligible systemic toxic effects on healthy cells but cause a significant reduction in the viability of melanoma cells by efficiently regulating their metabolic pathways. Moreover, the wound-induced migration of melanoma cells can be efficiently inhibited by SmIII-EGCG, which is a key criterion for metastatic melanoma therapy. In a mouse melanoma tumor model, SmIII-EGCG is directly compared with a clinical anticancer drug, 5-fluorouracil and shows remarkable tumor inhibition. Moreover, the targeted therapy of SmIII-EGCG is shown to prevent metastatic lung melanoma from spreading to main organs with no adverse side effects on the body weight or organs. These in vivo results demonstrate significant advantages of SmIII-EGCG over its clinical counterpart. The results suggest that these green tea-based, self-assembled nanocomplexes possess all of the key traits of a clinically promising candidate to address the challenges associated with the treatment of advanced stage metastatic melanoma.
Collapse
Affiliation(s)
- Ke Li
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
- Laboratory of EthnopharmacologyRegenerative Medicine Research CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Gao Xiao
- Wyss Institute for Biologically Inspired EngineeringJohn A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02115USA
- Department of Environmental Science and EngineeringCollege of Environment and ResourcesFuzhou UniversityFuzhou350108China
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology and Department of Chemical and Biomolecular EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Blaise L. Tardy
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP. O. Box 1630000076Finland
| | - Hirotaka Ejima
- Department of Materials EngineeringThe University of Tokyo7‐3‐1 HongoBunkyo‐kuTokyo113‐8656Japan
| | - Wen Huang
- Laboratory of EthnopharmacologyRegenerative Medicine Research CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Junling Guo
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
- Wyss Institute for Biologically Inspired EngineeringJohn A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02115USA
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduSichuan610065China
| | - Xuepin Liao
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
| | - Bi Shi
- Department of Biomass Chemistry and EngineeringSichuan UniversityChengdu610065China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengduSichuan610065China
| |
Collapse
|
30
|
Coffee consumption and risk of nonmelanoma skin cancer: a dose-response meta-analysis. Eur J Cancer Prev 2019; 27:164-170. [PMID: 27902644 DOI: 10.1097/cej.0000000000000322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several epidemiological studies have evaluated the associations between coffee consumption and the risk of skin cancer; however, the results were not conclusive. This systematic review and meta-analysis of the cohort and case-control studies was carried out to determine the association between coffee intake and the risk of nonmelanoma skin cancer. Studies were identified by searching the PubMed and MEDLINE databases (to November 2015). Study-specific risk estimates were pooled under the random-effects model. We separately estimated the relative risk of the three conditions, for exposure to different doses of coffee consumption, kind of study design, and analysis restricted to the basal cell carcinoma type. The summary relative risks for nonmelanoma skin cancer were 0.96 [95% confidence interval (CI): 0.92-0.99] for one cup of coffee, 0.92 (95% CI: 0.88-0.97) for one to two cups of coffee, 0.89 (95% CI: 0.86-0.93) for two to three cups of coffee, and 0.81 (95% CI: 0.77-0.85) for more than three cups of coffee per day, respectively. This meta-analysis suggested that caffeinated coffee might have chemopreventive effects against basal cell carcinoma dose dependently. However, other prospective studies are warranted to confirm these effects.
Collapse
|
31
|
Zhang S, Zhao Y, Ohland C, Jobin C, Sang S. Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (-)-epigallocatechin-3-gallate which trap deleterious reactive endogenous metabolites. Free Radic Biol Med 2019; 131:332-344. [PMID: 30578921 PMCID: PMC6345541 DOI: 10.1016/j.freeradbiomed.2018.12.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
The in vivo mechanism of tea polyphenol-mediated prevention of many chronic diseases is still largely unknown. Studies have shown that accumulation of toxic reactive cellular metabolites, such as ammonia and reactive carbonyl species (RCS), is one of the causing factors to the development of many chronic diseases. In this study, we investigated the in vivo interaction between (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in tea leaves, and ammonia and RCS. We found that EGCG could be oxidized to EGCG quinone in mice, and then rapidly react with ammonia to generate the aminated EGCG metabolite, 4'-NH2-EGCG. Both EGCG and its aminated metabolite could further scavenge RCS, such as methylglyoxal (MGO), malondialdehyde (MDA), and trans-4-hydroxy-2-nonenal (4-HNE), to produce the RCS conjugates of EGCG and the aminated EGCG. Both the aminated and the RCS conjugated metabolites of EGCG were detected in human after drinking four cups of green tea per day. By comparing the levels of the aminated and the RCS conjugated metabolites in EGCG exposed germ-free (GF) mice and specific-pathogen-free (SPF) mice, we demonstrated that gut microbiota facilitate the formation of the aminated metabolite of EGCG, the RCS conjugates of EGCG, and the RCS conjugates of the aminated EGCG. By comparing the trapping capacities of EGCG and its aminated metabolite under aerobic and anaerobic conditions, we found that oxygen is not essential for the trapping of reactive species by EGCG and 4'-NH2-EGCG suggesting that EGCG and its aminated metabolite could scavenge RCS in the GI track and in the circulation system. Altogether, this study provides in vivo evidences that EGCG has the capacity to scavenge toxic reactive metabolic wastes. This finding opens a new window to understand the underlying mechanisms by which drinking tea could prevent the development of chronic diseases.
Collapse
Affiliation(s)
- Shuwei Zhang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Christina Ohland
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA.
| |
Collapse
|
32
|
Ijaz S, Akhtar N, Khan MS, Hameed A, Irfan M, Arshad MA, Ali S, Asrar M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed Pharmacother 2018; 103:1643-1651. [DOI: 10.1016/j.biopha.2018.04.113] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
|
33
|
Monteiro J, Alves MG, Oliveira PF, Silva BM. Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit Rev Food Sci Nutr 2018; 59:2597-2625. [PMID: 29624433 DOI: 10.1080/10408398.2018.1461607] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylated xanthines (methylxanthines) are available from a significant number of different botanical species. They are ordinarily included in daily diet, in many extremely common beverages and foods. Caffeine, theophylline and theobromine are the main methylxanthines available from natural sources. The supposedly relatively low toxicity of methylxanthines, combined with the many beneficial effects that have been attributed to these compounds through time, generated a justified attention and a very prolific ground for dedicated scientific reports. Methylxanthines have been widely used as therapeutical tools, in an intriguing range of medicinal scopes. In fact, methylxanthines have been/were medically used as Central Nervous System stimulants, bronchodilators, coronary dilators, diuretics and anti-cancer adjuvant treatments. Other than these applications, methylxanthines have also been hinted to hold other beneficial health effects, namely regarding neurodegenerative diseases, cardioprotection, diabetes and fertility. However, it seems now consensual that toxicity concerns related to methylxanthine consumption and/or therapeutic use should not be dismissed. Taking all the knowledge and expectations on the potential of methylxanthines into account, we propose a systematic look at the past and future of methylxanthine pharmacologic applications, discussing all the promise and anticipating possible constraints. Anyways, methylxanthines will still substantiate considerable meaningful research and discussion for years to come.
Collapse
Affiliation(s)
- João Monteiro
- Mass Spectrometry Centre, Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,Institute of Health Research an Innovation (i3S), University of Porto , Porto , Portugal
| | | |
Collapse
|
34
|
Abstract
Coffee silverskin, the major coffee-roasting by-product, is currently used as fuel and for soil fertilization. However, there are several studies reporting silverskin as a good source of bioactive compounds that can be extracted and further used by cosmetic industry. Its high antioxidant potential may be due to the synergistic interaction of chlorogenic acids (1–6%), caffeine (0.8–1.25%), and melanoidins (17–23%), among other antioxidant compounds. The bioactive compounds of silverskin can answer to the new fields of cosmetic industry on natural active ingredient resources that improve health skin appearance, counteract skin aging and related diseases, in an environmentally friendly approach. Skin aging is a complex process associated with oxidative metabolism and reactive oxygen species (ROS) generation. ROS production increase matrix metalloproteinases (MMPs), as well as pro-inflammatory mediators, resulting in consequent skin damage and aging. To counteract this process, cosmetic industry is looking for compounds able to increase MMP inhibitory activities, hyaluronidase inhibitory activity, expression of collagen and elastase inhibitory activity, as potential bioactive ingredients with anti-aging purposes. This review focuses on skin aging factors and the potential anti-aging, anti-inflammatory, antimicrobial, anti-cellulite and anti-hair loss activity, as well as protection against UV damage, of coffee silverskin and their bioactive compounds.
Collapse
|
35
|
Fernandes AR, Santos AC, Sanchez-Lopez E, Kovačević AB, Espina M, Calpena AC, Veiga FJ, Garcia ML, Souto EB. Neoplastic Multifocal Skin Lesions: Biology, Etiology, and Targeted Therapies for Nonmelanoma Skin Cancers. Skin Pharmacol Physiol 2017; 31:59-73. [PMID: 29262420 DOI: 10.1159/000479529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022]
Abstract
Neoplastic skin lesions are multifocal, diffuse skin infiltrations of particular relevance in the differential diagnosis of ulcerative, nodular, or crusting skin lesions. Nonmelanoma skin cancers (NMSCs), namely, basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and also actinic keratosis (AK), are the most common malignant tumors in humans. BCCs do not proliferate rapidly and most of the times do not metastasize, while SCCs are more infiltrative, metastatic, and destructive. AKs are precursor lesions of cutaneous SCCs. The classical therapy of NMSCs makes use of photodynamic therapy associated with chemotherapeutics. With improved understanding of the pathological mechanisms of tumor initiation, progression, and differentiation, a case is made towards the use of targeted chemotherapy with the intent to reduce the cytotoxicity of classical treatments. The present review aims to describe the current state of the art on the knowledge of NMSC, including its risks factors, oncogenes, and skin carcinogenesis, discussing the classical therapy against new therapeutic options.
Collapse
Affiliation(s)
- Ana R Fernandes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sharma P, Montes de Oca MK, Alkeswani AR, McClees SF, Das T, Elmets CA, Afaq F. Tea polyphenols for the prevention of UVB-induced skin cancer. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2017; 34:50-59. [PMID: 29044724 DOI: 10.1111/phpp.12356] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
Abstract
Skin cancer is the most common type of cancer with increasing incidence rate and public health burden. Solar ultraviolet (UV) radiation causes an array of damaging cellular and molecular events that eventually lead to the development of skin cancer. Despite increased awareness about sun protection, the exposure rate remains high with less than 15% of men and 30% of women using sunscreen on a regular basis. Therefore, there is an imperative need for the development of novel preventive approaches. Skin cancer chemoprevention using phytochemicals either as dietary supplements or by topical applications has gained considerable attention due to their low toxicity, availability, and anticarcinogenic properties. Tea, the second most commonly consumed beverage in the world, is a rich source of promising phytochemicals known as polyphenols. In this review, we discuss the findings of various in vitro, in vivo and human studies signifying the chemopreventive effects of tea polyphenols against UVB-induced skin cancer. This is accomplished by exploring the role of tea polyphenols in DNA repair, inflammation, oxidative stress, signaling pathways, and epigenetics. Finally, this review discusses a variety of innovative delivery methods that enhance the photochemopreventive effects of tea polyphenols against skin cancer.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary K Montes de Oca
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amena R Alkeswani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah F McClees
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tanushree Das
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
37
|
Zhao L, Liu S, Xu J, Li W, Duan G, Wang H, Yang H, Yang Z, Zhou R. A new molecular mechanism underlying the EGCG-mediated autophagic modulation of AFP in HepG2 cells. Cell Death Dis 2017; 8:e3160. [PMID: 29095434 PMCID: PMC5775413 DOI: 10.1038/cddis.2017.563] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/26/2023]
Abstract
Epigallocatechingallate (EGCG) is a major bioactive component of green tea and is associated with health benefits against multiple diseases including cancer. As an indicator of hepatocellular carcinoma (HCC), high levels of α-fetal protein (AFP) are related to malignant differentiation and poor prognosis of cancer cells. In this study, EGCG can effectively reduce AFP secretion and simultaneously induce AFP aggregation in human HCC HepG2 cells. EGCG-stimulated autophagy induces the degradation of AFP aggregates in HepG2 cells. Furthermore, we thoroughly studied the underlying molecular mechanisms behind EGCG-stimulated autophagy by using large-scale all-atom molecular dynamics simulations, which revealed a novel molecular mechanism. EGCG directly interacts with LC3-I protein, readily exposing the pivotal Gly-120 site of the latter to other important binding partners such as 1,2-distearoyl-sn-glycero-3-phosphoethanolamine and promoting the synthesis of LC3-II, a characteristic autophagosomal marker. Our results suggest that EGCG is critical in regulating AFP secretion and in modulating autophagic activities of HepG2 cells, providing a molecular basis for potentially preventing and treating HCC.
Collapse
Affiliation(s)
- Lin Zhao
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shengtang Liu
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiaying Xu
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Li
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Guangxin Duan
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haichao Wang
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Zaixing Yang
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Computational Biological Center, IBM Thomas J Watson Research Center, Yorktown Heights, NY 10598, USA.,Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
38
|
Dayalan Naidu S, Dikovskaya D, Gaurilcikaite E, Knatko EV, Healy ZR, Mohan H, Koh G, Laurell A, Ball G, Olagnier D, de la Vega L, Ganley IG, Talalay P, Dinkova-Kostova AT. Transcription factors NRF2 and HSF1 have opposing functions in autophagy. Sci Rep 2017; 7:11023. [PMID: 28887499 PMCID: PMC5591275 DOI: 10.1038/s41598-017-11262-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy plays a critical role in the maintenance of cellular homeostasis by degrading proteins, lipids and organelles. Autophagy is activated in response to stress, but its regulation in the context of other stress response pathways, such as those mediated by heat shock factor 1 (HSF1) and nuclear factor-erythroid 2 p45-related factor 2 (NRF2), is not well understood. We found that the Michael acceptor bis(2-hydoxybenzylidene)acetone (HBB2), a dual activator of NRF2 and HSF1, protects against the development of UV irradiation-mediated cutaneous squamous cell carcinoma in mice. We further show that HBB2 is an inducer of autophagy. In cells, HBB2 increases the levels of the autophagy-cargo protein p62/sequestosome 1, and the lipidated form of microtubule-associated protein light chain 3 isoform B. Activation of autophagy by HBB2 is impaired in NRF2-deficient cells, which have reduced autophagic flux and low basal and induced levels of p62. Conversely, HSF1-deficient cells have increased autophagic flux under both basal as well as HBB2-induced conditions, accompanied by increased p62 levels. Our findings suggest that NRF2 and HSF1 have opposing roles during autophagy, and illustrate the existence of tight mechanistic links between the cellular stress responses.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Dina Dikovskaya
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Egle Gaurilcikaite
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Elena V Knatko
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Zachary R Healy
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pulmonary and Critical Care Medicine and Department of Internal Medicine, Duke University Hospital, Durham, NC, 27705, USA
| | - Hema Mohan
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Glenn Koh
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Axel Laurell
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Graeme Ball
- Dundee Imaging Facility, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - David Olagnier
- Lady Davis Institute-Jewish General Hospital, McGill University, Division of Experimental Medicine, Montreal, QC, Canada
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, 8000, Denmark
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Ian G Ganley
- The Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Paul Talalay
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
39
|
Bazin M, Purohit NK, Shah GM. Comprehensive measurement of UVB-induced non-melanoma skin cancer burden in mice using photographic images as a substitute for the caliper method. PLoS One 2017; 12:e0171875. [PMID: 28187193 PMCID: PMC5302799 DOI: 10.1371/journal.pone.0171875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/26/2017] [Indexed: 11/23/2022] Open
Abstract
The vernier caliper has been used as a gold standard to measure the length, width and height of skin tumors to calculate their total area and volume. It is a simple method for collecting data on a few tumors at a time, but becomes tedious, time-consuming and stressful for the animals and the operator when used for measuring multiple tumors in a large number of animals in protocols such as UVB-induced non-melanoma skin cancer (NMSC) in SKH-1 mice. Here, we show that photographic images of these mice taken within a few minutes under optimized conditions can be subjected to computerized analyses to determine tumor volume and area as accurately and precisely as the caliper method. Unlike the caliper method, the photographic method also records the incidence and multiplicity of tumors, thus permitting comprehensive measurement of tumor burden in the animal. The simplicity and ease of this method will permit more frequent monitoring of tumor burden in long protocols, resulting in the creation of additional data about dynamic changes in progression of cancer or the efficacy of therapeutic intervention. The photographic method can broadly substitute the caliper method for quantifying other skin pathologies.
Collapse
Affiliation(s)
- Marc Bazin
- Laboratory for Skin Cancer Research, CHU-Q (CHUL) Quebec University Hospital Research Centre, Laval University, Québec City, Québec, Canada
| | - Nupur K. Purohit
- Laboratory for Skin Cancer Research, CHU-Q (CHUL) Quebec University Hospital Research Centre, Laval University, Québec City, Québec, Canada
| | - Girish M. Shah
- Laboratory for Skin Cancer Research, CHU-Q (CHUL) Quebec University Hospital Research Centre, Laval University, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
40
|
Knatko EV, Praslicka B, Higgins M, Evans A, Purdie KJ, Harwood CA, Proby CM, Ooi A, Dinkova-Kostova AT. Whole-Exome Sequencing Validates a Preclinical Mouse Model for the Prevention and Treatment of Cutaneous Squamous Cell Carcinoma. Cancer Prev Res (Phila) 2017; 10:67-75. [PMID: 27923803 PMCID: PMC5408961 DOI: 10.1158/1940-6207.capr-16-0218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022]
Abstract
Cutaneous squamous cell carcinomas (cSCC) are among the most common and highly mutated human malignancies. Solar UV radiation is the major factor in the etiology of cSCC. Whole-exome sequencing of 18 microdissected tumor samples (cases) derived from SKH-1 hairless mice that had been chronically exposed to solar-simulated UV (SSUV) radiation showed a median point mutation (SNP) rate of 155 per Mb. The majority (78.6%) of the SNPs are C.G>T.A transitions, a characteristic UVR-induced mutational signature. Direct comparison with human cSCC cases showed high overlap in terms of both frequency and type of SNP mutations. Mutations in Trp53 were detected in 15 of 18 (83%) cases, with 20 of 21 SNP mutations located in the protein DNA-binding domain. Strikingly, multiple nonsynonymous SNP mutations in genes encoding Notch family members (Notch1-4) were present in 10 of 18 (55%) cases. The histopathologic spectrum of the mouse cSCC that develops in this model resembles very closely the spectrum of human cSCC. We conclude that the mouse SSUV cSCCs accurately represent the histopathologic and mutational spectra of the most prevalent tumor suppressors of human cSCC, validating the use of this preclinical model for the prevention and treatment of human cSCC. Cancer Prev Res; 10(1); 67-75. ©2016 AACR.
Collapse
Affiliation(s)
- Elena V. Knatko
- Division of Cancer Research, School of Medicine, University of Dundee, Scotland, United Kingdom
| | - Brandon Praslicka
- Department of Toxicology and Pharmacology, College of Pharmacy, University of Arizona. Tucson, Arizona, USA
| | - Maureen Higgins
- Division of Cancer Research, School of Medicine, University of Dundee, Scotland, United Kingdom
| | - Alan Evans
- Department of Pathology, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Karin J. Purdie
- Centre for Cutaneous Research, Barts and the London Queen Mary University of London, London, United Kingdom
| | - Catherine A. Harwood
- Centre for Cutaneous Research, Barts and the London Queen Mary University of London, London, United Kingdom
| | - Charlotte M. Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Scotland, United Kingdom
| | - Aikseng Ooi
- Department of Toxicology and Pharmacology, College of Pharmacy, University of Arizona. Tucson, Arizona, USA
| | - Albena T. Dinkova-Kostova
- Division of Cancer Research, School of Medicine, University of Dundee, Scotland, United Kingdom
- Department Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Muhammad F, Jaberi-Douraki M, de Sousa DP, Riviere JE. Modulation of chemical dermal absorption by 14 natural products: a quantitative structure permeation analysis of components often found in topical preparations. Cutan Ocul Toxicol 2016; 36:237-252. [DOI: 10.1080/15569527.2016.1258709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Faqir Muhammad
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA,
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA,
| | - Majid Jaberi-Douraki
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA,
- Department of Mathematics, Kansas State University, Manhattan, KS, USA, and
| | | | - Jim E. Riviere
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, USA,
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA,
| |
Collapse
|
42
|
Li X, Cornelis MC, Liang L, Song F, De Vivo I, Giovannucci E, Tang JY, Han J. A genome-wide analysis of gene-caffeine consumption interaction on basal cell carcinoma. Carcinogenesis 2016; 37:1138-1143. [PMID: 27797824 PMCID: PMC5137266 DOI: 10.1093/carcin/bgw107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/16/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022] Open
Abstract
Animal models have suggested that oral or topical administration of caffeine could inhibit ultraviolet-induced carcinogenesis via the ataxia telangiectasia and rad3 (ATR)-related apoptosis. Previous epidemiological studies have demonstrated that increased caffeine consumption is associated with reduced risk of basal cell carcinoma (BCC). To identify common genetic markers that may modify this association, we tested gene-caffeine intake interaction on BCC risk in a genome-wide analysis. We included 3383 BCC cases and 8528 controls of European ancestry from the Nurses' Health Study and Health Professionals Follow-up Study. Single nucleotide polymorphism (SNP) rs142310826 near the NEIL3 gene showed a genome-wide significant interaction with caffeine consumption (P = 1.78 × 10-8 for interaction) on BCC risk. There was no gender difference for this interaction (P = 0.64 for heterogeneity). NEIL3, a gene belonging to the base excision DNA repair pathway, encodes a DNA glycosylase that recognizes and removes lesions produced by oxidative stress. In addition, we identified several loci with P value for interaction <5 × 10-7 in gender-specific analyses (P for heterogeneity between genders < 0.001) including those mapping to the genes LRRTM4, ATF3 and DCLRE1C in women and POTEA in men. Finally, we tested the associations between caffeine consumption-related SNPs reported by previous genome-wide association studies and risk of BCC, both individually and jointly, but found no significant association. In sum, we identified a DNA repair gene that could be involved in caffeine-mediated skin tumor inhibition. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Xin Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA 02115, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA 02115, USA
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, Tianjin 300060, China
- National Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA 94063, USA
| | - Jiali Han
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
- Center for Pharmacoepidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
43
|
In Vitro Chemopreventive Properties of Green Tea, Rooibos and Honeybush Extracts in Skin Cells. Molecules 2016; 21:molecules21121622. [PMID: 27897996 PMCID: PMC6273016 DOI: 10.3390/molecules21121622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022] Open
Abstract
The chemopreventive properties of the herbal teas rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.) have been demonstrated on mouse skin in vivo but the underlying mechanisms are not clear. The aim of the current study was to determine the anti-proliferative and pro-apoptotic activity of methanol and aqueous extracts of rooibos and two Cyclopia species in different skin cells, using green tea (Camellia sinensis) as a benchmark. Extracts were also characterised for their major individual polyphenols by high performance liquid chromatography and spectroscopically for the total polyphenol (TP) groups. The methanol extract of rooibos, containing higher levels of polyphenols than its aqueous extract, displayed similar activity to green tea as it selectively targeted premalignant cells by inhibiting cell proliferation at lower concentrations whilst inducing apoptosis via membrane depolarisation at higher concentrations. Specific roles of the major rooibos dihydrochalcones and flavanol/proanthocyanidin-type (FLAVA) compounds are likely to be involved. The aqueous extracts of the Cyclopia species were more active against cell proliferation and at inducing apoptosis which was associated with a higher FLAVA content and a reduced TP/FLAVA ratio. In contrast, their methanol extracts exhibited a cytoprotective effect against apoptosis which was related to their monomeric xanthone and flavanone content. The underlying chemopreventive properties of green tea and the herbal teas appear to be associated with diverse and complex monomeric/polymeric polyphenolic cell interactions.
Collapse
|
44
|
Magcwebeba T, Swart P, Swanevelder S, Joubert E, Gelderblom W. Anti-Inflammatory Effects of Aspalathus linearis and Cyclopia spp. Extracts in a UVB/Keratinocyte (HaCaT) Model Utilising Interleukin-1α Accumulation as Biomarker. Molecules 2016; 21:molecules21101323. [PMID: 27706097 PMCID: PMC6274390 DOI: 10.3390/molecules21101323] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/16/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Ultraviolet B (UVB) radiation is one of the major predisposing risk factors of skin cancer. The anticancer and photoprotective effects of unoxidized rooibos (Aspalathus linearis) and honeybush (Cyclopia) herbal teas, containing high levels of dihydrochalones and xanthones, respectively, have been demonstrated in skin cancer models in vivo. In the current study, the anti-inflammatory effects of methanol and aqueous extracts of these herbal teas were investigated in a UVB/HaCaT keratinocyte model with intracellular interleukin-1α (icIL-1α) accumulation as a biomarker. Extracts of green tea (Camellia sinensis) served as benchmark. Both extracts of green tea and rooibos, as well as the aqueous extract of C. intermedia, enhanced UVB-induced inhibition of cell viability, proliferation and induction of apoptosis, facilitating the removal of icIL-1α. The underlying mechanisms may involve mitochondrial dysfunction exhibiting pro-oxidant responses via polyphenol-iron interactions. The methanol extracts of honeybush, however, protected against UVB-induced reduction of cell growth parameters, presumably via antioxidant mechanisms that prevented the removal of highly inflamed icIL-1α-containing keratinocytes via apoptosis. The dual antioxidant and/or pro-oxidant role of the polyphenolic herbal tea constituents should be considered in developing preventive strategies against UVB-induced skin carcinogenesis. The indirect removal of UVB damaged keratinocytes by herbal tea extracts via apoptosis may find application in the prevention of photo-induced inflammation.
Collapse
Affiliation(s)
- Tandeka Magcwebeba
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Sonja Swanevelder
- Biostatistics Unit, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | - Elizabeth Joubert
- Post-Harvest and Wine Technology Division, Agricultural Research Council (Infruitec-Nietvoorbij), Private Bag X5026, Stellenbosch 7599, South Africa.
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
| | - Wentzel Gelderblom
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch) 7602, South Africa.
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa.
| |
Collapse
|
45
|
Zhang W, Yang Y, Lv T, Fan Z, Xu Y, Yin J, Liao B, Ying H, Ravichandran N, Du Q. Sucrose esters improve the colloidal stability of nanoethosomal suspensions of (-)-epigallocatechin gallate for enhancing the effectiveness against UVB-induced skin damage. J Biomed Mater Res B Appl Biomater 2016; 105:2416-2425. [PMID: 27618624 DOI: 10.1002/jbm.b.33785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/15/2016] [Accepted: 08/28/2016] [Indexed: 11/11/2022]
Abstract
Nanoethosomal suspensions, composed of phospholipids, ethanol, and water, are novel lipid carriers. These suspensions have been reported to enhance the permeation of drugs into the skin as a result of the interdigitation effect of ethanol on the lipid bilayer of liposomes and by increasing the fluidity of lipids in the stratum corneum. The physical stability of the nanoethosomal suspension is still a critical research problem until now. This study investigated the commercial palm sucrose esters to improve the colloidal stability of nanoethosomal suspensions. The results indicated that palm sucrose esters (PSE) were effective for stabilizing nanoethosomal suspension of (-)-epigallocatechin gallate (EGCG) from green tea. A PSE concentration of 0.15% was optimal for a nanoethosomal suspension which gave mean diameter 75.5 ± 3.5 nm, zeta potential -30.8 ± 3.2 mV and polydispersity index 0.207 ± 0.017. Moreover, the effectiveness of stabilization was influenced by the degree of esterification of the sucrose esters: the sucrose polyesters could prolong the stability of nanoethosomes loaded with EGCG to a year, but the sucrose monoesters only provided less than 6 months of stabilization. EGCG nanoethosomal suspension stabilized by sucrose polyesters shows better inhibition effectiveness against UVB-induced skin damage than native EGCG. The nanoethosomal suspension has the potential for its utilization as skin care and other products. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2416-2425, 2017.
Collapse
Affiliation(s)
- Weihua Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Yuanyuan Yang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Tao Lv
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Zhaoyang Fan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Yongquan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Bingwu Liao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Hao Ying
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Nagaiya Ravichandran
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Qizhen Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| |
Collapse
|
46
|
Liao B, Ying H, Yu C, Fan Z, Zhang W, Shi J, Ying H, Ravichandran N, Xu Y, Yin J, Jiang Y, Du Q. (-)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice. Int J Pharm 2016; 512:22-31. [PMID: 27544847 DOI: 10.1016/j.ijpharm.2016.08.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/31/2016] [Accepted: 08/17/2016] [Indexed: 01/25/2023]
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG), a versatile natural product in fresh tea leaves and green tea, has been investigated as a preventative treatment for cancers and cardiovascular disease. The objective of this study was to develop EGCG-nanoethosomes for transdermal delivery and to evaluate them for treating subcutaneously implanted human melanoma cell tumors. EGCG-nanoethosomes, composed of 0.2% EGCG, 2% soybean phosphatidylcholine, 30% ethanol, 1% Tween-80 and 0.1% sugar esters, were prepared and characterized using laser transmission electron microscopy. These nanoethosomes were smoother and more compact than basic-nanoethosomes with the same components except for EGCG. The effectiveness of transdermal delivery by EGCG-nanoethosomes was demonstrated in an in vitro permeability assay system using mouse skin. The inhibitory effect of docetaxel (DT) loaded in EGCG-nanoethosomes (DT-EGCG-nanoethosomes) was analyzed by monitoring growth of a subcutaneously implanted tumor from A-375 human melanoma cells in mice. Mice treated with DT-EGCG-nanoethosomes exhibited a significant therapeutic effect, with tumors shrinking, on average, by 31.5% of initial volumes after 14 d treatment. This indicated a potential for treating skin cancer. In a pharmacokinetic study, transdermal delivery by DT-EGCG-nanoethosomes enabled sufficient DT exposure to the tumor. Together, these findings indicated that EGCG-nanoethosomes have great potential as drug carriers for transdermal delivery.
Collapse
Affiliation(s)
- Bingwu Liao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan 311300, China
| | - Hao Ying
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan 311300, China
| | - Chenhuan Yu
- Experimental Animal Center of the Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Zhaoyang Fan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan 311300, China
| | - Weihua Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan 311300, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Huazhong Ying
- Experimental Animal Center of the Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Nagaiya Ravichandran
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan 311300, China
| | - Yongquan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Yongwen Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Qizhen Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan 311300, China.
| |
Collapse
|
47
|
Lukic M, Jareid M, Weiderpass E, Braaten T. Coffee consumption and the risk of malignant melanoma in the Norwegian Women and Cancer (NOWAC) Study. BMC Cancer 2016; 16:562. [PMID: 27473841 PMCID: PMC4966737 DOI: 10.1186/s12885-016-2586-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/20/2016] [Indexed: 11/10/2022] Open
Abstract
Background Coffee contains biologically-active substances that suppress carcinogenesis in vivo, and coffee consumption has been associated with a lower risk of malignant melanoma. We studied the impact of total coffee consumption and of different brewing methods on the incidence of malignant melanoma in a prospective cohort of Norwegian women. Methods We had baseline information on total coffee consumption and consumption of filtered, instant, and boiled coffee from self-administered questionnaires for 104,080 women in the Norwegian Women and Cancer (NOWAC) Study. We also had follow-up information collected 6–8 years after baseline. Multiple imputation was used to deal with missing data, and multivariable Cox regression models were used to calculate hazard ratios (HR) for malignant melanoma by consumption category of total, filtered, instant, and boiled coffee. Results During 1.7 million person-years of follow-up, 762 cases of malignant melanoma were diagnosed. Compared to light consumers of filtered coffee (≤1 cup/day), we found a statistically significant inverse association with low-moderate consumption (>1–3 cups/day, HR = 0.80; 95 % confidence interval [CI] 0.66–0.98) and high-moderate consumption of filtered coffee (>3–5 cups/day, HR = 0.77; 95 % CI 0.61–0.97) and melanoma risk (ptrend = 0.02). We did not find a statistically significant association between total, instant, or boiled coffee consumption and the risk of malignant melanoma in any of the consumption categories. Conclusions The data from the NOWAC Study indicate that a moderate intake of filtered coffee could reduce the risk of malignant melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2586-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marko Lukic
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037, Tromsø, Norway.
| | - Mie Jareid
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037, Tromsø, Norway.,Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Tonje Braaten
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037, Tromsø, Norway
| |
Collapse
|
48
|
Structure-Bioactivity Relationships of Methylxanthines: Trying to Make Sense of All the Promises and the Drawbacks. Molecules 2016; 21:molecules21080974. [PMID: 27472311 PMCID: PMC6273298 DOI: 10.3390/molecules21080974] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/02/2016] [Accepted: 07/19/2016] [Indexed: 12/05/2022] Open
Abstract
Methylxanthines are a group of phytochemicals derived from the purine base xanthine and obtained from plant secondary metabolism. They are unobtrusively included in daily diet in common products as coffee, tea, energetic drinks, or chocolate. Caffeine is by far the most studied methylxanthine either in animal or epidemiologic studies. Theophylline and theobromine are other relevant methylxanthines also commonly available in the aforementioned sources. There are many disseminated myths about methylxanthines but there is increased scientific knowledge to discuss all the controversy and promise shown by these intriguing phytochemicals. In fact, many beneficial physiologic outcomes have been suggested for methylxanthines in areas as important and diverse as neurodegenerative and respiratory diseases, diabetes or cancer. However, there have always been toxicity concerns with methylxanthine (over)consumption and pharmacologic applications. Herein, we explore the structure-bioactivity relationships to bring light those enumerated effects. The potential shown by methylxanthines in such a wide range of conditions should substantiate many other scientific endeavors that may highlight their adequacy as adjuvant therapy agents and may contribute to the advent of functional foods. Newly designed targeted molecules based on methylxanthine structure may originate more specific and effective outcomes.
Collapse
|
49
|
Abstract
BACKGROUND Caffeine has been shown to prevent ultraviolet radiation-induced carcinogenesis and to inhibit growth of melanoma cells in experimental studies. We evaluated the association among caffeine intake, coffee consumption, and melanoma risk among three large cohort studies. METHODS The analysis used data from 89,220 women in the Nurses' Health Study II (1991-2009), 74,666 women in the Nurses' Health Study (1980-2008), and 39,424 men in the Health Professionals Follow-up Study (1986-2008). We used Cox proportional hazards models to estimate the hazard ratios (HR) with 95% confidence intervals (CIs) of melanoma associated with dietary intakes. RESULTS We documented 2,254 melanoma cases over 4 million person-years of follow-up. After adjustment for other risk factors, higher total caffeine intake was associated with a lower risk of melanoma (≥393 mg/day vs. <60 mg/day: HR = 0.78, 95% CI = 0.64, 0.96; Ptrend = 0.048). The association was more apparent in women (≥393 mg/day vs. <60 mg/day: HR = 0.70, 95% CI = 0.58, 0.85; Ptrend = 0.001) than in men (HR = 0.94, 95% CI = 0.75, 1.2; Ptrend = 0.81), and more apparent for melanomas occurring on body sites with higher continuous sun exposure (head, neck, and extremities; ≥393 mg/day vs. <60 mg/day: HR = 0.71, 95% CI = 0.59, 0.86; Ptrend = 0.001) than for melanomas occurring on body sites with lower continuous sun exposure (trunk including shoulder, back, hip, abdomen, and chest; HR = 0.90, 95% CI = 0.70, 1.2; Ptrend = 0.60). This pattern of association was similar to that for caffeinated coffee consumption, whereas no association was found for decaffeinated coffee consumption and melanoma risk. CONCLUSIONS Increasing caffeine intake and caffeinated coffee consumption is associated with decreased risk of cutaneous malignant melanomas.
Collapse
|
50
|
Granja A, Pinheiro M, Reis S. Epigallocatechin Gallate Nanodelivery Systems for Cancer Therapy. Nutrients 2016; 8:307. [PMID: 27213442 PMCID: PMC4882719 DOI: 10.3390/nu8050307] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality all over the world. Conventional treatments, such as chemotherapy, are generally expensive, highly toxic and lack efficiency. Cancer chemoprevention using phytochemicals is emerging as a promising approach for the treatment of early carcinogenic processes. (-)-Epigallocatechin-3-gallate (EGCG) is the major bioactive constituent in green tea with numerous health benefits including anti-cancer activity, which has been intensively studied. Besides its potential for chemoprevention, EGCG has also been shown to synergize with common anti-cancer agents, which makes it a suitable adjuvant in chemotherapy. However, limitations in terms of stability and bioavailability have hampered its application in clinical settings. Nanotechnology may have an important role in improving the pharmacokinetic and pharmacodynamics of EGCG. Indeed, several studies have already reported the use of nanoparticles as delivery vehicles of EGCG for cancer therapy. The aim of this article is to discuss the EGCG molecule and its associated health benefits, particularly its anti-cancer activity and provide an overview of the studies that have employed nanotechnology strategies to enhance EGCG's properties and potentiate its anti-tumoral activity.
Collapse
Affiliation(s)
- Andreia Granja
- UCIBIO/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Marina Pinheiro
- UCIBIO/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- UCIBIO/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|