1
|
Olety B, Usami Y, Peters P, Wu Y, Göttlinger H. The ectodomain sheddase ADAM10 restricts HIV-1 propagation and is counteracted by Nef. SCIENCE ADVANCES 2025; 11:eadt1836. [PMID: 40249826 PMCID: PMC12007588 DOI: 10.1126/sciadv.adt1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/13/2025] [Indexed: 04/20/2025]
Abstract
HIV-1 Nef enhances virus propagation by down-regulating CD4 and SERINC5. However, recent evidence points to the existence of an additional Nef-sensitive restriction mechanism. We now show that Nef suppresses the aberrant cleavage of HIV-1 gp41 by ADAM10, a virion-associated cellular ectodomain sheddase, and thus increases the amount of HIV-1 envelope glycoprotein (Env) on virions. Additionally, Nef inhibits the shedding of at least some cellular ADAM10 substrates, resulting in their accumulation on HIV-1 virions. Whereas Nef+ HIV-1 replicated only marginally better in the absence of ADAM10, the propagation of Nef- HIV-1 was notably rescued in ADAM10- T cell lines. Crucially, Nef- HIV-1 also benefited from the absence of ADAM10 in primary CD4+ T cells. Collectively, our results indicate that ADAM10 negatively affects both laboratory-adapted and primary HIV-1 strains by shedding the ectodomains of viral and cellular transmembrane proteins from virions and that Nef rescues virus replication by counteracting ADAM10.
Collapse
Affiliation(s)
| | - Yoshiko Usami
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Paul Peters
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yuanfei Wu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Heinrich Göttlinger
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Shiiba I, Ito N, Oshio H, Ishikawa Y, Nagao T, Shimura H, Oh KW, Takasaki E, Yamaguchi F, Konagaya R, Kadowaki H, Nishitoh H, Tanzawa T, Nagashima S, Sugiura A, Fujikawa Y, Umezawa K, Tamura Y, Il Lee B, Hirabayashi Y, Okazaki Y, Sawa T, Inatome R, Yanagi S. ER-mitochondria contacts mediate lipid radical transfer via RMDN3/PTPIP51 phosphorylation to reduce mitochondrial oxidative stress. Nat Commun 2025; 16:1508. [PMID: 39929810 PMCID: PMC11811300 DOI: 10.1038/s41467-025-56666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The proximal domains of mitochondria and the endoplasmic reticulum (ER) are linked by tethering factors on each membrane, allowing the efficient transport of substances, including lipids and calcium, between them. However, little is known about the regulation and function of mitochondria-ER contacts (MERCs) dynamics under mitochondrial damage. In this study, we apply NanoBiT technology to develop the MERBiT system, which enables the measurement of reversible MERCs formation in living cells. Analysis using this system suggests that induction of mitochondrial ROS increases MERCs formation via RMDN3 (also known as PTPIP51)-VAPB tethering driven by RMDN3 phosphorylation. Disruption of this tethering caused lipid radical accumulation in mitochondria, leading to cell death. The lipid radical transfer activity of the TPR domain in RMDN3, as revealed by an in vitro liposome assay, suggests that RMDN3 transfers lipid radicals from mitochondria to the ER. Our findings suggest a potential role for MERCs in cell survival strategy by facilitating the removal of mitochondrial lipid radicals under mitochondrial damage.
Collapse
Grants
- 23H02691,20H04911,20H03454 MEXT | Japan Society for the Promotion of Science (JSPS)
- 22K15399, 22H05574, 24H01327 MEXT | Japan Society for the Promotion of Science (JSPS)
- 23K14185, 22K20637 MEXT | Japan Society for the Promotion of Science (JSPS)
- 22H05532 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H0207, 21H05267, 23K17979 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21K06844 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP17gm5010002, JP18gm5010002, JP19gm5010002, JP20gm5010002 Japan Agency for Medical Research and Development (AMED)
- JP19dm0207082 Japan Agency for Medical Research and Development (AMED)
- 23gm1610011h0001 Japan Agency for Medical Research and Development (AMED)
Collapse
Affiliation(s)
- Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan.
| | - Naoki Ito
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Hijiri Oshio
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Yuto Ishikawa
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Takahiro Nagao
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hiroki Shimura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kyu-Wan Oh
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Eiki Takasaki
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Fuya Yamaguchi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Ryoan Konagaya
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takehito Tanzawa
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Ayumu Sugiura
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Keitaro Umezawa
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan.
| |
Collapse
|
3
|
Shimosaka M, Kondo J, Sonoda M, Kawaguchi R, Noda E, Nishikori K, Ogata A, Takamatsu S, Sasai K, Akita H, Eguchi H, Kamada Y, Okamoto S, Miyoshi E. Invasion of pancreatic ductal epithelial cells by Enterococcus faecalis is mediated by fibronectin and enterococcal fibronectin-binding protein A. Sci Rep 2025; 15:2585. [PMID: 39833342 PMCID: PMC11747100 DOI: 10.1038/s41598-025-86531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
The poor prognosis of pancreatic cancer is often attributed to difficulties of early detection due to a lack of appropriate risk factors. Previously, we demonstrated the presence of Enterococcus faecalis (E. faecalis) in pancreatic juice and tissues obtained from patients with cancers of the duodeno-pancreato-biliary region, suggesting the possible involvement of this bacterial species in chronic and malignant pancreatic diseases. However, it remains unclear if and how E. faecalis can infect pancreatic ductal cells. In this study, we used immortalized normal human pancreatic ductal epithelial cells (iPDECs) and pancreatic ductal cancer cell lines to demonstrate that E. faecalis adheres to and invades pancreatic ductal lineage epithelial cells. Inhibitors of micropinocytosis or clathrin- or caveolae-mediated endocytosis suppressed iPDEC invasion by E. faecalis. Mechanistically, bacterial expression of enterococcal fibronectin-binding protein A (EfbA) was correlated with adhesive potential of E. faecalis strains. Knockout of fibronectin 1, a binding partner of EfbA, in iPDECs resulted in suppressed E. faecalis adhesion and invasion, suggesting the importance of the EfbA-fibronectin axis in infection of pancreatic ductal epithelial lineage cells. Overall, these results suggest that E. faecalis can colonize pancreatic tissue by infecting iPDECs, at least in part, via the expression of the cell adhesion factor EfbA.
Collapse
Affiliation(s)
- Munefumi Shimosaka
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mamika Sonoda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rui Kawaguchi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Emika Noda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kaho Nishikori
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Asuka Ogata
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ken Sasai
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shigefumi Okamoto
- Laboratory of Medical Microbiology and Microbiome, Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
4
|
Koshizuka T, Sasaki Y, Kondo H, Koizumi J, Takahashi K. Downregulation of CD86 in HCMV-infected THP-1 cells. Microbiol Immunol 2024; 68:406-413. [PMID: 39380416 DOI: 10.1111/1348-0421.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Monocytes and macrophages are at the frontline of defense against pathogens. Human cytomegalovirus (HCMV) uses myeloid cells as vehicles to facilitate viral dissemination. HCMV infection in monocytes and macrophages leads to the downregulation of several cell surface markers via an undefined mechanism. Previously, we showed that HCMV pUL42 associates with the Nedd4 family ubiquitin E3 ligases through the PPXY motif on pUL42 and downregulates Nedd4 and Itch proteins in HCMV-infected fibroblasts. Homologous proteins of HCMV pUL42, such as HHV-6 U24, downregulate cell surface markers. To reveal the downregulation property of pUL42, we focused on CD86, the key costimulatory factor for acquired immunity. Here, we constructed CD86-expressing THP-1 cells using a retroviral vector and analyzed the effects of HCMV infection and pUL42 on CD86 downregulation. Disruption of the PPXY motifs of pUL42 (UL42PA) decelerated the degradation of CD86 in recombinant virus-infected cells, indicating the involvement of Nedd4 family functions. However, no direct interactions were observed between CD86 and Itch. Interestingly, unlike fibroblast infection, the expression of Nedd4 and Itch proteins increased in HCMV-infected THP-1 cells, accompanied by an increase in their transcript levels. Although the function of pUL42 did not relate to the increase of Nedd4 and Itch proteins, pUL42 should affect these Nedd4 proteins to downregulate CD86.
Collapse
Affiliation(s)
- Tetsuo Koshizuka
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuta Sasaki
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Kondo
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Juri Koizumi
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keita Takahashi
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
5
|
Kobayashi-Ooka Y, Akagi T, Sukezane T, Yanagita E, Itoh T, Sasai K. Cultures derived from pancreatic cancer xenografts with long-term gemcitabine treatment produce chemoresistant secondary xenografts: Establishment of isogenic gemcitabine-sensitive and -resistant models. Pathol Res Pract 2024; 263:155632. [PMID: 39393265 DOI: 10.1016/j.prp.2024.155632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
In attempts to establish sophisticated models to reproduce the process of acquired drug resistance, we transformed normal human pancreatic ductal epithelial cells by introducing genes for multiple cellular factors. We also created isogenic gemcitabine-sensitive and -resistant models by short- and long-term gemcitabine treatment, respectively. These models demonstrated differences in drug resistance in vivo, but not in vitro. Gemcitabine treatment also induced squamous transdifferentiation in xenografts in mice. The transcription factor p63 was identified as a possible resistance-determining factor but was unlikely to be solely responsible for the resistance to gemcitabine. This system would prove useful to discover novel molecular targets to overcome chemotherapy resistance, by allowing the evaluation of molecules of interest in xenograft models after in vitro genetic ablation.
Collapse
Affiliation(s)
| | | | | | - Emmy Yanagita
- Division of Diagnostic Pathology, Kobe University Graduate School Medicine, Kobe, Hyogo, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Kobe University Graduate School Medicine, Kobe, Hyogo, Japan
| | - Ken Sasai
- KAN Research Institute, Inc., Kobe, Hyogo, Japan.
| |
Collapse
|
6
|
Tsuji S, Kudo U, Takahashi K, Nakamura S, Shimazawa M. The role of progranulin in macrophages of a glioblastoma model. J Neurooncol 2024; 170:319-329. [PMID: 39141257 DOI: 10.1007/s11060-024-04793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE Glioblastoma (GBM), characterized by astrocytic tumorigenesis, remains one of the most prognostically challenging tumor types. Targeting entire GBM microenvironment using novel therapeutic factors is currently desired investigation approach. In this study, we focused on progranulin (PGRN), a regulator of diverse cellular functions. Recent studies implicated PGRN in the poor prognostics of GBM patients. However, the specific role of PGRN in the GBM microenvironment remains elusive. METHODS We utilized public databases of GBM patient and previous single-cell RNA sequence to examine association between PGRN expression and patient survival/grade, and expression levels of PGRN in each cell constituting the tumor microenvironment. To clarify the role of PGRN in Tumor-associated macrophage (TAM), we examined cell proliferation and expression of some proteins in murine GBM cells when cell supernatants derived from TAM of PGRN knockout (Grn-/-) or wild type mice were treated with murine GBM cells. RESULTS Our results reveal significant PGRN expression in macrophages within the GBM environment, suggesting an association between increased PGRN expression in macrophages and tumor malignancy. TAM induction led to PGRN expression enhancement. Treatment with Grn-/- mouse -derived bone marrow-derived macrophage (BMDM) supernatant resulted in diminished GBM cell proliferation and cell cycle- and mesenchymal GBM subtype-associated reduced protein expression. Furthermore, the Grn-/- mouse-derived BMDM supernatant treatment reduced the phosphorylated STAT3 expression in GBM cells, while the expression of IL-6 and IL-10, known STAT3 pathway activators, diminished in Grn-/- mouse-derived BMDMs. CONCLUSION Our results suggest that macrophage-derived PGRN is pivotal for fostering malignant transformations within the tumor microenvironment.
Collapse
Affiliation(s)
- Shohei Tsuji
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501- 1196, Japan
| | - Urara Kudo
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501- 1196, Japan
| | - Kei Takahashi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501- 1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501- 1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501- 1196, Japan.
| |
Collapse
|
7
|
Ikeuchi H, Matsuno Y, Kusumoto-Matsuo R, Kojima S, Ueno T, Ikegami M, Kitada R, Sumiyoshi-Okuma H, Kojima Y, Yonemori K, Yatabe Y, Takamochi K, Suzuki K, Yoshioka KI, Mano H, Kohsaka S. GLI1 confers resistance to PARP inhibitors by activating the DNA damage repair pathway. Oncogene 2024; 43:3037-3048. [PMID: 39095584 DOI: 10.1038/s41388-024-03105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Identifying the mechanisms of action of anticancer drugs is an important step in the development of new drugs. In this study, we established a comprehensive screening platform consisting of 68 oncogenes (MANO panel), encompassing 243 genetic variants, to identify predictive markers for drug efficacy. Validation was performed using drugs that targeted EGFR, BRAF, and MAP2K1, which confirmed the utility of this functional screening panel. Screening of a BRCA2-knockout DLD1 cell line (DLD1-KO) revealed that cells expressing SMO and GLI1 were resistant to olaparib. Gene set enrichment analysis identified genes associated with DNA damage repair that were enriched in cells overexpressing SMO and GLI1. The expression of genes associated with homologous recombination repair (HR), such as the FANC family and BRCA1/2, was significantly upregulated by GLI1 expression, which is indicative of PARP inhibitor resistance. Although not all representative genes of the nucleotide excision repair (NER) pathway were upregulated, NER activity was enhanced by GLI1. The GLI1 inhibitor was effective against DLD1-KO cells overexpressing GLI1 both in vitro and in vivo. Furthermore, the combination therapy of olaparib and GLI1 inhibitor exhibited a synergistic effect on DLD1-KO, suggesting the possible clinical application of GLI1 inhibitor targeting cancer with defective DNA damage repair. This platform enables the identification of biomarkers associated with drug sensitivity, and is a useful tool for drug development.
Collapse
Affiliation(s)
- Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Rika Kusumoto-Matsuo
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Rina Kitada
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken-Ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Ishibashi K, Ichinose T, Kadokawa R, Mizutani R, Iwabuchi S, Togi S, Ura H, Tange S, Shinjo K, Nakayama J, Nanjo S, Niida Y, Kondo Y, Hashimoto S, Sahai E, Yano S, Nakada M, Hirata E. Astrocyte-induced mGluR1 activates human lung cancer brain metastasis via glutamate-dependent stabilization of EGFR. Dev Cell 2024; 59:579-594.e6. [PMID: 38309264 DOI: 10.1016/j.devcel.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
There are limited methods to stably analyze the interactions between cancer cells and glial cells in vitro, which hinders our molecular understanding. Here, we develop a simple and stable culture method of mouse glial cells, termed mixed-glial culture on/in soft substrate (MGS), which serves well as a platform to study cancer-glia interactions. Using this method, we find that human lung cancer cells become overly dependent on metabotropic glutamate receptor 1 (mGluR1) signaling in the brain microenvironment. Mechanistically, interactions with astrocytes induce mGluR1 in cancer cells through the Wnt-5a/prickle planar cell polarity protein 1 (PRICKLE1)/RE1 silencing transcription factor (REST) axis. Induced mGluR1 directly interacts with and stabilizes the epidermal growth factor receptor (EGFR) in a glutamate-dependent manner, and these cells then become responsive to mGluR1 inhibition. Our results highlight increased dependence on mGluR1 signaling as an adaptive strategy and vulnerability of human lung cancer brain metastasis.
Collapse
Affiliation(s)
- Kojiro Ishibashi
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Toshiya Ichinose
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Riki Kadokawa
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Ryo Mizutani
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Wakayama, Japan
| | - Sumihito Togi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan; Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan; Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Jun Nakayama
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka 541-8567, Osaka, Japan
| | - Shigeki Nanjo
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa 920-8641, Ishikawa, Japan; Division of Medical Oncology, Cancer Research Institute of Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan; Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Wakayama, Japan
| | - Erik Sahai
- Tumor Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Seiji Yano
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa 920-8641, Ishikawa, Japan; Division of Medical Oncology, Cancer Research Institute of Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Eishu Hirata
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan.
| |
Collapse
|
9
|
Dansako H, Ikeda M, Ariumi Y, Togashi Y, Kato N. Hepatitis C virus NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes. FEBS J 2024; 291:1119-1130. [PMID: 37863517 DOI: 10.1111/febs.16980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
During the replication of viral genomes, RNA viruses produce double-stranded RNA (dsRNA), through the activity of their RNA-dependent RNA polymerases (RdRps) as viral replication intermediates. Recognition of viral dsRNA by host pattern recognition receptors - such as retinoic acid-induced gene-I (RIG-I)-like receptors and Toll-like receptor 3 - triggers the production of interferon (IFN)-β via the activation of IFN regulatory factor (IRF)-3. It has been proposed that, during the replication of viral genomes, each of RIG-I and melanoma differentiation-associated gene 5 (MDA5) form homodimers for the efficient activation of a downstream signalling pathway in host cells. We previously reported that, in the non-neoplastic human hepatocyte line PH5CH8, the RdRp NS5B derived from hepatitis C virus (HCV) could induce IFN-β expression by its RdRp activity without the actual replication of viral genomes. However, the exact mechanism by which HCV NS5B produced IFN-β remained unknown. In the present study, we first showed that NS5B derived from another Flaviviridae family member, GB virus B (GBV-B), also possessed the ability to induce IFN-β in PH5CH8 cells. Similarly, HCV NS5B, but not its G317V mutant, which lacks RdRp activity, induced the dimerization of MDA5 and subsequently the activation of IRF-3. Interestingly, immunofluorescence analysis showed that HCV NS5B produced dsRNA. Like HCV NS5B, GBV-B NS5B also triggered the production of dsRNA and subsequently the dimerization of MDA5. Taken together, our results show that HCV NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes in human hepatocytes.
Collapse
Affiliation(s)
- Hiromichi Dansako
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Japan
| | - Yasuo Ariumi
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Nobuyuki Kato
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| |
Collapse
|
10
|
Sakurai C, Yamashita N, Azuma K, Hatsuzawa K. VAMP5 promotes Fcγ receptor-mediated phagocytosis and regulates phagosome maturation in macrophages. Mol Biol Cell 2024; 35:ar44. [PMID: 38265888 PMCID: PMC10916865 DOI: 10.1091/mbc.e23-04-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Phagosome formation and maturation reportedly occur via sequential membrane fusion events mediated by synaptosomal-associated protein of 23 kDa (SNAP23), a plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family. Vesicle-associated membrane protein 5 (VAMP5), also a plasmalemma SNARE, interacts with SNAP23; however, its precise function in phagocytosis in macrophages remains elusive. To elucidate this aspect, we investigated the characteristics of macrophages in the presence of VAMP5 overexpression or knockdown and found that VAMP5 participates in Fcγ receptor-mediated phagosome formation, although not directly in phagosome maturation. Overexpressed VAMP5 was localized to the early phagosomal membrane but no longer localized to the lysosomal-associated membrane protein 1-positive maturing phagosomal membrane. Analyses using compound-based selective inhibitors demonstrated that VAMP5 dissociation from early phagosomes occurs in a clathrin- and dynamin-dependent manner and is indispensable for SNAP23 function in subsequent membrane fusion during phagosome maturation. Accordingly, to the best of our knowledge, we demonstrate, for the first time, that VAMP5 exerts an immunologically critical function during phagosome formation and maturation via SNARE-based membrane trafficking in macrophages.
Collapse
Affiliation(s)
- Chiye Sakurai
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Natsumi Yamashita
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Kento Azuma
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| |
Collapse
|
11
|
Hasegawa N, Hayashi T, Niizuma H, Kikuta K, Imanishi J, Endo M, Ikeuchi H, Sasa K, Sano K, Hirabayashi K, Takagi T, Ishijima M, Kato S, Kohsaka S, Saito T, Suehara Y. Detection of Novel Tyrosine Kinase Fusion Genes as Potential Therapeutic Targets in Bone and Soft Tissue Sarcomas Using DNA/RNA-based Clinical Sequencing. Clin Orthop Relat Res 2024; 482:549-563. [PMID: 38014853 PMCID: PMC10871756 DOI: 10.1097/corr.0000000000002901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Approximately 1% of clinically treatable tyrosine kinase fusions, including anaplastic lymphoma kinase, neurotrophic tyrosine receptor kinase, RET proto-oncogene, and ROS proto-oncogene 1, have been identified in soft tissue sarcomas via comprehensive genome profiling based on DNA sequencing. Histologic tumor-specific fusion genes have been reported in approximately 20% of soft tissue sarcomas; however, unlike tyrosine kinase fusion genes, these fusions cannot be directly targeted in therapy. Approximately 80% of tumor-specific fusion-negative sarcomas, including myxofibrosarcoma and leiomyosarcoma, that are defined in complex karyotype sarcomas remain genetically uncharacterized; this mutually exclusive pattern of mutations suggests that other mutually exclusive driver oncogenes are yet to be discovered. Tumor-specific, fusion-negative sarcomas may be associated with unique translocations, and oncogenic fusion genes, including tyrosine kinase fusions, may have been overlooked in these sarcomas. QUESTIONS/PURPOSES (1) Can DNA- or RNA-based analysis reveal any characteristic gene alterations in bone and soft tissue sarcomas? (2) Can useful and potential tyrosine kinase fusions in tumors from tumor-specific, fusion-negative sarcomas be detected using an RNA-based screening system? (3) Do the identified potential fusion tumors, especially in neurotrophic tyrosine receptor kinase gene fusions in bone sarcoma, transform cells and respond to targeted drug treatment in in vitro assays? (4) Can the identified tyrosine kinase fusion genes in sarcomas be useful therapeutic targets? METHODS Between 2017 and 2020, we treated 100 patients for bone and soft tissue sarcomas at five institutions. Any biopsy or surgery from which a specimen could be obtained was included as potentially eligible. Ninety percent (90 patients) of patients were eligible; a further 8% (8 patients) were excluded because they were either lost to follow-up or their diagnosis was changed, leaving 82% (82 patients) for analysis here. To answer our first and second questions regarding gene alterations and potential tyrosine kinase fusions in eight bone and 74 soft tissue sarcomas, we used the TruSight Tumor 170 assay to detect mutations, copy number variations, and gene fusions in the samples. To answer our third question, we performed functional analyses involving in vitro assays to determine whether the identified tyrosine kinase fusions were associated with oncogenic abilities and drug responses. Finally, to determine usefulness as therapeutic targets, two pediatric patients harboring an NTRK fusion and an ALK fusion were treated with tyrosine kinase inhibitors in clinical trials. RESULTS DNA/RNA-based analysis demonstrated characteristic alterations in bone and soft tissue sarcomas; DNA-based analyses detected TP53 and copy number alterations of MDM2 and CDK4 . These single-nucleotide variants and copy number variations were enriched in specific fusion-negative sarcomas. RNA-based screening detected fusion genes in 24% (20 of 82) of patients. Useful potential fusions were detected in 19% (11 of 58) of tumor-specific fusion-negative sarcomas, with nine of these patients harboring tyrosine kinase fusion genes; five of these patients had in-frame tyrosine kinase fusion genes ( STRN3-NTRK3, VWC2-EGFR, ICK-KDR, FOXP2-MET , and CEP290-MET ) with unknown pathologic significance. The functional analysis revealed that STRN3-NTRK3 rearrangement that was identified in bone had a strong transforming potential in 3T3 cells, and that STRN3-NTRK3 -positive cells were sensitive to larotrectinib in vitro. To confirm the usefulness of identified tyrosine kinase fusion genes as therapeutic targets, patients with well-characterized LMNA-NTRK1 and CLTC-ALK fusions were treated with tyrosine kinase inhibitors in clinical trials, and a complete response was achieved. CONCLUSION We identified useful potential therapeutic targets for tyrosine kinase fusions in bone and soft tissue sarcomas using RNA-based analysis. We successfully identified STRN3-NTRK3 fusion in a patient with leiomyosarcoma of bone and determined the malignant potential of this fusion gene via functional analyses and drug effects. In light of these discoveries, comprehensive genome profiling should be considered even if the sarcoma is a bone sarcoma. There seem to be some limitations regarding current DNA-based comprehensive genome profiling tests, and it is important to use RNA testing for proper diagnosis and accurate identification of fusion genes. Studies on more patients, validation of results, and further functional analysis of unknown tyrosine kinase fusion genes are required to establish future treatments. CLINICAL RELEVANCE DNA- and RNA-based screening systems may be useful for detecting tyrosine kinase fusion genes in specific fusion-negative sarcomas and identifying key therapeutic targets, leading to possible breakthroughs in the treatment of bone and soft tissue sarcomas. Given that current DNA sequencing misses fusion genes, RNA-based screening systems should be widely considered as a worldwide test for sarcoma. If standard treatments such as chemotherapy are not effective, or even if the sarcoma is of bone, RNA sequencing should be considered to identify as many therapeutic targets as possible.
Collapse
Affiliation(s)
- Nobuhiko Hasegawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidetaka Niizuma
- Department of Pediatrics, Tohoku University School of Medicine, Miyagi, Japan
| | - Kazutaka Kikuta
- Division of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, Tochigi, Japan
| | - Jungo Imanishi
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Oncology and Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Keita Sasa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei Sano
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaoru Hirabayashi
- Division of Diagnostic Pathology, Tochigi Cancer Center, Tochigi, Japan
| | - Tatsuya Takagi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shunsuke Kato
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Hirose T, Ikegami M, Kojima S, Yoshida A, Endo M, Shimada E, Kanahori M, Oyama R, Matsumoto Y, Nakashima Y, Kawai A, Mano H, Kohsaka S. Extensive analysis of 59 sarcoma-related fusion genes identified pazopanib as a potential inhibitor to COL1A1-PDGFB fusion gene. Cancer Sci 2023; 114:4089-4100. [PMID: 37592448 PMCID: PMC10551592 DOI: 10.1111/cas.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
Sarcomas are malignant mesenchymal tumors that are extremely rare and divergent. Fusion genes are involved in approximately 30% of sarcomas as driver oncogenes; however, their detailed functions are not fully understood. In this study, we determined the functional significance of 59 sarcoma-related fusion genes. The transforming potential and drug sensitivities of these fusion genes were evaluated using a focus formation assay (FFA) and the mixed-all-nominated-in-one (MANO) method, respectively. The transcriptome was also examined using RNA sequencing of 3T3 cells transduced with each fusion gene. Approximately half (28/59, 47%) of the fusion genes exhibited transformation in the FFA assay, which was classified into five types based on the resulting phenotype. The sensitivity to 12 drugs including multityrosine kinase inhibitors was assessed using the MANO method and pazopanib was found to be more effective against cells expressing the COL1A1-PDGFB fusion gene compared with the others. The downstream MAPK/AKT pathway was suppressed at the protein level following pazopanib treatment. The fusion genes were classified into four subgroups by cluster analysis of the gene expression data and gene set enrichment analysis. In summary, the oncogenicity and drug sensitivity of 59 fusion genes were simultaneously evaluated using a high-throughput strategy. Pazopanib was selected as a candidate drug for sarcomas harboring the COL1A1-PDGFB fusion gene. This assessment could be useful as a screening platform and provides a database to evaluate customized therapy for fusion gene-associated sarcomas.
Collapse
Affiliation(s)
- Takeshi Hirose
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masachika Ikegami
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Shinya Kojima
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Akihiko Yoshida
- Department of Diagnostic PathologyNational Cancer Center HospitalTokyoJapan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Eijiro Shimada
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masaya Kanahori
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryunosuke Oyama
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Akira Kawai
- Department of Musculoskeletal OncologyNational Cancer Center HospitalTokyoJapan
| | - Hiroyuki Mano
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Shinji Kohsaka
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
13
|
Marzulli M, Hall BL, Zhang M, Goins WF, Cohen JB, Glorioso JC. Novel mutations in U L24 and gH rescue efficient infection of an HSV vector retargeted to TrkA. Mol Ther Methods Clin Dev 2023; 30:208-220. [PMID: 37519407 PMCID: PMC10384243 DOI: 10.1016/j.omtm.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Transductional targeting of herpes simplex virus (HSV)-based gene therapy vectors offers the potential for improved tissue-specific delivery and can be achieved by modification of the viral entry machinery to incorporate ligands that bind the desired cell surface proteins. The interaction of nerve growth factor (NGF) with tropomyosin receptor kinase A (TrkA) is essential for survival of sensory neurons during development and is involved in chronic pain signaling. We targeted HSV infection to TrkA-bearing cells by replacing the signal peptide and HVEM binding domain of glycoprotein D (gD) with pre-pro-NGF. This TrkA-targeted virus (KNGF) infected cells via both nectin-1 and TrkA. However, infection through TrkA was inefficient, prompting a genetic search for KNGF mutants showing enhanced infection following repeat passage on TrkA-expressing cells. These studies revealed unique point mutations in envelope glycoprotein gH and in UL24, a factor absent from mature particles. Together these mutations rescued efficient infection of TrkA-expressing cells, including neurons, and facilitated the production of a completely retargeted KNGF derivative. These studies provide insight into HSV vector improvements that will allow production of replication-defective TrkA-targeted HSV for delivery to the peripheral nervous system and may be applied to other retargeted vector studies in the central nervous system.
Collapse
Affiliation(s)
- Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bonnie L. Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mingdi Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justus B. Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Alam SK, Wang L, Zhu Z, Hoeppner LH. IKKα promotes lung adenocarcinoma growth through ERK signaling activation via DARPP-32-mediated inhibition of PP1 activity. NPJ Precis Oncol 2023; 7:33. [PMID: 36966223 PMCID: PMC10039943 DOI: 10.1038/s41698-023-00370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/08/2023] [Indexed: 03/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 80-85% cases of lung cancer cases. Diagnosis at advanced stages is common, after which therapy-refractory disease progression frequently occurs. Therefore, a better understanding of the molecular mechanisms that control NSCLC progression is necessary to develop new therapies. Overexpression of IκB kinase α (IKKα) in NSCLC correlates with poor patient survival. IKKα is an NF-κB-activating kinase that is important in cell survival and differentiation, but its regulation of oncogenic signaling is not well understood. We recently demonstrated that IKKα promotes NSCLC cell migration by physically interacting with dopamine- and cyclic AMP-regulated phosphoprotein, Mr 32000 (DARPP-32), and its truncated splice variant, t-DARPP. Here, we show that IKKα phosphorylates DARPP-32 at threonine 34, resulting in DARPP-32-mediated inhibition of protein phosphatase 1 (PP1), subsequent inhibition of PP1-mediated dephosphorylation of ERK, and activation of ERK signaling to promote lung oncogenesis. Correspondingly, IKKα ablation in human lung adenocarcinoma cells reduced their anchorage-independent growth in soft agar. Mice challenged with IKKα-ablated HCC827 cells exhibited less lung tumor growth than mice orthotopically administered control HCC827 cells. Our findings suggest that IKKα drives NSCLC growth through the activation of ERK signaling via DARPP-32-mediated inhibition of PP1 activity.
Collapse
Affiliation(s)
- Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
| | - Li Wang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zhu Zhu
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Vinogradov AE, Anatskaya OV. Systemic Alterations of Cancer Cells and Their Boost by Polyploidization: Unicellular Attractor (UCA) Model. Int J Mol Sci 2023; 24:ijms24076196. [PMID: 37047167 PMCID: PMC10094663 DOI: 10.3390/ijms24076196] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Using meta-analyses, we introduce a unicellular attractor (UCA) model integrating essential features of the ‘atavistic reversal’, ‘cancer attractor’, ‘somatic mutation’, ‘genome chaos’, and ‘tissue organization field’ theories. The ‘atavistic reversal’ theory is taken as a keystone. We propose a possible mechanism of this reversal, its refinement called ‘gradual atavism’, and evidence for the ‘serial atavism’ model. We showed the gradual core-to-periphery evolutionary growth of the human interactome resulting in the higher protein interaction density and global interactome centrality in the UC center. In addition, we revealed that UC genes are more actively expressed even in normal cells. The modeling of random walk along protein interaction trajectories demonstrated that random alterations in cellular networks, caused by genetic and epigenetic changes, can result in a further gradual activation of the UC center. These changes can be induced and accelerated by cellular stress that additionally activates UC genes (especially during cell proliferation), because the genes involved in cellular stress response and cell cycle are mostly of UC origin. The functional enrichment analysis showed that cancer cells demonstrate the hyperactivation of energetics and the suppression of multicellular genes involved in communication with the extracellular environment (especially immune surveillance). Collectively, these events can unleash selfish cell behavior aimed at survival at all means. All these changes are boosted by polyploidization. The UCA model may facilitate an understanding of oncogenesis and promote the development of therapeutic strategies.
Collapse
|
16
|
Olety B, Usami Y, Wu Y, Peters P, Göttlinger H. AP-2 Adaptor Complex-Dependent Enhancement of HIV-1 Replication by Nef in the Absence of the Nef/AP-2 Targets SERINC5 and CD4. mBio 2023; 14:e0338222. [PMID: 36622146 PMCID: PMC9973267 DOI: 10.1128/mbio.03382-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Nef hijacks the clathrin adaptor complex 2 (AP-2) to downregulate the viral receptor CD4 and the antiviral multipass transmembrane proteins SERINC3 and SERINC5, which inhibit the infectivity of progeny virions when incorporated. In Jurkat Tag T lymphoid cells lacking SERINC3 and SERINC5, Nef is no longer required for full progeny virus infectivity and for efficient viral replication. However, in MOLT-3 T lymphoid cells, HIV-1 replication remains highly dependent on Nef even in the absence of SERINC3 and SERINC5. Using a knockout (KO) approach, we now show that the Nef-mediated enhancement of HIV-1 replication in MOLT-3 cells does not depend on the Nef-interacting kinases LCK and PAK2. Furthermore, Nef substantially enhanced HIV-1 replication even in triple-KO MOLT-3 cells that simultaneously lacked the three Nef/AP-2 targets, SERINC3, SERINC5, and CD4, and were reconstituted with a Nef-resistant CD4 to permit HIV-1 entry. Nevertheless, the ability of Nef mutants to promote HIV-1 replication in the triple-KO cells correlated strictly with the ability to bind AP-2. In addition, knockdown and reconstitution experiments confirmed the involvement of AP-2. These observations raise the possibility that MOLT-3 cells express a novel antiviral factor that is downregulated by Nef in an AP-2-dependent manner. IMPORTANCE The HIV-1 Nef protein hijacks a component of the cellular endocytic machinery called AP-2 to downregulate the viral receptor CD4 and the antiviral cellular membrane proteins SERINC3 and SERINC5. In the absence of Nef, SERINC3 and SERINC5 are taken up into viral particles, which reduces their infectivity. Surprisingly, in a T cell line called MOLT-3, Nef remains crucial for HIV-1 spreading in the absence of SERINC3 and SERINC5. We now show that this effect of Nef also does not depend on the cellular signaling molecules and Nef interaction partners LCK and PAK2. Nef was required for efficient HIV-1 spreading even in triple-knockout cells that completely lacked Nef/AP-2-sensitive CD4, in addition to the Nef/AP-2 targets SERINC3 and SERINC5. Nevertheless, our results indicate that the enhancement of HIV-1 spreading by Nef in the triple-knockout cells remained AP-2 dependent, which suggests the presence of an unknown antiviral factor that is sensitive to Nef/AP-2-mediated downregulation.
Collapse
Affiliation(s)
- Balaji Olety
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yoshiko Usami
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yuanfei Wu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Paul Peters
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Heinrich Göttlinger
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
17
|
Mizuno S, Ikegami M, Koyama T, Sunami K, Ogata D, Kage H, Yanagaki M, Ikeuchi H, Ueno T, Tanikawa M, Oda K, Osuga Y, Mano H, Kohsaka S. High-Throughput Functional Evaluation of MAP2K1 Variants in Cancer. Mol Cancer Ther 2023; 22:227-239. [PMID: 36442478 PMCID: PMC9890140 DOI: 10.1158/1535-7163.mct-22-0302] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
Activating mutations in mitogen-activated protein kinase kinase 1 (MAP2K1) are involved in a variety of cancers and may be classified according to their RAF dependence. Sensitivity to combined BRAF and MEK treatments is associated with co-mutations of MAP2K1 and BRAF; however, the significance of less frequent MAP2K1 mutations is largely unknown. The transforming potential and drug sensitivity of 100 MAP2K1 variants were evaluated using individual assays and the mixed-all-nominated-in-one method. In addition, A375, a melanoma cell line harboring the BRAF V600E mutation, was used to evaluate the function of the MAP2K1 variants in combination with active RAF signaling. Among a total of 67 variants of unknown significance, 16 were evaluated as oncogenic or likely oncogenic. The drug sensitivity of the individual variants did not vary with respect to BRAF inhibitors, MEK inhibitors (MEKi), or their combination. Sensitivity to BRAF inhibitors was associated with the RAF dependency of the MAP2K1 variants, whereas resistance was higher in RAF-regulated or independent variants compared with RAF-dependent variants. Thus, the synergistic effect of BRAF and MEKis may be observed in RAF-regulated and RAF-dependent variants. MAP2K1 variants exhibit differential sensitivity to BRAF and MEKis, suggesting the importance of individual functional analysis for the selection of optimal treatments for each patient. This comprehensive evaluation reveals precise functional information and provides optimal combination treatment for individual MAP2K1 variants.
Collapse
Affiliation(s)
- Sho Mizuno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hidenori Kage
- Department of Next Generation Precision Medicine Development Laboratory, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mitsuru Yanagaki
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Surgery, The Jikei University School of Medicine, Nishishimbashi, Minato-ku, Tokyo, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of General Thoracic Surgery, Juntendo University School of Medicine, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Osuga
- Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Corresponding Author: Shinji Kohsaka, Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. Phone: 81-3-3547-5201; Fax: 81-3-5565-0727; E-mail:
| |
Collapse
|
18
|
Sano M, Morishita K, Onizawa Y, Takagi T, Sumaru K. Rapid and Highly Sensitive Method for Evaluating Surface Coatings against an Enveloped RNA Virus. ACS APPLIED BIO MATERIALS 2022; 5:5174-5180. [PMID: 36240051 DOI: 10.1021/acsabm.2c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The COVID-19 pandemic has increased public health vigilance worldwide. The coronavirus (SARS-CoV-2) can spread via aerosols, and droplet-borne viruses remain viable on nonliving surfaces for long duration. Hence, effective antiviral coatings are highly useful in eliminating viral persistence on nonliving surfaces. Although innovative antiviral coatings have been designed, conventional procedures for antiviral assays are generally laborious, time-consuming, and have a high limit of detection. In the present study, we report a rapid and highly sensitive method for evaluating antiviral coatings by measuring the luciferase activity derived from recombinant Sendai virus (SeV). The physicochemical characteristics of SeV, which has a single-stranded RNA genome encapsulated within a lipid envelope, allow us to exploit it as an indicator of the physicochemical potential of coating materials against enveloped RNA viruses in general. We demonstrate that SeV-based assay systems allow for the rapid and quantitative evaluation of the surface coatings composed of iodine solubilized in polyvinyl acetate. Additionally, we have investigated the effect of mucins, the dominant protein component of saliva, on the antiviral activity of surface coatings. The presence of mucins in the SeV suspension considerably rescues luciferase activity at the viral-surface interface, presumably due to mucin-mediated viral protection. Our findings provide insights into a procedure capable of the rapid evaluation and optimization of surface coatings, and suggest an important role of the mucin in the valid evaluation of antiviral agents.
Collapse
Affiliation(s)
- Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kana Morishita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuri Onizawa
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Takagi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kimio Sumaru
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
19
|
Wang Z, Wang S, Jia Z, Zhao Y, Yang M, Yan W, Chen T, Xiang D, Shao R, Liu Y. Establishment and characterization of an immortalized epithelial cell line from human gallbladder. Front Oncol 2022; 12:994087. [PMID: 36387215 PMCID: PMC9650220 DOI: 10.3389/fonc.2022.994087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Although a plethora of studies have employed multiple gallbladder cancer (GBC) cell lines, it is surprisingly noted that there is still lack of a normal gallbladder epithelial cell line as a normal counterpart, thus impeding substantially the progress of mechanistic studies on the transformation of normal epithelial cells to cancer. Here, we created a normal gallbladder epithelial cell line named L-2F7 from human gallbladder tissue. Methods Gallbladder tissues from a diagnosed cholecystitis female patient were collected, and epithelial cells were enriched by magnetic cell sorting. Then, the cells were immortalized by co-introduction of human telomerase reverse transcriptase (hTERT) and Simian virus 40 large T antigen (LT-SV40) via a lentivirus infection system. After clonal selection and isolation, L-2F7 cells were tested for epithelial markers CK7, CK19, CK20, and CD326, genomic feature, cell proliferation, and migration using Western blot, immunofluorescence, whole genome sequencing, karyotyping, and RNA sequencing. L-2F7 cells were also transplanted to Nude (nu/nu) mice to determine tumorigenicity. Results We successfully identified one single-cell clone named L-2F7 which highly expressed epithelial markers CD326, CK7, CK19, and CK20. This cell line proliferated with a doubling time of 23 h and the epithelial morphology sustained over 30 passages following immortalization. Transient gene transduction of L-2F7 cells led to expression of exogenous GFP and FLAG protein. L-2F7 cells exhibited both distinct non-synonymous mutations from those of gallbladder cancer tissues and differential non-cancerous gene expression patterns similar to normal tissue. Although they displayed unexpected mobility, L-2F7 cells still lacked the ability to develop tumors. Conclusion We developed a non-cancerous gallbladder epithelial cell line, offering a valuable system for the study of gallbladder cancer and other gallbladder-related disorders.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Ziheng Jia
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Weikang Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Dongxi Xiang
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
- *Correspondence: Dongxi Xiang, ; Rong Shao, ; Yingbin Liu,
| | - Rong Shao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Department of Pharmacology and Biochemistry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Dongxi Xiang, ; Rong Shao, ; Yingbin Liu,
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
- *Correspondence: Dongxi Xiang, ; Rong Shao, ; Yingbin Liu,
| |
Collapse
|
20
|
Kanadome T, Hayashi K, Seto Y, Eiraku M, Nakajima K, Nagai T, Matsuda T. Development of intensiometric indicators for visualizing N-cadherin interaction across cells. Commun Biol 2022; 5:1065. [PMID: 36207396 PMCID: PMC9546846 DOI: 10.1038/s42003-022-04023-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
N-cadherin (NCad) is a classical cadherin that mediates cell–cell interactions in a Ca2+-dependent manner. NCad participates in various biological processes, from ontogenesis to higher brain functions, though the visualization of NCad interactions in living cells remains limited. Here, we present intensiometric NCad interaction indicators, named INCIDERs, that utilize dimerization-dependent fluorescent proteins. INCIDERs successfully visualize reversible NCad interactions across cells. Compared to FRET-based indicators, INCIDERs have a ~70-fold higher signal contrast, enabling clear identification of NCad interactions. In primary neuronal cells, NCad interactions are visualized between closely apposed processes. Furthermore, visualization of NCad interaction at cell adhesion sites in dense cell populations is achieved by two-photon microscopy. INCIDERs are useful tools in the spatiotemporal investigation of NCad interactions across cells; future research should evaluate the potential of INCIDERs in mapping complex three-dimensional architectures in multi-cellular systems. Intensiometric N-cadherin (NCad) interaction indicators, named INCIDERs, visualize reversible NCad-mediated cell-cell interactions.
Collapse
Affiliation(s)
- Takashi Kanadome
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.,Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yusuke Seto
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8507, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan.
| |
Collapse
|
21
|
Mitani F, Hayasaka R, Hirayama A, Oneyama C. SNAP23-Mediated Perturbation of Cholesterol-Enriched Membrane Microdomain Promotes Extracellular Vesicle Production in Src-Activated Cancer Cells. Biol Pharm Bull 2022; 45:1572-1580. [PMID: 36184518 DOI: 10.1248/bpb.b22-00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles (EVs) originating from intraluminal vesicles (ILVs) formed within multivesicular bodies (MVBs), often referred to as small EV (sEV) or exosomes, are aberrantly produced by cancer cells and regulate the tumor microenvironment. The tyrosine kinase c-Src is upregulated in a wide variety of human cancers and is involved in promoting sEV secretion, suggesting its role in malignant progression. In this study, we found that activated Src liberated synaptosomal-associated protein 23 (SNAP23), a SNARE molecule, from lipid rafts to non-rafts on cellular membrane. We also demonstrated that SNAP23 localized in non-rafts induced cholesterol downregulation and ILV formation, resulting in the upregulation of sEV production in c-Src-transformed cells. Furthermore, the contribution of the SNAP23-cholesterol axis on sEV upregulation was confirmed in pancreatic cancer cells. High SNAP23 expression is associated with poor prognosis in patients with pancreatic cancer. These findings suggest a unique mechanism for the upregulation of sEV production via SNAP23-mediated cholesterol downregulation in Src-activated cancer cells.
Collapse
Affiliation(s)
- Fumie Mitani
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute.,Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Ryosuke Hayasaka
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University.,Systems Biology Program, Graduate School of Media and Governance, Keio University.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute.,Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University.,Department of Target and Drug Discovery, Graduate School of Medicine, Nagoya University
| |
Collapse
|
22
|
Izutsu R, Osaki M, Jehung JP, Seong HK, Okada F. Liver Metastasis Formation Is Defined by AMIGO2 Expression via Adhesion to Hepatic Endothelial Cells in Human Gastric and Colorectal Cancer Cells. Pathol Res Pract 2022; 237:154015. [PMID: 35843033 DOI: 10.1016/j.prp.2022.154015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022]
Abstract
The adhesion of circulating cancer cells to vascular endothelial cells is an initial and critical step in distant metastases. Amphoterin-induced gene and open reading frame 2 (AMIGO2) was found to regulate tumor cell adhesion to hepatic endothelial cells and act as a driver gene for liver metastasis in mouse cell lines. However, whether the role of AMIGO2 observed in mouse tumor cells can be extrapolated to human cancer cells in vivo has not been verified. In this study, AMIGO2 expression in various human gastric and colorectal cancer cells was found to be closely associated with their adhesion to human hepatic sinusoidal endothelial cells (HHSECs). Constitutive AMIGO2-knockdown clones of human gastric (MKN-45) and colorectal cancer cell lines (DLD-1) were established to examine whether AMIGO2 expression in cancer cells is involved in the adhesion to HHSECs in vitro and the formation of liver metastasis in vivo. All AMIGO2-knockdown cells showed significantly attenuated adhesion to HHSECs. In vivo analysis revealed that intrasplenic inoculation of AMIGO2-knockdown clones could engraft in the spleen but significantly suppressed liver metastasis in nude mice. This study demonstrated that the role of AMIGO2 as a driver gene of liver metastasis in mouse tumor cells can be extrapolated to human cancer cells.
Collapse
Affiliation(s)
- Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan; Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan.
| | - Jumond P Jehung
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Hee Kyung Seong
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan; Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
23
|
Kajiwara K, Chen PK, Abe Y, Okuda S, Kon S, Adachi J, Tomonaga T, Fujita Y, Okada M. Src activation in lipid rafts confers epithelial cells with invasive potential to escape from apical extrusion during cell competition. Curr Biol 2022; 32:3460-3476.e6. [PMID: 35809567 DOI: 10.1016/j.cub.2022.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Abnormal/cancerous cells within healthy epithelial tissues undergo apical extrusion to protect against carcinogenesis, although they acquire invasive capacity once carcinogenesis progresses. However, the molecular mechanisms by which cancer cells escape from apical extrusion and invade surrounding tissues remain elusive. In this study, we demonstrate a molecular mechanism for cell fate switching during epithelial cell competition. We found that during competition within epithelial cell layers, Src transformation promotes maturation of focal adhesions and degradation of extracellular matrix. Src-transformed cells underwent basal delamination by Src activation within sphingolipid/cholesterol-enriched membrane microdomains/lipid rafts, whereas they were apically extruded when Src was outside of lipid rafts. A comparative analysis of contrasting phenotypes revealed that activation of the Src-STAT3-MMP axis through lipid rafts was required for basal delamination. CUB-domain-containing protein 1 (CDCP1) was identified as an Src-activating scaffold and as a Met regulator in lipid rafts, and its overexpression induced basal delamination. In renal cancer models, CDCP1 promoted epithelial-mesenchymal transition-mediated invasive behavior by activating the Src-STAT3-MMP axis through Met activation. Overall, these results suggest that spatial activation of Src signaling in lipid rafts confers resistance to apical extrusion and invasive potential on epithelial cells to promote carcinogenesis.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Ping-Kuan Chen
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Division of Molecular Diagnosis, Aichi Cancer Center Research Institute, Aichi 464-8681, Japan
| | - Satoru Okuda
- World Premier International Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shunsuke Kon
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases Education and Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
24
|
Saji T, Nishita M, Ikeda K, Endo M, Okada Y, Minami Y. c-Src-mediated phosphorylation and activation of kinesin KIF1C promotes elongation of invadopodia in cancer cells. J Biol Chem 2022; 298:102090. [PMID: 35654143 PMCID: PMC9234240 DOI: 10.1016/j.jbc.2022.102090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 10/25/2022] Open
Abstract
Invadopodia on cancer cells play crucial roles in tumor invasion and metastasis by degrading and remodeling the surrounding extracellular matrices (ECM) and driving cell migration in complex three-dimensional environments. Previous studies have indicated that microtubules (MTs) play a crucial role in elongation of invadopodia, but not their formation, probably by regulating delivery of membrane and secretory proteins within invadopodia. However, the identity of the responsible MT-based molecular motors and their regulation has been elusive. Here, we show that KIF1C, a member of kinesin-3 family, is localized to the tips of invadopodia and is required for their elongation and the invasion of cancer cells. We also found that c-Src phosphorylates tyrosine residues within the stalk domain of KIF1C, thereby enhancing its association with tyrosine phosphatase PTPD1, that in turn activates MT-binding ability of KIF1C, probably by relieving the autoinhibitory interaction between its motor and stalk domains. These findings shed new insights into how c-Src signaling is coupled to the MT-dependent dynamic nature of invadopodia, and also advance our understanding of the mechanism of KIF1C activation through release of its autoinhibition.
Collapse
Affiliation(s)
- Takeshi Saji
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan; Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan; Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| | - Kazuho Ikeda
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| |
Collapse
|
25
|
Terada K, Kondo K, Ishigaki H, Nagashima A, Satooka H, Nagano S, Masuda K, Kawamura T, Hirata T, Ogasawara K, Itoh Y, Kawamoto H, Agata Y. Isolation of TCR genes with tumor-killing activity from tumor-infiltrating and circulating lymphocytes in a tumor rejection cynomolgus macaque model. Mol Ther Oncolytics 2022; 24:77-86. [PMID: 35024435 PMCID: PMC8717465 DOI: 10.1016/j.omto.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/04/2021] [Indexed: 11/24/2022] Open
Abstract
To develop effective adoptive cell transfer therapy using T cell receptor (TCR)-engineered T cells, it is critical to isolate tumor-reactive TCRs that have potent anti-tumor activity. In humans, tumor-infiltrating lymphocytes (TILs) have been reported to contain CD8+PD-1+ T cells that express tumor-reactive TCRs. Characterization of tumor reactivity of TILs from non-human primate tumors could improve anti-tumor activity of TCR-engineered T cells in preclinical research. In this study, we sought to isolate TCR genes from CD8+PD-1+ T cells among TILs in a cynomolgus macaque model of tumor transplantation in which the tumors were infiltrated with CD8+ T cells and were eventually rejected. We analyzed the repertoire of TCRα and β pairs obtained from single CD8+PD-1+ T cells in TILs and circulating lymphocytes and identified multiple TCR pairs with high frequency, suggesting that T cells expressing these recurrent TCRs were clonally expanded in response to tumor cells. We further showed that the recurrent TCRs exhibited cytotoxic activity to tumor cells in vitro and potent anti-tumor activity in mice transplanted with tumor cells. These results imply that this tumor transplantation macaque model recapitulates key features of human TILs and can serve as a platform toward preclinical studies of non-human primate tumor models.
Collapse
|
26
|
Ikeuchi H, Hirose T, Ikegami M, Takamochi K, Suzuki K, Mano H, Kohsaka S. Preclinical assessment of combination therapy of EGFR tyrosine kinase inhibitors in a highly heterogeneous tumor model. Oncogene 2022; 41:2470-2479. [PMID: 35304574 PMCID: PMC9033582 DOI: 10.1038/s41388-022-02263-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 01/29/2023]
Abstract
The development of tyrosine kinase inhibitors (TKIs) has improved the treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. The current research priority is to provide viable treatments for patients who have drug-resistant EGFR mutations. We evaluated the drug sensitivity of various EGFR mutants to monotherapies and combination therapies of EGFR-TKIs. In vitro, the transforming potential and drug sensitivity of 357 EGFR variants were assessed. In vivo, we tested the sensitivity of EGFR variants to different regimens of EGFR-TKIs by examining changes in the proportion of each variant within the tumor. Out of 357 variants thoroughly examined for transforming activities, 144 (40.3%) and 282 (79.0%) transformed 3T3 and Ba/F3 cells, respectively. Among the latter variants, 50 (17.7%) were found to be resistant or only partly resistant to osimertinib or afatinib. Four of 25 afatinib-resistant variants (16%) were sensitive to osimertinib, whereas 25 of 46 osimertinib-resistant variants (54.3%) were sensitive to afatinib. Despite the lack of a synergistic impact, TKI combination treatment effectively reduced in vivo the heterogeneous tumors composed of 3T3 cells with different EGFR variants. Regimens starting with afatinib and subsequently switched to osimertinib suppressed tumor development more efficiently than the opposite combination. Combination EGFR-TKI treatment may decrease tumor growth and prevent the development of resistant variants. This work created an experimental model of a heterogeneous tumor to find the best combination therapy regimen and proposes a basic notion of EGFR-TKI combination therapy to enhance the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Hiroshi Ikeuchi
- grid.272242.30000 0001 2168 5385Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045 Japan ,grid.258269.20000 0004 1762 2738Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, 113-8431 Japan
| | - Takeshi Hirose
- grid.272242.30000 0001 2168 5385Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045 Japan
| | - Masachika Ikegami
- grid.272242.30000 0001 2168 5385Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045 Japan ,grid.415479.aDepartment of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, 113-8677 Japan
| | - Kazuya Takamochi
- grid.258269.20000 0004 1762 2738Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, 113-8431 Japan
| | - Kenji Suzuki
- grid.258269.20000 0004 1762 2738Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, 113-8431 Japan
| | - Hiroyuki Mano
- grid.272242.30000 0001 2168 5385Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045 Japan
| | - Shinji Kohsaka
- grid.272242.30000 0001 2168 5385Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045 Japan
| |
Collapse
|
27
|
Ito N, Takahashi T, Shiiba I, Nagashima S, Inatome R, Yanagi S. MITOL regulates phosphatidic acid-binding activity of RMDN3/PTPIP51. J Biochem 2021; 171:529-541. [PMID: 34964862 DOI: 10.1093/jb/mvab153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022] Open
Abstract
The transfer of phospholipids from the endoplasmic reticulum to mitochondria via the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) is essential for maintaining mitochondrial function and integrity. Here, we identified RMDN3/PTPIP51, possessing phosphatidic acid (PA)-transfer activity, as a neighboring protein of the mitochondrial E3 ubiquitin ligase MITOL/MARCH5 by proximity-dependent biotin labeling using APEX2. We found that MITOL interacts with and ubiquitinates RMDN3. Mutational analysis identified lysine residue 89 in RMDN3 as a site of ubiquitination by MITOL. Loss of MITOL or the substitution of lysine 89 to arginine in RMDN3 significantly reduced the PA-binding activity of RMDN3, suggesting that MITOL regulates the transport of PA to mitochondria by activating RMDN3. Our findings imply that ubiquitin signaling regulates phospholipid transport at the MERCS.
Collapse
Affiliation(s)
- Naoki Ito
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Takara Takahashi
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.,Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| |
Collapse
|
28
|
Nakamoto C, Goto Y, Tomizawa Y, Fukata Y, Fukata M, Harpsøe K, Gloriam DE, Aoki K, Takeuchi T. A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Mol Brain 2021; 14:173. [PMID: 34872607 PMCID: PMC8647500 DOI: 10.1186/s13041-021-00882-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Dopamine (DA) and norepinephrine (NE) are pivotal neuromodulators that regulate a broad range of brain functions, often in concert. Despite their physiological importance, untangling the relationship between DA and NE in the fine control of output function is currently challenging, primarily due to a lack of techniques to allow the observation of spatiotemporal dynamics with sufficiently high selectivity. Although genetically encoded fluorescent biosensors have been developed to detect DA, their poor selectivity prevents distinguishing DA from NE. Here, we report the development of a red fluorescent genetically encoded GPCR (G protein-coupled receptor)-activation reporter for DA termed 'R-GenGAR-DA'. More specifically, a circular permutated red fluorescent protein (cpmApple) was replaced by the third intracellular loop of human DA receptor D1 (DRD1) followed by the screening of mutants within the linkers between DRD1 and cpmApple. We developed two variants: R-GenGAR-DA1.1, which brightened following DA stimulation, and R-GenGAR-DA1.2, which dimmed. R-GenGAR-DA1.2 demonstrated a reasonable dynamic range (ΔF/F0 = - 43%), DA affinity (EC50 = 0.92 µM) and high selectivity for DA over NE (66-fold) in HeLa cells. Taking advantage of the high selectivity of R-GenGAR-DA1.2, we monitored DA in presence of NE using dual-color fluorescence live imaging, combined with the green-NE biosensor GRABNE1m, which has high selectivity for NE over DA (> 350-fold) in HeLa cells and hippocampal neurons grown from primary culture. Thus, this is a first step toward the multiplex imaging of these neurotransmitters in, for example, freely moving animals, which will provide new opportunities to advance our understanding of the high spatiotemporal dynamics of DA and NE in normal and abnormal brain function.
Collapse
Affiliation(s)
- Chihiro Nakamoto
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
| | - Yoko Tomizawa
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - David E. Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787 Japan
| | - Tomonori Takeuchi
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
- Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
29
|
Kimura R, Otani T, Shiraishi N, Hagiyama M, Yoneshige A, Wada A, Kajiyama H, Takeuchi F, Mizuguchi N, Morishita K, Ito A. Expression of cell adhesion molecule 1 in human and murine endometrial glandular cells and its increase during the proliferative phase by estrogen and cell density. Life Sci 2021; 283:119854. [PMID: 34332980 DOI: 10.1016/j.lfs.2021.119854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
AIMS Cell adhesion molecule 1 (CADM1) mediates interepithelial adhesion and is upregulated in crowded epithelial monolayers. This study aimed to examine CADM1 expression in the human endometrium of proliferative and secretory phases, and its transcriptional regulation in terms of estrogen stimuli and higher cellularity. MAIN METHODS CADM1 immunohistochemistry was conducted on endometrial tissues from women in their 40s and adult mice subcutaneously injected with estradiol following ovariectomy. Dual-luciferase reporter assays were conducted using human endometrial HEC-50B and HEC-1B cells and reporter plasmids harboring the human CADM1 3.4-kb promoter and its deleted and mutated forms. Cells were transfected with estrogen receptor α cDNA and reporter plasmids, and treated with estradiol before luciferase activity measurement. KEY FINDINGS Immunohistochemistry revealed that CADM1 was clearly expressed on the lateral membranes of the simple columnar glandular cells in the proliferative phase, but not in the secretory phase, from both women and the mouse model. The glandular cell density increased two-fold in the proliferative phase. Reporter assays identified three Sp1-binding sites as estradiol-responsive elements in the proximal region (from -223 to -84) of the transcription start site (+1) in HEC-50B cells. When the cell culture was started at eight-fold higher cell density, the CADM1 3.4-kb promoter was transactivated at a two-fold higher level in HEC-50B cells. This cell density effect was not detected for the CADM1 2.3-kb or 1.6-kb promoter. SIGNIFICANCE Two (proximal and distal) promoter regions are suggested to function additively to transactivate CADM1 in endometrial glandular cells that crowd in the proliferative phase.
Collapse
Affiliation(s)
- Ryuichiro Kimura
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Tomoyuki Otani
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Naoki Shiraishi
- Genome Medical Center, Kindai University Hospital, Osaka, Japan
| | - Man Hagiyama
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Akihiro Wada
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Hiroshi Kajiyama
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Fuka Takeuchi
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | | | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan.
| |
Collapse
|
30
|
Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis Oncol 2021; 5:66. [PMID: 34272467 PMCID: PMC8285406 DOI: 10.1038/s41698-021-00204-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 06/08/2021] [Indexed: 01/16/2023] Open
Abstract
Various genetic alterations of the fibroblast growth factor receptor (FGFR) family have been detected across a wide range of cancers. However, inhibition of FGFR signaling by kinase inhibitors demonstrated limited clinical effectiveness. Herein, we evaluated the transforming activity and sensitivity of 160 nonsynonymous FGFR mutations and ten fusion genes to seven FGFR tyrosine kinase inhibitors (TKI) using the mixed-all-nominated-in-one (MANO) method, a high-throughput functional assay. The oncogenicity of 71 mutants was newly discovered in this study. The FGFR TKIs showed anti-proliferative activities against the wild-type FGFRs and their fusions, while several hotspot mutants were relatively resistant to those TKIs. The drug sensitivities assessed with the MANO method were well concordant with those evaluated using in vitro and in vivo assays. Comprehensive analysis of published FGFR structures revealed a possible mechanism through which oncogenic FGFR mutations reduce sensitivity to TKIs. It was further revealed that recurrent compound mutations within FGFRs affect the transforming potential and TKI-sensitivity of corresponding kinases. In conclusion, our study suggests the importance of selecting suitable inhibitors against individual FGFR variants. Moreover, it reveals the necessity to develop next-generation FGFR inhibitors, which are effective against all oncogenic FGFR variants.
Collapse
|
31
|
Sasai K, Tabu K, Saito T, Matsuba Y, Saido TC, Tanaka S. Difference in the malignancy between RAS and GLI1-transformed astrocytes is associated with frequency of p27 KIP1-positive cells in xenograft tissues. Pathol Res Pract 2021; 223:153465. [PMID: 33989885 DOI: 10.1016/j.prp.2021.153465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
We demonstrate that the introduction of GLI1 is sufficient for immortalized human astrocytes to be transformed whereas FOXM1 fails to induce malignant transformation, suggesting differences between GLI1 and FOXM1 in terms of transforming ability despite both transcription factors being overexpressed in malignant gliomas. Moreover, in investigations of mechanisms underlying relatively less-malignant features of GLI1-transformed astrocytes, we found that p27KIP1-positive cells were frequently observed in xenografts derived from GLI1-transformed astrocytes compared to those from RAS-transformed cells. As shRNA-mediated knockdown of p27KIP1 accelerates tumor progression of GLI1-transformed astrocytes, downregulation of p27KIP1 contributes to malignant features of transformed astrocytes. We propose that the models using immortalized/transformed astrocytes are useful to identify the minimal and most crucial set of changes required for glioma formation.
Collapse
Affiliation(s)
- Ken Sasai
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Kouichi Tabu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan; WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
32
|
Chee WY, Kurahashi Y, Kim J, Miura K, Okuzaki D, Ishitani T, Kajiwara K, Nada S, Okano H, Okada M. β-catenin-promoted cholesterol metabolism protects against cellular senescence in naked mole-rat cells. Commun Biol 2021; 4:357. [PMID: 33742113 PMCID: PMC7979689 DOI: 10.1038/s42003-021-01879-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
The naked mole-rat (NMR; Heterocephalus glaber) exhibits cancer resistance and an exceptionally long lifespan of approximately 30 years, but the mechanism(s) underlying increased longevity in NMRs remains unclear. In the present study, we report unique mechanisms underlying cholesterol metabolism in NMR cells, which may be responsible for their anti-senescent properties. NMR fibroblasts expressed β-catenin abundantly; this high expression was linked to increased accumulation of cholesterol-enriched lipid droplets. Ablation of β-catenin or inhibition of cholesterol synthesis abolished lipid droplet formation and induced senescence-like phenotypes accompanied by increased oxidative stress. β-catenin ablation downregulated apolipoprotein F and the LXR/RXR pathway, which are involved in cholesterol transport and biogenesis. Apolipoprotein F ablation also suppressed lipid droplet accumulation and promoted cellular senescence, indicating that apolipoprotein F mediates β-catenin signaling in NMR cells. Thus, we suggest that β-catenin in NMRs functions to offset senescence by regulating cholesterol metabolism, which may contribute to increased longevity in NMRs.
Collapse
Affiliation(s)
- Woei-Yaw Chee
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Yuriko Kurahashi
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Junhyeong Kim
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Kyoko Miura
- grid.274841.c0000 0001 0660 6749Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Daisuke Okuzaki
- grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Human Immunology Lab, WPI Immunology Frontier Research Center, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Tohru Ishitani
- grid.136593.b0000 0004 0373 3971Department of Homeostatic Regulation, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Kentaro Kajiwara
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Shigeyuki Nada
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| | - Hideyuki Okano
- grid.26091.3c0000 0004 1936 9959Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo Japan
| | - Masato Okada
- grid.136593.b0000 0004 0373 3971Department of Oncogene Research, Research for Microbial Disease, Osaka University, Suita, Osaka Japan
| |
Collapse
|
33
|
Maruoka M, Zhang P, Mori H, Imanishi E, Packwood DM, Harada H, Kosako H, Suzuki J. Caspase cleavage releases a nuclear protein fragment that stimulates phospholipid scrambling at the plasma membrane. Mol Cell 2021; 81:1397-1410.e9. [PMID: 33725486 DOI: 10.1016/j.molcel.2021.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 12/25/2022]
Abstract
Phospholipid scrambling in dying cells promotes phosphatidylserine exposure, a critical process for efferocytosis. We previously identified the Xkr family protein Xkr4 as a phospholipid-scrambling protein, but its activation mechanisms remain unknown. Here we show that Xkr4 is activated in two steps: dimer formation by caspase-mediated cleavage and structural change caused by activating factors. To identify the factors, we developed a new screening system, "revival screening," using a CRISPR sgRNA library. Applying this system, we identified the nuclear protein XRCC4 as the single candidate for the Xkr4 activator. Upon apoptotic stimuli, XRCC4, contained in the DNA repair complex, is cleaved by caspases, and its C-terminal fragment with an intrinsically disordered region is released into the cytoplasm. Protein interaction screening showed that the fragment interacts directly with the Xkr4 dimer to activate it. This study demonstrates that caspase-mediated cleavage releases a nuclear protein fragment for direct regulation of lipid dynamics on the plasma membrane.
Collapse
Affiliation(s)
- Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Panpan Zhang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan
| | - Hiromi Mori
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Eiichi Imanishi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Daniel M Packwood
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; AMED-FORCE, Japanese Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan; Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
34
|
Kajiwara K, Yamano S, Aoki K, Okuzaki D, Matsumoto K, Okada M. CDCP1 promotes compensatory renal growth by integrating Src and Met signaling. Life Sci Alliance 2021; 4:4/4/e202000832. [PMID: 33574034 PMCID: PMC7893822 DOI: 10.26508/lsa.202000832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
CDCP1 promotes HGF-induced compensatory renal growth by focally and temporally integrating Src and Met-STAT3 signaling in lipid rafts. Compensatory growth of organs after loss of their mass and/or function is controlled by hepatocyte growth factor (HGF), but the underlying regulatory mechanisms remain elusive. Here, we show that CUB domain-containing protein 1 (CDCP1) promotes HGF-induced compensatory renal growth. Using canine kidney cells as a model of renal tubules, we found that HGF-induced temporal up-regulation of Src activity and its scaffold protein, CDCP1, and that the ablation of CDCP1 robustly abrogated HGF-induced phenotypic changes, such as morphological changes and cell growth/proliferation. Mechanistic analyses revealed that up-regulated CDCP1 recruits Src into lipid rafts to activate STAT3 associated with the HGF receptor Met, and activated STAT3 induces the expression of matrix metalloproteinases and mitogenic factors. After unilateral nephrectomy in mice, the Met-STAT3 signaling is transiently up-regulated in the renal tubules of the remaining kidney, whereas CDCP1 ablation attenuates regenerative signaling and significantly suppresses compensatory growth. These findings demonstrate that CDCP1 plays a crucial role in controlling compensatory renal growth by focally and temporally integrating Src and Met signaling.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shotaro Yamano
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
35
|
Takeda K, Uda A, Mitsubori M, Nagashima S, Iwasaki H, Ito N, Shiiba I, Ishido S, Matsuoka M, Inatome R, Yanagi S. Mitochondrial ubiquitin ligase alleviates Alzheimer's disease pathology via blocking the toxic amyloid-β oligomer generation. Commun Biol 2021; 4:192. [PMID: 33580194 PMCID: PMC7881000 DOI: 10.1038/s42003-021-01720-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial pathophysiology is implicated in the development of Alzheimer's disease (AD). An integrative database of gene dysregulation suggests that the mitochondrial ubiquitin ligase MITOL/MARCH5, a fine-tuner of mitochondrial dynamics and functions, is downregulated in patients with AD. Here, we report that the perturbation of mitochondrial dynamics by MITOL deletion triggers mitochondrial impairments and exacerbates cognitive decline in a mouse model with AD-related Aβ pathology. Notably, MITOL deletion in the brain enhanced the seeding effect of Aβ fibrils, but not the spontaneous formation of Aβ fibrils and plaques, leading to excessive secondary generation of toxic and dispersible Aβ oligomers. Consistent with this, MITOL-deficient mice with Aβ etiology exhibited worsening cognitive decline depending on Aβ oligomers rather than Aβ plaques themselves. Our findings suggest that alteration in mitochondrial morphology might be a key factor in AD due to directing the production of Aβ form, oligomers or plaques, responsible for disease development.
Collapse
Affiliation(s)
- Keisuke Takeda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Department of Biology, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Aoi Uda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Mikihiro Mitsubori
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Shun Nagashima
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroko Iwasaki
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naoki Ito
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaaki Matsuoka
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan.
| |
Collapse
|
36
|
Shiiba I, Takeda K, Nagashima S, Ito N, Tokuyama T, Yamashita SI, Kanki T, Komatsu T, Urano Y, Fujikawa Y, Inatome R, Yanagi S. MITOL promotes cell survival by degrading Parkin during mitophagy. EMBO Rep 2021; 22:e49097. [PMID: 33565245 PMCID: PMC7926225 DOI: 10.15252/embr.201949097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Parkin promotes cell survival by removing damaged mitochondria via mitophagy. However, although some studies have suggested that Parkin induces cell death, the regulatory mechanism underlying the dual role of Parkin remains unknown. Herein, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) regulates Parkin‐mediated cell death through the FKBP38‐dependent dynamic translocation from the mitochondria to the ER during mitophagy. Mechanistically, MITOL mediates ubiquitination of Parkin at lysine 220 residue, which promotes its proteasomal degradation, and thereby fine‐tunes mitophagy by controlling the quantity of Parkin. Deletion of MITOL leads to accumulation of the phosphorylated active form of Parkin in the ER, resulting in FKBP38 degradation and enhanced cell death. Thus, we have shown that MITOL blocks Parkin‐induced cell death, at least partially, by protecting FKBP38 from Parkin. Our findings unveil the regulation of the dual function of Parkin and provide a novel perspective on the pathogenesis of PD.
Collapse
Affiliation(s)
- Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan.,Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Keisuke Takeda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shun Nagashima
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naoki Ito
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan.,Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takeshi Tokuyama
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST) Investigator, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Yuuta Fujikawa
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan.,Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan.,Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
37
|
Hirose T, Ikegami M, Endo M, Matsumoto Y, Nakashima Y, Mano H, Kohsaka S. Extensive functional evaluation of exon 20 insertion mutations of EGFR. Lung Cancer 2020; 152:135-142. [PMID: 33395611 DOI: 10.1016/j.lungcan.2020.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Exon 20 insertion mutations of epidermal growth factor receptor (EGFR) have been identified as oncogenic mutations in general; however, the functional relevance of each remains largely uninvestigated. Herein, we comprehensively assessed the functional significance of insertion mutations of EGFR exon 20. MATERIALS AND METHODS The transforming potential and drug sensitivities of 25 EGFR recurrent mutants, including twenty-one exon 20 insertions, were evaluated using the mixed-all-nominated-in-one method. RESULTS The sensitivity of EGFR exon 20 insertions to EGFR tyrosine kinase inhibitors (TKIs) was generally lower than that of the L858R mutation or exon 19 deletions. The results were also confirmed through an in vivo drug test. All of the exon 20 insertions were resistant to gefitinib and afatinib, whereas several mutants were sensitive to osimertinib. EGFR exon 20 insertions exhibited relatively good responses to poziotinib and mobocertinib. CONCLUSIONS EGFR exon 20 insertions were shown to have different degrees of sensitivity to EGFR TKIs. This extensive assessment of EGFR exon 20 insertions may provide a fundamental database for aiding in a customized mode of therapy for cancers having insertional mutations within exon 20 of EGFR, although the clinical impact of preclinical data should be validated by clinical evidence in the future.
Collapse
Affiliation(s)
- Takeshi Hirose
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
38
|
Murakami H, Tamura N, Enomoto Y, Shimasaki K, Kurosawa K, Hanada K. Intellectual disability-associated gain-of-function mutations in CERT1 that encodes the ceramide transport protein CERT. PLoS One 2020; 15:e0243980. [PMID: 33347465 PMCID: PMC7751862 DOI: 10.1371/journal.pone.0243980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Intellectual disability (ID) is a developmental disorder that includes both intellectual and adaptive functioning deficits in conceptual, social, and practical domains. Although evidence-based interventions for patients have long been desired, their progress has been hindered due to various determinants. One of these determinants is the complexity of the origins of ID. The ceramide transport protein (CERT) encoded by CERT1 mediates inter-organelle trafficking of ceramide for the synthesis of intracellular sphingomyelin. Utilizing whole exome sequencing analysis, we identified a novel CERT variant, which substitutes a serine at position 135 (S135) for a proline in a patient with severe ID. Biochemical analysis showed that S135 is essential for hyperphosphorylation of a serine-repeat motif of CERT, which is required for down-regulation of CERT activity. Amino acid replacements of S135 abnormally activated CERT and induced an intracellular punctate distribution pattern of this protein. These results identified specific ID-associated CERT1 mutations that induced gain-of-function effects on CERT activity. These findings provide a possible molecular basis for not only new diagnostics but also a conceivable pharmaceutical intervention for ID disorders caused by gain-of-function mutations in CERT1.
Collapse
Affiliation(s)
- Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
| | - Norito Tamura
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
| | - Kentaro Shimasaki
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
- * E-mail: (KK); (KH)
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (KK); (KH)
| |
Collapse
|
39
|
Onomura D, Satoh S, Ueda Y, Dansako H, Kato N. Identification of ribavirin-responsive cis-elements for GPAM suppression in the GPAM genome. Biochem Biophys Res Commun 2020; 533:148-154. [PMID: 32933750 DOI: 10.1016/j.bbrc.2020.08.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
Glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) is a rate-limiting enzyme catalyzing triglyceride synthesis. Recently, we demonstrated that the anti-viral drug ribavirin (RBV) reduces GPAM expression by downregulating CCAAT/enhancer-binding protein α (C/EBPα). However, the precise mechanisms of GPAM suppression have remained unclear. Here, we found that RBV suppressed GPAM expression by downregulating not only C/EBPα, but also sterol regulatory element-binding protein-1c (SREBP-1c). We also found that cis-elements regulated by C/EBPα and SREBP-1c functioned as distal and proximal enhancers, respectively, to express hepatocyte- and adipocytes-specific GPAM variants. These results imply that RBV disrupts formation of the enhancer machineries on the GPAM genome by downregulating both transcription factors. Our findings may contribute to the development of treatments for fatty liver diseases caused by aberrant triglyceride synthesis.
Collapse
Affiliation(s)
- Daichi Onomura
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Shinya Satoh
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan.
| | - Youki Ueda
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Hiromichi Dansako
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Nobuyuki Kato
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| |
Collapse
|
40
|
Generation of an Oncolytic Herpes Simplex Viral Vector Completely Retargeted to the GDNF Receptor GFRα1 for Specific Infection of Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21228815. [PMID: 33233403 PMCID: PMC7700293 DOI: 10.3390/ijms21228815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSV) are under development for the treatment of a variety of human cancers, including breast cancer, a leading cause of cancer mortality among women worldwide. Here we report the design of a fully retargeted oHSV for preferential infection of breast cancer cells through virus recognition of GFRα1, the cellular receptor for glial cell-derived neurotrophic factor (GDNF). GFRα1 displays a limited expression profile in normal adult tissue, but is upregulated in a subset of breast cancers. We generated a recombinant HSV expressing a completely retargeted glycoprotein D (gD), the viral attachment/entry protein, that incorporates pre-pro-GDNF in place of the signal peptide and HVEM binding domain of gD and contains a deletion of amino acid 38 to eliminate nectin-1 binding. We show that GFRα1 is necessary and sufficient for infection by the purified recombinant virus. Moreover, this virus enters and spreads in GFRα1-positive breast cancer cells in vitro and caused tumor regression upon intratumoral injection in vivo. Given the heterogeneity observed between and within individual breast cancers at the molecular level, these results expand our ability to deliver oHSV to specific tumors and suggest opportunities to enhance drug or viral treatments aimed at other receptors.
Collapse
|
41
|
Anti-tumor effect of a recombinant Bifidobacterium strain secreting a claudin-targeting molecule in a mouse breast cancer model. Eur J Pharmacol 2020; 887:173596. [PMID: 32979353 DOI: 10.1016/j.ejphar.2020.173596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/02/2023]
Abstract
Bifidobacterium is a nonpathogenic strain of anaerobic bacteria that selectively localizes and proliferates in tumors. It has emerged as a specific carrier of anticancer proteins against malignant tumors. Claudins are tetraspanin transmembrane proteins that form tight junctions. Claudin-4 is overexpressed in certain epithelial malignant cancers. The C-terminal fragment of the Clostridium perfringens enterotoxin (C-CPE), an exotoxin without the cytotoxic domain, strongly binds to claudin-4. The C-CPE fusion toxin (C-CPE-PE23), which targets claudin-4, strongly suppresses tumor growth; however, C-CPE fusion toxins exhibit hepatic toxicity. In this study, we successfully generated a strain of Bifidobacterium longum that secreted C-CPE-PE23 (B. longum-C-CPE-PE23) and was specific to and cross reactive with human and mouse claudin-4. We evaluated the therapeutic potential of this strain against triple-negative breast cancer using a mouse model. C-CPE-PE23 decreased cell viability in a dose-dependent manner in human and mouse breast cancer cell lines. After intravenous injection, Bifidobacterium was specifically distributed in the tumors of mice bearing breast cancer tumors. Moreover, B. longum-C-CPE-PE23 significantly suppressed tumor growth in mice with breast cancer without serious side effects, such as weight loss or hepatic and renal damage. We suggest that B. longum-C-CPE-PE23 is a good candidate for breast cancer treatment. Bifidobacterium could also be used as a drug delivery system for hepatotoxic agents.
Collapse
|
42
|
Heng J, Heng HH. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 2020; 81:160-175. [PMID: 33189848 DOI: 10.1016/j.semcancer.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Cancer research has traditionally focused on the characterization of individual molecular mechanisms that can contribute to cancer. Due to the multiple levels of genomic and non-genomic heterogeneity, however, overwhelming molecular mechanisms have been identified, most with low clinical predictability. It is thus necessary to search for new concepts to unify these diverse mechanisms and develop better strategies to understand and treat cancer. In recent years, two-phased cancer evolution (comprised of the genome reorganization-mediated punctuated phase and gene mutation-mediated stepwise phase), initially described by tracing karyotype evolution, was confirmed by the Cancer Genome Project. In particular, genome chaos, the process of rapid and massive genome reorganization, has been commonly detected in various cancers-especially during key phase transitions, including cellular transformation, metastasis, and drug resistance-suggesting the importance of genome-level changes in cancer evolution. In this Perspective, genome chaos is used as a discussion point to illustrate new genome-mediated somatic evolutionary frameworks. By rephrasing cancer as a new system emergent from normal tissue, we present the multiple levels (or scales) of genomic and non-genomic information. Of these levels, evolutionary studies at the chromosomal level are determined to be of ultimate importance, since altered genomes change the karyotype coding and karyotype change is the key event for punctuated cellular macroevolution. Using this lens, we differentiate and analyze developmental processes and cancer evolution, as well as compare the informational relationship between genome chaos and its various subtypes in the context of macroevolution under crisis. Furthermore, the process of deterministic genome chaos is discussed to interpret apparently random events (including stressors, chromosomal variation subtypes, surviving cells with new karyotypes, and emergent stable cellular populations) as nonrandom patterns, which supports the new cancer evolutionary model that unifies genome and gene contributions during different phases of cancer evolution. Finally, the new perspective of using cancer as a model for organismal evolution is briefly addressed, emphasizing the Genome Theory as a new and necessary conceptual framework for future research and its practical implications, not only in cancer but evolutionary biology as a whole.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
43
|
Shimizu Y, Shinoda T, Shirasago Y, Kondoh M, Shinya N, Hanada K, Yagi K, Suzuki T, Wakita T, Kimura-Someya T, Shirouzu M, Fukasawa M. Occludin-binding single-chain variable fragment and antigen-binding fragment antibodies prevent hepatitis C virus infection. FEBS Lett 2020; 595:220-229. [PMID: 33113151 DOI: 10.1002/1873-3468.13975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 11/07/2022]
Abstract
Occludin (OCLN) is a tetraspan membrane component of epithelial tight junctions and a known receptor for hepatitis C virus (HCV). Previously, we established functional monoclonal antibodies (mAbs) that bind to each extracellular loop of OCLN and showed their ability to prevent in vitro and in vivo HCV infection. In this study, we converted these mAbs to corresponding monovalent antigen-binding fragments (Fabs) and single-chain variable fragment (scFv) antibodies. These Fab fragments and scFv antibodies demonstrate similar binding specificity and affinity to parental anti-OCLN mAbs. Moreover, Fab fragments and scFv antibodies inhibit in vitro HCV infection. The small functional monovalent OCLN-binding probes reported in our study have high potential as drug candidates and tools for biological and pharmaceutical studies of OCLN.
Collapse
Affiliation(s)
- Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Japan.,Department of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Japan
| | - Takehiro Shinoda
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Naoko Shinya
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Tomomi Kimura-Someya
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| |
Collapse
|
44
|
Hikita T, Miyata M, Watanabe R, Oneyama C. In vivo imaging of long-term accumulation of cancer-derived exosomes using a BRET-based reporter. Sci Rep 2020; 10:16616. [PMID: 33024173 PMCID: PMC7538576 DOI: 10.1038/s41598-020-73580-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Monitoring of exosome dynamics in living organisms is essential to demonstrate the real functions of cancer-derived exosomes. Currently, these have been elucidated in vitro or under non-physiological conditions in vivo in most cases. To overcome these limitations, we developed an imaging method using Antares2-mediated bioluminescence resonance energy transfer (BRET) for observing long-term accumulation of exosomes in vivo. Ectopic expression of CD63-Antares2 effectively labeled exosomes with Antares2, which emitted intense, long-wavelength luminescence suitable for in vivo monitoring. Transplantation of CD63-Antares2-expressing prostate cancer cells into mice allowed determining the amount of cancer-derived exosomes released from primary tumors into the bloodstream and visualizing the long-term homing behavior of exosomes to their target organs or tissues. Interestingly, secreted exosome was decreased upon administration of low dose of dasatinib, an approved tyrosine-kinase inhibitor. The CD63-Antares2 xenograft mouse model will be useful for elucidating the dynamics of cancer-derived exosomes in vivo and evaluating the therapeutic efficacy and mechanism of exosome production inhibitors.
Collapse
Affiliation(s)
- Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Mamiko Miyata
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Risayo Watanabe
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, 464-8681, Japan. .,Department of Target and Drug Discovery, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Japan. .,Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan. .,JST, PRESTO, Nagoya, Japan.
| |
Collapse
|
45
|
Watanabe T, Kakuta J, Saito S, Hasehira K, Kiyoi K, Imai T, Tateno H. Monoclonal antibodies specific for podocalyxin expressed on human induced pluripotent stem cells. Biochem Biophys Res Commun 2020; 532:647-654. [PMID: 32912628 DOI: 10.1016/j.bbrc.2020.08.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are useful starting materials for the generation of cell therapy products, due to their pluripotency and ability to self-renew. Quality control of hiPSCs is extremely important in creating a stable supply of hPSC-derived products. Previously we identified an hiPSC-specific lectin probe, rBC2LCN, which binds specifically to α1,2-fucosylated glycan and recognizes podocalyxin (PODXL) as a glycoprotein ligand. In this study, we produced monoclonal antibodies (mAbs) specific for α1,2-fucosylated PODXL expressed on hiPSCs. PODXL was recombinantly expressed in fucosyltransferase 1 (FUT1)-transfected HEK293, followed by immunization into mice. Monoclonal antibodies, which bind to PODXL/FUT1-transfected cells, but not to cells transfected with only one of PODXL or FUT1, were screened by flow cytometry. The two mAbs generated (179-6B8C9 and 179-7E12E10), termed α1,2-fucosylated PODXL-specific mAbs (FpMabs), showed binding specificity to PODXL/FUT1-transfected cells. The FpMabs bound to hiPSCs but never to human adipose-derived mesenchymal stem cells, human dermal fibroblasts, or hiPSC-derived mesoderm. Altogether, FpMabs are highly specific probes for hiPSCs, which might be a powerful tool for the characterization of hiPSCs used in regenerative medicine.
Collapse
Affiliation(s)
- Tomoko Watanabe
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Jungo Kakuta
- KAN Research Institute Inc., 6-8-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Sayoko Saito
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kayo Hasehira
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kayo Kiyoi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Toshio Imai
- KAN Research Institute Inc., 6-8-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
46
|
Nagata A, Itoh F, Sasho A, Sugita K, Suzuki R, Hinata H, Shimoda Y, Suzuki E, Maemoto Y, Inagawa T, Fujikawa Y, Ikeda E, Fujii C, Inoue H. The evolutionarily conserved deubiquitinase UBH1/UCH-L1 augments DAF7/TGF-β signaling, inhibits dauer larva formation, and enhances lung tumorigenesis. J Biol Chem 2020; 295:9105-9120. [PMID: 32371398 PMCID: PMC7335803 DOI: 10.1074/jbc.ra119.011222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Modification of the transforming growth factor β (TGF-β) signaling components by (de)ubiquitination is emerging as a key regulatory mechanism that controls cell signaling responses in health and disease. Here, we show that the deubiquitinating enzyme UBH-1 in Caenorhabditis elegans and its human homolog, ubiquitin C-terminal hydrolase-L1 (UCH-L1), stimulate DAF-7/TGF-β signaling, suggesting that this mode of regulation of TGF-β signaling is conserved across animal species. The dauer larva-constitutive C. elegans phenotype caused by defective DAF-7/TGF-β signaling was enhanced and suppressed, respectively, by ubh-1 deletion and overexpression in the loss-of-function genetic backgrounds of daf7, daf-1/TGF-βRI, and daf4/R-SMAD, but not of daf-8/R-SMAD. This suggested that UBH-1 may stimulate DAF-7/TGF-β signaling via DAF-8/R-SMAD. Therefore, we investigated the effect of UCH-L1 on TGF-β signaling via its intracellular effectors, i.e. SMAD2 and SMAD3, in mammalian cells. Overexpression of UCH-L1, but not of UCH-L3 (the other human homolog of UBH1) or of the catalytic mutant UCH-L1C90A, enhanced TGF-β/SMAD-induced transcriptional activity, indicating that the deubiquitination activity of UCH-L1 is indispensable for enhancing TGF-β/SMAD signaling. We also found that UCH-L1 interacts, deubiquitinates, and stabilizes SMAD2 and SMAD3. Under hypoxia, UCH-L1 expression increased and TGF-β/SMAD signaling was potentiated in the A549 human lung adenocarcinoma cell line. Notably, UCH-L1-deficient A549 cells were impaired in tumorigenesis, and, unlike WT UCH-L1, a UCH-L1 variant lacking deubiquitinating activity was unable to restore tumorigenesis in these cells. These results indicate that UCH-L1 activity supports DAF-7/TGF-β signaling and suggest that UCH-L1's deubiquitination activity is a potential therapeutic target for managing lung cancer.
Collapse
Affiliation(s)
- Asami Nagata
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Ayaka Sasho
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kaho Sugita
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Riko Suzuki
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroki Hinata
- Laboratory of Cardiovascular Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuta Shimoda
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Eri Suzuki
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Maemoto
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Toshihiko Inagawa
- Laboratory of Cardiovascular Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuuta Fujikawa
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Eri Ikeda
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Chiaki Fujii
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hideshi Inoue
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
47
|
Morita M, Kajiye M, Sakurai C, Kubo S, Takahashi M, Kinoshita D, Hori N, Hatsuzawa K. Characterization of MORN2 stability and regulatory function in LC3-associated phagocytosis in macrophages. Biol Open 2020; 9:bio051029. [PMID: 32414768 PMCID: PMC7327995 DOI: 10.1242/bio.051029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023] Open
Abstract
Microtubule-associated protein A1/B1-light chain 3 (LC3)-associated phagocytosis (LAP) is a type of non-canonical autophagy that regulates phagosome maturation in macrophages. However, the role and regulatory mechanism of LAP remain largely unknown. Recently, the membrane occupation and recognition nexus repeat-containing-2 (MORN2) was identified as a key component of LAP for the efficient formation of LC3-recruiting phagosomes. To characterize MORN2 and elucidate its function in LAP, we established a MORN2-overexpressing macrophage line. At a steady state, MORN2 was partially cleaved by the ubiquitin-proteasome system. MORN2 overexpression promoted not only LC3-II production but also LAP phagosome (LAPosome) acidification during Escherichia coli uptake. Furthermore, the formation of LAPosomes containing the yeast cell wall component zymosan was enhanced in MORN2-overexpressing cells and depended on reactive oxygen species (ROS). Finally, MORN2-mediated LAP was regulated by plasma membrane-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as SNAP-23 and syntaxin 11. Taken together, these findings demonstrate that MORN2, whose expression is downregulated via proteasomal digestion, is a limiting factor for LAP, and that membrane trafficking by SNARE proteins is involved in MORN2-mediated LAP.
Collapse
Affiliation(s)
- Maya Morita
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Mayu Kajiye
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Chiye Sakurai
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Shuichi Kubo
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Miki Takahashi
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Daiki Kinoshita
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Naohiro Hori
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| |
Collapse
|
48
|
Hino N, Rossetti L, Marín-Llauradó A, Aoki K, Trepat X, Matsuda M, Hirashima T. ERK-Mediated Mechanochemical Waves Direct Collective Cell Polarization. Dev Cell 2020; 53:646-660.e8. [PMID: 32497487 DOI: 10.1016/j.devcel.2020.05.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 01/02/2023]
Abstract
During collective migration of epithelial cells, the migration direction is aligned over a tissue-scale expanse. Although the collective cell migration is known to be directed by mechanical forces transmitted via cell-cell junctions, it remains elusive how the intercellular force transmission is coordinated with intracellular biochemical signaling to achieve collective movements. Here, we show that intercellular coupling of extracellular signal-regulated kinase (ERK)-mediated mechanochemical feedback yields long-distance transmission of guidance cues. Mechanical stretch activates ERK through epidermal growth factor receptor (EGFR) activation, and ERK activation triggers cell contraction. The contraction of the activated cell pulls neighboring cells, evoking another round of ERK activation and contraction in the neighbors. Furthermore, anisotropic contraction based on front-rear polarization guarantees unidirectional propagation of ERK activation, and in turn, the ERK activation waves direct multicellular alignment of the polarity, leading to long-range ordered migration. Our findings reveal that mechanical forces mediate intercellular signaling underlying sustained transmission of guidance cues for collective cell migration.
Collapse
Affiliation(s)
- Naoya Hino
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain
| | | | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
49
|
Teruya S, Hiramatsu Y, Nakamura K, Fukui-Miyazaki A, Tsukamoto K, Shinoda N, Motooka D, Nakamura S, Ishigaki K, Shinzawa N, Nishida T, Sugihara F, Maeda Y, Horiguchi Y. Bordetella Dermonecrotic Toxin Is a Neurotropic Virulence Factor That Uses Ca V3.1 as the Cell Surface Receptor. mBio 2020; 11:e03146-19. [PMID: 32209694 PMCID: PMC7157530 DOI: 10.1128/mbio.03146-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/18/2020] [Indexed: 01/06/2023] Open
Abstract
Dermonecrotic toxin (DNT) is one of the representative toxins produced by Bordetella pertussis, but its role in pertussis, B. pertussis infection, remains unknown. In this study, we identified the T-type voltage-gated Ca2+ channel CaV3.1 as the DNT receptor by CRISPR-Cas9-based genome-wide screening. As CaV3.1 is highly expressed in the nervous system, the neurotoxicity of DNT was examined. DNT affected cultured neural cells and caused flaccid paralysis in mice after intracerebral injection. No neurological symptoms were observed by intracerebral injection with the other major virulence factors of the organisms, pertussis toxin and adenylate cyclase toxin. These results indicate that DNT has aspects of the neurotropic virulence factor of B. pertussis The possibility of the involvement of DNT in encephalopathy, which is a complication of pertussis, is also discussed.IMPORTANCEBordetella pertussis, which causes pertussis, a contagious respiratory disease, produces three major protein toxins, pertussis toxin, adenylate cyclase toxin, and dermonecrotic toxin (DNT), for which molecular actions have been elucidated. The former two toxins are known to be involved in the emergence of some clinical symptoms and/or contribute to the establishment of bacterial infection. In contrast, the role of DNT in pertussis remains unclear. Our study shows that DNT affects neural cells through specific binding to the T-type voltage-gated Ca2+ channel that is highly expressed in the central nervous system and leads to neurological disorders in mice after intracerebral injection. These data raise the possibility of DNT as an etiological agent for pertussis encephalopathy, a severe complication of B. pertussis infection.
Collapse
Affiliation(s)
- Shihono Teruya
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Keiji Nakamura
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Aya Fukui-Miyazaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kentaro Tsukamoto
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Noriko Shinoda
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Keisuke Ishigaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Naoaki Shinzawa
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
50
|
Kodama M, Oshikawa K, Shimizu H, Yoshioka S, Takahashi M, Izumi Y, Bamba T, Tateishi C, Tomonaga T, Matsumoto M, Nakayama KI. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nat Commun 2020; 11:1320. [PMID: 32184390 PMCID: PMC7078194 DOI: 10.1038/s41467-020-15136-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Glucose metabolism is remodeled in cancer, but the global pattern of cancer-specific metabolic changes remains unclear. Here we show, using the comprehensive measurement of metabolic enzymes by large-scale targeted proteomics, that the metabolism both carbon and nitrogen is altered during the malignant progression of cancer. The fate of glutamine nitrogen is shifted from the anaplerotic pathway into the TCA cycle to nucleotide biosynthesis, with this shift being controlled by glutaminase (GLS1) and phosphoribosyl pyrophosphate amidotransferase (PPAT). Interventions to reduce the PPAT/GLS1 ratio suppresses tumor growth of many types of cancer. A meta-analysis reveals that PPAT shows the strongest correlation with malignancy among all metabolic enzymes, in particular in neuroendocrine cancer including small cell lung cancer (SCLC). PPAT depletion suppresses the growth of SCLC lines. A shift in glutamine fate may thus be required for malignant progression of cancer, with modulation of nitrogen metabolism being a potential approach to SCLC treatment. Glucose metabolism is known to be dysregulated in cancer. Here, the authors show that glutamine nitrogen is also affected in cancer and demonstrate that glutaminase 1 and phosphoribosyl pyrophosphate amidotransferase are the key enzymes that control this metabolic switch.
Collapse
Affiliation(s)
- Manabu Kodama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Kiyotaka Oshikawa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Susumu Yoshioka
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.,LSI Medience Corporation, 1-13-4 Uchikanda, Chiyoda-ku, Tokyo, 101-8517, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Chisa Tateishi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health, and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masaki Matsumoto
- Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan. .,Division of Proteomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|