1
|
Mohammed NBB, Shil RK, Dimitroff CJ. Melanoma Glycome Regulates the Pro-Oncogenic Properties of Extracellular Galectin-3. Int J Mol Sci 2025; 26:4882. [PMID: 40430022 PMCID: PMC12112019 DOI: 10.3390/ijms26104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/10/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Metastatic melanoma is an aggressive skin cancer with a five-year survival rate of only 35%. Despite recent advances in immunotherapy, there is still an urgent need for the development of innovative therapeutic approaches to improve clinical outcomes of patients with metastatic melanoma. Prior research from our laboratory revealed that loss of the I-branching enzyme β1,6 N-acetylglucosaminyltransferase 2 (GCNT2), with consequent substitution of melanoma surface I-branched poly-N-acetyllactosamines (poly-LacNAcs) with i-linear poly-LacNAcs, is implicated in driving melanoma metastasis. In the current study, we explored the role of galectin-3 (Gal-3), a lectin that avidly binds surface poly-LacNAcs, in dictating melanoma aggressive behavior. Our results show that Gal-3 favors binding to i-linear poly-LacNAcs, while enforced GCNT2/I-branching disrupts this interaction, thereby suppressing Gal-3-dependent malignant characteristics, including extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway activation, BCL2 expression, cell proliferation, and migration. This report establishes the crucial role of extracellular Gal-3 interactions with i-linear glycans in promoting melanoma cell aggressiveness, placing GCNT2 as a tumor suppressor protein and suggesting both extracellular Gal-3 and i-linear glycans as potential therapeutic targets for metastatic melanoma.
Collapse
Affiliation(s)
- Norhan B. B. Mohammed
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Rajib K. Shil
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
2
|
Bao S, Shen T, Chen C, Han J, Tajadura-Ortega V, Shabahang M, Du Z, Feizi T, Chai W, Li L. Orthogonal-Group-Controlled Site-Selective I-Branching of Poly-N-acetyllactosamine Chains Reveals Unique Binding Specificities of Proteins towards I-Antigens. Angew Chem Int Ed Engl 2025; 64:e202420676. [PMID: 39787097 DOI: 10.1002/anie.202420676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Poly-N-acetyllactosamine (poly-LacNAc) is ubiquitously expressed on cell surface glycoconjugates, serving as the backbone of complex glycans and an extended scaffold that presents diverse glycan epitopes. The branching of poly-LacNAc, where internal galactose (Gal) residues have β1-6 linked N-acetylglucosamine (GlcNAc) attached, forms the blood group I-antigen, which is closely associated with various physiological and pathological processes including cancer progression. However, the underlying mechanisms remain unclear as many of the I-antigen sequences are undefined and inaccessible. In this study, we developed a highly efficient orthogonal-group-controlled approach to access site-selectively I-branched poly-LacNAc chains. The approach relies on three orthogonal protecting groups, each of them "caps" one internal Gal residue of poly-LacNAc. These groups can be readily "decapped" by specific enzymes or chemical reduction to expose desired sites for GCNT2-catalyzed I-branching. This approach enabled the rapid preparation of a diverse library of 41 linear and branched poly-LacNAc glycans from a single precursor. Glycan microarray analysis using these complex glycans revealed unique recognitions of I-branches by lectins, anti-I mAbs, and galectins. Surprisingly, oxidized forms of linear poly-LacNAc strongly bound to several glycan-binding proteins (GBPs). These findings help to bridge the gap in recognition of I-branching and open new avenues for therapeutic development by targeting galectins.
Collapse
Affiliation(s)
- Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Congcong Chen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Jinghua Han
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Virginia Tajadura-Ortega
- Glycosciences Laboratory, Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - MohammadHossein Shabahang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Zhenming Du
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Ten Feizi
- Glycosciences Laboratory, Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Tobisawa Y, Nakane K, Koie T, Taniguchi T, Tomioka M, Tomioka-Inagawa R, Kawase K, Kawase M, Iinuma K. Low GCNT2/I-Branching Glycan Expression Is Associated with Bladder Cancer Aggressiveness. Biomedicines 2025; 13:682. [PMID: 40149658 PMCID: PMC11940493 DOI: 10.3390/biomedicines13030682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Abnormal glycan formation on the cancer cell surface plays a crucial role in regulating tumor functions in bladder cancer. In this study, we investigated the roles of glucosaminyl (N-acetyl) transferase 2 (GCNT2) in bladder cancer progression and immune evasion. GCNT2 synthesizes I-branched polylactosamine chains on cell surface glycoproteins. Understanding its functions will provide insights into tumor-immune interactions, facilitating the development of effective immunotherapeutic strategies. Methods: GCNT2 expression levels in bladder cancer cell lines and patient tumor samples were analyzed via quantitative polymerase chain reaction and immunohistochemistry. GCNT2 functions were assessed via overexpression and knockdown experiments. Its effect on natural killer (NK) cell-mediated cytotoxicity was evaluated via in vitro assay. Cytotoxic granule release from NK cells was measured via enzyme-linked immunosorbent assay. Results: GCNT2 expression was inversely correlated with bladder cancer aggressiveness in both cell lines and patient samples. Low GCNT2 levels were associated with advanced tumor stage and grade, suggesting the tumor-suppressive roles of GCNT2. Notably, GCNT2 overexpression enhanced the susceptibility of bladder cancer cells to NK cell-mediated killing, whereas its knockdown promoted immune evasion. GCNT2-overexpressing cells strongly induced the release of cytotoxic granules from NK cells, indicating enhanced immune recognition. Conclusions: Our findings suggest that aggressive bladder tumors evade NK cell immunity by decreasing the GCNT2 levels and that I-antigen glycans synthesized by GCNT2 are crucial for NK cell recognition by tumor cells. Our findings provide insights into the tumor-immune interactions in bladder cancer and GCNT2 and its associated pathways as potential targets for novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yuki Tobisawa
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu 5011194, Japan
| | - Keita Nakane
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Takuya Koie
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Tomoki Taniguchi
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Masayuki Tomioka
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Risa Tomioka-Inagawa
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Kota Kawase
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Makoto Kawase
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Koji Iinuma
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| |
Collapse
|
4
|
Hu M, Xu K, Yang G, Yan B, Yang Q, Wang L, Sun S, Wang H. Integrated proteomics and N-glycoproteomic characterization of glioblastoma multiform revealed N-glycosylation heterogeneities as well as alterations in sialyation and fucosylation. Clin Proteomics 2025; 22:6. [PMID: 39923034 PMCID: PMC11807306 DOI: 10.1186/s12014-025-09525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/08/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor. Notwithstanding tremendous efforts having been put in multi-omics research to profile the dysregulated molecular mechanisms and cellular pathways, there is still a lack of understanding about the glycoproteomic of GBM. Glycosylation as one of the most important post-translational modifications is crucial in regulating cell proliferation and relevant oncogenic pathways. RESULTS In the study, we systematically profiled N-glycoproteomics of para-cancerous and cancerous tissues from GBM patients to reveal the site-specific N-glycosylation pattern defined by intact glycopeptides. We identified and quantified 1863 distinct intact glycopeptides (IGPs) with 161 N-linked glycan compositions and 326 glycosites. There were 396 IGPs from 43 glycoproteins differed between adjacent tissues and GBM. Then, proteomic and glycoproteomic data were combined, and the normalized glycosylation alteration was calculated to determine whether the difference was attributed to the global protein levels or glycosylation. The altered glycosylation triggered by site-specific N-glycans and glycoprotein abundance, as well as glycosite heterogeneity, were demonstrated. Ultimately, an examination of the overall glycosylation levels revealed a positive contribution of sialylated or/and fucosylated glycans. CONCLUSIONS Overall, the dataset highlighted molecular complexity and distinct profiling at translational and post-translational levels, providing valuable information for novel therapeutic approaches and specific detection strategies.
Collapse
Affiliation(s)
- Mingjun Hu
- Faculty of Life Sciences and Medicine, Northwest University Chang An Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Neurosurgery, Chang An District Hospital, Xi'an, 710118, Shaanxi, China
| | - Kaiyue Xu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Ge Yang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Bo Yan
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Qianqian Yang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shisheng Sun
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.
| | - Huijuan Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Liu Y, Bineva-Todd G, Meek RW, Mazo L, Piniello B, Moroz O, Burnap SA, Begum N, Ohara A, Roustan C, Tomita S, Kjaer S, Polizzi K, Struwe WB, Rovira C, Davies GJ, Schumann B. A Bioorthogonal Precision Tool for Human N-Acetylglucosaminyltransferase V. J Am Chem Soc 2024; 146:26707-26718. [PMID: 39287665 PMCID: PMC11450819 DOI: 10.1021/jacs.4c05955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar N-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme-substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.
Collapse
Affiliation(s)
- Yu Liu
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Ganka Bineva-Todd
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Richard W. Meek
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Laura Mazo
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Beatriz Piniello
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Olga Moroz
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Sean A. Burnap
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Nadima Begum
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - André Ohara
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Chloe Roustan
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Sara Tomita
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Svend Kjaer
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Karen Polizzi
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Weston B. Struwe
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08020 Barcelona, Spain
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Benjamin Schumann
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| |
Collapse
|
6
|
Sun W, You X, Zhao X, Zhang X, Yang C, Zhang F, Yu J, Yang K, Wang J, Xu F, Chang Y, Qu B, Zhao X, He Y, Wang Q, Chen J, Qing G. Precise Capture and Dynamic Release of Circulating Liver Cancer Cells with Dual-Histidine-Based Cell Imprinted Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402379. [PMID: 38655900 DOI: 10.1002/adma.202402379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its noninvasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here, an ultrastrong ligand, l-histidine-l-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs, is designed. Furthermore, HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness ($6.68 per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis.
Collapse
Affiliation(s)
- Wenjing Sun
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xin You
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaoyu Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Chunhui Yang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Fusheng Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Jiaqi Yu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Kaiguang Yang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jixia Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Fangfang Xu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, P. R. China
| | - Yongxin Chang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Boxin Qu
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Xinmiao Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Yuxuan He
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, P. R. China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
7
|
Aguilar Díaz de león JS, Thirumurty M, Ly N. Surface plasmon resonance microscopy identifies glycan heterogeneity in pancreatic cancer cells that influences mucin-4 binding interactions. PLoS One 2024; 19:e0304154. [PMID: 38776309 PMCID: PMC11111020 DOI: 10.1371/journal.pone.0304154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Membrane proteins are the main targets of therapeutic drugs and most of them are glycosylated. Glycans play pivotal roles in several biological processes, and glycosylation changes are a well-established hallmark of several types of cancer, including pancreatic cancer, that contribute to tumor growth. Mucin-4 (MUC-4) is a membrane glycoprotein which is associated with pancreatic cancer and metastasis, and it has been targeted as a promising vaccine candidate. In this study, Surface Plasmon Resonance Microscopy (SPRM) was implemented to study complex influences of the native N-glycan cellular environment on binding interactions to the MUC-4 receptor as this is currently the only commercially available label-free technique with high enough sensitivity and resolution to measure binding kinetics and heterogeneity on single cells. Such unique capability enables for a more accurate understanding of the "true" binding interactions on human cancer cells without disrupting the native environment of the target MUC-4 receptor. Removal of N-linked glycans in pancreatic cancer cells using PNGase F exposed heterogeneity in Concanavalin (Con A) binding by revealing three new binding populations with higher affinities than the glycosylated control cells. Anti-MUC-4 binding interactions of enzymatically N-linked deglycosylated pancreatic cancer cells produced a 25x faster association and 37x higher affinity relative to the glycosylated control cells. Lastly, four interaction modes were observed for Helix Pomatia Agglutinin (HPA) binding to the glycosylated control cells, but shifted and increased in activity upon removal of N-linked glycans. These results identified predominant interaction modes of glycan and MUC-4 in pancreatic cancer cells, the kinetics of their binding interactions were quantified, and the influence of N-linked glycans in MUC-4 binding interactions was revealed.
Collapse
Affiliation(s)
| | - Miyuki Thirumurty
- Biosensing Instrument Inc., Tempe, Arizona, United States of America
| | - Nguyen Ly
- Biosensing Instrument Inc., Tempe, Arizona, United States of America
| |
Collapse
|
8
|
Vos GM, Wu Y, van der Woude R, de Vries RP, Boons GJ. Chemo-Enzymatic Synthesis of Isomeric I-branched Polylactosamines Using Traceless Blocking Groups. Chemistry 2024; 30:e202302877. [PMID: 37909475 DOI: 10.1002/chem.202302877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Poly-N-acetyl lactosamines (polyLacNAc) are common structural motifs of N- and O-linked glycan, glycosphingolipids and human milk oligosaccharides. They can be branched by the addition of β1,6-linked N-acetyl-glucosamine (GlcNAc) moieties to internal galactoside (Gal) residues by the I-branching enzyme beta-1,6-N-acetylglucosaminyltransferase 2 (GCNT2). I-branching has been implicated in many biological processes and is also associated with various diseases such as cancer progression. Currently, there is a lack of methods that can install, in a regioselective manner, I-branches and allows the preparation of isomeric poly-LacNAc derivatives. Here, we described a chemo-enzymatic strategy that addresses this deficiency and is based on the enzymatic assembly of an oligo-LacNAc chain that at specific positions is modified by a GlcNTFA moiety. Replacement of the trifluoroacetyl (TFA) moiety by tert-butyloxycarbonyl (Boc) gives compounds in which the galactoside at the proximal site is blocked from modification by GCNT2. After elaboration of the antennae, the Boc group can be removed, and the resulting amine acetylated to give natural I-branched structures. It is also shown that fucosides can function as a traceless blocking group that can provide complementary I-branched structures from a single precursor. The methodology made it possible to synthesize a library of polyLacNAc chains having various topologies.
Collapse
Affiliation(s)
- Gaёl M Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Yunfei Wu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA-30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Chemistry Department, University of Georgia, Athens, GA-30602, USA
| |
Collapse
|
9
|
Skvortsova L, Abdikerim S, Yergali K, Mit N, Perfilyeva A, Omarbayeva N, Zhunussova A, Kachiyeva Z, Sadykova T, Bekmanov B, Kaidarova D, Djansugurova L, Zhunussova G. Association of Genetic Markers with the Risk of Early-Onset Breast Cancer in Kazakh Women. Genes (Basel) 2024; 15:108. [PMID: 38254997 PMCID: PMC10815330 DOI: 10.3390/genes15010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer is a global health problem. It is an age-dependent disease, but cases of early-onset breast cancer (eBC) are gradually increasing. There are many unresolved questions regarding eBC risk factors, mechanisms of development and screening. Only 10% of eBC cases are due to mutations in the BRCA1/BRCA2 genes, and 90% have a more complex genetic background. This poses a significant challenge to timely cancer detection in young women and highlights the need for research and awareness. Therefore, identifying genetic risk factors for eBC is essential to solving these problems. This study represents an association analysis of 144 eBC cases and 163 control participants to identify genetic markers associated with eBC risks in Kazakh women. We performed a two-stage approach in association analysis to assess genetic predisposition to eBC. First-stage genome-wide association analysis revealed two risk intronic loci in the CHI3L2 gene (p = 5.2 × 10-6) and MGAT5 gene (p = 8.4 × 10-6). Second-stage exonic polymorphisms haplotype analysis showed significant risks for seven haplotypes (p < 9.4 × 10-4). These results point to the importance of studying medium- and low-penetrant genetic markers in their haplotype combinations for a detailed understanding of the role of detected genetic markers in eBC development and prediction.
Collapse
Affiliation(s)
- Liliya Skvortsova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| | - Saltanat Abdikerim
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Kanagat Yergali
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| | - Natalya Mit
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| | - Anastassiya Perfilyeva
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| | - Nazgul Omarbayeva
- Breast Cancer Department, Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan; (N.O.); (T.S.); (D.K.)
- Oncology Department, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan
| | - Aigul Zhunussova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| | - Zulfiya Kachiyeva
- Research Institute of Applied and Fundamental Medicine, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Tolkyn Sadykova
- Breast Cancer Department, Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan; (N.O.); (T.S.); (D.K.)
- Oncology Department, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan
| | - Bakhytzhan Bekmanov
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Dilyara Kaidarova
- Breast Cancer Department, Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan; (N.O.); (T.S.); (D.K.)
- Oncology Department, Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan
| | - Leyla Djansugurova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Gulnur Zhunussova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan; (L.S.); (S.A.); (K.Y.); (N.M.); (A.P.); (A.Z.); (B.B.); (L.D.)
| |
Collapse
|
10
|
Ajithkumar P, Vasantharajan SS, Pattison S, McCall JL, Rodger EJ, Chatterjee A. Exploring Potential Epigenetic Biomarkers for Colorectal Cancer Metastasis. Int J Mol Sci 2024; 25:874. [PMID: 38255946 PMCID: PMC10815915 DOI: 10.3390/ijms25020874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Metastatic progression is a complex, multistep process and the leading cause of cancer mortality. There is growing evidence that emphasises the significance of epigenetic modification, specifically DNA methylation and histone modifications, in influencing colorectal (CRC) metastasis. Epigenetic modifications influence the expression of genes involved in various cellular processes, including the pathways associated with metastasis. These modifications could contribute to metastatic progression by enhancing oncogenes and silencing tumour suppressor genes. Moreover, specific epigenetic alterations enable cancer cells to acquire invasive and metastatic characteristics by altering cell adhesion, migration, and invasion-related pathways. Exploring the involvement of DNA methylation and histone modification is crucial for identifying biomarkers that impact cancer prediction for metastasis in CRC. This review provides a summary of the potential epigenetic biomarkers associated with metastasis in CRC, particularly DNA methylation and histone modifications, and examines the pathways associated with these biomarkers.
Collapse
Affiliation(s)
- Priyadarshana Ajithkumar
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Sai Shyam Vasantharajan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John L. McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
11
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
12
|
Chakraborty A, Perez M, Carroll JD, Antonopoulos A, Dell A, Ortega L, Mohammed NBB, Wells M, Staudinger C, Griswold A, Chandler KB, Marrero C, Jimenez R, Tani Y, Wilmott JS, Thompson JF, Wang W, Sackstein R, Scolyer RA, Murphy GF, Haslam SM, Dimitroff CJ. Hypoxia Controls the Glycome Signature and Galectin-8-Ligand Axis to Promote Protumorigenic Properties of Metastatic Melanoma. J Invest Dermatol 2023; 143:456-469.e8. [PMID: 36174713 PMCID: PMC10123958 DOI: 10.1016/j.jid.2022.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
The prognosis for patients with metastatic melanoma (MM) involving distant organs is grim, and treatment resistance is potentiated by tumor-initiating cells (TICs) that thrive under hypoxia. MM cells, including TICs, express a unique glycome featuring i-linear poly-N-acetyllactosamines through the loss of I-branching enzyme, β1,6 N-acetylglucosaminyltransferase 2. Whether hypoxia instructs MM TIC development by modulating the glycome signature remains unknown. In this study, we explored hypoxia-dependent alterations in MM glycome‒associated genes and found that β1,6 N-acetylglucosaminyltransferase 2 was downregulated and a galectin (Gal)-8-ligand axis, involving both extracellular and cell-intrinsic Gal-8, was induced. Low β1,6 N-acetylglucosaminyltransferase 2 levels correlated with poor patient outcomes, and patient serum samples were elevated for Gal-8. Depressed β1,6 N-acetylglucosaminyltransferase 2 in MM cells upregulated TIC marker, NGFR/CD271, whereas loss of MM cell‒intrinsic Gal-8 markedly lowered NGFR and reduced TIC activity in vivo. Extracellular Gal-8 bound preferentially to i-linear poly-N-acetyllactosamines on N-glycans of the TIC marker and prometastatic molecule CD44, among other receptors, and activated prosurvival factor protein kinase B. This study reveals the importance of hypoxia governing the MM glycome by enforcing i-linear poly-N-acetyllactosamine and Gal-8 expression. This mechanistic investigation also uncovers glycome-dependent regulation of pro-MM factor, NGFR, implicating i-linear poly-N-acetyllactosamine and Gal-8 as biomarkers and therapeutic targets of MM.
Collapse
Affiliation(s)
- Asmi Chakraborty
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Mariana Perez
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Jordan D Carroll
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Liettel Ortega
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Norhan B B Mohammed
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Michael Wells
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Caleb Staudinger
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Anthony Griswold
- John P. Hussman Institute for Human Genomics (HIHG), Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kevin B Chandler
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Cristina Marrero
- Miami Cancer Institute, Baptist Health-South Florida, Miami, Florida, USA
| | - Ramon Jimenez
- Miami Cancer Institute, Baptist Health-South Florida, Miami, Florida, USA
| | - Yoshihiko Tani
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Wei Wang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachussetts, USA
| | - Robert Sackstein
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia; Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charles J Dimitroff
- Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
13
|
Kim S. Biochemical characterization and cytotoxicity of polylactosamine-extended N-glycans binding isolectins from the mushroom Hericium erinaceus. Int J Biol Macromol 2023; 226:1010-1020. [PMID: 36526067 DOI: 10.1016/j.ijbiomac.2022.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The mushroom Hericium erinaceus expresses isolectins with different glycan binding specificities; of these, the ricin B-like lectin HEL1 and HEL2 (HEL2a and HEL2b) can bind fucosylated N-glycans and core 1 O-glycans, respectively. However, other lectin-like protein-coding transcripts detected in the H. erinaceus transcriptome, named HEL3, remain to be characterized. Therefore, in this study, the expression levels of all these isolectins genes were compared to characterize the molecular and biochemical properties of these carbohydrate-binding proteins. Low expression genes encoding putative cytolysin proteins, HEL3a and HEL3b, were identified. Bioinformatics analyses revealed that these proteins shared highly homologous structures and carbohydrate-binding residues with other mushroom lectins. Further, their recombinant proteins, rHEL3a and rHEL3b showed an octamer composed of identical 17 kDa subunits under non-denaturing conditions and a slightly basic isoelectric point value of approximately 8.3. The hemagglutination activity of these isolectins was strongly inhibited by glycoproteins rather than free glycans. Interestingly, glycan-binding profiles showed that rHEL3 isolectins interacted with most polylactosamine (poly-LacNAc)-extended N-glycans with relatively low binding activity. Isothermal titration calorimetry also revealed that these recombinant lectins have different binding capacities toward N-glycan-containing glycoproteins. Further, treatment with different concentrations of rHEL3 lectins showed cytotoxic effects in K562, UACC62, and CHO model cell lines, which express poly-LacNAc glycans, confirmed by inhibition of proliferation. Overall, these biochemical properties indicate that rHEL3 isolectins may be used as unique lectins for detecting poly-LacNAc-extended glycans, which are known to be over-expressed in leukemia or metastatic melanoma cells, in cancer diagnostic assays and anti-cancer therapies.
Collapse
Affiliation(s)
- Seonghun Kim
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup 56212, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
14
|
Xu X, Wu Y, Jia G, Zhu Q, Li D, Xie K. A signature based on glycosyltransferase genes provides a promising tool for the prediction of prognosis and immunotherapy responsiveness in ovarian cancer. J Ovarian Res 2023; 16:5. [PMID: 36611197 PMCID: PMC9826597 DOI: 10.1186/s13048-022-01088-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most fatal gynaecological malignancy and has a poor prognosis. Glycosylation, the biosynthetic process that depends on specific glycosyltransferases (GTs), has recently attracted increasing importance due to the vital role it plays in cancer. In this study, we aimed to determine whether OC patients could be stratified by glycosyltransferase gene profiles to better predict the prognosis and efficiency of immune checkpoint blockade therapies (ICBs). METHODS We retrieved transcriptome data across 420 OC and 88 normal tissue samples using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, respectively. An external validation dataset containing 185 OC samples was downloaded from the Gene Expression Omnibus (GEO) database. Knockdown and pathway prediction of B4GALT5 were conducted to investigate the function and mechanism of B4GALT5 in OC proliferation, migration and invasion. RESULTS A total of 50 differentially expressed GT genes were identified between OC and normal ovarian tissues. Two clusters were stratified by operating consensus clustering, but no significant prognostic value was observed. By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, a 6-gene signature was built that classified OC patients in the TCGA cohort into a low- or high-risk group. Patients with high scores had a worse prognosis than those with low scores. This risk signature was further validated in an external GEO dataset. Furthermore, the risk score was an independent risk predictor, and a nomogram was created to improve the accuracy of prognostic classification. Notably, the low-risk OC patients exhibited a higher degree of antitumor immune cell infiltration and a superior response to ICBs. B4GALT5, one of six hub genes, was identified as a regulator of proliferation, migration and invasion in OC. CONCLUSION Taken together, we established a reliable GT-gene-based signature to predict prognosis, immune status and identify OC patients who would benefit from ICBs. GT genes might be a promising biomarker for OC progression and a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Xuyao Xu
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Yue Wu
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Genmei Jia
- grid.459791.70000 0004 1757 7869Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Qiaoying Zhu
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Dake Li
- grid.459791.70000 0004 1757 7869Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| | - Kaipeng Xie
- grid.459791.70000 0004 1757 7869Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China ,grid.459791.70000 0004 1757 7869Department of Public Health, Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, 210004 China
| |
Collapse
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Qin R, Mahal LK, Bojar D. Deep learning explains the biology of branched glycans from single-cell sequencing data. iScience 2022; 25:105163. [PMID: 36217547 PMCID: PMC9547197 DOI: 10.1016/j.isci.2022.105163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022] Open
Abstract
Glycosylation is ubiquitous and often dysregulated in disease. However, the regulation and functional significance of various types of glycosylation at cellular levels is hard to unravel experimentally. Multi-omics, single-cell measurements such as SUGAR-seq, which quantifies transcriptomes and cell surface glycans, facilitate addressing this issue. Using SUGAR-seq data, we pioneered a deep learning model to predict the glycan phenotypes of cells (mouse T lymphocytes) from transcripts, with the example of predicting β1,6GlcNAc-branching across T cell subtypes (test set F1 score: 0.9351). Model interpretation via SHAP (SHapley Additive exPlanations) identified highly predictive genes, in part known to impact (i) branched glycan levels and (ii) the biology of branched glycans. These genes included physiologically relevant low-abundance genes that were not captured by conventional differential expression analysis. Our work shows that interpretable deep learning models are promising for uncovering novel functions and regulatory mechanisms of glycans from integrated transcriptomic and glycomic datasets.
Collapse
Affiliation(s)
- Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
17
|
Konozy EHE, Osman MEFM. Plant lectin: A promising future anti-tumor drug. Biochimie 2022; 202:136-145. [PMID: 35952948 DOI: 10.1016/j.biochi.2022.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Since the early discovery of plant lectins at the end of the 19th century, and the finding that they could agglutinate erythrocytes and precipitate glycans from their solutions, many applications and biological roles have been described for these proteins. Later, the observed erythrocytes clumping features were attributed to the lectin-cell surface glycoconjugates recognition. Neoplastic transformation leads to various cellular alterations which impact the growth of the cell and its persistence, among which is the mutation in the outer surface glycosylation signatures. Quite a few lectins have been found to act as excellent biomarkers for cancer diagnosis while some were presented with antiproliferative activity that initiated by lectin binding to the respective glycocalyx receptors. These properties are blocked by the hapten sugar that is competing for the lectin affinity binding site. In vitro investigations of lectin-cancer cell's glycocalyx interactions lead to a series of immunological reactions that result in autophagy or apoptosis of the transformed cells. Mistletoe lectin, an agglutinin purified from the European Viscum album is the first plant lectin employed in the treatment of cancer to enter into the clinical trial phases. The entrapment of lectin in nanoparticles besides other techniques to promote bioavailability and stability have also been recently studied. This review summarizes our up-to-date understanding of the future applications of plant lectins in cancer prognosis and diagnosis. With the provision of many examples of lectins that exhibit anti-neoplastic properties.
Collapse
|
18
|
Zuo Y, Zhong J, Bai H, Xu B, Wang Z, Li W, Chen Y, Jin S, Wang S, Wang X, Wan R, Xu J, Fei K, Han J, Yang Z, Bao H, Shao Y, Ying J, Song Q, Duan J, Wang J. Genomic and epigenomic profiles distinguish pulmonary enteric adenocarcinoma from lung metastatic colorectal cancer. EBioMedicine 2022; 82:104165. [PMID: 35901658 PMCID: PMC9334343 DOI: 10.1016/j.ebiom.2022.104165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND As a rare subtype of lung adenocarcinoma, the diagnosis of pulmonary enteric adenocarcinoma (PEAC) remains challenging due to overlapping morphologic spectrum with lung metastatic colorectal cancer (lmCRC). However, the molecular features of PEAC as a separate lung cancer entity are poorly understood. METHODS We performed whole-exome sequencing and targeted bisulfite sequencing of 32 PEAC and 30 lmCRC to improve differential molecular characterization of the two diseases. We used machine learning methods to select key markers and developed a diagnostic classifier. In addition, we validated the classifier in the internal test cohort and an independently recruited external validation cohort with 17 PEAC and 7 lmCRC. FINDINGS Our results showed that EGFR was the key driver mutation in PEAC but at a lower prevalence compared to typical lung adenocarcinomas, whereas ERBB2 and KRAS were more frequently observed in PEAC. By contrast, we observed significant enrichment of KRAS and APC mutations in lmCRC compared with PEAC. At the chromosome arm level, copy number variations in 13q, 14q, and 18p were the major chromosomal differences observed between PEAC and lmCRC. Furthermore, by comparing differentially methylated regions (DMRs), we established a neat DNA methylation-based classifier consisting of eight DMRs. This classifier correctly classified all samples in the training cohort and 95% of the samples in the internal test cohort. An external validation cohort of 24 cases recruited from multiple centers in China also reliably agreed with pathological diagnosis. INTERPRETATION These results provide solid evidence of PEAC-specific genomic characteristics and demonstrate the potential utility of DNA methylation markers for auxiliary diagnosis of PEAC and lmCRC. FUNDING This work was supported by National key research and development project 2019YFC1315700, CAMS Key Laboratory of Translational Research on Lung Cancer (2018PT31035), and Beijing Natural Science Foundation (7222144).
Collapse
Affiliation(s)
- Ying Zuo
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Zhong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yedan Chen
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Shi Jin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Shuhang Wang
- GCP Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiefei Han
- Department of Neuro-oncology, Cancer Center Beijing Tiantan Hospital, Capital Medical University, China
| | - Zhenlin Yang
- Thoracic Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bao
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, China; School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qibin Song
- Cancer center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
19
|
Singh Y, Cudic P, Cudic M. Exploring Glycan Binding Specificity of Odorranalectin by Alanine Scanning Library. European J Org Chem 2022; 2022:e202200302. [PMID: 36120398 PMCID: PMC9479679 DOI: 10.1002/ejoc.202200302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Fluorescently labelled alanine scan analogues of odorranalectin (OL), a cyclic peptide that exhibits lectin like properties, were screened for binding BSA-conjugated monosaccharides using an enzyme-linked lectin assay (ELLA). Results revealed that Lys5, Phe7, Tyr9, Gly12, Leu14, and Thr17 were crucial for binding BSA-L-fucose, BSA-D-galactose and BSA-N-acetyl-D-galactosamine. Notably, Ala substitution of Ser3, Pro4, and Val13 resulted in higher binding affinities compared to the native OL. The obtained data also indicated that Arg8 plays an important role in differentiation of binding for BSA-L-fucose/D-galactose from BSA-N-acetyl-D-galactosamine. The thermodynamics of binding of the selected alanine analogues was evaluated by isothermal titration calorimetry. Low to moderate binding affinities were determined for the tetravalent MUC1 glycopeptide and asialofetuin, respectively, and high for the fucose rich polysaccharide, fucoidan. The thermodynamic profile of interactions with asialofetuin exhibits shift to an entropy-driven mechanism compared to the fucoidan, which displayed an enthalpyentropy compensation, typically associated with the carbohydratelectin recognition process.
Collapse
Affiliation(s)
- YashoNandini Singh
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Predrag Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Maré Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| |
Collapse
|
20
|
Clark KC, Wagner VA, Holl KL, Reho JJ, Tutaj M, Smith JR, Dwinell MR, Grobe JL, Kwitek AE. Body Composition and Metabolic Changes in a Lyon Hypertensive Congenic Rat and Identification of Ercc6l2 as a Positional Candidate Gene. Front Genet 2022; 13:903971. [PMID: 35812759 PMCID: PMC9263446 DOI: 10.3389/fgene.2022.903971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Central obesity is genetically complex, and its exponential increase in the last decades have made it a critical public health issue. The Lyon Hypertensive (LH) rat is a well-characterized hypertensive model that also exhibits spontaneous and profound differences in body weight and adiposity, relative to its metabolically healthy control, the Lyon Normotensive (LN) rat. The mechanisms underlying the body weight differences between these strains are not well-understood, thus a congenic model (LH17LNa) was developed where a portion of the proximal arm of LN chromosome 17 is introgressed on the LH genomic background to assess the contribution of LN alleles on obesity features. Male and female LH17LNa rats were studied, but male congenics did not significantly differ from LH in this study. Female LH17LNa rats exhibited decreases in total body growth, as well as major alterations to their body composition and adiposity. The LH17LNa female rats also showed decreases in metabolic rate, and a reduction in food intake. The increased adiposity in the female LH17LNa rats was specific to abdominal white adipose tissue, and this phenomenon was further explained by significant hypertrophy in those adipocytes, with no evidence of adipocyte hyperplasia. Sequencing of the parental strains identified a novel frameshift mutation in the candidate gene Ercc6l2, which is involved in transcription-coupled DNA repair, and is implicated in premature aging. The discovery of the significance of Ercc6l2 in the context of female-specific adipocyte biology could represent a novel role of DNA repair failure syndromes in obesity pathogenesis.
Collapse
Affiliation(s)
- Karen C. Clark
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Valerie A. Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Katie L. Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monika Tutaj
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer R. Smith
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, United States
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melinda R. Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, United States
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Anne E. Kwitek, ; Justin L. Grobe,
| | - Anne E. Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, United States
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Anne E. Kwitek, ; Justin L. Grobe,
| |
Collapse
|
21
|
Wang D, Madunić K, Zhang T, Mayboroda OA, Lageveen-Kammeijer GSM, Wuhrer M. High Diversity of Glycosphingolipid Glycans of Colorectal Cancer Cell Lines Reflects the Cellular Differentiation Phenotype. Mol Cell Proteomics 2022; 21:100239. [PMID: 35489554 PMCID: PMC9157004 DOI: 10.1016/j.mcpro.2022.100239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC)–associated changes of protein glycosylation have been widely studied. In contrast, the expression of glycosphingolipid (GSL) patterns in CRC has, hitherto, remained largely unexplored. Even though GSLs are major carriers of cell surface carbohydrates, they are understudied due to their complexity and analytical challenges. In this study, we provide an in-depth analysis of GSL glycans of 22 CRC cell lines using porous graphitized carbon nano–liquid chromatography coupled with electrospray ionization–mass spectrometry. Our data revealed that the GSL expression varies among different cell line classifications, with undifferentiated cell lines showing high expression of blood group A, B, and H antigens while for colon-like cell lines the most prominent GSL glycans contained (sialyl)-LewisA/X and LewisB/Y antigens. Moreover, the GSL expression correlated with relevant glycosyltransferases that are involved in their biosynthesis as well as with transcription factors (TFs) implicated in colon differentiation. Additionally, correlations between certain glycosyltransferases and TFs at mRNA expression level were found, such as FUT3, which correlated with CDX1, ETS2, HNF1A, HNF4A, MECOM, and MYB. These TFs are upregulated in colon-like cell lines pointing to their potential role in regulating fucosylation during colon differentiation. In conclusion, our study reveals novel layers of potential GSL glycans regulation relevant for future research in colon differentiation and CRC. Undifferentiated cell lines showed high expression of blood group A, B, and H antigens. Colon-like cell lines are high in GSLs carrying (sialyl)-LewisA/X and LewisB/Y antigens. (Sialyl)-LewisA/X and LewisB/Y antigens associated with expression of FUT3 and CDX1. I-branching was elevated in undifferentiated cells.
Collapse
Affiliation(s)
- Di Wang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Katarina Madunić
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Tao Zhang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Oleg A Mayboroda
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands.
| |
Collapse
|
22
|
Wang D, Zhang T, Madunić K, de Waard AA, Blöchl C, Mayboroda OA, Griffioen M, Spaapen RM, Huber CG, Lageveen-Kammeijer GSM, Wuhrer M. Glycosphingolipid-Glycan Signatures of Acute Myeloid Leukemia Cell Lines Reflect Hematopoietic Differentiation. J Proteome Res 2022; 21:1029-1040. [PMID: 35168327 PMCID: PMC8981326 DOI: 10.1021/acs.jproteome.1c00911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aberrant expression of certain glycosphingolipids (GSLs) is associated with the differentiation of acute myeloid leukemia (AML) cells. However, the expression patterns of GSLs in AML are still poorly explored because of their complexity, the presence of multiple isomeric structures, and tedious analytical procedures. In this study, we performed an in-depth GSL glycan analysis of 19 AML cell lines using porous graphitized carbon liquid chromatography-mass spectrometry revealing strikingly different GSL glycan profiles between the various AML cell lines. The cell lines of the M6 subtype showed a high expression of gangliosides with α2,3-sialylation and Neu5Gc, while the M2 and M5 subtypes were characterized by high expression of (neo)lacto-series glycans and Lewis A/X antigens. Integrated analysis of glycomics and available transcriptomics data revealed the association of GSL glycan abundances with the transcriptomics expression of certain glycosyltransferases (GTs) and transcription factors (TFs). In addition, correlations were found between specific GTs and TFs. Our data reveal TFs GATA2, GATA1, and RUNX1 as candidate inducers of the expression of gangliosides and sialylation via regulation of the GTs ST3GAL2 and ST8SIA1. In conclusion, we show that GSL glycan expression levels are associated with hematopoietic AML classifications and TF and GT gene expression. Further research is needed to dissect the regulation of GSL expression and its role in hematopoiesis and associated malignancies.
Collapse
Affiliation(s)
- Di Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Katarina Madunić
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands.,Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Christian G Huber
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
23
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Bertok T, Pinkova Gajdosova V, Bertokova A, Svecova N, Kasak P, Tkac J. Breast cancer glycan biomarkers: their link to tumour cell metabolism and their perspectives in clinical practice. Expert Rev Proteomics 2021; 18:881-910. [PMID: 34711108 DOI: 10.1080/14789450.2021.1996231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the most common cancer type diagnosed in women and 5th most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality. AREAS COVERED In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation. We also discuss novel exciting discoveries regarding glycan-based analysis, which can provide useful information for better understanding of the disease. The final part deals with clinical usefulness of glycan-based biomarkers and the clinical performance of such biomarkers is compared to already approved BCa biomarkers and diagnostic tools based on imaging. EXPERT OPINION Recent discoveries suggest that glycan-based biomarkers offer high accuracy for possible BCa diagnostics in blood, but also for better monitoring and management of BCa patients. The review article was written using Web of Science search engine to include articles published between 2019 and 2021.
Collapse
Affiliation(s)
- Tomas Bertok
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Pinkova Gajdosova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | - Natalia Svecova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Tkac
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
25
|
The Role of Glycosylation in Melanoma Progression. Cells 2021; 10:cells10082136. [PMID: 34440905 PMCID: PMC8393314 DOI: 10.3390/cells10082136] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Malignant melanoma is the most aggressive form of skin cancer, which originates from the malignant transformation of melanocytes, the melanin-producing cells of the skin. Melanoma progression is typically described as a stepwise process in which metastasis formation ensues late during disease. A large body of evidence has shown that the accumulation of genetic and epigenetic alterations drives melanoma progression through the different steps. Mortality in melanoma is associated with metastatic disease. Accordingly, early-stage melanoma can be cured in the majority of cases by surgical excision, while late-stage melanoma is a highly lethal disease. Glycosylation is a post-translational modification that involves the transfer of glycosyl moieties to specific amino acid residues of proteins to form glycosidic bonds through the activity of glycosyltransferases. Aberrant glycosylation is considered a hallmark of cancer as it occurs in the majority of tumor types, including melanoma. The most widely occurring glycosylation changes in melanoma are represented by sialylation, fucosylation, and N- and I-glycan branching. In this review, we discuss the role of glycosylation in melanoma and provide insights on the mechanisms by which aberrant glycosylation promotes melanoma progression through activation of invasion and metastasis, immune evasion and cell proliferation.
Collapse
|
26
|
Glycosylation: Rising Potential for Prostate Cancer Evaluation. Cancers (Basel) 2021; 13:cancers13153726. [PMID: 34359624 PMCID: PMC8345048 DOI: 10.3390/cancers13153726] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Aberrant protein glycosylation is a well-known hallmark of cancer and is associated with differential expression of enzymes such as glycosyltransferases and glycosidases. The altered expression of the enzymes triggers cancer cells to produce glycoproteins with specific cancer-related aberrations in glycan structures. Increasing number of data indicate that glycosylation patterns of PSA and other prostate-originated proteins exert a potential to distinguish between benign prostate disease and cancer as well as among different stages of prostate cancer development and aggressiveness. This review summarizes the alterations in glycan sialylation, fucosylation, truncated O-glycans, and LacdiNAc groups outlining their potential applications in non-invasive diagnostic procedures of prostate diseases. Further research is desired to develop more general algorithms exploiting glycobiology data for the improvement of prostate diseases evaluation. Abstract Prostate cancer is the second most commonly diagnosed cancer among men. Alterations in protein glycosylation are confirmed to be a reliable hallmark of cancer. Prostate-specific antigen is the biomarker that is used most frequently for prostate cancer detection, although its lack of sensitivity and specificity results in many unnecessary biopsies. A wide range of glycosylation alterations in prostate cancer cells, including increased sialylation and fucosylation, can modify protein function and play a crucial role in many important biological processes in cancer, including cell signalling, adhesion, migration, and cellular metabolism. In this review, we summarize studies evaluating the prostate cancer associated glycosylation related alterations in sialylation, mainly α2,3-sialylation, core fucosylation, branched N-glycans, LacdiNAc group and presence of truncated O-glycans (sTn, sT antigen). Finally, we discuss the great potential to make use of glycans as diagnostic and prognostic biomarkers for prostate cancer.
Collapse
|
27
|
Groth T, Gunawan R, Neelamegham S. A systems-based framework to computationally describe putative transcription factors and signaling pathways regulating glycan biosynthesis. Beilstein J Org Chem 2021; 17:1712-1724. [PMID: 34367349 PMCID: PMC8313979 DOI: 10.3762/bjoc.17.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/12/2021] [Indexed: 01/05/2023] Open
Abstract
Glycosylation is a common posttranslational modification, and glycan biosynthesis is regulated by a set of glycogenes. The role of transcription factors (TFs) in regulating the glycogenes and related glycosylation pathways is largely unknown. In this work, we performed data mining of TF–glycogene relationships from the Cistrome Cancer database (DB), which integrates chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq data to constitute regulatory relationships. In total, we observed 22,654 potentially significant TF–glycogene relationships, which include interactions involving 526 unique TFs and 341 glycogenes that span 29 the Cancer Genome Atlas (TCGA) cancer types. Here, TF–glycogene interactions appeared in clusters or so-called communities, suggesting that changes in single TF expression during both health and disease may affect multiple carbohydrate structures. Upon applying the Fisher’s exact test along with glycogene pathway classification, we identified TFs that may specifically regulate the biosynthesis of individual glycan types. Integration with Reactome DB knowledge provided an avenue to relate cell-signaling pathways to TFs and cellular glycosylation state. Whereas analysis results are presented for all 29 cancer types, specific focus is placed on human luminal and basal breast cancer disease progression. Overall, the article presents a computational approach to describe TF–glycogene relationships, the starting point for experimental system-wide validation.
Collapse
Affiliation(s)
- Theodore Groth
- Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Rudiyanto Gunawan
- Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sriram Neelamegham
- Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.,Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.,Medicine, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
28
|
Sobiepanek A, Paone A, Cutruzzolà F, Kobiela T. Biophysical characterization of melanoma cell phenotype markers during metastatic progression. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:523-542. [PMID: 33730175 PMCID: PMC8190004 DOI: 10.1007/s00249-021-01514-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
Melanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required. A possible strategy may involve targeting cellular energy metabolism, which has been recognized as crucial for cancer development and progression and which connects through glycolysis to cell surface glycan biosynthetic pathways. Protein glycosylation is a hallmark of more than 50% of the human proteome and it has been recognized that altered glycosylation occurs during the metastatic progression of melanoma cells which, in turn facilitates their migration. This review provides a description of recent advances in the search for factors able to remodel cell metabolism between glycolysis and oxidative phosphorylation, and of changes in specific markers and in the biophysical properties of cells during melanoma development from a nevus to metastasis. This development is accompanied by changes in the expression of surface glycans, with corresponding changes in ligand-receptor affinity, giving rise to structural features and viscoelastic parameters particularly well suited to study by label-free biophysical methods.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Alessio Paone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Tomasz Kobiela
- Laboratory of Biomolecular Interactions Studies, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
29
|
Perez M, Chakraborty A, Lau LS, Mohammed NBB, Dimitroff CJ. Melanoma-associated glycosyltransferase GCNT2 as an emerging biomarker and therapeutic target. Br J Dermatol 2021; 185:294-301. [PMID: 33660254 DOI: 10.1111/bjd.19891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2021] [Indexed: 12/17/2022]
Abstract
In metastatic melanoma, with a dismal survival rate and propensity for treatment resistance and recurrence, it is critical to establish biomarkers that better predict treatment response and disease severity. The melanoma glycome, composed of complex carbohydrates termed glycans, is an under-investigated area of research, although it is gaining momentum in the cancer biomarker and therapeutics field. Novel findings suggest that glycans play a major role in influencing melanoma progression and could be exploited for prognosticating metastatic activity and/or as therapeutic targets. In this review, we discuss the role of aberrant glycosylation, particularly the specialized function of β1,6 N-acetylglucosaminyltransferase 2 (GCNT2), in melanoma pathogenesis and summarize mechanisms of GCNT2 regulation to illuminate its potential as a predictive marker and therapeutic target.
Collapse
Affiliation(s)
- M Perez
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - A Chakraborty
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - L S Lau
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - N B B Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - C J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
30
|
Viinikangas T, Khosrowabadi E, Kellokumpu S. N-Glycan Biosynthesis: Basic Principles and Factors Affecting Its Outcome. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:237-257. [PMID: 34687012 DOI: 10.1007/978-3-030-76912-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbohydrate chains are the most abundant and diverse of nature's biopolymers and represent one of the four fundamental macromolecular building blocks of life together with proteins, nucleic acids, and lipids. Indicative of their essential roles in cells and in multicellular organisms, genes encoding proteins associated with glycosylation account for approximately 2% of the human genome. It has been estimated that 50-80% of all human proteins carry carbohydrate chains-glycans-as part of their structure. Despite cells utilize only nine different monosaccharides for making their glycans, their order and conformational variation in glycan chains together with chain branching differences and frequent post-synthetic modifications can give rise to an enormous repertoire of different glycan structures of which few thousand is estimated to carry important structural or functional information for a cell. Thus, glycans are immensely versatile encoders of multicellular life. Yet, glycans do not represent a random collection of unpredictable structures but rather, a collection of predetermined but still dynamic entities that are present at defined quantities in each glycosylation site of a given protein in a cell, tissue, or organism.In this chapter, we will give an overview of what is currently known about N-glycan synthesis in higher eukaryotes, focusing not only on the processes themselves but also on factors that will affect or can affect the final outcome-the dynamicity and heterogeneity of the N-glycome. We hope that this review will help understand the molecular details underneath this diversity, and in addition, be helpful for those who plan to produce optimally glycosylated antibody-based therapeutics.
Collapse
Affiliation(s)
- Teemu Viinikangas
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
31
|
Buffone A, Weaver VM. Don't sugarcoat it: How glycocalyx composition influences cancer progression. J Cell Biol 2020; 219:133536. [PMID: 31874115 PMCID: PMC7039198 DOI: 10.1083/jcb.201910070] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Buffone and Weaver discuss how the structure of the backbones and glycans of the tumor glycocalyx governs cell–matrix interactions and directs cancer progression. Mechanical interactions between tumors and the extracellular matrix (ECM) of the surrounding tissues have profound effects on a wide variety of cellular functions. An underappreciated mediator of tumor–ECM interactions is the glycocalyx, the sugar-decorated proteins and lipids that act as a buffer between the tumor and the ECM, which in turn mediates all cell-tissue mechanics. Importantly, tumors have an increase in the density of the glycocalyx, which in turn increases the tension of the cell membrane, alters tissue mechanics, and drives a more cancerous phenotype. In this review, we describe the basic components of the glycocalyx and the glycan moieties implicated in cancer. Next, we examine the important role the glycocalyx plays in driving tension-mediated cancer cell signaling through a self-enforcing feedback loop that expands the glycocalyx and furthers cancer progression. Finally, we discuss current tools used to edit the composition of the glycocalyx and the future challenges in leveraging these tools into a novel tractable approach to treat cancer.
Collapse
Affiliation(s)
- Alexander Buffone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA.,Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA.,Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
32
|
Abstract
Sialylation (the covalent addition of sialic acid to the terminal end of glycoproteins or glycans), tightly regulated cell- and microenvironment-specific process and orchestrated by sialyltransferases and sialidases (neuraminidases) family, is one of the posttranslational modifications, which plays an important biological role in the maintenance of normal physiology and involves many pathological dysfunctions. Glycans have roles in all the cancer hallmarks, referring to capabilities acquired during all steps of cancer development to initiate malignant transformation (a driver of a malignant genotype), enable cancer cells to survive, proliferate, and metastasize (a consequence of a malignant phenotype), which includes sustaining proliferative signaling, evading growth suppressor, resisting cell apoptosis, enabling replicative immortality, inducing angiogenesis, reprogramming of energy metabolism, evading tumor destruction, accumulating inflammatory microenvironment, and activating invasion and accelerating metastases. Regarding the important role of altered sialylation of cancers, further knowledge about the initiation and the consequences of altered sialylation pattern in tumor cells is needed, because all may offer a better chance for developing novel therapeutic strategy. In this review, we would like to update alteration of sialylation in ovarian cancers.
Collapse
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|