1
|
Dollinger E, Hernandez-Davies J, Felgner J, Jain A, Hwang M, Strahsburger E, Nakajima R, Jasinskas A, Nie Q, Pone EJ, Othy S, Davies DH. Combination adjuvant improves influenza virus immunity by downregulation of immune homeostasis genes in lymphocytes. Immunohorizons 2025; 9:vlae007. [PMID: 39849993 PMCID: PMC11841980 DOI: 10.1093/immhor/vlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling. Mice immunized and boosted with recombinant H5 in AddaVax, CpG+MPLA, or AddaVax plus CpG+MPLA (IVAX-1) produced comparable levels of neutralizing antibodies and were equally well protected against the H5N1 challenge. However, after challenge with H5N1 virus, H5/IVAX-1-immunized mice had 100- to 300-fold lower virus lung titers than mice receiving H5 in AddaVax or CpG+MPLA separately. Consistent with enhanced viral clearance, unsupervised expression analysis of draining lymph node cells revealed the combination adjuvant IVAX-1 significantly downregulated immune homeostasis genes, and induced higher numbers of antibody-producing plasmablasts than either AddaVax or CpG+MPLA. IVAX-1 was also more effective after single-dose administration than either AddaVax or CpG+MPLA. These data reveal a novel molecular framework for understanding the mechanisms of combination adjuvants, such as IVAX-1, and highlight their potential for the development of more effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- Emmanuel Dollinger
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Jenny Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Michael Hwang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Erwin Strahsburger
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Egest James Pone
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Shivashankar Othy
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - David Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
2
|
Xue J, Ren H, Zhang Q, Gu J, Xu Q, Sun J, Zhang L, Zhou MS. Puerarin attenuates myocardial ischemic injury and endoplasmic reticulum stress by upregulating the Mzb1 signal pathway. Front Pharmacol 2024; 15:1442831. [PMID: 39206261 PMCID: PMC11350615 DOI: 10.3389/fphar.2024.1442831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study investigated the role of Mzb1 in puerarin protection against heart injury and dysfunction in acute myocardial infarction (AMI) mice. Methods C57BL/6 mice were pretreated with and without puerarin at doses of 50 mg/kg and 100 mg/kg for 14 days before establishing the AMI model. An AMI model was induced by ligating the left descending anterior coronary artery, and AC16 cardiomyocytes were treated with H2O2 in vitro. Echocardiography was performed to measure cardiac function. DHE staining, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase assay, and DCFH-DA oxidative fluorescence staining were used to determine reactive oxygen species (ROS) production in vivo and in vitro. Bioinformatics analysis was used to predict potential upstream transcription factors of Mzb1. Results Puerarin dose-dependently reduced myocardial infarction area and injury, accompanied by the improvement of cardiac function in AMI mice. AMI mice manifested an increase in myocardial oxidative stress, endoplasmic reticulum (ER) stress, apoptosis, and mitochondrial biogenesis dysfunction, which were inhibited by pretreatment with puerarin. Puerarin also prevented Mzb1 downregulation in the hearts of AMI mice or H2O2-treated AC16 cells. Consistent with the in vivo findings, puerarin inhibited H2O2-induced cardiomyocyte apoptosis, ER stress, and mitochondrial dysfunction, which were attenuated by siRNA Mzb1. Furthermore, the JASPAR website predicted that KLF4 may be a transcription factor for Mzb1. The expression of KLF4 was partially reversed by puerarin in the cardiomyocyte injury model, and KLF4 inhibitor (kenpaullone) inhibited Mzb1 expression and affected its function. Conclusion These results suggest that puerarin can protect against cardiac injury by attenuating oxidative stress and endoplasmic reticulum stress through upregulating the KLF4/Mzb1 pathway and that puerarin may expand our armamentarium for the prevention and treatment of ischemic heart diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Department of Pathology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haolin Ren
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Jing Gu
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Qian Xu
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
| | - Jiaxi Sun
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| | - Lu Zhang
- Science and Experiment Research Center, Shenyang Medical College, Shenyang, China
| | - Ming-Sheng Zhou
- School of Basic Medicine, Shenyang Medical College, Shenyang, China
| |
Collapse
|
3
|
Xu M, Feng Y, Xiang X, Liu L, Tang G. MZB1 regulates cellular proliferation, mitochondrial dysfunction, and inflammation and targets the PI3K-Akt signaling pathway in acute pancreatitis. Cell Signal 2024; 118:111143. [PMID: 38508349 DOI: 10.1016/j.cellsig.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Acute pancreatitis (AP) is a pathological condition characterized by the premature release and activation of trypsinogens and other enzyme precursors. In severe cases, the mortality rates are in the range of 20-30% and may even be as high as 50%. Though various prophylaxes are available for AP, the mechanism of its progression is unclear. Marginal zone B and B-1 cell-specific protein 1 (MZB1) is found in the endoplasmic reticulum (ER) where it is expressed exclusively in the B cells there. MZB1 promotes proliferation, inhibits apoptosis, invasion, and inflammation, and mitigates mitochondrial damage in cells. However, the importance of MZB1 in AP has not yet been determined. METHODS Differentially expressed genes (DEGs) between healthy pancreatic cells and those affected by AP were identified using datasets from Gene Expression Omnibus (GEO) datasets. Relative differences in MZB1 expression between normal and diseased tissues and cells were validated in vivo using a rat AP model induced with 4% (w/v) sodium taurocholate and in vitro using the AR42J rat pancreatic cell line exposed to caerulein (CAE). Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2`-deoxyuridine (EdU) assays were performed to detect and compare normal and pathological cell proliferation. Flow cytometry was employed to assess and compare cellular apoptosis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot (WB) were applied to evaluate the apoptotic factors Bax and Bcl. The inflammatory factors interleukin (IL)-6 and IL-1β were quantified using Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR techniques. Mitochondrial function was evaluated using assays for reactive oxygen species (ROS) and tetramethylrhodamine methyl ester (TMRM). WB and qRT-PCR were utilized to measure the expression levels of the PI3K-Akt signaling pathway, followed by a rescue experiment involving the inhibitor of wortmannin. RESULTS MZB1 was upregulated in the AP cases screened from the GEO datasets, the rat AP model, and the AR42J cells exposed to CAE. Overexpression of MZB1 enhanced the growth and supressed the cell death of AR42J cells while also activating the PI3K-Akt signaling pathway. MZB1 knockdown led to mitochondrial dysfunction and exacerbated inflammation. The rescue experiment demonstrated that MZB1 enhanced proliferation and inhibited apoptosis, mitochondrial dysfunction, and inflammation in pancreatic cells through the PI3K-Akt pathway. CONCLUSIONS AP cells and tissues exhibited markedly elevated levels of MZB1 expression compared to their healthy counterparts. MZB1 overexpression promoted proliferation and supressed apoptosis, mitochondrial dysfunction, and inflammation in pancreatic cells through the positive regulation of the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Mengtao Xu
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Yong Feng
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xuelian Xiang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Liu
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guodu Tang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Pamela BE, Thamizhmaran S, Manoj J, Thanigachalam A, Carabin H, Prabhakaran V, Moorthy RK, Oommen A, Drevets DA, Rajshekhar V. Correlation between Monocyte Gene Expression and Inflammation on Brain Imaging in Patients with Solitary Cerebral Cysticercus Granuloma. Am J Trop Med Hyg 2023; 109:992-998. [PMID: 37917997 PMCID: PMC10622485 DOI: 10.4269/ajtmh.23-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/09/2023] [Indexed: 11/04/2023] Open
Abstract
Prior work has shown that 14 monocyte genes are upregulated in patients with different forms of parenchymal neurocysticercosis, including solitary cysticercus granuloma (SCG). The aim of this study was to investigate whether changes in inflammation associated with SCG seen on follow-up brain imaging are also reflected in changes in expression of these 14 genes. Peripheral blood CD14+ monocytes were isolated from 20 patients with SCG at initial diagnosis and at clinical and imaging follow-up of 6 months or more. Expressions of 14 target monocyte genes were determined by quantitative polymerase chain reaction at each visit. At a median follow-up of 14 months, the SCG had resolved in 11 patients, was persistent in four patients, and had calcified in five patients. Edema seen in the initial imaging in 17 patients had resolved in 15 patients and was markedly reduced in two patients. The expression levels of the monocyte genes LRRFIP2, TAXIBP1, and MZB1 were significantly lower at follow-up, regardless of the status of SCG on follow-up imaging. Our findings show that expression levels of monocyte genes involved with inflammatory processes decrease in patients with SCG concomitant with follow-up imaging that reveals a reduction in inflammation as revealed by complete or near-complete resolution of edema, as well as resolution or reduction in the enhancement of the granuloma.
Collapse
Affiliation(s)
| | | | - Josephin Manoj
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | | | - Hélène Carabin
- Department of Pathology and Microbiology, University of Montreal, Canada
- Department of Social and Preventive Medicine, University of Montreal, Canada
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Centre de Recherche en Santé Publique (CReSP), Montreal, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Saint-Hyacinthe, Canada
| | | | - Ranjith K. Moorthy
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| | | | - Douglas A. Drevets
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Vedantam Rajshekhar
- Department of Neurological Sciences, Christian Medical College, Vellore, India
| |
Collapse
|
5
|
Nielsen CM, Barrett JR, Davis C, Fallon JK, Goh C, Michell AR, Griffin C, Kwok A, Loos C, Darko S, Laboune F, Tekman M, Diouf A, Miura K, Francica JR, Ransier A, Long CA, Silk SE, Payne RO, Minassian AM, Lauffenburger DA, Seder RA, Douek DC, Alter G, Draper SJ. Delayed boosting improves human antigen-specific Ig and B cell responses to the RH5.1/AS01B malaria vaccine. JCI Insight 2023; 8:e163859. [PMID: 36692019 PMCID: PMC9977309 DOI: 10.1172/jci.insight.163859] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
Modifications to vaccine delivery that increase serum antibody longevity are of great interest for maximizing efficacy. We have previously shown that a delayed fractional (DFx) dosing schedule (0-1-6 month) - using AS01B-adjuvanted RH5.1 malaria antigen - substantially improves serum IgG durability as compared with monthly dosing (0-1-2 month; NCT02927145). However, the underlying mechanism and whether there are wider immunological changes with DFx dosing were unclear. Here, PfRH5-specific Ig and B cell responses were analyzed in depth through standardized ELISAs, flow cytometry, systems serology, and single-cell RNA-Seq (scRNA-Seq). Data indicate that DFx dosing increases the magnitude and durability of circulating PfRH5-specific B cells and serum IgG1. At the peak antibody magnitude, DFx dosing was distinguished by a systems serology feature set comprising increased FcRn binding, IgG avidity, and proportion of G2B and G2S2F IgG Fc glycans, alongside decreased IgG3, antibody-dependent complement deposition, and proportion of G1S1F IgG Fc glycan. Concomitantly, scRNA-Seq data show a higher CDR3 percentage of mutation from germline and decreased plasma cell gene expression in circulating PfRH5-specific B cells. Our data, therefore, reveal a profound impact of DFx dosing on the humoral response and suggest plausible mechanisms that could enhance antibody longevity, including improved FcRn binding by serum Ig and a potential shift in the underlying cellular response from circulating short-lived plasma cells to nonperipheral long-lived plasma cells.
Collapse
Affiliation(s)
| | | | - Christine Davis
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Jonathan K. Fallon
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | - Cyndi Goh
- University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ashlin R. Michell
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | - Catherine Griffin
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Andrew Kwok
- University of Oxford, Oxford, Oxfordshire, United Kingdom
- Wellcome Center for Human Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Carolin Loos
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | - Samuel Darko
- Vaccine Research Center, NIAID/NIH, Bethesda, Maryland, USA
| | - Farida Laboune
- Vaccine Research Center, NIAID/NIH, Bethesda, Maryland, USA
| | - Mehmet Tekman
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | | | - Amy Ransier
- Vaccine Research Center, NIAID/NIH, Bethesda, Maryland, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Sarah E. Silk
- University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ruth O. Payne
- University of Oxford, Oxford, Oxfordshire, United Kingdom
| | | | | | | | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Boston, Massachusetts, USA
| | | |
Collapse
|
6
|
Wei H, Wang JY. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci 2021; 22:ijms22052284. [PMID: 33668983 PMCID: PMC7956327 DOI: 10.3390/ijms22052284] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcytosis of polymeric IgA and IgM from the basolateral surface to the apical side of the epithelium and subsequent secretion into mucosal fluids are mediated by the polymeric immunoglobulin receptor (pIgR). Secreted IgA and IgM have vital roles in mucosal immunity in response to pathogenic infections. Binding and recognition of polymeric IgA and IgM by pIgR require the joining chain (J chain), a small protein essential in the formation and stabilization of polymeric Ig structures. Recent studies have identified marginal zone B and B1 cell-specific protein (MZB1) as a novel regulator of polymeric IgA and IgM formation. MZB1 might facilitate IgA and IgM transcytosis by promoting the binding of J chain to Ig. In this review, we discuss the roles of pIgR in transcytosis of IgA and IgM, the roles of J chain in the formation of polymeric IgA and IgM and recognition by pIgR, and focus particularly on recent progress in understanding the roles of MZB1, a molecular chaperone protein.
Collapse
Affiliation(s)
- Hao Wei
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Correspondence: ; Tel.: +86-(21)-54237957
| |
Collapse
|
7
|
Kumar Bharathkar S, Parker BW, Malyutin AG, Haloi N, Huey-Tubman KE, Tajkhorshid E, Stadtmueller BM. The structures of secretory and dimeric immunoglobulin A. eLife 2020; 9:56098. [PMID: 33107820 PMCID: PMC7707832 DOI: 10.7554/elife.56098] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Secretory (S) Immunoglobulin (Ig) A is the predominant mucosal antibody, which binds pathogens and commensal microbes. SIgA is a polymeric antibody, typically containing two copies of IgA that assemble with one joining-chain (JC) to form dimeric (d) IgA that is bound by the polymeric Ig-receptor ectodomain, called secretory component (SC). Here, we report the cryo-electron microscopy structures of murine SIgA and dIgA. Structures reveal two IgAs conjoined through four heavy-chain tailpieces and the JC that together form a β-sandwich-like fold. The two IgAs are bent and tilted with respect to each other, forming distinct concave and convex surfaces. In SIgA, SC is bound to one face, asymmetrically contacting both IgAs and JC. The bent and tilted arrangement of complex components limits the possible positions of both sets of antigen-binding fragments (Fabs) and preserves steric accessibility to receptor-binding sites, likely influencing antigen binding and effector functions.
Collapse
Affiliation(s)
- Sonya Kumar Bharathkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States
| | - Benjamin W Parker
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States
| | - Andrey G Malyutin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Nandan Haloi
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Urbana, United States
| | - Kathryn E Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Urbana, United States
| | - Beth M Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, United States
| |
Collapse
|