1
|
An H, Huang Y, Zhao Z, Li K, Meng J, Huang X, Tian X, Zhou H, Wu J, Dai Q, Zhang JR. Splenic red pulp macrophages eliminate the liver-resistant Streptococcus pneumoniae from the blood circulation of mice. SCIENCE ADVANCES 2025; 11:eadq6399. [PMID: 40073120 PMCID: PMC11900858 DOI: 10.1126/sciadv.adq6399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Invasive infections by encapsulated bacteria are the major cause of human morbidity and mortality. The liver resident macrophages, Kupffer cells, form the hepatic firewall to clear many encapsulated bacteria in the blood circulation but fail to control certain high-virulence capsule types. Here we report that the spleen is the backup immune organ to clear the liver-resistant serotypes of Streptococcus pneumoniae (pneumococcus), a leading human pathogen. Asplenic mice failed to control the growth of the liver-resistant pneumococci in the blood circulation. Immunologic and genetic analyses identified splenic red pulp (RP) macrophages as the major phagocytes for bacterial clearance. Furthermore, the plasma natural antibodies against the cell wall phosphocholine and the complement system were necessary for RP macrophage-mediated immunity. These findings have provided a conceptual framework for the innate defense against blood bacterial infections, a mechanistic explanation for the hyper-susceptibility of asplenic individuals to S. pneumoniae, and a proof of concept for developing vaccines and therapeutic antibodies against encapsulated pathogens.
Collapse
Affiliation(s)
- Haoran An
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing 100191, China
- Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yijia Huang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhifeng Zhao
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Kunpeng Li
- Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jingjing Meng
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Xueting Huang
- Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xianbin Tian
- Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Hongyu Zhou
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jing-Ren Zhang
- Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Musrati MA, Stijlemans B, Azouz A, Kancheva D, Mesbahi S, Hadadi E, Lebegge E, Ali L, De Vlaminck K, Scheyltjens I, Vandamme N, Zivalj M, Assaf N, Elkrim Y, Ahmidi I, Huart C, Lamkanfi M, Guilliams M, De Baetselier P, Goriely S, Movahedi K, Van Ginderachter JA. Infection history imprints prolonged changes to the epigenome, transcriptome and function of Kupffer cells. J Hepatol 2024; 81:1023-1039. [PMID: 39002639 DOI: 10.1016/j.jhep.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND & AIMS Liver macrophages fulfill various homeostatic functions and represent an essential line of defense against pathogenic insults. However, it remains unclear whether a history of infectious disease in the liver leads to long-term alterations to the liver macrophage compartment. METHODS We utilized a curable model of parasitic infection invoked by the protozoan parasite Trypanosoma brucei brucei to investigate whether infection history can durably reshape hepatic macrophage identity and function. Employing a combination of fate mapping, single-cell CITE-sequencing, single-nuclei multiome analysis, epigenomic analysis, and functional assays, we studied the alterations to the liver macrophage compartment during and after the resolution of infection. RESULTS We show that T. brucei brucei infection alters the composition of liver-resident macrophages, leading to the infiltration of monocytes that differentiate into various infection-associated macrophage populations with divergent transcriptomic profiles. Whereas infection-associated macrophages disappear post-resolution of infection, monocyte-derived macrophages engraft in the liver, assume a Kupffer cell (KC)-like profile and co-exist with embryonic KCs in the long-term. Remarkably, the prior exposure to infection imprinted an altered transcriptional program on post-resolution KCs that was underpinned by an epigenetic remodeling of KC chromatin landscapes and a shift in KC ontogeny, along with transcriptional and epigenetic alterations in their niche cells. This reprogramming altered KC functions and was associated with increased resilience to a subsequent bacterial infection. CONCLUSION Our study demonstrates that a prior exposure to a parasitic infection induces trained immunity in KCs, reshaping their identity and function in the long-term. IMPACT AND IMPLICATIONS Although the liver is frequently affected during infections, and despite housing a major population of resident macrophages known as Kupffer cells (KCs), it is currently unclear whether infections can durably alter KCs and their niche cells. Our study provides a comprehensive investigation into the long-term impact of a prior, cured parasitic infection, unveiling long-lasting ontogenic, epigenetic, transcriptomic and functional changes to KCs as well as KC niche cells, which may contribute to KC remodeling. Our data suggest that infection history may continuously reprogram KCs throughout life with potential implications for subsequent disease susceptibility in the liver, influencing preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed Amer Musrati
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Benoit Stijlemans
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Daliya Kancheva
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium; Brain and Systems Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah Mesbahi
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Hadadi
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Lebegge
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Leen Ali
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium; Brain and Systems Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Karen De Vlaminck
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium; Brain and Systems Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Scheyltjens
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium; Brain and Systems Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium; VIB Single Cell Core, VIB, Ghent-Leuven, Belgium
| | - Maida Zivalj
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Naela Assaf
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Yvon Elkrim
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilham Ahmidi
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Camille Huart
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Patrick De Baetselier
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Kiavash Movahedi
- Brain and Systems Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium; Cellular and Molecular Immunology Lab, Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Wang Y, Heymann F, Peiseler M. Intravital imaging: dynamic insights into liver immunity in health and disease. Gut 2024; 73:1364-1375. [PMID: 38777574 DOI: 10.1136/gutjnl-2023-331739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Inflammation is a critical component of most acute and chronic liver diseases. The liver is a unique immunological organ with a dense vascular network, leading to intense crosstalk between tissue-resident immune cells, passenger leucocytes and parenchymal cells. During acute and chronic liver diseases, the multifaceted immune response is involved in disease promoting and repair mechanisms, while upholding core liver immune functions. In recent years, single-cell technologies have unravelled a previously unknown heterogeneity of immune cells, reshaping the complexity of the hepatic immune response. However, inflammation is a dynamic biological process, encompassing various immune cells, orchestrated in temporal and spatial dimensions, and driven by multiorgan signals. Intravital microscopy (IVM) has emerged as a powerful tool to investigate immunity by visualising the dynamic interplay between different immune cells and their surroundings within a near-natural environment. In this review, we summarise the experimental considerations to perform IVM and highlight recent technological developments. Furthermore, we outline the unique contributions of IVM to our understanding of liver immunity. Through the lens of liver disease, we discuss novel immune-mediated disease mechanisms uncovered by imaging-based studies.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Heymann
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Berlin, Germany
| |
Collapse
|
4
|
Choi B, Vu HT, Vu HT, Radwanska M, Magez S. Advances in the Immunology of the Host-Parasite Interactions in African Trypanosomosis, including Single-Cell Transcriptomics. Pathogens 2024; 13:188. [PMID: 38535532 PMCID: PMC10975194 DOI: 10.3390/pathogens13030188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/11/2025] Open
Abstract
Trypanosomes are single-celled extracellular parasites that infect mammals, including humans and livestock, causing global public health concerns and economic losses. These parasites cycle between insect vectors, such as tsetse flies and vertebrate hosts, undergoing morphological, cellular, and biochemical changes. They have remarkable immune evasion mechanisms to escape the host's innate and adaptive immune responses, such as surface coat antigenic variation and the induction of the loss of specificity and memory of antibody responses, enabling the prolongation of infection. Since trypanosomes circulate through the host body in blood and lymph fluid and invade various organs, understanding the interaction between trypanosomes and tissue niches is essential. Here, we present an up-to-date overview of host-parasite interactions and survival strategies for trypanosomes by introducing and discussing the latest studies investigating the transcriptomics of parasites according to life cycle stages, as well as host cells in various tissues and organs, using single-cell and spatial sequencing applications. In recent years, this information has improved our understanding of trypanosomosis by deciphering the diverse populations of parasites in the developmental process, as well as the highly heterogeneous immune and tissue-resident cells involved in anti-trypanosome responses. Ultimately, the goal of these approaches is to gain an in-depth understanding of parasite biology and host immunity, potentially leading to new vaccination and therapeutic strategies against trypanosomosis.
Collapse
Affiliation(s)
- Boyoon Choi
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Biochemistry and Microbiology WE10, Ghent University, 9000 Ghent, Belgium
| | - Hien Thi Vu
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Hai Thi Vu
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Biochemistry and Microbiology WE10, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Wang J, An H, Ding M, Liu Y, Wang S, Jin Q, Wu Q, Dong H, Guo Q, Tian X, Liu J, Zhang J, Zhu T, Li J, Shao Z, Briles DE, Veening JW, Zheng H, Zhang L, Zhang JR. Liver macrophages and sinusoidal endothelial cells execute vaccine-elicited capture of invasive bacteria. Sci Transl Med 2023; 15:eade0054. [PMID: 38117903 DOI: 10.1126/scitranslmed.ade0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Vaccination has substantially reduced the morbidity and mortality of bacterial diseases, but mechanisms of vaccine-elicited pathogen clearance remain largely undefined. We report that vaccine-elicited immunity against invasive bacteria mainly operates in the liver. In contrast to the current paradigm that migrating phagocytes execute vaccine-elicited immunity against blood-borne pathogens, we found that invasive bacteria are captured and killed in the liver of vaccinated host via various immune mechanisms that depend on the protective potency of the vaccine. Vaccines with relatively lower degrees of protection only activated liver-resident macrophage Kupffer cells (KCs) by inducing pathogen-binding immunoglobulin M (IgM) or low amounts of IgG. IgG-coated pathogens were directly captured by KCs via multiple IgG receptors FcγRs, whereas IgM-opsonized bacteria were indirectly bound to KCs via complement receptors of immunoglobulin superfamily (CRIg) and complement receptor 3 (CR3) after complement C3 activation at the bacterial surface. Conversely, the more potent vaccines engaged both KCs and liver sinusoidal endothelial cells by inducing higher titers of functional IgG antibodies. Endothelial cells (ECs) captured densely IgG-opsonized pathogens by the low-affinity IgG receptor FcγRIIB in a "zipper-like" manner and achieved bacterial killing predominantly in the extracellular milieu via an undefined mechanism. KC- and endothelial cell-based capture of antibody-opsonized bacteria also occurred in FcγR-humanized mice. These vaccine protection mechanisms in the liver not only provide a comprehensive explanation for vaccine-/antibody-boosted immunity against invasive bacteria but also may serve as in vivo functional readouts of vaccine efficacy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanhong Liu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shaomeng Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qian Jin
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qi Wu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haodi Dong
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qile Guo
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xianbin Tian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | - Tao Zhu
- Cansino Biologics, Tianjin 300301, China
| | | | - Zhujun Shao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102299, China
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Linqi Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Pereira F, Petroianu A, Geraldo JM, Pereira C. Megavoltage radiotherapy effects on organs of the reticuloendothelial system. Acta Cir Bras 2023; 38:e384123. [PMID: 37878983 PMCID: PMC10592569 DOI: 10.1590/acb384123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/30/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE To study the uptake capacity of cells from the reticuloendothelial system after irradiation with high-energy X-rays. METHODS Eighteen male Wistar rats were distributed in three groups: group A (n = 6): control, unirradiated animals studied alongside animals from group B; group B (n = 6) and group C (n = 6): animals irradiated and studied after 24 and 48 hours, respectively. The rats were anesthetized and placed on a 10 MV linear accelerator. Next, they were irradiated in the abdominal region, with 8 Gy. Twenty-four (groups A and B) and 48 hours later (group C), a colloidal carbon solution (1 mL/kg) was intravenously injected in the tail vein. Fifty minutes later, the spleens and livers were withdrawn and prepared to be studied. Kupffer cells and splenic macrophages containing carbon pigments were counted in an optical microscope. Arithmetic means were calculated for each group and compared among them. RESULTS X-rays were associated with a reduced number of Kupffer cells containing colloidal carbon, proliferation and enlargement of biliary ducts, hypoplasia, and hepatocyte necrosis. In the irradiated spleen, the colloidal carbon uptake was concentrated in the marginal zone around the white pulp, with an inexpressive uptake of pigments by macrophages from white and red pulps. CONCLUSIONS The X-rays in the rat abdomen are associated with a reduction in the Kupffer cells uptake of colloidal carbon, hepatocyte disorders, bile duct proliferation, and splenic uptake of colloidal carbon concentrated in the marginal zone.
Collapse
Affiliation(s)
- Fernando Pereira
- Universidade Federal de Minas Gerais - Departamento de Engenharia Nuclear - Belo Horizonte (MG) - Brazil
| | - Andy Petroianu
- Universidade Federal de Minas Gerais - Departamento de Cirurgia - Belo Horizonte (MG) - Brazil
| | | | - Claubia Pereira
- Universidade Federal de Minas Gerais - Departamento de Engenharia Nuclear - Belo Horizonte (MG) - Brazil
| |
Collapse
|
7
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Lorentzen J, Olesen HG, Hansen AG, Thiel S, Birkelund S, Andersen CBF, Andersen GR. Trypanosoma brucei Invariant Surface gp65 Inhibits the Alternative Pathway of Complement by Accelerating C3b Degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:862-873. [PMID: 37466368 DOI: 10.4049/jimmunol.2300128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Trypanosomes are known to activate the complement system on their surface, but they control the cascade in a manner such that the cascade does not progress into the terminal pathway. It was recently reported that the invariant surface glycoprotein ISG65 from Trypanosoma brucei interacts reversibly with complement C3 and its degradation products, but the molecular mechanism by which ISG65 interferes with complement activation remains unknown. In this study, we show that ISG65 does not interfere directly with the assembly or activity of the two C3 convertases. However, ISG65 acts as a potent inhibitor of C3 deposition through the alternative pathway in human and murine serum. Degradation assays demonstrate that ISG65 stimulates the C3b to iC3b converting activity of complement factor I in the presence of the cofactors factor H or complement receptor 1. A structure-based model suggests that ISG65 promotes a C3b conformation susceptible to degradation or directly bridges factor I and C3b without contact with the cofactor. In addition, ISG65 is observed to form a stable ternary complex with the ligand binding domain of complement receptor 3 and iC3b. Our data suggest that ISG65 supports trypanosome complement evasion by accelerating the conversion of C3b to iC3b through a unique mechanism.
Collapse
Affiliation(s)
- Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Heidi G Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
9
|
Musrati MA, De Baetselier P, Movahedi K, Van Ginderachter JA. Ontogeny, functions and reprogramming of Kupffer cells upon infectious disease. Front Immunol 2023; 14:1238452. [PMID: 37691953 PMCID: PMC10485603 DOI: 10.3389/fimmu.2023.1238452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
The liver is a vital metabolic organ that also performs important immune-regulatory functions. In the context of infections, the liver represents a target site for various pathogens, while also having an outstanding capacity to filter the blood from pathogens and to contain infections. Pathogen scavenging by the liver is primarily performed by its large and heterogeneous macrophage population. The major liver-resident macrophage population is located within the hepatic microcirculation and is known as Kupffer cells (KCs). Although other minor macrophages reside in the liver as well, KCs remain the best characterized and are the best well-known hepatic macrophage population to be functionally involved in the clearance of infections. The response of KCs to pathogenic insults often governs the overall severity and outcome of infections on the host. Moreover, infections also impart long-lasting, and rarely studied changes to the KC pool. In this review, we discuss current knowledge on the biology and the various roles of liver macrophages during infections. In addition, we reflect on the potential of infection history to imprint long-lasting effects on macrophages, in particular liver macrophages.
Collapse
Affiliation(s)
- Mohamed Amer Musrati
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Patrick De Baetselier
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Kiavash Movahedi
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Lab of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A. Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
10
|
Ebstein SY, Rafique A, Zhou Y, Krasco A, Montalvo-Ortiz W, Yu L, Custodio L, Adam RC, Bloch N, Lee K, Adewale F, Vergata D, Luz A, Coquery S, Daniel B, Ullman E, Franklin MC, Hermann A, Huang T, Olson W, Davis S, Murphy AJ, Sleeman MA, Wei J, Skokos D. VSIG4 interaction with heparan sulfates inhibits VSIG4-complement binding. Glycobiology 2023; 33:591-604. [PMID: 37341346 PMCID: PMC10426322 DOI: 10.1093/glycob/cwad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023] Open
Abstract
V-set and immunoglobulin domain-containing 4 (VSIG4) is a complement receptor of the immunoglobulin superfamily that is specifically expressed on tissue resident macrophages, and its many reported functions and binding partners suggest a complex role in immune function. VSIG4 is reported to have a role in immune surveillance as well as in modulating diverse disease phenotypes such as infections, autoimmune conditions, and cancer. However, the mechanism(s) governing VSIG4's complex, context-dependent role in immune regulation remains elusive. Here, we identify cell surface and soluble glycosaminoglycans, specifically heparan sulfates, as novel binding partners of VSIG4. We demonstrate that genetic deletion of heparan sulfate synthesis enzymes or cleavage of cell-surface heparan sulfates reduced VSIG4 binding to the cell surface. Furthermore, binding studies demonstrate that VSIG4 interacts directly with heparan sulfates, with a preference for highly sulfated moieties and longer glycosaminoglycan chains. To assess the impact on VSIG4 biology, we show that heparan sulfates compete with known VSIG4 binding partners C3b and iC3b. Furthermore, mutagenesis studies indicate that this competition occurs through overlapping binding epitopes for heparan sulfates and complement on VSIG4. Together these data suggest a novel role for heparan sulfates in VSIG4-dependent immune modulation.
Collapse
Affiliation(s)
- Sarah Y Ebstein
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Ashique Rafique
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Yi Zhou
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Amanda Krasco
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Welby Montalvo-Ortiz
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Lola Yu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Luisaidy Custodio
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Rene C Adam
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Nicolin Bloch
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Ken Lee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Funmilola Adewale
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Dominic Vergata
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Antonio Luz
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Sebastien Coquery
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Benjamin Daniel
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Erica Ullman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Matthew C Franklin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Aynur Hermann
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Tammy Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - William Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Samuel Davis
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Joyce Wei
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Dimitris Skokos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| |
Collapse
|
11
|
Yanagawa Y, Singh U. Diversity and Plasticity of Virulent Characteristics of Entamoeba histolytica. Trop Med Infect Dis 2023; 8:tropicalmed8050255. [PMID: 37235303 DOI: 10.3390/tropicalmed8050255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The complexity of clinical syndromes of amebiasis, caused by the parasite Entamoeba histolytica, stems from the intricate interplay between the host immune system, the virulence of the invading parasite, and the surrounding environment. Although there is still a relative paucity of information about the precise relationship between virulence factors and the pathogenesis of Entamoeba histolytica, by accumulating data from clinical and basic research, researchers have identified essential pathogenic factors that play a critical role in the pathogenesis of amebiasis, providing important insights into disease development through animal models. Moreover, the parasite's genetic variability has been associated with differences in virulence and disease outcomes, making it important to fully understand the epidemiology and pathogenesis of amebiasis. Deciphering the true mechanism of disease progression in humans caused by this parasite is made more difficult through its ability to demonstrate both genomic and pathological plasticity. The objective of this article is to underscore the heterogeneous nature of disease states and the malleable virulence characteristics in experimental models, while also identifying persistent scientific issues that need to be addressed.
Collapse
Affiliation(s)
- Yasuaki Yanagawa
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Upinder Singh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Jiang Y, Han L, Yang J, Yang M, Zhang J, Xue M, Zhu Y, Xiong C, Shi M, Zhao S, Shen B, Xu Z, Jiang L, Chen H. Identification of a novel immune checkpoint molecule V-set immunoglobulin domain-containing 4 that leads to impaired immunity infiltration in pancreatic ductal adenocarcinoma. Cancer Immunol Immunother 2023:10.1007/s00262-023-03438-y. [PMID: 37097516 PMCID: PMC10361881 DOI: 10.1007/s00262-023-03438-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Checkpoint-based immunotherapy has failed to elicit responses in the majority of patients with pancreatic cancer. In our study, we aimed to identify the role of a novel immune checkpoint molecule V-set Ig domain-containing 4 (VSIG4) in pancreatic ductal adenocarcinoma (PDAC). METHODS Online datasets and tissue microarray (TMA) were utilized to analyze the expression level of VSIG4 and its correlation with clinical parameters in PDAC. CCK8, transwell assay and wound healing assay were applied to explore the function of VSIG4 in vitro. Subcutaneous, orthotopic xenograft and liver metastasis model was established to explore the function of VSIG4 in vivo. TMA analysis and chemotaxis assay were conducted to uncover the effect of VSIG4 on immune infiltration. Histone acetyltransferase (HAT) inhibitors and si-RNA were applied to investigate factors that regulate the expression of VSIG4. RESULTS Both mRNA and protein levels of VSIG4 were higher in PDAC than normal pancreas in TCGA, GEO, HPA datasets and our TMA. VSIG4 showed positive correlations with tumor size, T classification and liver metastasis. Patients with higher VSIG4 expression were related to poorer prognosis. VSIG4 knockdown impaired the proliferation and migration ability of pancreatic cancer cells both in vitro and in vivo. Bioinformatics study showed positive correlation between VSIG4 and infiltration of neutrophil and tumor-associated macrophages (TAMs) in PDAC, and it inhibited the secretion of cytokines. According to our TMA panel, high expression of VSIG4 was correlated with fewer infiltration of CD8+ T cells. Chemotaxis assay also showed knockdown of VSIG4 increased the recruitment of total T cells and CD8+ T cells. HAT inhibitors and knockdown of STAT1 led to decreased expression of VSIG4. CONCLUSIONS Our data indicate that VSIG4 contributes to cell proliferation, migration and resistance to immune attack, thus identified as a promising target for PDAC treatment with good prognostic value.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Lijie Han
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian Zhang
- Medical Department Health Services Section, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Meilin Xue
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Cheng Xiong
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Shiwei Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
13
|
Washburn RL, Dufour JM. Complementing Testicular Immune Regulation: The Relationship between Sertoli Cells, Complement, and the Immune Response. Int J Mol Sci 2023; 24:ijms24043371. [PMID: 36834786 PMCID: PMC9965741 DOI: 10.3390/ijms24043371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Sertoli cells within the testis are instrumental in providing an environment for spermatogenesis and protecting the developing germ cells from detrimental immune responses which could affect fertility. Though these immune responses consist of many immune processes, this review focuses on the understudied complement system. Complement consists of 50+ proteins including regulatory proteins, immune receptors, and a cascade of proteolytic cleavages resulting in target cell destruction. In the testis, Sertoli cells protect the germ cells from autoimmune destruction by creating an immunoregulatory environment. Most studies on Sertoli cells and complement have been conducted in transplantation models, which are effective in studying immune regulation during robust rejection responses. In grafts, Sertoli cells survive activated complement, have decreased deposition of complement fragments, and express many complement inhibitors. Moreover, the grafts have delayed infiltration of immune cells and contain increased infiltration of immunosuppressive regulatory T cells as compared to rejecting grafts. Additionally, anti-sperm antibodies and lymphocyte infiltration have been detected in up to 50% and 30% of infertile testes, respectively. This review seeks to provide an updated overview of the complement system, describe its relationship with immune cells, and explain how Sertoli cells may regulate complement in immunoprotection. Identifying the mechanism Sertoli cells use to protect themselves and germ cells against complement and immune destruction is relevant for male reproduction, autoimmunity, and transplantation.
Collapse
Affiliation(s)
- Rachel L Washburn
- Immunology and Infectious Diseases, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| |
Collapse
|
14
|
Abstract
African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium;
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; .,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Li Y, Wang Q, Li J, Li A, Wang Q, Zhang Q, Chen Y. Therapeutic modulation of V Set and Ig domain-containing 4 (VSIG4) signaling in immune and inflammatory diseases. Cytotherapy 2023; 25:561-572. [PMID: 36642683 DOI: 10.1016/j.jcyt.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Inflammation is the result of acute and chronic stresses, caused by emotional or physical trauma, or nutritional or environmental pollutants, and brings serious harm to human life and health. As an important cellular component of the innate immune barrier, the macrophage plays a key role in maintaining tissue homeostasis and promoting tissue repair by controlling infection and resolving inflammation. Several studies suggest that V Set and Ig domain-containing 4 is specifically expressed in tissue macrophages and is associated with a variety of inflammatory diseases. In this paper, we mainly summarize the recent research on V Set and Ig domain-containing 4 structures, functions, function and roles in acute and chronic inflammatory diseases, and provide a novel therapeutic avenue for the treatment of inflammatory diseases, including nervous system, urinary, respiratory and metabolic diseases.
Collapse
Affiliation(s)
- You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Jiaxin Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China.
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China.
| |
Collapse
|
16
|
Nguyen HTT, Radwanska M, Magez S. Tipping the balance between erythroid cell differentiation and induction of anemia in response to the inflammatory pathology associated with chronic trypanosome infections. Front Immunol 2022; 13:1051647. [PMID: 36420267 PMCID: PMC9676970 DOI: 10.3389/fimmu.2022.1051647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Infection caused by extracellular single-celled trypanosomes triggers a lethal chronic wasting disease in livestock and game animals. Through screening of 10 Trypanosoma evansi field isolates, exhibiting different levels of virulence in mice, the current study identifies an experimental disease model in which infection can last well over 100 days, mimicking the major features of chronic animal trypanosomosis. In this model, despite the well-controlled parasitemia, infection is hallmarked by severe trypanosomosis-associated pathology. An in-depth scRNA-seq analysis of the latter revealed the complexity of the spleen macrophage activation status, highlighting the crucial role of tissue resident macrophages (TRMs) in regulating splenic extramedullary erythropoiesis. These new data show that in the field of experimental trypanosomosis, macrophage activation profiles have so far been oversimplified into a bi-polar paradigm (M1 vs M2). Interestingly, TRMs exert a double-sided effect on erythroid cells. On one hand, these cells express an erythrophagocytosis associated signature. On another hand, TRMs show high levels of Vcam1 expression, known to support their interaction with hematopoietic stem and progenitor cells (HSPCs). During chronic infection, the latter exhibit upregulated expression of Klf1, E2f8, and Gfi1b genes, involved in erythroid differentiation and extramedullary erythropoiesis. This process gives rise to differentiation of stem cells to BFU-e/CFU-e, Pro E, and Baso E subpopulations. However, infection truncates progressing differentiation at the orthochromatic erythrocytes level, as demonstrated by scRNAseq and flow cytometry. As such, these cells are unable to pass to the reticulocyte stage, resulting in reduced number of mature circulating RBCs and the occurrence of chronic anemia. The physiological consequence of these events is the prolonged poor delivery of oxygen to various tissues, triggering lactic acid acidosis and the catabolic breakdown of muscle tissue, reminiscent of the wasting syndrome that is characteristic for the lethal stage of animal trypanosomosis.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
17
|
Miyazaki H, Kinoshita M, Nakashima H, Nakamura S, Saitoh D. Pioglitazone Modifies Kupffer Cell Function and Protects against Escherichia coli-Induced Bacteremia in Burned Mice. Int J Mol Sci 2022; 23:12746. [PMID: 36361535 PMCID: PMC9657905 DOI: 10.3390/ijms232112746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious complications and subsequent sepsis in severely burned patients lead to high morbidity and mortality in response to uncontrolled innate immune responses mediated by macrophages. Peroxisome proliferator-activated receptor gamma (PPARγ) has anti-inflammatory activity and acts as a master regulator of macrophage polarization. In this study, we investigated whether the administration of a PPARγ agonist could modulate the Kupffer cell phenotype and thereby ameliorate the dysregulated innate response during post-burn bacterial infection. C57BL/6 mice were subjected to severe burns and randomized to receive either the PPARγ agonist, pioglitazone, or the vehicle control five days after injury, followed by the subsequent analysis of hepatic macrophages. Survival from the bacterial infection was monitored for seven days. Pioglitazone protected burned mice against bacterial infection. A single treatment with pioglitazone significantly enhanced phagocytosis, phagosome acidification, bacterial clearance, and reduction in inflammatory mediators in Kupffer cells. In conclusion, PPARγ activation by pioglitazone prevents clinical deterioration due to post-burn bacterial infection and improves survival. Our findings suggest that pioglitazone may be an effective therapeutic candidate for post-burn infectious complications.
Collapse
Affiliation(s)
- Hiromi Miyazaki
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama 359-8513, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Saitama 359-8513, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Daizoh Saitoh
- Division of Traumatology, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| |
Collapse
|
18
|
Zheng Q, Wang D, Lin R, Lv Q, Wang W. IFI44 is an immune evasion biomarker for SARS-CoV-2 and Staphylococcus aureus infection in patients with RA. Front Immunol 2022; 13:1013322. [PMID: 36189314 PMCID: PMC9520788 DOI: 10.3389/fimmu.2022.1013322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic of severe coronavirus disease 2019 (COVID-19). Staphylococcus aureus is one of the most common pathogenic bacteria in humans, rheumatoid arthritis (RA) is among the most prevalent autoimmune conditions. RA is a significant risk factor for SARS-CoV-2 and S. aureus infections, although the mechanism of RA and SARS-CoV-2 infection in conjunction with S. aureus infection has not been elucidated. The purpose of this study is to investigate the biomarkers and disease targets between RA and SARS-CoV-2 and S. aureus infections using bioinformatics analysis, to search for the molecular mechanisms of SARS-CoV-2 and S. aureus immune escape and potential drug targets in the RA population, and to provide new directions for further analysis and targeted development of clinical treatments. Methods The RA dataset (GSE93272) and the S. aureus bacteremia (SAB) dataset (GSE33341) were used to obtain differentially expressed gene sets, respectively, and the common differentially expressed genes (DEGs) were determined through the intersection. Functional enrichment analysis utilizing GO, KEGG, and ClueGO methods. The PPI network was created utilizing the STRING database, and the top 10 hub genes were identified and further examined for functional enrichment using Metascape and GeneMANIA. The top 10 hub genes were intersected with the SARS-CoV-2 gene pool to identify five hub genes shared by RA, COVID-19, and SAB, and functional enrichment analysis was conducted using Metascape and GeneMANIA. Using the NetworkAnalyst platform, TF-hub gene and miRNA-hub gene networks were built for these five hub genes. The hub gene was verified utilizing GSE17755, GSE55235, and GSE13670, and its effectiveness was assessed utilizing ROC curves. CIBERSORT was applied to examine immune cell infiltration and the link between the hub gene and immune cells. Results A total of 199 DEGs were extracted from the GSE93272 and GSE33341 datasets. KEGG analysis of enrichment pathways were NLR signaling pathway, cell membrane DNA sensing pathway, oxidative phosphorylation, and viral infection. Positive/negative regulation of the immune system, regulation of the interferon-I (IFN-I; IFN-α/β) pathway, and associated pathways of the immunological response to viruses were enriched in GO and ClueGO analyses. PPI network and Cytoscape platform identified the top 10 hub genes: RSAD2, IFIT3, GBP1, RTP4, IFI44, OAS1, IFI44L, ISG15, HERC5, and IFIT5. The pathways are mainly enriched in response to viral and bacterial infection, IFN signaling, and 1,25-dihydroxy vitamin D3. IFI44, OAS1, IFI44L, ISG15, and HERC5 are the five hub genes shared by RA, COVID-19, and SAB. The pathways are primarily enriched for response to viral and bacterial infections. The TF-hub gene network and miRNA-hub gene network identified YY1 as a key TF and hsa-mir-1-3p and hsa-mir-146a-5p as two important miRNAs related to IFI44. IFI44 was identified as a hub gene by validating GSE17755, GSE55235, and GSE13670. Immune cell infiltration analysis showed a strong positive correlation between activated dendritic cells and IFI44 expression. Conclusions IFI144 was discovered as a shared biomarker and disease target for RA, COVID-19, and SAB by this study. IFI44 negatively regulates the IFN signaling pathway to promote viral replication and bacterial proliferation and is an important molecular target for SARS-CoV-2 and S. aureus immune escape in RA. Dendritic cells play an important role in this process. 1,25-Dihydroxy vitamin D3 may be an important therapeutic agent in treating RA with SARS-CoV-2 and S. aureus infections.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Wanming Wang
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| |
Collapse
|
19
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
20
|
Wherry TLT, Dassanayake RP, Casas E, Mooyottu S, Bannantine JP, Stabel JR. Exogenous Vitamin D3 Modulates Response of Bovine Macrophages to Mycobacterium avium subsp. paratuberculosis Infection and Is Dependent Upon Stage of Johne’s Disease. Front Cell Infect Microbiol 2022; 11:773938. [PMID: 35111692 PMCID: PMC8801714 DOI: 10.3389/fcimb.2021.773938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of ruminant enteritis, targets intestinal macrophages. During infection, macrophages contribute to mucosal inflammation and development of granulomas in the small intestine which worsens as disease progression occurs. Vitamin D3 is an immunomodulatory steroid hormone with beneficial roles in host-pathogen interactions. Few studies have investigated immunologic roles of 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in cattle, particularly cattle infected with MAP. This study examined the effects of exogenous vitamin D3 on immune responses of monocyte derived macrophages (MDMs) isolated from dairy cattle naturally infected with MAP. MDMs were pre-treated with ± 100 ng/ml 25(OH)D3 or ± 4 ng/ml 1,25(OH)2D3, then incubated 24 hrs with live MAP in the presence of their respective pre-treatment concentrations. Following treatment with either vitamin D3 analog, phagocytosis of MAP by MDMs was significantly greater in clinically infected animals, with a greater amount of live and dead bacteria. Clinical cows had significantly less CD40 surface expression on MDMs compared to subclinical cows and noninfected controls. 1,25(OH)2D3 also significantly increased nitrite production in MAP infected cows. 1,25(OH)2D3 treatment played a key role in upregulating secretion of pro-inflammatory cytokines IL-1β and IL-12 while downregulating IL-10, IL-6, and IFN-γ. 1,25(OH)2D3 also negatively regulated transcripts of CYP24A1, CYP27B1, DEFB7, NOS2, and IL10. Results from this study demonstrate that vitamin D3 compounds, but mainly 1,25(OH)2D3, modulate both pro- and anti-inflammatory immune responses in dairy cattle infected with MAP, impacting the bacterial viability within the macrophage.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - Rohana P. Dassanayake
- Ruminant Diseases and Immunology, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Eduardo Casas
- Ruminant Diseases and Immunology, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Shankumar Mooyottu
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
- *Correspondence: Judith R. Stabel,
| |
Collapse
|
21
|
Neupane AS, Kubes P. Imaging reveals novel innate immune responses in lung, liver, and beyond. Immunol Rev 2021; 306:244-257. [PMID: 34816440 DOI: 10.1111/imr.13040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Highly dynamic immune responses are generated toward pathogens or injuries, in vivo. Multiple immune cell types participate in various facets of the response which leads to a concerted effort in the removal and clearance of pathogens or injured tissue and a return to homeostasis. Intravital microscopy (IVM) has been extensively utilized to unravel the dynamics of immune responses, visualizing immune cell behavior in intact living tissues, within a living organism. For instance, the phenomenon of leukocyte recruitment cascade. Importantly, IVM has led to a deep appreciation that immune cell behavior and responses in individual organs are distinct, but also can influence one another. In this review, we discuss how IVM as a tool has been used to study the innate immune responses in various tissues during homeostasis, injury, and infection.
Collapse
Affiliation(s)
- Arpan Sharma Neupane
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Nguyen HTT, Guevarra RB, Magez S, Radwanska M. Single-cell transcriptome profiling and the use of AID deficient mice reveal that B cell activation combined with antibody class switch recombination and somatic hypermutation do not benefit the control of experimental trypanosomosis. PLoS Pathog 2021; 17:e1010026. [PMID: 34762705 PMCID: PMC8610246 DOI: 10.1371/journal.ppat.1010026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/23/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Salivarian trypanosomes are extracellular protozoan parasites causing infections in a wide range of mammalian hosts, with Trypanosoma evansi having the widest geographic distribution, reaching territories far outside Africa and occasionally even Europe. Besides causing the animal diseases, T. evansi can cause atypical Human Trypanosomosis. The success of this parasite is attributed to its capacity to evade and disable the mammalian defense response. To unravel the latter, we applied here for the first time a scRNA-seq analysis on splenocytes from trypanosome infected mice, at two time points during infection, i.e. just after control of the first parasitemia peak (day 14) and a late chronic time point during infection (day 42). This analysis was combined with flow cytometry and ELISA, revealing that T. evansi induces prompt activation of splenic IgM+CD1d+ Marginal Zone and IgMIntIgD+ Follicular B cells, coinciding with an increase in plasma IgG2c Ab levels. Despite the absence of follicles, a rapid accumulation of Aicda+ GC-like B cells followed first parasitemia peak clearance, accompanied by the occurrence of Xbp1+ expressing CD138+ plasma B cells and Tbx21+ atypical CD11c+ memory B cells. Ablation of immature CD93+ bone marrow and Vpreb3+Ly6d+Ighm+ expressing transitional spleen B cells prevented mature peripheral B cell replenishment. Interestingly, AID-/- mice that lack the capacity to mount anti-parasite IgG responses, exhibited a superior defense level against T. evansi infections. Here, elevated natural IgMs were able to exert in vivo and in vitro trypanocidal activity. Hence, we conclude that in immune competent mice, trypanosomosis associated B cell activation and switched IgG production is rapidly induced by T. evansi, facilitating an escape from the detrimental natural IgM killing activity, and resulting in increased host susceptibility. This unique role of IgM and its anti-trypanosome activity are discussed in the context of the dilemma this causes for the future development of anti-trypanosome vaccines.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin B. Guevarra
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Stefan Magez
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
CXCR6+CD4+ T cells promote mortality during Trypanosoma brucei infection. PLoS Pathog 2021; 17:e1009968. [PMID: 34614031 PMCID: PMC8523071 DOI: 10.1371/journal.ppat.1009968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 09/24/2021] [Indexed: 01/09/2023] Open
Abstract
Liver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.
Collapse
|
24
|
He Z, Li J, Gong S, Xing L, Sun Y, Wang J, Li T, Ning N, Zhang L, Yu W, Luo D, Wang H. B7 Family Molecule VSIG4 Regulates Intestinal Anti- Enterohemorrhagic Escherichia coli Immunity by Altering Gut Flora Diversity. Microorganisms 2021; 9:microorganisms9081769. [PMID: 34442848 PMCID: PMC8398431 DOI: 10.3390/microorganisms9081769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
As an essential member of the B7 family, V-set and immunoglobulin domain-containing 4 (VSIG4) is expressed explicitly in tissue-resident macrophages (TRMs) and plays an essential role in maintaining the homeostasis of the environmental immune system. Here, we demonstrate that gene-targeted VSIG4-deficient mice infected with Enterohemorrhagic Escherichia coli (EHEC) display reduced bacterial burden. To reveal the role of VSIG4 in the fight against EHEC infection, we collected mice feces and used high-throughput 16S rRNA gene amplicons to detect changes in the flora. A total of 657330 sequences were sequenced on the PacBio platform, with an average length of 1498 bp. We found that VSIG4 deficiency could alter the gut microbiota by increasing diversity and shifting community composition. In particular, G_Akkermansia and G_Oscillo spiraceae increased significantly. These findings expand upon a prior observation that VSIG4 deficiency reduced EHEC colonization by changing the gut microbiota diversity and shifting community composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Deyan Luo
- Correspondence: (D.L.); (H.W.); Tel.: +86-10-66948549 (H.W.)
| | - Hui Wang
- Correspondence: (D.L.); (H.W.); Tel.: +86-10-66948549 (H.W.)
| |
Collapse
|
25
|
Magez S, Li Z, Nguyen HTT, Pinto Torres JE, Van Wielendaele P, Radwanska M, Began J, Zoll S, Sterckx YGJ. The History of Anti-Trypanosome Vaccine Development Shows That Highly Immunogenic and Exposed Pathogen-Derived Antigens Are Not Necessarily Good Target Candidates: Enolase and ISG75 as Examples. Pathogens 2021; 10:pathogens10081050. [PMID: 34451514 PMCID: PMC8400590 DOI: 10.3390/pathogens10081050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Salivarian trypanosomes comprise a group of extracellular anthroponotic and zoonotic parasites. The only sustainable method for global control of these infection is through vaccination of livestock animals. Despite multiple reports describing promising laboratory results, no single field-applicable solution has been successful so far. Conventionally, vaccine research focusses mostly on exposed immunogenic antigens, or the structural molecular knowledge of surface exposed invariant immunogens. Unfortunately, extracellular parasites (or parasites with extracellular life stages) have devised efficient defense systems against host antibody attacks, so they can deal with the mammalian humoral immune response. In the case of trypanosomes, it appears that these mechanisms have been perfected, leading to vaccine failure in natural hosts. Here, we provide two examples of potential vaccine candidates that, despite being immunogenic and accessible to the immune system, failed to induce a functionally protective memory response. First, trypanosomal enolase was tested as a vaccine candidate, as it was recently characterized as a highly conserved enzyme that is readily recognized during infection by the host antibody response. Secondly, we re-addressed a vaccine approach towards the Invariant Surface Glycoprotein ISG75, and showed that despite being highly immunogenic, trypanosomes can avoid anti-ISG75 mediated parasitemia control.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
- Correspondence:
| | - Zeng Li
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| | - Hang Thi Thu Nguyen
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
| | - Joar Esteban Pinto Torres
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark Zwijnaarde 71, 9000 Ghent, Belgium
| | - Jakub Began
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Namesti 2, 16610 Prague 6, Czech Republic; (J.B.); (S.Z.)
| | - Sebastian Zoll
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Namesti 2, 16610 Prague 6, Czech Republic; (J.B.); (S.Z.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| |
Collapse
|
26
|
Strickland AB, Shi M. Mechanisms of fungal dissemination. Cell Mol Life Sci 2021; 78:3219-3238. [PMID: 33449153 PMCID: PMC8044058 DOI: 10.1007/s00018-020-03736-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Fungal infections are an increasing threat to global public health. There are more than six million fungal species worldwide, but less than 1% are known to infect humans. Most of these fungal infections are superficial, affecting the hair, skin and nails, but some species are capable of causing life-threatening diseases. The most common of these include Cryptococcus neoformans, Aspergillus fumigatus and Candida albicans. These fungi are typically innocuous and even constitute a part of the human microbiome, but if these pathogens disseminate throughout the body, they can cause fatal infections which account for more than one million deaths worldwide each year. Thus, systemic dissemination of fungi is a critical step in the development of these deadly infections. In this review, we discuss our current understanding of how fungi disseminate from the initial infection sites to the bloodstream, how immune cells eliminate fungi from circulation and how fungi leave the blood and enter distant organs, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Ashley B Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
27
|
Vitamin D upregulates the macrophage complement receptor immunoglobulin in innate immunity to microbial pathogens. Commun Biol 2021; 4:401. [PMID: 33767430 PMCID: PMC7994403 DOI: 10.1038/s42003-021-01943-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Vitamin D deficiency remains a global concern. This ‘sunshine’ vitamin is converted through a multistep process to active 1,25-dihydroxyvitamin D3 (1,25D), the final step of which can occur in macrophages. Here we demonstrate a role for vitamin D in innate immunity. The expression of the complement receptor immunoglobulin (CRIg), which plays an important role in innate immunity, is upregulated by 1,25D in human macrophages. Monocytes cultured in 1,25D differentiated into macrophages displaying increased CRIg mRNA, protein and cell surface expression but not in classical complement receptors, CR3 and CR4. This was associated with increases in phagocytosis of complement opsonised Staphylococcus aureus and Candida albicans. Treating macrophages with 1,25D for 24 h also increases CRIg expression. While treating macrophages with 25-hydroxyvitamin D3 does not increase CRIg expression, added together with the toll like receptor 2 agonist, triacylated lipopeptide, Pam3CSK4, which promotes the conversion of 25-hydroxyvitamin D3 to 1,25D, leads to an increase in CRIg expression and increases in CYP27B1 mRNA. These findings suggest that macrophages harbour a vitamin D-primed innate defence mechanism, involving CRIg. Annabelle Small et al. report a new role for vitamin D in innate immunity. They find that the vitamin D metabolite 1,25D increases phagocytosis and expression of complement receptor immunoglobulin (CRIg) by macrophages and that treatment of macrophages with a toll like receptor 2 agonist promotes conversion of 25-hydroxyvitamin D3 to 1,25D.
Collapse
|
28
|
Zarantonello A, Pedersen H, Laursen NS, Andersen GR. Nanobodies Provide Insight into the Molecular Mechanisms of the Complement Cascade and Offer New Therapeutic Strategies. Biomolecules 2021; 11:biom11020298. [PMID: 33671302 PMCID: PMC7922070 DOI: 10.3390/biom11020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/22/2023] Open
Abstract
The complement system is part of the innate immune response, where it provides immediate protection from infectious agents and plays a fundamental role in homeostasis. Complement dysregulation occurs in several diseases, where the tightly regulated proteolytic cascade turns offensive. Prominent examples are atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria and Alzheimer’s disease. Therapeutic intervention targeting complement activation may allow treatment of such debilitating diseases. In this review, we describe a panel of complement targeting nanobodies that allow modulation at different steps of the proteolytic cascade, from the activation of the C1 complex in the classical pathway to formation of the C5 convertase in the terminal pathway. Thorough structural and functional characterization has provided a deep mechanistic understanding of the mode of inhibition for each of the nanobodies. These complement specific nanobodies are novel powerful probes for basic research and offer new opportunities for in vivo complement modulation.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
| | - Nick S. Laursen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Gregers R. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
- Correspondence: ; Tel.: +45-30256646
| |
Collapse
|
29
|
Abstract
Tumor necrosis factor (TNF)/inducible nitric oxide synthase (iNOS)-producing dendritic cells (Tip-DCs) have profound impacts on host immune responses during infections. The mechanisms regulating Tip-DC development remain largely unknown. Here, using a mouse model of infection with African trypanosomes, we show that a deficiency in interleukin-27 receptor (IL-27R) signaling results in escalated intrahepatic accumulation of Ly6C-positive (Ly6C+) monocytes and their differentiation into Tip-DCs. Blocking Tip-DC development significantly ameliorates liver injury and increases the survival of infected IL-27R−/− mice. Mechanistically, Ly6C+ monocyte differentiation into pathogenic Tip-DCs in infected IL-27R−/− mice is driven by a CD4+ T cell-interferon gamma (IFN-γ) axis via cell-intrinsic IFN-γ signaling. In parallel, hyperactive IFN-γ signaling induces cell death of Ly6C-negative (Ly6C−) monocytes in a cell-intrinsic manner, which in turn aggravates the development of pathogenic Tip-DCs due to the loss of the negative regulation of Ly6C− monocytes on Ly6C+ monocyte differentiation into Tip-DCs. Thus, IL-27 inhibits the dual-track exacerbation of Tip-DC development induced by a CD4+ T cell–IFN-γ axis. We conclude that IL-27 negatively regulates Tip-DC development by preventing the cell-intrinsic effects of IFN-γ and that the regulation involves CD4+ T cells and Ly6C− monocytes. Targeting IL-27 signaling may manipulate Tip-DC development for therapeutic intervention.
Collapse
|
30
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
31
|
Bennett H, Troutman TD, Sakai M, Glass CK. Epigenetic Regulation of Kupffer Cell Function in Health and Disease. Front Immunol 2021; 11:609618. [PMID: 33574817 PMCID: PMC7870864 DOI: 10.3389/fimmu.2020.609618] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Kupffer cells, the resident macrophages of the liver, comprise the largest pool of tissue macrophages in the body. Within the liver sinusoids Kupffer cells perform functions common across many tissue macrophages including response to tissue damage and antigen presentation. They also engage in specialized activities including iron scavenging and the uptake of opsonized particles from the portal blood. Here, we review recent studies of the epigenetic pathways that establish Kupffer cell identity and function. We describe a model by which liver-environment specific signals induce lineage determining transcription factors necessary for differentiation of Kupffer cells from bone-marrow derived monocytes. We conclude by discussing how these lineage determining transcription factors (LDTFs) drive Kupffer cell behavior during both homeostasis and disease, with particular focus on the relevance of Kupffer cell LDTF pathways in the setting of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Hunter Bennett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ty D Troutman
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
32
|
Li L, Zeng Z. Live Imaging of Innate and Adaptive Immune Responses in the Liver. Front Immunol 2020; 11:564768. [PMID: 33042143 PMCID: PMC7527534 DOI: 10.3389/fimmu.2020.564768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
Immune response in the liver is determined by the spatial organization and cellular dynamics of hepatic immune cells. The liver vasculature accommodates abundant tissue-resident innate immune cells, such as Kupffer cells, natural killer cells, and natural killer T cells, to ensure efficient intravascular immunosurveillance. The fenestrated sinusoids also allow direct contact between circulating T cells and non-canonical antigen-presenting cells, such as hepatocytes, to instruct adaptive immune responses. Distinct cellular behaviors are exploited by liver immune cells to exert proper functions. Intravital imaging enables real-time visualization of individual immune cell in living animals, representing a powerful tool in dissecting the spatiotemporal features of intrahepatic immune cells during steady state and liver diseases. This review summarizes current advances in liver immunology prompted by in vivo imaging, with a particular focus on liver-resident innate immune cells and hepatic T cells.
Collapse
Affiliation(s)
- Lu Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhutian Zeng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
33
|
Sun D, Sun P, He S, Shi M. Rat IgG mediated circulatory cell depletion in mice requires mononuclear phagocyte system and is facilitated by complement. J Leukoc Biol 2020; 107:529-539. [PMID: 31965640 DOI: 10.1002/jlb.4a1219-078r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/25/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Application of exogenous Abs targeting cell surface Ags has been widely used as an experimental approach to induce cell depletion or to inhibit receptor functionality. Moreover, Ab therapy is emerging as one of the mainstream strategies for cancer treatment. Previous studies on the mechanisms of Ab-mediated cell depletion mainly employed Abs from the same species as the research subject. However, there has been a recent trend toward using xenogeneic (cross-species) Abs to achieve cell depletion or block receptor-ligand interactions; with rat Abs used in mice being the most common approach. Considering the molecular differences in Abs from different species, the mechanism(s) of xenogeneic Ab-mediated cell depletion is likely to be different than species-matched Ab supplementation. The current work describes our efforts to identify the mechanism of rat anti-mouse Ly6G (clone: 1A8) mAb mediated depletion of mouse neutrophils. The results showed that neutrophils circulating in the blood but not those in the bone marrow are depleted, and depletion depends on mononuclear phagocyte system, especially liver Kupffer cells that efficiently capture and phagocytize targeted cells. Interestingly, whereas species-matched Ab depletion does not require complement functionality, we found that complement activation significantly facilitates cross-species neutrophil depletion. Finally, we found that some rat mAbs (anti-C5aR, anti-CD11a, anti-CD11b, and anti-VLA4) used to block cell surface receptors also induce cell depletion. Thus, our work strongly recommends controlling for cell depletion effect when using these Abs for receptor blockade purposes.
Collapse
Affiliation(s)
- Donglei Sun
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Peng Sun
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA.,School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shenghu He
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|