1
|
Zhang X, Zhong R, Wu J, Tan Z, Jiao J. Dietary selection of distinct gastrointestinal microorganisms drives fiber utilization dynamics in goats. MICROBIOME 2025; 13:118. [PMID: 40350460 PMCID: PMC12067950 DOI: 10.1186/s40168-025-02112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Dietary fiber is crucial to animal productivity and health, and its dynamic utilization process is shaped by the gastrointestinal microorganisms in ruminants. However, we lack a holistic understanding of the metabolic interactions and mediators of intestinal microbes under different fiber component interventions compared with that of their rumen counterparts. Here, we applied nutritional, amplicon, metagenomic, and metabolomic approaches to compare characteristic microbiome and metabolic strategies using goat models with fast-fermentation fiber (FF) and slow-fermentation fiber (SF) dietary interventions from a whole gastrointestinal perspective. RESULTS The SF diet selected fibrolytic bacteria Fibrobacter and Ruminococcus spp. and enriched for genes encoding for xylosidase, endoglucanase, and galactosidase in the rumen and cecum to enhance cellulose and hemicellulose utilization, which might be mediated by the enhanced microbial ATP production and cobalamin biosynthesis potentials in the rumen. The FF diet favors pectin-degrading bacteria Prevotella spp. and enriched for genes encoding for pectases (PL1, GH28, and CE8) to improve animal growth. Subsequent SCFA patterns and metabolic pathways unveiled the favor of acetate production in the rumen and butyrate production in the cecum for SF goats. Metagenomic binning verified this distinct selection of gastrointestinal microorganisms and metabolic pathways of different fiber types (fiber content and polysaccharide chemistry). CONCLUSIONS These findings provide novel insights into the key metabolic pathways and distinctive mechanisms through which dietary fiber types benefit the host animals from the whole gastrointestinal perspective. Video Abstract.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Forage Breeding-By-Design and Utilization, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Rongzhen Zhong
- Jilin Province Feed Processing and Ruminant Precision Breeding Cross Regional Cooperation Technology Innovation Center, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Jian Wu
- State Key Laboratory of Forage Breeding-By-Design and Utilization, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Zhiliang Tan
- State Key Laboratory of Forage Breeding-By-Design and Utilization, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
- Yuelushan Laboratory, Changsha, Hunan, 410128, China
| | - Jinzhen Jiao
- State Key Laboratory of Forage Breeding-By-Design and Utilization, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.
- Yuelushan Laboratory, Changsha, Hunan, 410128, China.
| |
Collapse
|
2
|
Huang Y, Igarashi K, Liu L, Mayumi D, Ujiie T, Fu L, Yang M, Lu Y, Cheng L, Kato S, Nobu MK. Methanol transfer supports metabolic syntrophy between bacteria and archaea. Nature 2025; 639:190-195. [PMID: 39880954 DOI: 10.1038/s41586-024-08491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
In subsurface methanogenic ecosystems, the ubiquity of methylated-compound-using archaea-methylotrophic methanogens1-4-implies that methylated compounds have an important role in the ecology and carbon cycling of such habitats. However, the origin of these chemicals remains unclear5,6 as there are no known energy metabolisms that generate methylated compounds de novo as a major product. Here we identified an energy metabolism in the subsurface-derived thermophilic anaerobe Zhaonella formicivorans7 that catalyses the conversion of formate to methanol, thereby producing methanol without requiring methylated compounds as an input. Cultivation experiments showed that formate-driven methanologenesis is inhibited by the accumulation of methanol. However, this limitation can be overcome through methanol consumption by a methylotrophic partner methanogen, Methermicoccus shengliensis. This symbiosis represents a fourth mode of mutualistic cross-feeding driven by thermodynamic necessity (syntrophy), previously thought to rely on transfer of hydrogen, formate or electrons8-10. The unusual metabolism and syntrophy provide insights into the enigmatic presence of methylated compounds in subsurface methanogenic ecosystems and demonstrate how organisms survive at the thermodynamic limit through metabolic symbiosis.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Laiyan Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Daisuke Mayumi
- Research Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Tomomi Ujiie
- Research Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Lin Fu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Min Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
- China Collection of Anaerobic Microorganisms, Chengdu, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.
- China Collection of Anaerobic Microorganisms, Chengdu, China.
| | - Souichiro Kato
- Frontiers in Biosciences, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.
| | - Masaru K Nobu
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
3
|
Zampieri G, Santinello D, Palù M, Orellana E, Costantini P, Favaro L, Campanaro S, Treu L. Core cooperative metabolism in low-complexity CO2-fixing anaerobic microbiota. THE ISME JOURNAL 2025; 19:wraf017. [PMID: 39893570 PMCID: PMC11844248 DOI: 10.1093/ismejo/wraf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/27/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Biological conversion of carbon dioxide into methane has a crucial role in global carbon cycling and is operated by a specialised set of anaerobic archaea. Although it is known that this conversion is strictly linked with cooperative bacterial activity, such as through syntrophic acetate oxidation, there is also a limited understanding on how this cooperation is regulated and metabolically realised. In this work, we investigate the activity in a microbial community evolved to efficiently convert carbon dioxide into methane and predominantly populated by Methanothermobacter wolfeii. Through multi-omics, biochemical analysis and constraint-based modelling, we identify a potential formate cross-feeding from an uncharacterised Limnochordia species to M. wolfeii, driven by the recently discovered reductive glycine pathway and upregulated when hydrogen and carbon dioxide are limited. The quantitative consistency of this metabolic exchange with experimental data is shown by metagenome-scale metabolic models integrating condition-specific metatranscriptomics, which also indicate a broader three-way interaction involving M. wolfeii, the Limnochordia species, and Sphaerobacter thermophilus. Under limited hydrogen and carbon dioxide, aspartate released by M. wolfeii is fermented by Sphaerobacter thermophilus into acetate, which in turn is convertible into formate by Limnochordia, possibly forming a cooperative loop sustaining hydrogenotrophic methanogenesis. These findings expand our knowledge on the modes of carbon dioxide reduction into methane within natural microbial communities and provide an example of cooperative plasticity surrounding this process.
Collapse
Affiliation(s)
- Guido Zampieri
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Davide Santinello
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Matteo Palù
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Esteban Orellana
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Paola Costantini
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Lorenzo Favaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, Legnaro, 35020, Italy
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| |
Collapse
|
4
|
Song J, Xu G, Song J, Xu G. Serum total calcium levels as a non-linear predictor of in-hospital mortality in heart failure patients: insights from a retrospective cohort study. BMC Cardiovasc Disord 2024; 24:672. [PMID: 39587490 PMCID: PMC11590463 DOI: 10.1186/s12872-024-04348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Calcium is pivotal in the regulation of bodily homeostasis, with numerous studies highlighting its link to cardiovascular disease in the adult population. However, the relationship between serum calcium levels and the prognosis of heart failure (HF) patients is not clear. This study explored the association between serum total calcium (STC) and in-hospital mortality in patients with HF. METHODS Clinical data of 1,176 patients with HF were obtained from the Multiparametric Intelligent Monitoring in Intensive Care III (MIMIC-III) database. The patients were categorized into STC quartiles, and baseline characteristics were comprehensively analyzed. Univariate and multivariate analyses were employed to identify factors associated with in-hospital mortality. To explore the non-linear relationship between STC and mortality, a two-piecewise linear regression model was applied. Subgroup analyses were conducted to identify potential confounding variables. RESULTS In this cohort, 159 (13.53%) patients experienced in-hospital mortality. Significant differences in various parameters were observed among STC quartiles. Univariate analysis identified numerous factors associated with mortality. Multivariate analysis confirmed STC as an independent predictor of in-hospital mortality, with a negative association persisting even after adjusting for confounding factors (odds ratio [OR]: 0.49, 95%CI: 0.32-0.76; P = 0.0016). Non-linear analysis revealed an inflection point at 8.41 mg/dL, below which the risk of in-hospital death significantly increased (OR: 0.26, 95%CI: 0.12-0.55; P = 0.0005). Subgroup analyses indicated a pronounced inverse association in patients without atrial fibrillation or chronic obstructive pulmonary disease, as well as those with a left ventricular ejection fraction ≤ 50%. CONCLUSION This study identified STC as an independent predictor of in-hospital mortality in HF patients, with a non-linear relationship.
Collapse
Affiliation(s)
- Jing Song
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Guojuan Xu
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Jing Song
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Guojuan Xu
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
5
|
Zhang L, Einsle O. Architecture of the RNF1 complex that drives biological nitrogen fixation. Nat Chem Biol 2024; 20:1078-1085. [PMID: 38890433 DOI: 10.1038/s41589-024-01641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
Biological nitrogen fixation requires substantial metabolic energy in form of ATP as well as low-potential electrons that must derive from central metabolism. During aerobic growth, the free-living soil diazotroph Azotobacter vinelandii transfers electrons from the key metabolite NADH to the low-potential ferredoxin FdxA that serves as a direct electron donor to the dinitrogenase reductases. This process is mediated by the RNF complex that exploits the proton motive force over the cytoplasmic membrane to lower the midpoint potential of the transferred electron. Here we report the cryogenic electron microscopy structure of the nitrogenase-associated RNF complex of A. vinelandii, a seven-subunit membrane protein assembly that contains four flavin cofactors and six iron-sulfur centers. Its function requires the strict coupling of electron and proton transfer but also involves major conformational changes within the assembly that can be traced with a combination of electron microscopy and modeling.
Collapse
Affiliation(s)
- Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Zhai Y, Tong S, Chen L, Zhang Y, Amin FR, Khalid H, Liu F, Duan Y, Chen W, Chen G, Li D. The enhancement of energy supply in syngas-fermenting microorganisms. ENVIRONMENTAL RESEARCH 2024; 252:118813. [PMID: 38574985 DOI: 10.1016/j.envres.2024.118813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
After the second industrial revolution, social productivity developed rapidly, and the use of fossil fuels such as coal, oil, and natural gas increased greatly in industrial production. The burning of these fossil fuels releases large amounts of greenhouse gases such as CO2, which has caused greenhouse effects and global warming. This has endangered the planet's ecological balance and brought many species, including animals and plants, to the brink of extinction. Thus, it is crucial to address this problem urgently. One potential solution is the use of syngas fermentation with microbial cell factories. This process can produce chemicals beneficial to humans, such as ethanol as a fuel while consuming large quantities of harmful gases, CO and CO2. However, syngas-fermenting microorganisms often face a metabolic energy deficit, resulting in slow cell growth, metabolic disorders, and low product yields. This problem limits the large-scale industrial application of engineered microorganisms. Therefore, it is imperative to address the energy barriers of these microorganisms. This paper provides an overview of the current research progress in addressing energy barriers in bacteria, including the efficient capture of external energy and the regulation of internal energy metabolic flow. Capturing external energy involves summarizing studies on overexpressing natural photosystems and constructing semiartificial photosynthesis systems using photocatalysts. The regulation of internal energy metabolic flows involves two parts: regulating enzymes and metabolic pathways. Finally, the article discusses current challenges and future perspectives, with a focus on achieving both sustainability and profitability in an economical and energy-efficient manner. These advancements can provide a necessary force for the large-scale industrial application of syngas fermentation microbial cell factories.
Collapse
Affiliation(s)
- Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Sheng Tong
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Yuan Zhang
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Habiba Khalid
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| |
Collapse
|
7
|
Hackmann TJ. The vast landscape of carbohydrate fermentation in prokaryotes. FEMS Microbiol Rev 2024; 48:fuae016. [PMID: 38821505 PMCID: PMC11187502 DOI: 10.1093/femsre/fuae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Fermentation is a type of metabolism carried out by organisms in environments without oxygen. Despite being studied for over 185 years, the diversity and complexity of this metabolism are just now becoming clear. Our review starts with the definition of fermentation, which has evolved over the years and which we help further refine. We then examine the range of organisms that carry out fermentation and their traits. Over one-fourth of all prokaryotes are fermentative, use more than 40 substrates, and release more than 50 metabolic end products. These insights come from studies analyzing records of thousands of organisms. Next, our review examines the complexity of fermentation at the biochemical level. We map out pathways of glucose fermentation in unprecedented detail, covering over 120 biochemical reactions. We also review recent studies coupling genomics and enzymology to reveal new pathways and enzymes. Our review concludes with practical applications for agriculture, human health, and industry. All these areas depend on fermentation and could be improved through manipulating fermentative microbes and enzymes. We discuss potential approaches for manipulation, including genetic engineering, electrofermentation, probiotics, and enzyme inhibitors. We hope our review underscores the importance of fermentation research and stimulates the next 185 years of study.
Collapse
Affiliation(s)
- Timothy J Hackmann
- Department of Animal Science, University of California, Davis, CA 95616, United States
| |
Collapse
|
8
|
Hackmann TJ. New biochemical pathways for forming short-chain fatty acids during fermentation in rumen bacteria. JDS COMMUNICATIONS 2024; 5:230-235. [PMID: 38646572 PMCID: PMC11026938 DOI: 10.3168/jdsc.2023-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 04/23/2024]
Abstract
Short-chain fatty acids (SCFA) are essential to cattle as a source of energy and for other roles in metabolism. These molecules are formed during fermentation by microbes in the rumen, but even after decades of study, the biochemical pathways responsible for forming them are not always clear. Here we review recent advances in this area and their importance for improving animal productivity. Studies of bacterial genomes have pointed to unusual biochemical pathways in rumen organisms. One study found that 8% of rumen organisms forming acetate, a major SCFA, had genes for a pathway previously unknown in bacteria. The existence of this pathway was subsequently confirmed biochemically in propionibacteria. The pathway was shown to involve 2 enzymes that convert acetyl-coenzyme A to acetate. Similar studies have revealed new enzymatic steps for forming propionate and butyrate, other major SCFA. These new steps and pathways are significant for controlling fermentation. With more precise control over SCFA, cows can be fed more precisely and potentially reach higher productivity.
Collapse
Affiliation(s)
- Timothy J. Hackmann
- Department of Animal Science, University of California, Davis, Davis, CA 95168
| |
Collapse
|
9
|
Takahashi K, Kuwahara H, Horikawa Y, Izawa K, Kato D, Inagaki T, Yuki M, Ohkuma M, Hongoh Y. Emergence of putative energy parasites within Clostridia revealed by genome analysis of a novel endosymbiotic clade. THE ISME JOURNAL 2023; 17:1895-1906. [PMID: 37653056 PMCID: PMC10579323 DOI: 10.1038/s41396-023-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The Clostridia is a dominant bacterial class in the guts of various animals and are considered to nutritionally contribute to the animal host. Here, we discovered clostridial endosymbionts of cellulolytic protists in termite guts, which have never been reported with evidence. We obtained (near-)complete genome sequences of three endosymbiotic Clostridia, each associated with a different parabasalid protist species with various infection rates: Trichonympha agilis, Pseudotrichonympha grassii, and Devescovina sp. All these protists are previously known to harbor permanently-associated, mutualistic Endomicrobia or Bacteroidales that supplement nitrogenous compounds. The genomes of the endosymbiotic Clostridia were small in size (1.0-1.3 Mbp) and exhibited signatures of an obligately-intracellular parasite, such as an extremely limited capability to synthesize amino acids, cofactors, and nucleotides and a disrupted glycolytic pathway with no known net ATP-generating system. Instead, the genomes encoded ATP/ADP translocase and, interestingly, regulatory proteins that are unique to eukaryotes in general and are possibly used to interfere with host cellular processes. These three genomes formed a clade with metagenome-assembled genomes (MAGs) derived from the guts of other animals, including human and ruminants, and the MAGs shared the characteristics of parasites. Gene flux analysis suggested that the acquisition of the ATP/ADP translocase gene in a common ancestor was probably key to the emergence of this parasitic clade. Taken together, we provide novel insights into the multilayered symbiotic system in the termite gut by adding the presence of parasitism and present an example of the emergence of putative energy parasites from a dominant gut bacterial clade.
Collapse
Affiliation(s)
- Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Hirokazu Kuwahara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yutaro Horikawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Kazuki Izawa
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Daiki Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Tatsuya Inagaki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, 305-0074, Japan.
| |
Collapse
|
10
|
Zhang B, Lingga C, De Groot H, Hackmann TJ. The oxidoreductase activity of Rnf balances redox cofactors during fermentation of glucose to propionate in Prevotella. Sci Rep 2023; 13:16429. [PMID: 37777597 PMCID: PMC10542786 DOI: 10.1038/s41598-023-43282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
Propionate is a microbial metabolite formed in the gastrointestinal tract, and it affects host physiology as a source of energy and signaling molecule. Despite the importance of propionate, the biochemical pathways responsible for its formation are not clear in all microbes. For the succinate pathway used during fermentation, a key enzyme appears to be missing-one that oxidizes ferredoxin and reduces NAD. Here we show that Rnf [ferredoxin-NAD+ oxidoreductase (Na+-transporting)] is this key enzyme in two abundant bacteria of the rumen (Prevotella brevis and Prevotella ruminicola). We found these bacteria form propionate, succinate, and acetate with the classic succinate pathway. Without ferredoxin:NAD+ oxidoreductase, redox cofactors would be unbalanced; it would produce almost equal excess amounts of reduced ferredoxin and oxidized NAD. By combining growth experiments, genomics, proteomics, and enzyme assays, we point to the possibility that these bacteria solve this problem by oxidizing ferredoxin and reducing NAD with Rnf [ferredoxin-NAD+ oxidoreductase (Na+-transporting)]. Genomic and phenotypic data suggest many bacteria may use Rnf similarly. This work shows the ferredoxin:NAD+ oxidoreductase activity of Rnf is important to propionate formation in Prevotella species and other bacteria from the environment, and it provides fundamental knowledge for manipulating fermentative propionate production.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Hannah De Groot
- Department of Animal Science, University of California, Davis, CA, USA
| | | |
Collapse
|
11
|
Kim JY, Lee M, Oh S, Kang B, Yasin M, Chang IS. Acetogen and acetogenesis for biological syngas valorization. BIORESOURCE TECHNOLOGY 2023; 384:129368. [PMID: 37343794 DOI: 10.1016/j.biortech.2023.129368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The bioconversion of syngas using (homo)acetogens as biocatalysts shows promise as a viable option due to its higher selectivity and milder reaction conditions compared to thermochemical conversion. The current bioconversion process operates primarily to produce C2 chemicals (e.g., acetate and ethanol) with sufficient technology readiness levels (TRLs) in process engineering (as midstream) and product purification (as downstream). However, the economic feasibility of this process could be improved with greater biocatalytic options in the upstream phase. This review focuses on the Wood-Ljungdahl pathway (WLP) which is a biological syngas-utilization pathway, redox balance and ATP generation, suggesting that the use of a specific biocatalysts including Eubacterium limosum could be advantageous in syngas valorization. A pertinent strategy to mainly produce chemicals with a high degree of reduction is also provided with examples of flux control, mixed cultivation and mixotrophy. Finally, this article presents future direction of industrial utilization of syngas fermentation.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mungyu Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Soyoung Oh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Byeongchan Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
12
|
Myers KS, Ingle AT, Walters KA, Fortney NW, Scarborough MJ, Donohue TJ, Noguera DR. Comparison of metagenomes from fermentation of various agroindustrial residues suggests a common model of community organization. Front Bioeng Biotechnol 2023; 11:1197175. [PMID: 37260833 PMCID: PMC10228549 DOI: 10.3389/fbioe.2023.1197175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
The liquid residue resulting from various agroindustrial processes is both rich in organic material and an attractive source to produce a variety of chemicals. Using microbial communities to produce chemicals from these liquid residues is an active area of research, but it is unclear how to deploy microbial communities to produce specific products from the different agroindustrial residues. To address this, we fed anaerobic bioreactors one of several agroindustrial residues (carbohydrate-rich lignocellulosic fermentation conversion residue, xylose, dairy manure hydrolysate, ultra-filtered milk permeate, and thin stillage from a starch bioethanol plant) and inoculated them with a microbial community from an acid-phase digester operated at the wastewater treatment plant in Madison, WI, United States. The bioreactors were monitored over a period of months and sampled to assess microbial community composition and extracellular fermentation products. We obtained metagenome assembled genomes (MAGs) from the microbial communities in each bioreactor and performed comparative genomic analyses to identify common microorganisms, as well as any community members that were unique to each reactor. Collectively, we obtained a dataset of 217 non-redundant MAGs from these bioreactors. This metagenome assembled genome dataset was used to evaluate whether a specific microbial ecology model in which medium chain fatty acids (MCFAs) are simultaneously produced from intermediate products (e.g., lactic acid) and carbohydrates could be applicable to all fermentation systems, regardless of the feedstock. MAGs were classified using a multiclass classification machine learning algorithm into three groups, organisms fermenting the carbohydrates to intermediate products, organisms utilizing the intermediate products to produce MCFAs, and organisms producing MCFAs directly from carbohydrates. This analysis revealed common biological functions among the microbial communities in different bioreactors, and although different microorganisms were enriched depending on the agroindustrial residue tested, the results supported the conclusion that the microbial ecology model tested was appropriate to explain the MCFA production potential from all agricultural residues.
Collapse
Affiliation(s)
- Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Abel T. Ingle
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin A. Walters
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Nathaniel W. Fortney
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Matthew J. Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Timothy J. Donohue
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel R. Noguera
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Katsyv A, Müller V. A purified energy-converting hydrogenase from Thermoanaerobacter kivui demonstrates coupled H +-translocation and reduction in vitro. J Biol Chem 2022; 298:102216. [PMID: 35779632 PMCID: PMC9356269 DOI: 10.1016/j.jbc.2022.102216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Energy-converting hydrogenases (Ech) are ancient, membrane-bound enzymes that use reduced ferredoxin (Fd) as an electron donor to reduce protons to molecular H2. Experiments with whole cells, membranes and vesicle-fractions suggest that proton reduction is coupled to proton translocation across the cytoplasmatic membrane, but this has never been demonstrated with a purified enzyme. To this end, we produced a His-tagged Ech complex in the thermophilic and anaerobic bacterium Thermoanaerobacter kivui. The enzyme could be purified by affinity chromatography from solubilized membranes with full retention of its eight subunits, as well as full retention of physiological activities, i.e., H2-dependent Fd reduction and Fd2--dependent H2 production. We found the purified enzyme contained 34.2 ± 12.2 mol of iron/mol of protein, in accordance with seven predicted [4Fe-4S]-clusters and one [Ni-Fe]-center. The pH and temperature optima were at 7 to 8 and 66 °C, respectively. Notably, we found that the enzymatic activity was inhibited by N,N′-dicyclohexylcarbodiimide, an agent known to bind ion-translocating glutamates or aspartates buried in the cytoplasmic membrane and thereby inhibiting ion transport. To demonstrate the function of the Ech complex in ion transport, we further established a procedure to incorporate the enzyme complex into liposomes in an active state. We show the enzyme did not require Na+ for activity and did not translocate 22Na+ into the proteoliposomal lumen. In contrast, Ech activity led to the generation of a pH gradient and membrane potential across the proteoliposomal membrane, demonstrating that the Ech complex of T. kivui is a H+-translocating, H+-reducing enzyme.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Trischler R, Roth J, Sorbara MT, Schlegel X, Müller V. A functional Wood-Ljungdahl pathway devoid of a formate dehydrogenase in the gut acetogens Blautia wexlerae, Blautia luti and beyond. Environ Microbiol 2022; 24:3111-3123. [PMID: 35466558 DOI: 10.1111/1462-2920.16029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Species of the genus Blautia are typical inhabitants of the human gut and considered as beneficial gut microbes. However, their role in the gut microbiome and their metabolic features are poorly understood. Blautia schinkii was described as an acetogenic bacterium, characterized by a functional Wood-Ljungdahl pathway (WLP) of acetogenesis from H2 + CO2 . Here we report that two relatives, Blautia luti and Blautia wexlerae do not grow on H2 + CO2 . Inspection of the genome sequence revealed all genes of the WLP except genes encoding a formate dehydrogenase and an electron-bifurcating hydrogenase. Enzyme assays confirmed this prediction. Accordingly, resting cells neither converted H2 + CO2 nor H2 + HCOOH + CO2 to acetate. Carbon monoxide is an intermediate of the WLP and substrate for many acetogens. B. luti and B. wexlerae had an active CO dehydrogenase and resting cells performed acetogenesis from HCOOH + CO2 + CO, demonstrating a functional WLP. Bioinformatic analyses revealed that many Blautia strains as well as other gut acetogens lack formate dehydrogenases and hydrogenases. Thus, the use of formate instead of H2 + CO2 as an interspecies hydrogen and electron carrier seems to be more common in the gut microbiome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Raphael Trischler
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Jennifer Roth
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Matthew T Sorbara
- Department Molecular and Cellular Biology, University of Guelph, Ontario, N1G 2W1, Canada
| | - Xenia Schlegel
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, D-60438, Frankfurt, Germany
| |
Collapse
|
15
|
Deka RK, Deka A, Liu WZ, Norgard MV, Brautigam CA. Inhibition of bacterial FMN transferase: A potential avenue for countering antimicrobial resistance. Protein Sci 2022; 31:545-551. [PMID: 34796555 PMCID: PMC8819833 DOI: 10.1002/pro.4241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
Antibiotic resistance is a challenge for the control of bacterial infections. In an effort to explore unconventional avenues for antibacterial drug development, we focused on the FMN-transferase activity of the enzyme Ftp from the syphilis spirochete, Treponema pallidum (Ftp_Tp). This enzyme, which is only found in prokaryotes and trypanosomatids, post-translationally modifies proteins in the periplasm, covalently linking FMN (from FAD) to proteins that typically are important for establishing an essential electrochemical gradient across the cytoplasmic membrane. As such, Ftp inhibitors potentially represent a new class of antimicrobials. Previously, we showed that AMP is both a product of the Ftp_tp-catalyzed reaction and an inhibitor of the enzyme. As a preliminary step in exploiting this property to develop a novel Ftp_Tp inhibitor, we have used structural and solution studies to examine the inhibitory and enzyme-binding properties of several adenine-based nucleosides, with particular focus on the 2-position of the purine ring. Implications for future drug design are discussed.
Collapse
Affiliation(s)
- Ranjit K. Deka
- Department of MicrobiologyUT Southwestern Medical CenterDallasTexasUSA
| | | | - Wei Z. Liu
- Department of MicrobiologyUT Southwestern Medical CenterDallasTexasUSA
| | | | - Chad A. Brautigam
- Department of MicrobiologyUT Southwestern Medical CenterDallasTexasUSA,Department of BiophysicsUT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
16
|
Energy conservation under extreme energy limitation: the role of cytochromes and quinones in acetogenic bacteria. Extremophiles 2021; 25:413-424. [PMID: 34480656 PMCID: PMC8578096 DOI: 10.1007/s00792-021-01241-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Acetogenic bacteria are a polyphyletic group of organisms that fix carbon dioxide under anaerobic, non-phototrophic conditions by reduction of two mol of CO2 to acetyl-CoA via the Wood–Ljungdahl pathway. This pathway also allows for lithotrophic growth with H2 as electron donor and this pathway is considered to be one of the oldest, if not the oldest metabolic pathway on Earth for CO2 reduction, since it is coupled to the synthesis of ATP. How ATP is synthesized has been an enigma for decades, but in the last decade two ferredoxin-dependent respiratory chains were discovered. Those respiratory chains comprise of a cytochrome-free, ferredoxin-dependent respiratory enzyme complex, which is either the Rnf or Ech complex. However, it was discovered already 50 years ago that some acetogens contain cytochromes and quinones, but their role had only a shadowy existence. Here, we review the literature on the characterization of cytochromes and quinones in acetogens and present a hypothesis that they may function in electron transport chains in addition to Rnf and Ech.
Collapse
|
17
|
Debabov VG. Acetogens: Biochemistry, Bioenergetics, Genetics, and Biotechnological Potential. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
18
|
Katsyv A, Müller V. Overcoming Energetic Barriers in Acetogenic C1 Conversion. Front Bioeng Biotechnol 2020; 8:621166. [PMID: 33425882 PMCID: PMC7793690 DOI: 10.3389/fbioe.2020.621166] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Currently one of the biggest challenges for society is to combat global warming. A solution to this global threat is the implementation of a CO2-based bioeconomy and a H2-based bioenergy economy. Anaerobic lithotrophic bacteria such as the acetogenic bacteria are key players in the global carbon and H2 cycle and thus prime candidates as driving forces in a H2- and CO2-bioeconomy. Naturally, they convert two molecules of CO2via the Wood-Ljungdahl pathway (WLP) to one molecule of acetyl-CoA which can be converted to different C2-products (acetate or ethanol) or elongated to C4 (butyrate) or C5-products (caproate). Since there is no net ATP generation from acetate formation, an electron-transport phosphorylation (ETP) module is hooked up to the WLP. ETP provides the cell with additional ATP, but the ATP gain is very low, only a fraction of an ATP per mol of acetate. Since acetogens live at the thermodynamic edge of life, metabolic engineering to obtain high-value products is currently limited by the low energy status of the cells that allows for the production of only a few compounds with rather low specificity. To set the stage for acetogens as production platforms for a wide range of bioproducts from CO2, the energetic barriers have to be overcome. This review summarizes the pathway, the energetics of the pathway and describes ways to overcome energetic barriers in acetogenic C1 conversion.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Deka RK, Liu WZ, Norgard MV, Brautigam CA. Biophysical and Biochemical Characterization of TP0037, a d-Lactate Dehydrogenase, Supports an Acetogenic Energy Conservation Pathway in Treponema pallidum. mBio 2020; 11:e02249-20. [PMID: 32963009 PMCID: PMC7512555 DOI: 10.1128/mbio.02249-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
A longstanding conundrum in Treponema pallidum biology concerns how the spirochete generates sufficient energy to fulfill its complex pathogenesis processes during human syphilitic infection. For decades, it has been assumed that the bacterium relies solely on glucose catabolism (via glycolysis) for generation of its ATP. However, the organism's robust motility, believed to be essential for human tissue invasion and dissemination, would require abundant ATP likely not provided by the parsimony of glycolysis. As such, additional ATP generation, either via a chemiosmotic gradient, substrate-level phosphorylation, or both, likely exists in T. pallidum Along these lines, we have hypothesized that T. pallidum exploits an acetogenic energy conservation pathway that relies on the redox chemistry of flavins. Central to this hypothesis is the apparent existence in T. pallidum of an acetogenic pathway for the conversion of d-lactate to acetate. Herein we have characterized the structural, biophysical, and biochemical properties of the first enzyme (d-lactate dehydrogenase [d-LDH]; TP0037) predicted in this pathway. Binding and enzymatic studies showed that recombinant TP0037 consumed d-lactate and NAD+ to produce pyruvate and NADH. The crystal structure of TP0037 revealed a fold similar to that of other d-acid dehydrogenases; residues in the cofactor-binding and active sites were homologous to those of other known d-LDHs. The crystal structure and solution biophysical experiments revealed the protein's propensity to dimerize, akin to other d-LDHs. This study is the first to elucidate the enzymatic properties of T. pallidum's d-LDH, thereby providing new compelling evidence for a flavin-dependent acetogenic energy conservation (ATP-generating) pathway in T. pallidumIMPORTANCE Because T. pallidum lacks a Krebs cycle and the capability for oxidative phosphorylation, historically it has been difficult to reconcile how the syphilis spirochete generates sufficient ATP to fulfill its energy needs, particularly for its robust motility, solely from glycolysis. We have postulated the existence in T. pallidum of a flavin-dependent acetogenic energy conservation pathway that would generate additional ATP for T. pallidum bioenergetics. In the proposed acetogenic pathway, first d-lactate would be converted to pyruvate. Pyruvate would then be metabolized to acetate in three additional steps, with ATP being generated via substrate-level phosphorylation. This study provides structural, biochemical, and biophysical evidence for the first T. pallidum enzyme in the pathway (TP0037; d-lactate dehydrogenase) requisite for the conversion of d-lactate to pyruvate. The findings represent the first experimental evidence to support a role for an acetogenic energy conservation pathway that would contribute to nonglycolytic ATP production in T. pallidum.
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Wei Z Liu
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael V Norgard
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chad A Brautigam
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Wenner BA, Wagner BK, St-Pierre NR, Yu ZT, Firkins JL. Inhibition of methanogenesis by nitrate, with or without defaunation, in continuous culture. J Dairy Sci 2020; 103:7124-7140. [PMID: 32600762 DOI: 10.3168/jds.2020-18325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/29/2020] [Indexed: 02/02/2023]
Abstract
Within the rumen, nitrate can serve as an alternative sink for aqueous hydrogen [H2(aq)] accumulating during fermentation, producing nitrite, which ideally is further reduced to ammonium but can accumulate under conditions not yet explained. Defaunation has also been associated with decreased methanogenesis in meta-analyses because protozoa contribute significantly to H2 production. In the present study, we applied a 2 × 2 factorial treatment arrangement in a 4 × 4 Latin square design to dual-flow continuous culture fermentors (n = 4). Treatments were control without nitrate (-NO3-) versus with nitrate (+NO3-; 1.5% of diet dry matter), factorialized with normal protozoa (faunated, FAUN) versus defaunation (DEF) by decreasing the temperature moderately and changing filters over the first 4 d of incubation. We detected no main effects of DEF or interaction of faunation status with +NO3-. The main effect of +NO3- increased H2(aq) by 11.0 µM (+117%) compared with -NO3-. The main effect of +NO3- also decreased daily CH4 production by 8.17 mmol CH4/d (31%) compared with -NO3-. Because there were no treatment effects on neutral detergent fiber digestibility, the main effect of +NO3- also decreased CH4 production by 1.43 mmol of CH4/g of neutral detergent fiber degraded compared with -NO3-. There were no effects of treatment on other nutrient digestibilities, N flow, or microbial N flow per gram of nutrient digested. The spike in H2(aq) after feeding NO3- provides evidence that methanogenesis is inhibited by substrate access rather than concentration, regardless of defaunation, or by direct inhibition of NO2-. Methanogens were not decreased by defaunation, suggesting a compensatory increase in non-protozoa-associated methanogens or an insignificant contribution of protozoa-associated methanogens. Despite adaptive reduction of NO3- to NH4+ and methane inhibition in continuous culture, practical considerations such as potential to depress dry matter intake and on-farm ration variability should be addressed before considering NO3- as an avenue for greater sustainability of greenhouse gas emissions in US dairy production.
Collapse
Affiliation(s)
- B A Wenner
- Department of Animal Sciences, The Ohio State University, Columbus 43210.
| | - B K Wagner
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - N R St-Pierre
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - Z T Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|