1
|
Bai H, Dang Q, Chen G, Xie L, Wang S, Jiang N, Wu X, Zhang S, Wang X. MyD88 inhibitor TJ-M2010-5 alleviates spleen impairment and inflammation by inhibiting the PI3K/miR-136-5p/AKT3 pathway in the early infection of Trichinella spiralis. Vet Res 2025; 56:28. [PMID: 39905552 PMCID: PMC11796171 DOI: 10.1186/s13567-025-01459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 02/06/2025] Open
Abstract
Trichinella spiralis (T. spiralis) has been reported to induce inflammation, which can cause immune system dysregulation. Myeloid differentiation primary response gene 88 (MyD88) is implicated in inflammation signalling pathways. TJ-M2010-5 is a novel MyD88 inhibitor with remarkable protective effects against several diseases. However, the precise mechanism of TJ-M2010-5's involvement in spleen impairment and inflammation in the early infection of T. spiralis has yet to be fully elucidated. This study analysed histological, inflammation, and macrophage polarisation of the early T. spiralis-infected mice treated with TJ-M2010-5. MyD88 promoter methylation results showed that the methylation levels in the 5 d group were lower compared to the control group (P < 0.05). Furthermore, the methylation led to an imbalance in anti-inflammatory regulation in the infected mice. After TJ-M2010-5 treatment, spleen impairment was reduced. Sequencing analysis showed that TJ-M2010-5 significantly up-regulated 9 and down-regulated 10 miRNAs compared with the 5 d group. A dual-luciferase reporter assay further revealed that miR-136-5p is involved in the TJ-M2010-5 treatment by targeting AKT3. In RAW264.7 cells, TJ-M2010-5 pre-treatment significantly reversed the M1 polarisation and inhibited nitric oxide (NO) production. LC-MS/MS results showed TJ-M2010-5 was hepatosplenic-targeted. In conclusion, the study demonstrates that TJ-M2010-5 could effectively alleviate spleen impairment and reduce inflammation in mice infected with T. spiralis in its early stages by blocking the activation of PI3K/miR-136-5p/AKT3.
Collapse
Affiliation(s)
- Huifang Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Qianqian Dang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Guoliang Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lingfeng Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Saining Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ning Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoxia Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shuyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xuelin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Huang KY, Feng YY, Du H, Ma CW, Xie D, Wan T, Feng XY, Dai XG, Yin TM, Wang XQ, Ran JH. DNA methylation dynamics in gymnosperm duplicate genes: implications for genome evolution and stress adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70006. [PMID: 39982811 DOI: 10.1111/tpj.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 02/23/2025]
Abstract
Duplicate genes are pivotal in driving evolutionary innovation, often exhibiting expression divergence that offers a system to investigate the role of DNA methylation in transcriptional regulation. However, previous studies have predominantly focused on angiosperms, leaving the methylation patterns in major lineages of land plants still unclear. This study explores DNA methylation evolution in duplicate genes across representative gymnosperm species with large genomes, spanning over 300 million years, using genomic, transcriptomic, and high-depth DNA methylomic data. We observed variations in DNA methylation levels along gene bodies, flanking regions, and methylation statuses of coding regions across different duplication types. Biased divergences in DNA methylation and gene expression frequently occurred between duplicate copies. Specifically, methylation divergences in the 2-kb downstream regions negatively correlated with gene expression. Both CG and CHG DNA methylation in gene bodies were positively correlated with gene length, suggesting these methylation types may function as an epigenomic buffer to mitigate the adverse impact of gene length on expression. Duplicate genes exhibiting both methylation and expression divergences were notably enriched in adaptation-related biological processes, suggesting that DNA methylation may aid adaptive evolution in gymnosperms by regulating stress response genes. Changes in expression levels correlated with switches in methylation status within coding regions of transposed duplicates. Specifically, depletion for CG methylation or enrichment for non-CG methylation significantly reduced the expression of translocated copies. This correlation suggests that DNA methylation may reduce genetic redundancy by silencing translocated copies. Our study highlights the significance of DNA methylation in plant genome evolution and stress adaptation.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Feng
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 510650, China
| | - Hong Du
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Chang-Wang Ma
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Dan Xie
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Tao Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiu-Yan Feng
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiao-Gang Dai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tong-Ming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Mueller SA, Merondun J, Lečić S, Wolf JBW. Epigenetic variation in light of population genetic practice. Nat Commun 2025; 16:1028. [PMID: 39863592 PMCID: PMC11762325 DOI: 10.1038/s41467-025-55989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The evolutionary impact of epigenetic variation depends on its transgenerational stability and source - whether genetically determined, environmentally induced, or due to spontaneous, genotype-independent mutations. Here, we evaluate current approaches for investigating an independent role of epigenetics in evolution, pinpointing methodological challenges. We further identify opportunities arising from integrating epigenetic data with population genetic analyses in natural populations. Efforts to advance data quality, study design, and statistical treatment are encouraged to consolidate our understanding of the source of heritable epigenetic variation, quantify its autonomous potential for evolution, and enrich population genetic analyses with an additional layer of information.
Collapse
Affiliation(s)
- Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.
| | - Justin Merondun
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Microevolution and Biodiversity, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Sonja Lečić
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Ecosystem Management, Climate and Biodiversity, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.
- Department of Microevolution and Biodiversity, Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
4
|
Cahn J, Lloyd JPB, Karemaker ID, Jansen PWTC, Pflueger J, Duncan O, Petereit J, Bogdanovic O, Millar AH, Vermeulen M, Lister R. Characterization of DNA methylation reader proteins in Arabidopsis thaliana. Genome Res 2024; 34:2229-2243. [PMID: 39632087 PMCID: PMC11694752 DOI: 10.1101/gr.279379.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
In plants, cytosine DNA methylation (mC) is largely associated with transcriptional repression of transposable elements, but it can also be found in the body of expressed genes, referred to as gene body methylation (gbM). gbM is correlated with ubiquitously expressed genes; however, its function, or absence thereof, is highly debated. The different outputs that mC can have raise questions as to how it is interpreted-or read-differently in these sequence and genomic contexts. To screen for potential mC-binding proteins, we performed an unbiased DNA affinity pull-down assay combined with quantitative mass spectrometry using methylated DNA probes for each DNA sequence context. All mC readers known to date preferentially bind to the methylated probes, along with a range of new mC-binding protein candidates. Functional characterization of these mC readers, focused on the MBD and SUVH families, was undertaken by ChIP-seq mapping of genome-wide binding sites, their protein interactors, and the impact of high-order mutations on transcriptomic and epigenomic profiles. Together, these results highlight specific context preferences for these proteins, and in particular the ability of MBD2 to bind predominantly to gbM. This comprehensive analysis of Arabidopsis mC readers emphasizes the complexity and interconnectivity between DNA methylation and chromatin remodeling processes in plants.
Collapse
Affiliation(s)
- Jonathan Cahn
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- ARC Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ino D Karemaker
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525 GA, The Netherlands
| | - Pascal W T C Jansen
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525 GA, The Netherlands
| | - Jahnvi Pflueger
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jakob Petereit
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ozren Bogdanovic
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- ARC Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Michiel Vermeulen
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525 GA, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia;
- ARC Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
5
|
Li H, Liu H, Zhu D, Dou C, Gang B, Zhang M, Wan Z. Biological function molecular pathways and druggability of DNMT2/TRDMT1. Pharmacol Res 2024; 205:107222. [PMID: 38782147 DOI: 10.1016/j.phrs.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
5-methylcytosine (m5C) is among the most common epigenetic modification in DNA and RNA molecules, and plays an important role in the animal development and disease pathogenesis. Interestingly, unlike other m5C DNA methyltransferases (DNMTs), DNMT2/TRDMT1 has the double-substrate specificity and adopts a DNMT-similar catalytic mechanism to methylate RNA. Moreover, it is widely involved in a variety of physiological regulatory processes, such as the gene expression, precise protein synthesis, immune response, and disease occurrence. Thus, comprehending the epigenetic mechanism and function of DNMT2/TRDMT1 will probably provide new strategies to treat some refractory diseases. Here, we discuss recent studies on the spatiotemporal expression pattern and post-translational modifications of DNMT2/TRDMT1, and summarize the research advances in substrate characteristics, catalytic recognition mechanism, DNMT2/TRDMT1-related genes or proteins, pharmacological application, and inhibitor development. This review will shed light on the pharmacological design by targeting DNMT2/TRDMT1 to treat parasitic, viral and oncologic diseases.
Collapse
Affiliation(s)
- Huari Li
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China; College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China.
| | - Huiru Liu
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chengli Dou
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| |
Collapse
|
6
|
Zhang Y, Jang H, Luo Z, Dong Y, Xu Y, Kantamneni Y, Schmitz RJ. Dynamic evolution of the heterochromatin sensing histone demethylase IBM1. PLoS Genet 2024; 20:e1011358. [PMID: 38991029 PMCID: PMC11265718 DOI: 10.1371/journal.pgen.1011358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/23/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Heterochromatin is critical for maintaining genome stability, especially in flowering plants, where it relies on a feedback loop involving the H3K9 methyltransferase, KRYPTONITE (KYP), and the DNA methyltransferase CHROMOMETHYLASE3 (CMT3). The H3K9 demethylase INCREASED IN BONSAI METHYLATION 1 (IBM1) counteracts the detrimental consequences of KYP-CMT3 activity in transcribed genes. IBM1 expression in Arabidopsis is uniquely regulated by methylation of the 7th intron, allowing it to monitor global H3K9me2 levels. We show the methylated intron is prevalent across flowering plants and its underlying sequence exhibits dynamic evolution. We also find extensive genetic and expression variations in KYP, CMT3, and IBM1 across flowering plants. We identify Arabidopsis accessions resembling weak ibm1 mutants and Brassicaceae species with reduced IBM1 expression or deletions. Evolution towards reduced IBM1 activity in some flowering plants could explain the frequent natural occurrence of diminished or lost CMT3 activity and loss of gene body DNA methylation, as cmt3 mutants in A. thaliana mitigate the deleterious effects of IBM1.
Collapse
Affiliation(s)
- Yinwen Zhang
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Ziliang Luo
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Yinxin Dong
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Yangyang Xu
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Yamini Kantamneni
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
7
|
Shan S, Gitzendanner MA, Boatwright JL, Spoelhof JP, Ethridge CL, Ji L, Liu X, Soltis PS, Schmitz RJ, Soltis DE. Genome-wide DNA methylation dynamics following recent polyploidy in the allotetraploid Tragopogon miscellus (Asteraceae). THE NEW PHYTOLOGIST 2024; 242:1363-1376. [PMID: 38450804 DOI: 10.1111/nph.19655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024]
Abstract
Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.
Collapse
Affiliation(s)
- Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - J Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC, 29634, USA
| | - Jonathan P Spoelhof
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Xiaoxian Liu
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
8
|
Junaid MD, Chaudhry UK, Şanlı BA, Gökçe AF, Öztürk ZN. A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants. Funct Integr Genomics 2024; 24:74. [PMID: 38600306 DOI: 10.1007/s10142-024-01354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.
Collapse
Affiliation(s)
- Muhammad Daniyal Junaid
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey.
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
- Pakistan Environmental Protection Agency, Ministry of Climate Change & Environmental Coordination, Islamabad, Pakistan
| | - Beyazıt Abdurrahman Şanlı
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Ali Fuat Gökçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| | - Zahide Neslihan Öztürk
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye, Turkey
| |
Collapse
|
9
|
Harkess A, Bewick AJ, Lu Z, Fourounjian P, Michael TP, Schmitz RJ, Meyers BC. The unusual predominance of maintenance DNA methylation in Spirodela polyrhiza. G3 (BETHESDA, MD.) 2024; 14:jkae004. [PMID: 38190722 PMCID: PMC10989885 DOI: 10.1093/g3journal/jkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
Duckweeds are among the fastest reproducing plants, able to clonally divide at exponential rates. However, the genetic and epigenetic impact of clonality on plant genomes is poorly understood. 5-methylcytosine (5mC) is a modified base often described as necessary for the proper regulation of certain genes and transposons and for the maintenance of genome integrity in plants. However, the extent of this dogma is limited by the current phylogenetic sampling of land plant species diversity. Here we analyzed DNA methylomes, small RNAs, mRNA-seq, and H3K9me2 histone modification for Spirodela polyrhiza. S. polyrhiza has lost highly conserved genes involved in de novo methylation of DNA at sites often associated with repetitive DNA, and within genes, however, symmetrical DNA methylation and heterochromatin are maintained during cell division at certain transposons and repeats. Consequently, small RNAs that normally guide methylation to silence repetitive DNA like retrotransposons are diminished. Despite the loss of a highly conserved methylation pathway, and the reduction of small RNAs that normally target repetitive DNA, transposons have not proliferated in the genome, perhaps due in part to the rapid, clonal growth lifestyle of duckweeds.
Collapse
Affiliation(s)
- Alex Harkess
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Adam J Bewick
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Paul Fourounjian
- Waksman Institute of Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Todd P Michael
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri—Columbia, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Yuditskiy K, Bezdvornykh I, Kazantseva A, Kanapin A, Samsonova A. BSXplorer: analytical framework for exploratory analysis of BS-seq data. BMC Bioinformatics 2024; 25:96. [PMID: 38438881 PMCID: PMC10913661 DOI: 10.1186/s12859-024-05722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Bisulfite sequencing detects and quantifies DNA methylation patterns, contributing to our understanding of gene expression regulation, genome stability maintenance, conservation of epigenetic mechanisms across divergent taxa, epigenetic inheritance and, eventually, phenotypic variation. Graphical representation of methylation data is crucial in exploring epigenetic regulation on a genome-wide scale in both plants and animals. This is especially relevant for non-model organisms with poorly annotated genomes and/or organisms where genome sequences are not yet assembled on chromosome level. Despite being a technology of choice to profile DNA methylation for many years now there are surprisingly few lightweight and robust standalone tools available for efficient graphical analysis of data in non-model systems. This significantly limits evolutionary studies and agrigenomics research. BSXplorer is a tool specifically developed to fill this gap and assist researchers in explorative data analysis and in visualising and interpreting bisulfite sequencing data more easily. RESULTS BSXplorer provides in-depth graphical analysis of sequencing data encompassing (a) profiling of methylation levels in metagenes or in user-defined regions using line plots and heatmaps, generation of summary statistics charts, (b) enabling comparative analyses of methylation patterns across experimental samples, methylation contexts and species, and (c) identification of modules sharing similar methylation signatures at functional genomic elements. The tool processes methylation data quickly and offers API and CLI capabilities, along with the ability to create high-quality figures suitable for publication. CONCLUSIONS BSXplorer facilitates efficient methylation data mining, contrasting and visualization, making it an easy-to-use package that is highly useful for epigenetic research.
Collapse
Affiliation(s)
- Konstantin Yuditskiy
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia, 199004
| | - Igor Bezdvornykh
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia, 199004
| | - Anastasiya Kazantseva
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, Ufa, Russia, 450076
| | - Alexander Kanapin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia, 199004
| | - Anastasia Samsonova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia, 199004.
| |
Collapse
|
11
|
Briffa A, Hollwey E, Shahzad Z, Moore JD, Lyons DB, Howard M, Zilberman D. Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Syst 2023; 14:953-967.e17. [PMID: 37944515 DOI: 10.1016/j.cels.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Methylation of CG dinucleotides (mCGs), which regulates eukaryotic genome functions, is epigenetically propagated by Dnmt1/MET1 methyltransferases. How mCG is established and transmitted across generations despite imperfect enzyme fidelity is unclear. Whether mCG variation in natural populations is governed by genetic or epigenetic inheritance also remains mysterious. Here, we show that MET1 de novo activity, which is enhanced by existing proximate methylation, seeds and stabilizes mCG in Arabidopsis thaliana genes. MET1 activity is restricted by active demethylation and suppressed by histone variant H2A.Z, producing localized mCG patterns. Based on these observations, we develop a stochastic mathematical model that precisely recapitulates mCG inheritance dynamics and predicts intragenic mCG patterns and their population-scale variation given only CG site spacing. Our results demonstrate that intragenic mCG establishment, inheritance, and variance constitute a unified epigenetic process, revealing that intragenic mCG undergoes large, millennia-long epigenetic fluctuations and can therefore mediate evolution on this timescale.
Collapse
Affiliation(s)
- Amy Briffa
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Elizabeth Hollwey
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Zaigham Shahzad
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jonathan D Moore
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - David B Lyons
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK.
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria.
| |
Collapse
|
12
|
Zeng Y, Dawe RK, Gent JI. Natural methylation epialleles correlate with gene expression in maize. Genetics 2023; 225:iyad146. [PMID: 37556604 PMCID: PMC10550312 DOI: 10.1093/genetics/iyad146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
DNA methylation in plants is depleted from cis-regulatory elements in and near genes but is present in some gene bodies, including exons. Methylation in exons solely in the CG context is called gene body methylation (gbM). Methylation in exons in both CG and non-CG contexts is called TE-like methylation (teM). Assigning functions to both forms of methylation in genes has proven to be challenging. Toward that end, we utilized recent genome assemblies, gene annotations, transcription data, and methylome data to quantify common patterns of gene methylation and their relations to gene expression in maize. We found that gbM genes exist in a continuum of CG methylation levels without a clear demarcation between unmethylated genes and gbM genes. Analysis of expression levels across diverse maize stocks and tissues revealed a weak but highly significant positive correlation between gbM and gene expression except in endosperm. gbM epialleles were associated with an approximately 3% increase in steady-state expression level relative to unmethylated epialleles. In contrast to gbM genes, which were conserved and were broadly expressed across tissues, we found that teM genes, which make up about 12% of genes, are mainly silent, are poorly conserved, and exhibit evidence of annotation errors. We used these data to flag teM genes in the 26 NAM founder genome assemblies. While some teM genes are likely functional, these data suggest that the majority are not, and their inclusion can confound the interpretation of whole-genome studies.
Collapse
Affiliation(s)
- Yibing Zeng
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Baduel P, Sasaki E. The genetic basis of epigenetic variation and its consequences for adaptation. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102409. [PMID: 37451221 DOI: 10.1016/j.pbi.2023.102409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Recent population genomic studies in plants have shed new light on natural epigenetic variation by identifying key genetic determinants, "trans modifiers," that influence epigenetic states genome-wide and their interplay with environmental factors. Here, we review this progress by focusing on the epigenetic control of transposition and life-cycle transitions to highlight the ecological consequences of this genetic architecture and its evolutionary significance. This knowledge provides new opportunities to address long-standing questions about the establishment of environment-associated epigenetic variation and its relevance in adaptation.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'École Normale Supérieure (IBENS), ENS, PSL University, CNRS, 46 rue d'Ulm, Paris 75005, France
| | - Eriko Sasaki
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
14
|
Yoosefzadeh Najafabadi M, Hesami M, Rajcan I. Unveiling the Mysteries of Non-Mendelian Heredity in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:1956. [PMID: 37653871 PMCID: PMC10221147 DOI: 10.3390/plants12101956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/30/2023]
Abstract
Mendelian heredity is the cornerstone of plant breeding and has been used to develop new varieties of plants since the 19th century. However, there are several breeding cases, such as cytoplasmic inheritance, methylation, epigenetics, hybrid vigor, and loss of heterozygosity (LOH), where Mendelian heredity is not applicable, known as non-Mendelian heredity. This type of inheritance can be influenced by several factors besides the genetic architecture of the plant and its breeding potential. Therefore, exploring various non-Mendelian heredity mechanisms, their prevalence in plants, and the implications for plant breeding is of paramount importance to accelerate the pace of crop improvement. In this review, we examine the current understanding of non-Mendelian heredity in plants, including the mechanisms, inheritance patterns, and applications in plant breeding, provide an overview of the various forms of non-Mendelian inheritance (including epigenetic inheritance, cytoplasmic inheritance, hybrid vigor, and LOH), explore insight into the implications of non-Mendelian heredity in plant breeding, and the potential it holds for future research.
Collapse
Affiliation(s)
| | | | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.Y.N.); (M.H.)
| |
Collapse
|
15
|
Lee S, Choi J, Park J, Hong CP, Choi D, Han S, Choi K, Roh TY, Hwang D, Hwang I. DDM1-mediated gene body DNA methylation is associated with inducible activation of defense-related genes in Arabidopsis. Genome Biol 2023; 24:106. [PMID: 37147734 PMCID: PMC10161647 DOI: 10.1186/s13059-023-02952-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.
Collapse
Affiliation(s)
- Seungchul Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Jaemyung Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jihwan Park
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Chang Pyo Hong
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Korea
| | - Soeun Han
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
16
|
Zhou J, Xiao L, Huang R, Song F, Li L, Li P, Fang Y, Lu W, Lv C, Quan M, Zhang D, Du Q. Local diversity of drought resistance and resilience in Populus tomentosa correlates with the variation of DNA methylation. PLANT, CELL & ENVIRONMENT 2023; 46:479-497. [PMID: 36385613 DOI: 10.1111/pce.14490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Little information is known about DNA methylation variation in shaping environment-specific drought resistance and resilience for tree adaptation. In this study, we leveraged RNA sequencing and whole-genome bisulfite sequencing data to dissect the distinction of epigenetic regulation under drought stress and rewater condition of Populus tomentosa accessions from three geographical regions. We demonstrated low resistance and high resilience for accessions from South. Non-CG methylation levels in promoter regions of Southern accessions were lower than accessions from higher latitudes and negatively regulated gene expression. CHH context methylation was more sensitive to drought stress, and the geographical-specific differentially methylated regions were scarcely changed by environmental fluctuation. We identified 60 conserved hub genes within the co-expression networks that correlate with photosynthetic and stomatal morphological traits. Epigenome-wide association studies and genome-wide association studies of these 60 hub genes revealed the interdependency between genetic and epigenetic variation in GATA9 and LECRK-VIII.2, which was associated with stomatal morphology and chlorophyll content. The natural epigenetic variation in GATA9 was also faithfully transmitted to progenies in two family-based F1 populations. This study indicates a functional relationship of DNA methylation diversity with drought resistance and resilience which offers new insights into plants' local adaptation to a stressful environment.
Collapse
Affiliation(s)
- Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Rui Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Lianzheng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Chenfei Lv
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
17
|
Lee J, Shin SY, Lee SK, Park K, Gill H, Hyun Y, Jeong C, Jeon JS, Shin C, Choi Y. Contribution of RdDM to the ecotype-specific differential methylation on conserved as well as highly variable regions between Arabidopsis ecotypes. BMC Genomics 2023; 24:36. [PMID: 36658480 PMCID: PMC9854041 DOI: 10.1186/s12864-023-09128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Several studies showed genome-wide DNA methylation during Arabidopsis embryogenesis and germination. Although it has been known that the change of DNA methylation mainly occurs at CHH context mediated by small RNA-directed DNA methylation pathway during seed ripening and germination, the causality of the methylation difference exhibited in natural Arabidopsis ecotypes has not been thoroughly studied. RESULTS In this study we compared DNA methylation difference using comparative pairwise multi-omics dynamics in Columbia-0 (Col) and Cape Verde Island (Cvi) ecotypes. Arabidopsis genome was divided into two regions, common regions in both ecotypes and Col-specific regions, depending on the reads mapping of whole genome bisulfite sequencing libraries from both ecotypes. Ecotype comparison was conducted within common regions and the levels of DNA methylation on common regions and Col-specific regions were also compared. we confirmed transcriptome were relatively dynamic in stage-wise whereas the DNA methylome and small RNAome were more ecotype-dependent. While the global CG methylation remains steady during maturation and germination, we found genic CG methylation differs the most between the two accessions. We also found that ecotype-specific differentially methylated regions (eDMR) are positively correlated with ecotype-specifically expressed 24-nt small RNA clusters. In addition, we discovered that Col-specific regions enriched with transposable elements (TEs) and structural variants that tend to become hypermethylated, and TEs in Col-specific regions were longer in size, more pericentromeric, and more hypermethylated than those in the common regions. Through the analysis of RdDM machinery mutants, we confirmed methylation on Col-specific region as well as on eDMRs in common region are contributed by RdDM pathway. Lastly, we demonstrated that highly variable sequences between ecotypes (HOT regions) were also affected by RdDM-mediated regulation. CONCLUSIONS Through ecotype comparison, we revealed differences and similarities of their transcriptome, methylome and small RNAome both in global and local regions. We validated the contribution of RdDM causing differential methylation of common regions. Hypermethylated ecotype-specific regions contributed by RNA-directed DNA methylation pathway largely depend on the presence of TEs and copy-gain structural variations. These ecotype-specific regions are frequently associated with HOT regions, providing evolutionary insights into the epigenome dynamics within a species.
Collapse
Affiliation(s)
- Jaehoon Lee
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Research Center for Plant Plasticity, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Yoon Shin
- grid.31501.360000 0004 0470 5905Research Center for Plant Plasticity, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Kyu Lee
- grid.289247.20000 0001 2171 7818Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea ,grid.256681.e0000 0001 0661 1492Current address: Division of Life Science, Gyeongsang National University, Jinju, 52828 South Korea
| | - Kyunghyuk Park
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Haechan Gill
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Youbong Hyun
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Research Center for Plant Plasticity, Seoul National University, Seoul, 08826 Republic of Korea
| | - Choongwon Jeong
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Jong-Seong Jeon
- grid.289247.20000 0001 2171 7818Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Chanseok Shin
- grid.31501.360000 0004 0470 5905Research Center for Plant Plasticity, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 South Korea
| | - Yeonhee Choi
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Research Center for Plant Plasticity, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
18
|
The methylome and cell-free DNA: current applications in medicine and pediatric disease. Pediatr Res 2023:10.1038/s41390-022-02448-3. [PMID: 36646885 PMCID: PMC9842217 DOI: 10.1038/s41390-022-02448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/21/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023]
Abstract
DNA methylation is an epigenetic mechanism that contributes to cell regulation and development, and different methylation patterns allow for the identification of cell and tissue type. Cell-free DNA (cfDNA) is composed of small circulating fragments of DNA found in plasma and urine. Total cfDNA levels correlate with the presence of inflammation and tissue injury in a variety of disease states. Unfortunately, the utility of cfDNA is limited by its lack of tissue or cell-type specificity. However, methylome analysis of cfDNA allows the identification of the tissue or cell type from which cfDNA originated. Thus, methylation patterns in cfDNA from tissues isolated from direct study may provide windows into health and disease states, thereby serving as a "liquid biopsy". This review will discuss methylation and its role in establishing cellular identity, cfDNA as a biomarker and its pathophysiologic role in the inflammatory process, and the ways cfDNA and methylomics can be jointly applied in medicine. IMPACT: Cell-free DNA (cfDNA) is increasingly being used as a noninvasive diagnostic and disease-monitoring tool in pediatric medicine. However, the lack of specificity of cfDNA limits its utility. Identification of cell type-specific methylation signatures can help overcome the limited specificity of cfDNA. As knowledge of the cfDNA methylome improves, cfDNA will be more broadly applied in medicine, such that clinicians will need to understand the methods and applications of its use.
Collapse
|
19
|
Srikant T, Yuan W, Berendzen KW, Contreras-Garrido A, Drost HG, Schwab R, Weigel D. Canalization of genome-wide transcriptional activity in Arabidopsis thaliana accessions by MET1-dependent CG methylation. Genome Biol 2022; 23:263. [PMID: 36539836 PMCID: PMC9768921 DOI: 10.1186/s13059-022-02833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite its conserved role on gene expression and transposable element (TE) silencing, genome-wide CG methylation differs substantially between wild Arabidopsis thaliana accessions. RESULTS To test our hypothesis that global reduction of CG methylation would reduce epigenomic, transcriptomic, and phenotypic diversity in A. thaliana accessions, we knock out MET1, which is required for CG methylation, in 18 early-flowering accessions. Homozygous met1 mutants in all accessions suffer from common developmental defects such as dwarfism and delayed flowering, in addition to accession-specific abnormalities in rosette leaf architecture, silique morphology, and fertility. Integrated analysis of genome-wide methylation, chromatin accessibility, and transcriptomes confirms that MET1 inactivation greatly reduces CG methylation and alters chromatin accessibility at thousands of loci. While the effects on TE activation are similarly drastic in all accessions, the quantitative effects on non-TE genes vary greatly. The global expression profiles of accessions become considerably more divergent from each other after genome-wide removal of CG methylation, although a few genes with diverse expression profiles across wild-type accessions tend to become more similar in mutants. Most differentially expressed genes do not exhibit altered chromatin accessibility or CG methylation in cis, suggesting that absence of MET1 can have profound indirect effects on gene expression and that these effects vary substantially between accessions. CONCLUSIONS Systematic analysis of MET1 requirement in different A. thaliana accessions reveals a dual role for CG methylation: for many genes, CG methylation appears to canalize expression levels, with methylation masking regulatory divergence. However, for a smaller subset of genes, CG methylation increases expression diversity beyond genetically encoded differences.
Collapse
Affiliation(s)
- Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Present address: Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Wei Yuan
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Kenneth Wayne Berendzen
- Plant Transformation and Flow Cytometry Facility, ZMBP, University of Tübingen, Tübingen, Germany
| | | | - Hajk-Georg Drost
- Computational Biology Group, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
20
|
Liu P, Cuerda-Gil D, Shahid S, Slotkin RK. The Epigenetic Control of the Transposable Element Life Cycle in Plant Genomes and Beyond. Annu Rev Genet 2022; 56:63-87. [DOI: 10.1146/annurev-genet-072920-015534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Within the life cycle of a living organism, another life cycle exists for the selfish genome inhabitants, which are called transposable elements (TEs). These mobile sequences invade, duplicate, amplify, and diversify within a genome, increasing the genome's size and generating new mutations. Cells act to defend their genome, but rather than permanently destroying TEs, they use chromatin-level repression and epigenetic inheritance to silence TE activity. This level of silencing is ephemeral and reversible, leading to a dynamic equilibrium between TE suppression and reactivation within a host genome. The coexistence of the TE and host genome can also lead to the domestication of the TE to serve in host genome evolution and function. In this review, we describe the life cycle of a TE, with emphasis on how epigenetic regulation is harnessed to control TEs for host genome stability and innovation.
Collapse
Affiliation(s)
- Peng Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Graduate Program in the Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - R. Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
21
|
Adverse maternal environment affects hippocampal HTR2c variant expression and epigenetic characteristics in mouse offspring. Pediatr Res 2022; 92:1299-1308. [PMID: 35121849 DOI: 10.1038/s41390-022-01962-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND An adverse maternal environment (AME) predisposes progeny towards cognitive impairment in humans and mice. Cognitive impairment associates with hippocampal dysfunction. An important regulator of hippocampal function is the hippocampal serotonergic system. Dysregulation of hippocampal serotonin receptor 2c (HTR2c) expression is linked with cognitive impairment. HTR2c contains multiple mRNA variants and isoforms that are epigenetically regulated including DNA methylation, histone modifications, and small nucleolar RNA MBII-52. We tested the hypotheses that AME increases HTR2c variant expression and alters epigenetic modifications along the HTR2c gene locus. METHODS We create an AME through maternal Western diet and prenatal environmental stress in the mouse. We analyzed hippocampal HTR2c and variants' expression, DNA methylation and histone modifications along the gene locus, and MBII-52 levels in postnatal day 21 offspring. RESULTS AME significantly increased the expressions of total HTR2c and full-length variants (V201 and V202) concurrently with an altered epigenetic profile along the HTR2c gene locus in male offspring hippocampi. Moreover, increased full-length variants' expression in AME males was in line with increased MBII-52 levels. CONCLUSIONS AME affects male offspring hippocampal expression of HTR2c and full-length variants via epigenetic mechanisms. Altered hippocampal HTR2c expression may contribute to cognitive impairment seen in adult males in this model. IMPACT The key message of our article is that an adverse maternal environment increases expression of total HTR2c mRNA and protein, alters proportions of HTR2c mRNA variants, and impacts HTR2c epigenetic modifications in male offspring hippocampi relative to controls. Our findings add to the literature by providing the first report of altered HTR2c mRNA variant expression in association with altered epigenetic modifications in the hippocampus of offspring mice exposed to an adverse maternal environment. Our findings suggest that an adverse maternal environment affects the expression of genes previously determined to regulate cognitive function through an epigenetic mechanism in a sex-specific manner.
Collapse
|
22
|
Varotto S, Krugman T, Aiese Cigliano R, Kashkush K, Kondić-Špika A, Aravanopoulos FA, Pradillo M, Consiglio F, Aversano R, Pecinka A, Miladinović D. Exploitation of epigenetic variation of crop wild relatives for crop improvement and agrobiodiversity preservation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3987-4003. [PMID: 35678824 PMCID: PMC9729329 DOI: 10.1007/s00122-022-04122-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Crop wild relatives (CWRs) are recognized as the best potential source of traits for crop improvement. However, successful crop improvement using CWR relies on identifying variation in genes controlling desired traits in plant germplasms and subsequently incorporating them into cultivars. Epigenetic diversity may provide an additional layer of variation within CWR and can contribute novel epialleles for key traits for crop improvement. There is emerging evidence that epigenetic variants of functional and/or agronomic importance exist in CWR gene pools. This provides a rationale for the conservation of epigenotypes of interest, thus contributing to agrobiodiversity preservation through conservation and (epi)genetic monitoring. Concepts and techniques of classical and modern breeding should consider integrating recent progress in epigenetics, initially by identifying their association with phenotypic variations and then by assessing their heritability and stability in subsequent generations. New tools available for epigenomic analysis offer the opportunity to capture epigenetic variation and integrate it into advanced (epi)breeding programmes. Advances in -omics have provided new insights into the sources and inheritance of epigenetic variation and enabled the efficient introduction of epi-traits from CWR into crops using epigenetic molecular markers, such as epiQTLs.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment, University of Padova, Viale dell'Università, 16 35020, Legnaro, Italy.
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beersheba, 84105, Israel
| | - Ankica Kondić-Špika
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Fillipos A Aravanopoulos
- Faculty of Agriculture, Forest Science & Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, GR54006, Greece
| | - Monica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Federica Consiglio
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Università 133, 80055, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Ales Pecinka
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Acad Sci, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| |
Collapse
|
23
|
Sadhukhan A, Prasad SS, Mitra J, Siddiqui N, Sahoo L, Kobayashi Y, Koyama H. How do plants remember drought? PLANTA 2022; 256:7. [PMID: 35687165 DOI: 10.1007/s00425-022-03924-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Plants develop both short-term and transgenerational memory of drought stress through epigenetic regulation of transcription for a better response to subsequent exposure. Recurrent spells of droughts are more common than a single drought, with intermittent moist recovery intervals. While the detrimental effects of the first drought on plant structure and physiology are unavoidable, if survived, plants can memorize the first drought to present a more robust response to the following droughts. This includes a partial stomatal opening in the watered recovery interval, higher levels of osmoprotectants and ABA, and attenuation of photosynthesis in the subsequent exposure. Short-term drought memory is regulated by ABA and other phytohormone signaling with transcriptional memory behavior in various genes. High levels of methylated histones are deposited at the drought-tolerance genes. During the recovery interval, the RNA polymerase is stalled to be activated by a pause-breaking factor in the subsequent drought. Drought leads to DNA demethylation near drought-response genes, with genetic control of the process. Progenies of the drought-exposed plants can better adapt to drought owing to the inheritance of particular methylation patterns. However, a prolonged watered recovery interval leads to loss of drought memory, mediated by certain demethylases and chromatin accessibility factors. Small RNAs act as critical regulators of drought memory by altering transcript levels of drought-responsive target genes. Further studies in the future will throw more light on the genetic control of drought memory and the interplay of genetic and epigenetic factors in its inheritance. Plants from extreme environments can give queues to understanding robust memory responses at the ecosystem level.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, India.
| | - Shiva Sai Prasad
- Department of Agriculture, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Jayeeta Mitra
- Department of Botany, Arunachal University of Studies, Arunachal Pradesh, Namsai, 792103, India
| | - Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Lingaraj Sahoo
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Yuriko Kobayashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Hiroyuki Koyama
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
24
|
Yan Q, Sun YS, An R, Liu F, Fang Q, Wang Z, Xu T, Chen L, Du J. Application and progress of the detection technologies in hepatocellular carcinoma. Genes Dis 2022. [PMID: 37492708 PMCID: PMC10363596 DOI: 10.1016/j.gendis.2022.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a very high incidence and fatality rate, and in most cases, it is already at an advanced stage when diagnosed. Therefore, early prevention and detection of HCC are two of the most effective strategies. However, the methods recommended in the practice guidelines for the detection of HCC cannot guarantee high sensitivity and specificity except for the liver biopsy, which is known as the "gold standard". In this review, we divided the detection of HCC into pre-treatment diagnosis and post-treatment monitoring, and found that in addition to the traditional imaging detection and liver biopsy, alpha fetoprotein (AFP), lens culinaris-agglutinin-reactive fraction of AFP (AFP-L3), protein induced by vitamin K absence or antagonist-II (PIVKA-II) and other biomarkers are excellent biomarkers for HCC, especially when they are combined together. Most notably, the emerging liquid biopsy shows great promise in detecting HCC. In addition, lactic dehydrogenase (LDH), suppressor of cytokine signaling (SOCS) and other relevant biomarkers may become promising biomarkers for HCC post-treatment monitoring. Through the detailed introduction of the diagnostic technology of HCC, we can have a detailed understanding of its development process and then obtain some enlightenment from the diagnosis, to improve the diagnostic rate of HCC and reduce its mortality.
Collapse
|
25
|
Hazarika RR, Serra M, Zhang Z, Zhang Y, Schmitz RJ, Johannes F. Molecular properties of epimutation hotspots. NATURE PLANTS 2022; 8:146-156. [PMID: 35087209 PMCID: PMC8866225 DOI: 10.1038/s41477-021-01086-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Mistakes in the maintenance of CG methylation are a source of heritable epimutations in plants. Multigenerational surveys indicate that the rate of these stochastic events varies substantially across the genome, with some regions harbouring localized 'epimutation hotspots'. Using Arabidopsis as a model, we show that epimutation hotspots are indexed by a specific set of chromatin states that map to subregions of gene body methylation genes. Although these regions comprise only ~12% of all CGs in the genome, they account for ~63% of all epimutation events per unit time. Molecular profiling revealed that these regions contain unique sequence features, harbour steady-state intermediate methylation levels and act as putative targets of antagonistic DNA methylation pathways. We further demonstrate that experimentally induced shifts in steady-state methylation in these hotspot regions are sufficient to significantly alter local epimutation intensities. Our work lays the foundation for dissecting the molecular mechanisms and evolutionary consequences of epimutation hotspots in plants.
Collapse
Affiliation(s)
- Rashmi R Hazarika
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- TUM Institute for Advanced Study, Garching, Germany
| | - Michele Serra
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Zhilin Zhang
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Yinwen Zhang
- Department of Genetics, The University of Georgia, Athens, GA, USA
| | - Robert J Schmitz
- TUM Institute for Advanced Study, Garching, Germany.
- Department of Genetics, The University of Georgia, Athens, GA, USA.
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany.
- TUM Institute for Advanced Study, Garching, Germany.
| |
Collapse
|
26
|
Ajaykumar H, Ramesh S, Sunitha NC, Anilkumar C. Assessment of natural DNA methylation variation and its association with economically important traits in dolichos bean (Lablab purpureus L. Var. Lignosus) using AMP-PCR assay. J Appl Genet 2021; 62:571-583. [PMID: 34247322 DOI: 10.1007/s13353-021-00648-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022]
Abstract
As a prelude to exploit DNA methylation-induced variation, we hypothesized the existence of substantial natural DNA methylation variation and its association with economically important traits in dolichos bean, and tested it using amplified methylation polymorphism-polymerase chain reaction (AMP-PCR) assay. DNA methylation patterns such as internal, external, full and non-methylation were amplified in a set of 64 genotypes using 26 customized randomly amplified polymorphic DNA (RAPD) primers containing 5'CCGG3' sequence. The 64 genotypes included 60 germplasm accessions (GA), two advanced breeding lines (ABLs) and two released varieties. The ABLs and released varieties are referred to as improved germplasm accessions (IGA) in this study. The association of DNA methylation patterns with economically important traits such as days to 50% flowering, raceme length, fresh pods plant-1, fresh pod yield plant-1 and 100-fresh seed weight was explored. At least 50 genotypes were polymorphic for DNA methylation patterns at 10 loci generated by seven of the 26 RAPD primers. The GA and IGA differed significantly for total, full and external methylation and the frequency of methylation was higher in GA compared to that in IGA. The genotypes with external methylation produced longer racemes than those with full, internal and non-methylation in that order at polymorphic RAPD-11-242 locus. High pod yielding genotypes had significantly lower frequency of full methylation than low yielding ones. On the contrary, the genotypes that produced heavier fresh seeds harboured higher frequencies of total and externally methylated loci than those that produced lighter fresh seeds.
Collapse
Affiliation(s)
- H Ajaykumar
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - S Ramesh
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India.
| | - N C Sunitha
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - C Anilkumar
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India.,ICAR-National Rice Research Institute, Cuttack, India
| |
Collapse
|
27
|
Zhang Y, Jang H, Xiao R, Kakoulidou I, Piecyk RS, Johannes F, Schmitz RJ. Heterochromatin is a quantitative trait associated with spontaneous epiallele formation. Nat Commun 2021; 12:6958. [PMID: 34845222 PMCID: PMC8630088 DOI: 10.1038/s41467-021-27320-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Epialleles are meiotically heritable variations in expression states that are independent from changes in DNA sequence. Although they are common in plant genomes, their molecular origins are unknown. Here we show, using mutant and experimental populations, that epialleles in Arabidopsis thaliana that result from ectopic hypermethylation are due to feedback regulation of pathways that primarily function to maintain DNA methylation at heterochromatin. Perturbations to maintenance of heterochromatin methylation leads to feedback regulation of DNA methylation in genes. Using single base resolution methylomes from epigenetic recombinant inbred lines (epiRIL), we show that epiallelic variation is abundant in euchromatin, yet, associates with QTL primarily in heterochromatin regions. Mapping three-dimensional chromatin contacts shows that genes that are hotspots for ectopic hypermethylation have increases in contact frequencies with regions possessing H3K9me2. Altogether, these data show that feedback regulation of pathways that have evolved to maintain heterochromatin silencing leads to the origins of spontaneous hypermethylated epialleles.
Collapse
Affiliation(s)
- Yinwen Zhang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Rui Xiao
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Ioanna Kakoulidou
- Department of Plant Sciences, Technical University of Munich, Freising, Germany
| | - Robert S Piecyk
- Department of Plant Sciences, Technical University of Munich, Freising, Germany
| | - Frank Johannes
- Department of Plant Sciences, Technical University of Munich, Freising, Germany.
- Institute for Advanced Study (IAS), Technical University of Munich, Garching, Germany.
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, USA.
- Institute for Advanced Study (IAS), Technical University of Munich, Garching, Germany.
| |
Collapse
|
28
|
Singh D, Chaudhary P, Taunk J, Kumar Singh C, Sharma S, Singh VJ, Singh D, Chinnusamy V, Yadav R, Pal M. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6836-6855. [PMID: 34302734 DOI: 10.1093/jxb/erab337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Climate change has escalated abiotic stresses, leading to adverse effects on plant growth and development, eventually having deleterious consequences on crop productivity. Environmental stresses induce epigenetic changes, namely cytosine DNA methylation and histone post-translational modifications, thus altering chromatin structure and gene expression. Stable epigenetic changes are inheritable across generations and this enables plants to adapt to environmental changes (epipriming). Hence, epigenomes serve as a good source of additional tier of variability for development of climate-smart crops. Epigenetic resources such as epialleles, epigenetic recombinant inbred lines (epiRILs), epigenetic quantitative trait loci (epiQTLs), and epigenetic hybrids (epihybrids) can be utilized in epibreeding for improving stress tolerance of crops. Epigenome engineering is also gaining momentum for developing sustainable epimarks associated with important agronomic traits. Different epigenome editing tools are available for creating, erasing, and reading such epigenetic codes in plant genomes. However, epigenome editing is still understudied in plants due to its complex nature. Epigenetic interventions such as epi-fingerprinting can be exploited in the near future for health and quality assessment of crops under stress conditions. Keeping in view the challenges and opportunities associated with this important technology, the present review intends to enhance understanding of stress-induced epigenetic changes in plants and its prospects for development of climate-ready crops.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Shristi Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
29
|
Schwope R, Magris G, Miculan M, Paparelli E, Celii M, Tocci A, Marroni F, Fornasiero A, De Paoli E, Morgante M. Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1631-1647. [PMID: 34219317 PMCID: PMC8518642 DOI: 10.1111/tpj.15404] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 05/14/2023]
Abstract
Vitis vinifera is an economically important crop and a useful model in which to study chromatin dynamics. In contrast to the small and relatively simple genome of Arabidopsis thaliana, grapevine contains a complex genome of 487 Mb that exhibits extensive colonization by transposable elements. We used Hi-C, ChIP-seq and ATAC-seq to measure how chromatin features correlate to the expression of 31 845 grapevine genes. ATAC-seq revealed the presence of more than 16 000 open chromatin regions, of which we characterize nearly 5000 as possible distal enhancer candidates that occur in intergenic space > 2 kb from the nearest transcription start site (TSS). A motif search identified more than 480 transcription factor (TF) binding sites in these regions, with those for TCP family proteins in greatest abundance. These open chromatin regions are typically within 15 kb from their nearest promoter, and a gene ontology analysis indicated that their nearest genes are significantly enriched for TF activity. The presence of a candidate cis-regulatory element (cCRE) > 2 kb upstream of the TSS, location in the active nuclear compartment as determined by Hi-C, and the enrichment of H3K4me3, H3K4me1 and H3K27ac at the gene are correlated with gene expression. Taken together, these results suggest that regions of intergenic open chromatin identified by ATAC-seq can be considered potential candidates for cis-regulatory regions in V. vinifera. Our findings enhance the characterization of a valuable agricultural crop, and help to clarify the understanding of unique plant biology.
Collapse
Affiliation(s)
- Rachel Schwope
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
| | - Gabriele Magris
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
| | - Mara Miculan
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
- Present address:
Institute of Life SciencesScuola Superiore Sant'Anna PisaPisa56127Italy
| | - Eleonora Paparelli
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
- Present address:
IGA Technology ServicesUdineI‐33100Italy
| | - Mirko Celii
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
- Present address:
Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE)KAUSTThuwalMakkahSaudi Arabia
| | - Aldo Tocci
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
- Scuola Internazionale Superiore di Studi AvanzatiTriesteFriuli‐Venezia GiuliaItaly
| | - Fabio Marroni
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
| | - Alice Fornasiero
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
- Present address:
Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE)KAUSTThuwalMakkahSaudi Arabia
| | - Emanuele De Paoli
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
| | - Michele Morgante
- Dipartimento di Scienze AgroalimentariAmbientali e Animali (DI4A)UdineI‐33100Italy
- Istituto di Genomica ApplicataUdineI‐33100Italy
| |
Collapse
|
30
|
The Underlying Nature of Epigenetic Variation: Origin, Establishment, and Regulatory Function of Plant Epialleles. Int J Mol Sci 2021; 22:ijms22168618. [PMID: 34445323 PMCID: PMC8395315 DOI: 10.3390/ijms22168618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
In plants, the gene expression and associated phenotypes can be modulated by dynamic changes in DNA methylation, occasionally being fixed in certain genomic loci and inherited stably as epialleles. Epiallelic variations in a population can occur as methylation changes at an individual cytosine position, methylation changes within a stretch of genomic regions, and chromatin changes in certain loci. Here, we focus on methylated regions, since it is unclear whether variations at individual methylated cytosines can serve any regulatory function, and the evidence for heritable chromatin changes independent of genetic changes is limited. While DNA methylation is known to affect and regulate wide arrays of plant phenotypes, most epialleles in the form of methylated regions have not been assigned any biological function. Here, we review how epialleles can be established in plants, serve a regulatory function, and are involved in adaptive processes. Recent studies suggest that most epialleles occur as byproducts of genetic variations, mainly from structural variants and Transposable Element (TE) activation. Nevertheless, epialleles that occur spontaneously independent of any genetic variations have also been described across different plant species. Here, we discuss how epialleles that are dependent and independent of genetic architecture are stabilized in the plant genome and how methylation can regulate a transcription relative to its genomic location.
Collapse
|
31
|
Cervantes-Pérez SA, Yong-Villalobos L, Florez-Zapata NMV, Oropeza-Aburto A, Rico-Reséndiz F, Amasende-Morales I, Lan T, Martínez O, Vielle-Calzada JP, Albert VA, Herrera-Estrella L. Atypical DNA methylation, sRNA-size distribution, and female gametogenesis in Utricularia gibba. Sci Rep 2021; 11:15725. [PMID: 34344949 PMCID: PMC8333044 DOI: 10.1038/s41598-021-95054-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
The most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide DNA methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in small plant genomes with reduced noncoding regions. Because of the small length of intergenic regions in the compact genome of the carnivorous plant Utricularia gibba, we investigated its repertoire of noncoding RNA and DNA methylation landscape. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of small RNAs and reduced global DNA methylation levels. DNA methylation was determined using a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, some key genes involved in the RdDM pathway may not represented by compensatory paralogs or comprise truncated proteins, for example, U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs, has lost key domains required for complete function. Our results unveil that a truncated DCL3 correlates with a decreased proportion of 24-nt small-interfering RNAs, low DNA methylation levels, and developmental abnormalities during female gametogenesis in U. gibba. Alterations in female gametogenesis are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of RdDM pathway in compact genomes.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Lenin Yong-Villalobos
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico.,Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nathalia M V Florez-Zapata
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico.,Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar (Circunvalar) #16-20, Bogotá, DC, 111311, Colombia
| | - Araceli Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Félix Rico-Reséndiz
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Itzel Amasende-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Octavio Martínez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Jean Philippe Vielle-Calzada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico. .,Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
32
|
Yao N, Schmitz RJ, Johannes F. Epimutations Define a Fast-Ticking Molecular Clock in Plants. Trends Genet 2021; 37:699-710. [PMID: 34016450 PMCID: PMC8282728 DOI: 10.1016/j.tig.2021.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Stochastic gains and losses of DNA methylation at CG dinucleotides are a frequent occurrence in plants. These spontaneous 'epimutations' occur at a rate that is 100 000 times higher than the genetic mutation rate, are effectively neutral at the genome-wide scale, and are stably inherited across mitotic and meiotic cell divisions. Mathematical models have been extraordinarily successful at describing how epimutations accumulate in plant genomes over time, making this process one of the most predictable epigenetic phenomena to date. Here, we propose that their high rate and effective neutrality make epimutations a powerful new molecular clock for timing evolutionary events of the recent past and for age dating of long-lived perennials such as trees.
Collapse
Affiliation(s)
- Nan Yao
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, USA; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Frank Johannes
- Institute for Advanced Study, Technical University of Munich, Garching, Germany; Population Epigenetics and Epigenomics, Technical University of Munich, Freising, Germany.
| |
Collapse
|
33
|
Papareddy RK, Páldi K, Smolka AD, Hüther P, Becker C, Nodine MD. Repression of CHROMOMETHYLASE 3 prevents epigenetic collateral damage in Arabidopsis. eLife 2021; 10:e69396. [PMID: 34296996 PMCID: PMC8352596 DOI: 10.7554/elife.69396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
DNA methylation has evolved to silence mutagenic transposable elements (TEs) while typically avoiding the targeting of endogenous genes. Mechanisms that prevent DNA methyltransferases from ectopically methylating genes are expected to be of prime importance during periods of dynamic cell cycle activities including plant embryogenesis. However, virtually nothing is known regarding how DNA methyltransferase activities are precisely regulated during embryogenesis to prevent the induction of potentially deleterious and mitotically stable genic epimutations. Here, we report that microRNA-mediated repression of CHROMOMETHYLASE 3 (CMT3) and the chromatin features that CMT3 prefers help prevent ectopic methylation of thousands of genes during embryogenesis that can persist for weeks afterwards. Our results are also consistent with CMT3-induced ectopic methylation of promoters or bodies of genes undergoing transcriptional activation reducing their expression. Therefore, the repression of CMT3 prevents epigenetic collateral damage on endogenous genes. We also provide a model that may help reconcile conflicting viewpoints regarding the functions of gene-body methylation that occurs in nearly all flowering plants.
Collapse
Affiliation(s)
- Ranjith K Papareddy
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
| | - Katalin Páldi
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
| | - Anna D Smolka
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
| | - Patrick Hüther
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
- Genetics, LMU Biocenter, Ludwig-Maximilians UniversityMartinsriedGermany
| | - Claude Becker
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
- Genetics, LMU Biocenter, Ludwig-Maximilians UniversityMartinsriedGermany
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
- Laboratory of Molecular Biology, Wageningen UniversityWageningenNetherlands
| |
Collapse
|
34
|
Ritter EJ, Niederhuth CE. Intertwined evolution of plant epigenomes and genomes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101990. [PMID: 33445143 DOI: 10.1016/j.pbi.2020.101990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
DNA methylation is found across eukaryotes; however, plants have evolved patterns and pathways of DNA methylation that are distinct from animals and fungi. DNA methylation shapes the evolution of genomes through its direct roles in transposon silencing, gene expression, genome stability, and its impact on mutation rates. In return the diversity of DNA methylation across species is shaped by genome sequence evolution. Extensive diversification of key DNA methylation pathways has continued in plants through gene duplication and loss. Meanwhile, frequent movement of transposons has altered local DNA methylation patterns and the genes affected. Only recently has the diversity and evolutionary history of plant DNA methylation become evident with the availability of increasing genomic and epigenomic data. However, much remains unresolved regarding the evolutionary forces that have shaped the dynamics of the complex and intertwined history of plant genome and epigenome evolution.
Collapse
Affiliation(s)
- Eleanore J Ritter
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; AgBioResearch, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
35
|
Genome-Wide Variation in DNA Methylation Predicts Variation in Leaf Traits in an Ecosystem-Foundational Oak Species. FORESTS 2021. [DOI: 10.3390/f12050569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epigenetic modifications such as DNA methylation are a potential mechanism for trees to respond to changing environments. However, it remains controversial the extent to which DNA methylation impacts ecologically important traits that influence fitness. In this study, we used reduced-representation bisulfite sequencing to associate genomic and epigenomic variation with seven phenotypic traits related to growth, leaf function, and disease susceptibility in 160 valley oak (Quercus lobata) saplings planted across two common gardens in California. We found that DNA methylation was associated with a significant fraction of phenotypic variance in plant height, leaf lobedness, powdery mildew infection, and trichome density. Two of the seven traits were significantly associated with DNA methylation in the CG context, three traits were significantly associated with CHG methylation, and two traits were significantly associated with CHH methylation. Notably, controlling for genomic variation in SNPs generally reduced the amount of trait variation explained by DNA methylation. Our results suggest that DNA methylation may serve as a useful biomarker to predict phenotypic variation in trees, though it remains unclear the degree to which DNA methylation is a causal mechanism driving phenotypic variation in forest tree species.
Collapse
|
36
|
Wu J, Lin D, Jiu L, Liu Q, Gu Z, Luo J, Zhao Y. Exploring epigenetic biomarkers of universal specificities and commonalities among pan-cancer cohorts in The Cancer Genome Atlas. Epigenomics 2021; 13:599-612. [PMID: 33787302 DOI: 10.2217/epi-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the mechanism of cancer by employing a comprehensive analysis of DNA methylation patterns and variations among pan-cancer cohorts. Materials & methods: This research focused on the discovery of universally specific or common biomarkers by mathematical statistics and machine learning methods in The Cancer Genome Atlas. Results: We found 138 differently methylated CpGs (DMCs) with a common methylation trend and eight common differently methylated regions in different cancer cohorts. Additionally, we found 99 DMCs to distinguish 32 different cancer cohorts in random forest analysis because of the specificity mechanism, but each DMC still had high instability. Conclusion: Our results could facilitate the development of biomarkers that are universally specific and common features across pan-cancer cohorts.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Deng Lin
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Liandi Jiu
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Qi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Zhenglong Gu
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China.,Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Junjie Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
37
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
38
|
Papareddy RK, Nodine MD. Plant Epigenetics: Propelling DNA Methylation Variation across the Cell Cycle. Curr Biol 2021; 31:R129-R131. [PMID: 33561411 DOI: 10.1016/j.cub.2020.11.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DNA methylation is reconfigured during male reproduction in plants, but little is known regarding the mechanisms controlling these epigenetic dynamics. New research highlights how the cell cycle can influence DNA methylation dynamics observed during male gametogenesis and may induce epigenetic variation in clonally propagated plants.
Collapse
Affiliation(s)
- Ranjith K Papareddy
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
39
|
Srikant T, Drost HG. How Stress Facilitates Phenotypic Innovation Through Epigenetic Diversity. FRONTIERS IN PLANT SCIENCE 2021; 11:606800. [PMID: 33519857 PMCID: PMC7843580 DOI: 10.3389/fpls.2020.606800] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/16/2020] [Indexed: 05/14/2023]
Abstract
Climate adaptation through phenotypic innovation will become the main challenge for plants during global warming. Plants exhibit a plethora of mechanisms to achieve environmental and developmental plasticity by inducing dynamic alterations of gene regulation and by maximizing natural variation through large population sizes. While successful over long evolutionary time scales, most of these mechanisms lack the short-term adaptive responsiveness that global warming will require. Here, we review our current understanding of the epigenetic regulation of plant genomes, with a focus on stress-response mechanisms and transgenerational inheritance. Field and laboratory-scale experiments on plants exposed to stress have revealed a multitude of temporally controlled, mechanistic strategies integrating both genetic and epigenetic changes on the genome level. We analyze inter- and intra-species population diversity to discuss how methylome differences and transposon activation can be harnessed for short-term adaptive efforts to shape co-evolving traits in response to qualitatively new climate conditions and environmental stress.
Collapse
Affiliation(s)
| | - Hajk-Georg Drost
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
40
|
Quantitative Epigenetics: A New Avenue for Crop Improvement. EPIGENOMES 2020; 4:epigenomes4040025. [PMID: 34968304 PMCID: PMC8594725 DOI: 10.3390/epigenomes4040025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Plant breeding conventionally depends on genetic variability available in a species to improve a particular trait in the crop. However, epigenetic diversity may provide an additional tier of variation. The recent advent of epigenome technologies has elucidated the role of epigenetic variation in shaping phenotype. Furthermore, the development of epigenetic recombinant inbred lines (epi-RILs) in model species such as Arabidopsis has enabled accurate genetic analysis of epigenetic variation. Subsequently, mapping of epigenetic quantitative trait loci (epiQTL) allowed association between epialleles and phenotypic traits. Likewise, epigenome-wide association study (EWAS) and epi-genotyping by sequencing (epi-GBS) have revolutionized the field of epigenetics research in plants. Thus, quantitative epigenetics provides ample opportunities to dissect the role of epigenetic variation in trait regulation, which can be eventually utilized in crop improvement programs. Moreover, locus-specific manipulation of DNA methylation by epigenome-editing tools such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) can potentially facilitate epigenetic based molecular breeding of important crop plants.
Collapse
|
41
|
Hofmeister BT, Denkena J, Colomé-Tatché M, Shahryary Y, Hazarika R, Grimwood J, Mamidi S, Jenkins J, Grabowski PP, Sreedasyam A, Shu S, Barry K, Lail K, Adam C, Lipzen A, Sorek R, Kudrna D, Talag J, Wing R, Hall DW, Jacobsen D, Tuskan GA, Schmutz J, Johannes F, Schmitz RJ. A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa. Genome Biol 2020; 21:259. [PMID: 33023654 PMCID: PMC7539514 DOI: 10.1186/s13059-020-02162-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Plants can transmit somatic mutations and epimutations to offspring, which in turn can affect fitness. Knowledge of the rate at which these variations arise is necessary to understand how plant development contributes to local adaption in an ecoevolutionary context, particularly in long-lived perennials. RESULTS Here, we generate a new high-quality reference genome from the oldest branch of a wild Populus trichocarpa tree with two dominant stems which have been evolving independently for 330 years. By sampling multiple, age-estimated branches of this tree, we use a multi-omics approach to quantify age-related somatic changes at the genetic, epigenetic, and transcriptional level. We show that the per-year somatic mutation and epimutation rates are lower than in annuals and that transcriptional variation is mainly independent of age divergence and cytosine methylation. Furthermore, a detailed analysis of the somatic epimutation spectrum indicates that transgenerationally heritable epimutations originate mainly from DNA methylation maintenance errors during mitotic rather than during meiotic cell divisions. CONCLUSION Taken together, our study provides unprecedented insights into the origin of nucleotide and functional variation in a long-lived perennial plant.
Collapse
Affiliation(s)
| | - Johanna Denkena
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Maria Colomé-Tatché
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yadollah Shahryary
- Department of Plant Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, Freising, Germany
| | - Rashmi Hazarika
- Department of Plant Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, Freising, Germany
- Institute for Advanced Study (IAS), Technical University of Munich, Lichtenbergstr. 2a, Garching, Germany
| | - Jane Grimwood
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Sujan Mamidi
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Jerry Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | | | | | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Kathleen Lail
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Catherine Adam
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dave Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Rod Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - David W Hall
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Daniel Jacobsen
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gerald A Tuskan
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Frank Johannes
- Department of Plant Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, Freising, Germany.
- Institute for Advanced Study (IAS), Technical University of Munich, Lichtenbergstr. 2a, Garching, Germany.
| | - Robert J Schmitz
- Institute for Advanced Study (IAS), Technical University of Munich, Lichtenbergstr. 2a, Garching, Germany.
- Department of Genetics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
42
|
Natural Variation in Plant Pluripotency and Regeneration. PLANTS 2020; 9:plants9101261. [PMID: 32987766 PMCID: PMC7598583 DOI: 10.3390/plants9101261] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Plant regeneration is essential for survival upon wounding and is, hence, considered to be a strong natural selective trait. The capacity of plant tissues to regenerate in vitro, however, varies substantially between and within species and depends on the applied incubation conditions. Insight into the genetic factors underlying this variation may help to improve numerous biotechnological applications that exploit in vitro regeneration. Here, we review the state of the art on the molecular framework of de novo shoot organogenesis from root explants in Arabidopsis, which is a complex process controlled by multiple quantitative trait loci of various effect sizes. Two types of factors are distinguished that contribute to natural regenerative variation: master regulators that are conserved in all experimental systems (e.g., WUSCHEL and related homeobox genes) and conditional regulators whose relative role depends on the explant and the incubation settings. We further elaborate on epigenetic variation and protocol variables that likely contribute to differential explant responsivity within species and conclude that in vitro shoot organogenesis occurs at the intersection between (epi) genetics, endogenous hormone levels, and environmental influences.
Collapse
|
43
|
Dugé de Bernonville T, Maury S, Delaunay A, Daviaud C, Chaparro C, Tost J, O’Connor SE, Courdavault V. Developmental Methylome of the Medicinal Plant Catharanthus roseus Unravels the Tissue-Specific Control of the Monoterpene Indole Alkaloid Pathway by DNA Methylation. Int J Mol Sci 2020; 21:E6028. [PMID: 32825765 PMCID: PMC7503379 DOI: 10.3390/ijms21176028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Catharanthus roseus produces a wide spectrum of monoterpene indole alkaloids (MIAs). MIA biosynthesis requires a tightly coordinated pathway involving more than 30 enzymatic steps that are spatio-temporally and environmentally regulated so that some MIAs specifically accumulate in restricted plant parts. The first regulatory layer involves a complex network of transcription factors from the basic Helix Loop Helix (bHLH) or AP2 families. In the present manuscript, we investigated whether an additional epigenetic layer could control the organ-, developmental- and environmental-specificity of MIA accumulation. We used Whole-Genome Bisulfite Sequencing (WGBS) together with RNA-seq to identify differentially methylated and expressed genes among nine samples reflecting different plant organs and experimental conditions. Tissue specific gene expression was associated with specific methylation signatures depending on cytosine contexts and gene parts. Some genes encoding key enzymatic steps from the MIA pathway were found to be simultaneously differentially expressed and methylated in agreement with the corresponding MIA accumulation. In addition, we found that transcription factors were strikingly concerned by DNA methylation variations. Altogether, our integrative analysis supports an epigenetic regulation of specialized metabolisms in plants and more likely targeting transcription factors which in turn may control the expression of enzyme-encoding genes.
Collapse
Affiliation(s)
- Thomas Dugé de Bernonville
- Faculté des Sciences et Techniques, Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France;
| | - Stéphane Maury
- INRA, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, F-45067 Orléans, France;
| | - Alain Delaunay
- INRA, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, F-45067 Orléans, France;
| | - Christian Daviaud
- Laboratoire Epigénétique et Environnement, LEE, Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, F-92265 Evry, France; (C.D.); (J.T.)
| | - Cristian Chaparro
- CNRS, IFREMER, UMR5244 Interactions Hôtes-Pathogènes-Environnments, Université de Montpellier, Université de Perpignan Via Domitia, F-66860 Perpignan, France;
| | - Jörg Tost
- Laboratoire Epigénétique et Environnement, LEE, Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, F-92265 Evry, France; (C.D.); (J.T.)
| | - Sarah Ellen O’Connor
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, 07745 Jena, Germany;
| | - Vincent Courdavault
- Faculté des Sciences et Techniques, Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, F-37200 Tours, France;
| |
Collapse
|
44
|
Williams BP, Gehring M. Principles of Epigenetic Homeostasis Shared Between Flowering Plants and Mammals. Trends Genet 2020; 36:751-763. [PMID: 32711945 DOI: 10.1016/j.tig.2020.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
In diverse eukaryotes, epigenetic information such as DNA methylation is stably propagated over many cell divisions and generations, and can remain the same over thousands or millions of years. However, this stability is the product of dynamic processes that add and remove DNA methylation by specialized enzymatic pathways. The activities of these dynamic pathways must therefore be finely orchestrated in order to ensure that the DNA methylation landscape is maintained with high fidelity - a concept we term epigenetic homeostasis. In this review, we summarize recent insights into epigenetic homeostasis mechanisms in flowering plants and mammals, highlighting analogous mechanisms that have independently evolved to achieve the same goal of stabilizing the epigenetic landscape.
Collapse
Affiliation(s)
- Ben P Williams
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, MA 02142, USA.
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|