1
|
Kirupakaran A, van den Boom J, Blueggel M, Beuck C, Niemeyer F, Hayduk M, Balszuweit J, Bayer P, Voskuhl J, Meyer H, Schrader T. Molecular Tweezers Block the Functional Pore of a Protein Machine. J Am Chem Soc 2025; 147:16836-16849. [PMID: 40354241 PMCID: PMC12100656 DOI: 10.1021/jacs.4c15288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 05/14/2025]
Abstract
We present symmetric multivalent tweezers as the first class of supramolecular elements designed to cover and functionally block a protein pore. As a model, we chose the enzyme p97, a hexameric AAA-ATPase that unfolds or segregates substrate proteins by threading them through a pore and channel at the center of the symmetric p97 hexamer fueled by ATP hydrolysis. In a rational design approach, we developed a new class of p97 inhibitors, guided by molecular modeling. These dock onto lysine residues at the entry of the pore via appropriately positioned molecular tweezers. Ligand binding was accompanied by induction of fluorescence of the built-in binding sensitive luminophores which served as a sensor for affinity determination. We further confirmed specific interaction with p97 as well as concomitant inhibition of ATPase activity and protein substrate unfolding using an array of biophysical methods and state-of-the art biochemical assays. Specific binding was also validated by mutagenesis, demonstrating that inhibition of p97 function was mediated by blocking the pore entrance. Especially C3-symmetric multivalent tweezers potently inhibited ATPase activity and protein substrate processing consistent with the symmetry of the docking site. Our data independently confirm substrate threading as a mechanism for protein unfolding by p97 and highlight multivalent tweezers as a supramolecular strategy to target pores in various proteins. Since p97 and related protein machines are vital for protein quality control and cell survival, the new pore binders may open a new approach to combat diseases and be employed in drug discovery.
Collapse
Affiliation(s)
- Abbna Kirupakaran
- Faculty
of Chemistry, University of Duisburg-Essen, 45141Essen, Germany
| | | | - Mike Blueggel
- Faculty
of Biology, University of Duisburg-Essen, 45141Essen, Germany
| | - Christine Beuck
- Faculty
of Biology, University of Duisburg-Essen, 45141Essen, Germany
| | - Felix Niemeyer
- Faculty
of Chemistry, University of Duisburg-Essen, 45141Essen, Germany
| | - Matthias Hayduk
- Faculty
of Chemistry, University of Duisburg-Essen, 45141Essen, Germany
| | - Jan Balszuweit
- Faculty
of Chemistry, University of Duisburg-Essen, 45141Essen, Germany
| | - Peter Bayer
- Faculty
of Biology, University of Duisburg-Essen, 45141Essen, Germany
| | - Jens Voskuhl
- Faculty
of Chemistry, University of Duisburg-Essen, 45141Essen, Germany
| | - Hemmo Meyer
- Faculty
of Biology, University of Duisburg-Essen, 45141Essen, Germany
| | - Thomas Schrader
- Faculty
of Chemistry, University of Duisburg-Essen, 45141Essen, Germany
| |
Collapse
|
2
|
Goncalves MM, Uday AB, Forrester TJB, Currie SQW, Kim AS, Feng Y, Jitkova Y, Velyvis A, Harkness RW, Kimber MS, Schimmer AD, Zeytuni N, Vahidi S. Mechanism of allosteric activation in human mitochondrial ClpP protease. Proc Natl Acad Sci U S A 2025; 122:e2419881122. [PMID: 40232800 PMCID: PMC12036999 DOI: 10.1073/pnas.2419881122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Human ClpP protease contributes to mitochondrial protein quality control by degrading misfolded proteins. ClpP is overexpressed in cancers such as acute myeloid leukemia (AML), where its inhibition leads to the accumulation of damaged respiratory chain subunits and cell death. Conversely, hyperactivating ClpP with small-molecule activators, such as the recently discovered ONC201, disrupts mitochondrial protein degradation and impairs respiration in cancer cells. Despite its critical role in human health, the mechanism underlying the structural and functional properties of human ClpP remains elusive. Notably, human ClpP is paradoxically activated by active-site inhibitors. All available structures of human ClpP published to date are in the inactive compact or compressed states, surprisingly even when ClpP is bound to an activator molecule such as ONC201. Here, we present structures of human mitochondrial ClpP in the active extended state, including a pair of structures where ClpP is bound to an active-site inhibitor. We demonstrate that amino acid substitutions in the handle region (A192E and E196R) recreate a conserved salt bridge found in bacterial ClpP, stabilizing the extended active state and significantly enhancing ClpP activity. We elucidate the ClpP activation mechanism, highlighting a hormetic effect where substoichiometric inhibitor binding triggers an allosteric transition that drives ClpP into its active extended state. Our findings link the conformational dynamics of ClpP to its catalytic function and provide high-resolution structures for the rational design of potent and specific ClpP inhibitors, with implications for targeting AML and other disorders with ClpP involvement.
Collapse
Affiliation(s)
- Monica M. Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Adwaith B. Uday
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
| | - Taylor J. B. Forrester
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
| | - S. Quinn W. Currie
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Angelina S. Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Robert W. Harkness
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Matthew S. Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
- Centre de Recherche en Biologie Structurale, Montréal, QCH3G 0B1, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
3
|
Zhou B, Gao Y, Zhao H, Liu B, Zhang H, Fang C, Yuan H, Wang J, Li Z, Zhao Y, Huang X, Wang X, Oliveira ASF, Spencer J, Mulholland AJ, Burston SG, Hu J, Su N, Chen X, He J, Zhang T, Xiong X. Structural Insights into Bortezomib-Induced Activation of the Caseinolytic Chaperone-Protease System in Mycobacterium tuberculosis. Nat Commun 2025; 16:3466. [PMID: 40216758 PMCID: PMC11992174 DOI: 10.1038/s41467-025-58410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
The caseinolytic protease (Clp) system has recently emerged as a promising anti-tuberculosis target. The anti-cancer drug bortezomib exhibits potent anti-mycobacterial activity and binds to Mycobacterium tuberculosis (Mtb) Clp protease complexes. We determine cryo-EM structures of Mtb ClpP1P2, ClpC1P1P2 and ClpXP1P2 complexes bound to bortezomib in different conformations. Structural and biochemical data indicate that sub-stoichiometric binding by bortezomib to the protease active sites orthosterically activates the MtbClpP1P2 complex. Bortezomib activation of MtbClpP1P2 induces structural changes promoting the recruitment of the chaperone-unfoldases, MtbClpC1 or MtbClpX, facilitating holoenzyme formation. The structures of the MtbClpC1P1P2 holoenzyme indicate that MtbClpC1 motion, induced by ATP rebinding at the MtbClpC1 spiral seam, translocates the substrate. In the MtbClpXP1P2 holoenzyme structure, we identify a specialized substrate channel gating mechanism involving the MtbClpX pore-2 loop and MtbClpP2 N-terminal domains. Our results provide insights into the intricate regulation of the Mtb Clp system and suggest that bortezomib can disrupt this regulation by sub-stoichiometric binding at the Mtb Clp protease sites.
Collapse
Affiliation(s)
- Biao Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, China
- Graduate School of Guangzhou Medical University, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heyu Zhao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Han Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yuan
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zimu Li
- Graduate School of Guangzhou Medical University, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Zhao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Huang
- Graduate School of Guangzhou Medical University, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiyue Wang
- Guangxi Medical University Laboratory Animal Center, Nanning, China
| | - A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Steven G Burston
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, China
| | - Ning Su
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, China.
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
4
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
5
|
Dow LF, Pathirage R, Erickson HE, Amani E, Ronning DR, Trippier PC. Synthesis and biological characterization of a 17β hydroxysteroid dehydrogenase type 10 (17β-HSD10) inhibitor. RSC Med Chem 2024:d4md00733f. [PMID: 39618963 PMCID: PMC11605429 DOI: 10.1039/d4md00733f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Alzheimer's disease (AD) is estimated to affect over 55 million people across the world. Small molecule treatment options are limited to symptom management with no impact on disease progression. The need for new protein targets and small molecule hit compounds is unmet and urgent. Hydroxysteroid 17-β dehydrogenase type 10 (17β-HSD10) is a mitochondrial enzyme known to bind amyloid beta, a hallmark of AD, and potentiate its toxicity to neurons. Identification of small molecules capable of interacting with 17β-HSD10 may drive drug discovery efforts for AD. The screening compound BCC0100281 (1), was previously identified as an inhibitor of 17β-HSD10. Herein we report the first synthetic access to the hit compound following a convergent pathway starting from simple heterocyclic building blocks. The compound was found to be toxic to 'neuron-like' cells, specifically those of neuroblastoma origin, providing a potential hit compound for cancer drug discovery, wherein the protein is known to be overexpressed. However, assay of synthetic intermediates identified novel scaffolds with effect to rescue amyloid beta-induced cytotoxicity, showcasing the power of organic synthesis and medicinal chemistry to optimize hit compounds.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska 68198 USA
| | - Rasangi Pathirage
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska 68198 USA
| | - Helen E Erickson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska 68198 USA
| | - Edrees Amani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska 68198 USA
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska 68198 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha Nebraska 68198 USA
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center Omaha Nebraska 68198 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska 68198 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha Nebraska 68198 USA
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center Omaha Nebraska 68198 USA
| |
Collapse
|
6
|
Beaufort N, Ingendahl L, Merdanovic M, Schmidt A, Podlesainski D, Richter T, Neumann T, Kuszner M, Vetter IR, Stege P, Burston SG, Filipovic A, Ruiz-Blanco YB, Bravo-Rodriguez K, Mieres-Perez J, Beuck C, Uebel S, Zobawa M, Schillinger J, Malik R, Todorov-Völgyi K, Rey J, Roberti A, Hagemeier B, Wefers B, Müller SA, Wurst W, Sanchez-Garcia E, Zimmermann A, Hu XY, Clausen T, Huber R, Lichtenthaler SF, Schmuck C, Giese M, Kaiser M, Ehrmann M, Dichgans M. Rational correction of pathogenic conformational defects in HTRA1. Nat Commun 2024; 15:5944. [PMID: 39013852 PMCID: PMC11252331 DOI: 10.1038/s41467-024-49982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Linda Ingendahl
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Melisa Merdanovic
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU Munich, Munich, Germany
| | - David Podlesainski
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Tim Richter
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Thorben Neumann
- Organic Chemistry, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Michael Kuszner
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Ingrid R Vetter
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Patricia Stege
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Steven G Burston
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, UK
| | - Anto Filipovic
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Yasser B Ruiz-Blanco
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Kenny Bravo-Rodriguez
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Joel Mieres-Perez
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Christine Beuck
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Stephan Uebel
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Monika Zobawa
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Jasmin Schillinger
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katalin Todorov-Völgyi
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Juliana Rey
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Annabell Roberti
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Birte Hagemeier
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Technische Universität München-Weihenstephan, Freising, Germany
| | - Elsa Sanchez-Garcia
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Alexander Zimmermann
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Xiao-Yu Hu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Robert Huber
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carsten Schmuck
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Michael Giese
- Organic Chemistry, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
7
|
Jose AM. Heritable epigenetic changes are constrained by the dynamics of regulatory architectures. eLife 2024; 12:RP92093. [PMID: 38717010 PMCID: PMC11078544 DOI: 10.7554/elife.92093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.
Collapse
|
8
|
Riley MJ, Mitchell CC, Ernst SE, Taylor EB, Welsh MJ. A model for stimulation of enzyme activity by a competitive inhibitor based on the interaction of terazosin and phosphoglycerate kinase 1. Proc Natl Acad Sci U S A 2024; 121:e2318956121. [PMID: 38377207 PMCID: PMC10907273 DOI: 10.1073/pnas.2318956121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
The drug terazosin (TZ) binds to and can enhance the activity of the glycolytic enzyme phosphoglycerate kinase 1 (PGK1) and can increase ATP levels. That finding prompted studies of TZ in Parkinson's disease (PD) in which decreased neuronal energy metabolism is a hallmark feature. TZ was neuroprotective in cell-based and animal PD models and in large epidemiological studies of humans. However, how TZ might increase PGK1 activity has remained a perplexing question because structural data revealed that the site of TZ binding to PGK1 overlaps with the site of substrate binding, predicting that TZ would competitively inhibit activity. Functional data also indicate that TZ is a competitive inhibitor. To explore the paradoxical observation of a competitive inhibitor increasing enzyme activity under some conditions, we developed a mass action model of TZ and PGK1 interactions using published data on PGK1 kinetics and the effect of varying TZ concentrations. The model indicated that TZ-binding introduces a bypass pathway that accelerates product release. At low concentrations, TZ binding circumvents slow product release and increases the rate of enzymatic phosphotransfer. However, at high concentrations, TZ inhibits PGK1 activity. The model explains stimulation of enzyme activity by a competitive inhibitor and the biphasic dose-response relationship for TZ and PGK1 activity. By providing a plausible mechanism for interactions between TZ and PGK1, these findings may aid development of TZ or other agents as potential therapeutics for neurodegenerative diseases. The results may also have implications for agents that interact with the active site of other enzymes.
Collapse
Affiliation(s)
- Mitchell J. Riley
- Department of Mathematics, University of Iowa, Iowa City, IA52242
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | | | - Sarah E. Ernst
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
- HHMI, University of Iowa, Iowa City, IA52242
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
- HHMI, University of Iowa, Iowa City, IA52242
- Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA52242
| |
Collapse
|
9
|
Luo H, Qu X, Deng X, He L, Wu Y, Liu Y, He D, Yin J, Wang B, Gan F, Tang B, Tang XF. HtrAs are essential for the survival of the haloarchaeon Natrinema gari J7-2 in response to heat, high salinity, and toxic substances. Appl Environ Microbiol 2024; 90:e0204823. [PMID: 38289131 PMCID: PMC10880668 DOI: 10.1128/aem.02048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/24/2023] [Indexed: 02/22/2024] Open
Abstract
Bacterial and eukaryotic HtrAs can act as an extracytoplasmic protein quality control (PQC) system to help cells survive in stress conditions, but the functions of archaeal HtrAs remain unknown. Particularly, haloarchaea route most secretory proteins to the Tat pathway, enabling them to fold properly in well-controlled cytoplasm with cytosolic PQC systems before secretion. It is unclear whether HtrAs are required for haloarchaeal survival and stress response. The haloarchaeon Natrinema gari J7-2 encodes three Tat signal peptide-bearing HtrAs (NgHtrA, NgHtrB, and NgHtrC), and the signal peptides of NgHtrA and NgHtrC contain a lipobox. Here, the in vitro analysis reveals that the three HtrAs show different profiles of temperature-, salinity-, and metal ion-dependent proteolytic activities and could exhibit chaperone-like activities to prevent the aggregation of reduced lysozyme when their proteolytic activities are inhibited at low temperatures or the active site is disrupted. The gene deletion and complementation assays reveal that NgHtrA and NgHtrC are essential for the survival of strain J7-2 at elevated temperature and/or high salinity and contribute to the resistance of this haloarchaeon to zinc and inhibitory substances generated from tryptone. Mutational analysis shows that the lipobox mediates membrane anchoring of NgHtrA or NgHtrC, and both the membrane-anchored and free extracellular forms of the two enzymes are involved in the stress resistance of strain J7-2, depending on the stress conditions. Deletion of the gene encoding NgHtrB in strain J7-2 causes no obvious growth defect, but NgHtrB can functionally substitute for NgHtrA or NgHtrC under some conditions.IMPORTANCEHtrA-mediated protein quality control plays an important role in the removal of aberrant proteins in the extracytoplasmic space of living cells, and the action mechanisms of HtrAs have been extensively studied in bacteria and eukaryotes; however, information about the function of archaeal HtrAs is scarce. Our results demonstrate that three HtrAs of the haloarchaeon Natrinema gari J7-2 possess both proteolytic and chaperone-like activities, confirming that the bifunctional nature of HtrAs is conserved across all three domains of life. Moreover, we found that NgHtrA and NgHtrC are essential for the survival of strain J7-2 under stress conditions, while NgHtrB can serve as a substitute for the other two HtrAs under certain circumstances. This study provides the first biochemical and genetic evidence of the importance of HtrAs for the survival of haloarchaea in response to stresses.
Collapse
Affiliation(s)
- Hongyi Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoyi Qu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xi Deng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liping He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingxue Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| | - Xiao-Feng Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education and Hubei Province, Wuhan, China
| |
Collapse
|
10
|
Fueyo-González F, Vilanova G, Ningoo M, Marjanovic N, González-Vera JA, Orte Á, Fribourg M. Small-molecule TIP60 inhibitors enhance regulatory T cell induction through TIP60-P300 acetylation crosstalk. iScience 2023; 26:108491. [PMID: 38094248 PMCID: PMC10716589 DOI: 10.1016/j.isci.2023.108491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/12/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Foxp3 acetylation is essential to regulatory T (Treg) cell stability and function, but pharmacologically increasing it remains an unmet challenge. Here, we report that small-molecule compounds that inhibit TIP60, an acetyltransferase known to acetylate Foxp3, unexpectedly increase Foxp3 acetylation and Treg induction. Utilizing a dual experimental/computational approach combined with a newly developed FRET-based methodology compatible with flow cytometry to measure Foxp3 acetylation, we unraveled the mechanism of action of these small-molecule compounds in murine and human Treg induction cell cultures. We demonstrate that at low-mid concentrations they activate TIP60 to acetylate P300, a different acetyltransferase, which in turn increases Foxp3 acetylation, thereby enhancing Treg cell induction. These results reveal a potential therapeutic target relevant to autoimmunity and transplant.
Collapse
Affiliation(s)
- Francisco Fueyo-González
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guillermo Vilanova
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona Spain
| | - Mehek Ningoo
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nada Marjanovic
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan A. González-Vera
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Ángel Orte
- Deparment of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071 Granada, Spain
| | - Miguel Fribourg
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
11
|
Jose AM. Heritable epigenetic changes are constrained by the dynamics of regulatory architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544138. [PMID: 37333369 PMCID: PMC10274868 DOI: 10.1101/2023.06.07.544138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Such stable changes can (1) alter steady-state levels while preserving the architecture, (2) induce different architectures that persist for many generations, or (3) collapse the entire architecture. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that the evolution of mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of regulatory architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode C. elegans, which range from permanent silencing to recovery from silencing within a few generations and subsequent resistance to silencing. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.
Collapse
|
12
|
Szaruga M, Janssen DA, de Miguel C, Hodgson G, Fatalska A, Pitera AP, Andreeva A, Bertolotti A. Activation of the integrated stress response by inhibitors of its kinases. Nat Commun 2023; 14:5535. [PMID: 37684277 PMCID: PMC10491595 DOI: 10.1038/s41467-023-40823-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α to initiate the integrated stress response (ISR) is a vital signalling event. Protein kinases activating the ISR, including PERK and GCN2, have attracted considerable attention for drug development. Here we find that the widely used ATP-competitive inhibitors of PERK, GSK2656157, GSK2606414 and AMG44, inhibit PERK in the nanomolar range, but surprisingly activate the ISR via GCN2 at micromolar concentrations. Similarly, a PKR inhibitor, C16, also activates GCN2. Conversely, GCN2 inhibitor A92 silences its target but induces the ISR via PERK. These findings are pivotal for understanding ISR biology and its therapeutic manipulations because most preclinical studies used these inhibitors at micromolar concentrations. Reconstitution of ISR activation with recombinant proteins demonstrates that PERK and PKR inhibitors directly activate dimeric GCN2, following a Gaussian activation-inhibition curve, with activation driven by allosterically increasing GCN2 affinity for ATP. The tyrosine kinase inhibitors Neratinib and Dovitinib also activate GCN2 by increasing affinity of GCN2 for ATP. Thus, the mechanism uncovered here might be broadly relevant to ATP-competitive inhibitors and perhaps to other kinases.
Collapse
Affiliation(s)
- Maria Szaruga
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dino A Janssen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claudia de Miguel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Agnieszka Fatalska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aleksandra P Pitera
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
13
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
14
|
Noskova Y, Son O, Tekutyeva L, Balabanova L. Purification and Characterization of a DegP-Type Protease from the Marine Bacterium Cobetia amphilecti KMM 296. Microorganisms 2023; 11:1852. [PMID: 37513024 PMCID: PMC10383082 DOI: 10.3390/microorganisms11071852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
A new member of the DegP-type periplasmic serine endoproteases of the S1C family from the marine bacterium Cobetia amphilecti KMM 296 (CamSP) was expressed in Escherichia coli cells. The calculated molecular weight, number of amino acids, and isoelectric point (pI) of the mature protein CamSP are 69.957 kDa, 666, and 4.84, respectively. The proteolytic activity of the purified recombinant protease CamSP was 2369.4 and 1550.9 U/mg with the use of 1% bovine serum albumin (BSA) and casein as the substrates, respectively. The enzyme CamSP exhibited maximum activity at pH 6.0-6.2, while it was stable over a wide pH range from 5.8 to 8.5. The optimal temperature for the CamSP protease activity was 50 °C. The enzyme required NaCl or KCl at concentrations of 0.3 and 0.5 M, respectively, for its maximum activity. The Michaelis constant (Km) and Vmax for BSA were determined to be 41.7 µg/mL and 0.036 µg/mL min-1, respectively. The metal ions Zn2+, Cu2+, Mn2+, Li2+, Mg2+, and Ca2+ slightly activated CamSP, while the addition of CoCl2 to the incubation mixture resulted in a twofold increase in its protease activity. Ethanol, isopropanol, glycerol, and Triton-X-100 increased the activity of CamSP from two- to four-times. The protease CamSP effectively degraded the wheat flour proteins but had no proteolytic activity towards soybean, corn, and the synthetic substrates, α-benzoyl-Arg-p-nitroanilide (BAPNA) and N-Succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine 4-nitroanilide (SAPNA).
Collapse
Affiliation(s)
- Yulia Noskova
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia
| | - Oksana Son
- Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Liudmila Tekutyeva
- Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Larissa Balabanova
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia
- Advanced Engineering School, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
15
|
Frantz R, Gwozdzinski K, Gisch N, Doijad SP, Hudel M, Wille M, Abu Mraheil M, Schwudke D, Imirzalioglu C, Falgenhauer L, Ehrmann M, Chakraborty T. A Single Residue within the MCR-1 Protein Confers Anticipatory Resilience. Microbiol Spectr 2023; 11:e0359222. [PMID: 37071007 PMCID: PMC10269488 DOI: 10.1128/spectrum.03592-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
The envelope stress response (ESR) of Gram-negative enteric bacteria senses fluctuations in nutrient availability and environmental changes to avert damage and promote survival. It has a protective role toward antimicrobials, but direct interactions between ESR components and antibiotic resistance genes have not been demonstrated. Here, we report interactions between a central regulator of ESR viz., the two-component signal transduction system CpxRA (conjugative pilus expression), and the recently described mobile colistin resistance protein (MCR-1). Purified MCR-1 is specifically cleaved within its highly conserved periplasmic bridge element, which links its N-terminal transmembrane domain with the C-terminal active-site periplasmic domain, by the CpxRA-regulated serine endoprotease DegP. Recombinant strains harboring cleavage site mutations in MCR-1 are either protease resistant or degradation susceptible, with widely differing consequences for colistin resistance. Transfer of the gene encoding a degradation-susceptible mutant to strains that lack either DegP or its regulator CpxRA restores expression and colistin resistance. MCR-1 production in Escherichia coli imposes growth restriction in strains lacking either DegP or CpxRA, effects that are reversed by transactive expression of DegP. Excipient allosteric activation of the DegP protease specifically inhibits growth of isolates carrying mcr-1 plasmids. As CpxRA directly senses acidification, growth of strains at moderately low pH dramatically increases both MCR-1-dependent phosphoethanolamine (PEA) modification of lipid A and colistin resistance levels. Strains expressing MCR-1 are also more resistant to antimicrobial peptides and bile acids. Thus, a single residue external to its active site induces ESR activity to confer resilience in MCR-1-expressing strains to commonly encountered environmental stimuli, such as changes in acidity and antimicrobial peptides. Targeted activation of the nonessential protease DegP can lead to the elimination of transferable colistin resistance in Gram-negative bacteria. IMPORTANCE The global presence of transferable mcr genes in a wide range of Gram-negative bacteria from clinical, veterinary, food, and aquaculture environments is disconcerting. Its success as a transmissible resistance factor remains enigmatic, because its expression imposes fitness costs and imparts only moderate levels of colistin resistance. Here, we show that MCR-1 triggers regulatory components of the envelope stress response, a system that senses fluctuations in nutrient availability and environmental changes, to promote bacterial survival in low pH environments. We identify a single residue within a highly conserved structural element of mcr-1 distal to its catalytic site that modulates resistance activity and triggers the ESR. Using mutational analysis, quantitative lipid A profiling and biochemical assays, we determined that growth in low pH environments dramatically increases colistin resistance levels and promotes resistance to bile acids and antimicrobial peptides. We exploited these findings to develop a targeted approach that eliminates mcr-1 and its plasmid carriers.
Collapse
Affiliation(s)
- Renate Frantz
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Konrad Gwozdzinski
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Swapnil Prakash Doijad
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Martina Hudel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wille
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site: Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Airway Research Center North, Partner Site: Research Center Borstel, Borstel, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
16
|
Dimitrova YN, Gutierrez JA, Huard K. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. RSC Med Chem 2023; 14:22-46. [PMID: 36760737 PMCID: PMC9890894 DOI: 10.1039/d2md00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An arsenal of molecular tools with increasingly diversified mechanisms of action is being developed by the scientific community to enable biological interrogation and pharmaceutical modulation of targets and pathways of ever increasing complexity. While most small molecules interact with the target of interest in a 1 : 1 relationship, a noteworthy number of recent examples were reported to bind in a sub-stoichiometric manner to a homomeric protein complex. This approach requires molecular understanding of the physiologically relevant protein assemblies and in-depth characterization of the compound's mechanism of action. The recent literature examples summarized here were selected to illustrate methods used to identify and characterize molecules with such mechanisms. The concept of one small molecule targeting a homomeric protein assembly is not new but the subject deserves renewed inspection in light of emerging technologies and increasingly diverse target biology, to ensure relevant in vitro systems are used and valuable compounds with potentially novel sub-stoichiometric mechanisms of action aren't overlooked.
Collapse
Affiliation(s)
| | | | - Kim Huard
- Genentech 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
17
|
Gerhardy S, Ultsch M, Tang W, Green E, Holden JK, Li W, Estevez A, Arthur C, Tom I, Rohou A, Kirchhofer D. Allosteric inhibition of HTRA1 activity by a conformational lock mechanism to treat age-related macular degeneration. Nat Commun 2022; 13:5222. [PMID: 36064790 PMCID: PMC9445180 DOI: 10.1038/s41467-022-32760-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
The trimeric serine protease HTRA1 is a genetic risk factor associated with geographic atrophy (GA), a currently untreatable form of age-related macular degeneration. Here, we describe the allosteric inhibition mechanism of HTRA1 by a clinical Fab fragment, currently being evaluated for GA treatment. Using cryo-EM, X-ray crystallography and biochemical assays we identify the exposed LoopA of HTRA1 as the sole Fab epitope, which is approximately 30 Å away from the active site. The cryo-EM structure of the HTRA1:Fab complex in combination with molecular dynamics simulations revealed that Fab binding to LoopA locks HTRA1 in a non-competent conformational state, incapable of supporting catalysis. Moreover, grafting the HTRA1-LoopA epitope onto HTRA2 and HTRA3 transferred the allosteric inhibition mechanism. This suggests a conserved conformational lock mechanism across the HTRA family and a critical role of LoopA for catalysis, which was supported by the reduced activity of HTRA1-3 upon LoopA deletion or perturbation. This study reveals the long-range inhibition mechanism of the clinical Fab and identifies an essential function of the exposed LoopA for activity of HTRA family proteases.
Collapse
Affiliation(s)
- Stefan Gerhardy
- Department of Early Discovery Biochemistry, Genentech Inc., San Francisco, CA, USA
| | - Mark Ultsch
- Department of Structural Biology, Genentech Inc., San Francisco, CA, USA
| | - Wanjian Tang
- Department of Early Discovery Biochemistry, Genentech Inc., San Francisco, CA, USA
| | - Evan Green
- Department of Structural Biology, Genentech Inc., San Francisco, CA, USA
| | - Jeffrey K Holden
- Department of Early Discovery Biochemistry, Genentech Inc., San Francisco, CA, USA
| | - Wei Li
- Department of Early Discovery Biochemistry, Genentech Inc., San Francisco, CA, USA
| | - Alberto Estevez
- Department of Structural Biology, Genentech Inc., San Francisco, CA, USA
| | - Chris Arthur
- Department of Structural Biology, Genentech Inc., San Francisco, CA, USA
| | - Irene Tom
- Department of OMNI Biomarker Development, Genentech Inc., San Francisco, CA, USA
| | - Alexis Rohou
- Department of Structural Biology, Genentech Inc., San Francisco, CA, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., San Francisco, CA, USA.
| |
Collapse
|
18
|
Substoichiometric action of long noncoding RNAs. Nat Cell Biol 2022; 24:608-615. [PMID: 35562482 DOI: 10.1038/s41556-022-00911-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
Low expression levels and stoichiometric imbalances of long noncoding RNAs (lncRNAs) are often used as evidence for their probable lack of function or for limiting the scope of their potential influence. Recent advances in our understanding of the substoichiometric functions of lncRNAs challenge these notions and suggest routes through which unabundant lncRNAs can affect cellular functions and gene regulatory networks.
Collapse
|
19
|
Abstract
SignificanceClassic serine proteases are synthesized as inactive precursors that are proteolytically processed, resulting in irreversible activation. We report an alternative and reversible mechanism of activation that is executed by an inactive protease. This mechanism involves a protein complex between the serine protease HTRA1 and the cysteine protease calpain 2. Surprisingly, activation is restricted as it improves the proteolysis of soluble tau protein but not the dissociation and degradation of its amyloid fibrils, a task that free HTRA1 is efficiently performing. These data exemplify a challenge for protein quality control proteases in the clearing of pathogenic fibrils and suggest a potential for unexpected side effects of chemical modulators targeting PDZ or other domains located at a distance to the active site.
Collapse
|
20
|
Serapian SA, Moroni E, Ferraro M, Colombo G. Atomistic Simulations of the Mechanisms of the Poorly Catalytic Mitochondrial Chaperone Trap1: Insights into the Effects of Structural Asymmetry on Reactivity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Stefano A. Serapian
- Department of Chemistry, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
| | - Elisabetta Moroni
- ″Giulio Natta” Institute of Chemical and Technological Sciences (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Mariarosaria Ferraro
- ″Giulio Natta” Institute of Chemical and Technological Sciences (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Torquato Taramelli 12, 27100 Pavia, Italy
- ″Giulio Natta” Institute of Chemical and Technological Sciences (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| |
Collapse
|
21
|
Computational Design of Novel Allosteric Inhibitors for Plasmodium falciparum DegP. Molecules 2021; 26:molecules26092742. [PMID: 34066964 PMCID: PMC8141111 DOI: 10.3390/molecules26092742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
The serine protease, DegP exhibits proteolytic and chaperone activities, essential for cellular protein quality control and normal cell development in eukaryotes. The P. falciparum DegP is essential for the parasite survival and required to combat the oscillating thermal stress conditions during the infection, protein quality checks and protein homeostasis in the extra-cytoplasmic compartments, thereby establishing it as a potential target for drug development against malaria. Previous studies have shown that diisopropyl fluorophosphate (DFP) and the peptide SPMFKGV inhibit E. coli DegP protease activity. To identify novel potential inhibitors specific to PfDegP allosteric and the catalytic binding sites, we performed a high throughput in silico screening using Malaria Box, Pathogen Box, Maybridge library, ChEMBL library and the library of FDA approved compounds. The screening helped identify five best binders that showed high affinity to PfDegP allosteric (T0873, T2823, T2801, RJC02337, CD00811) and the catalytic binding site (T0078L, T1524, T2328, BTB11534 and 552691). Further, molecular dynamics simulation analysis revealed RJC02337, BTB11534 as the best hits forming a stable complex. WaterMap and electrostatic complementarity were used to evaluate the novel bio-isosteric chemotypes of RJC02337, that led to the identification of 231 chemotypes that exhibited better binding affinity. Further analysis of the top 5 chemotypes, based on better binding affinity, revealed that the addition of electron donors like nitrogen and sulphur to the side chains of butanoate group are more favoured than the backbone of butanoate group. In a nutshell, the present study helps identify novel, potent and Plasmodium specific inhibitors, using high throughput in silico screening and bio-isosteric replacement, which may be experimentally validated.
Collapse
|
22
|
HtrA family proteases of bacterial pathogens: pros and cons for their therapeutic use. Clin Microbiol Infect 2021; 27:559-564. [DOI: 10.1016/j.cmi.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
|