1
|
Arimura Y, Konishi HA, Funabiki H. MagIC-Cryo-EM, structural determination on magnetic beads for scarce macromolecules in heterogeneous samples. eLife 2025; 13:RP103486. [PMID: 40390365 PMCID: PMC12092007 DOI: 10.7554/elife.103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025] Open
Abstract
Cryo-EM single-particle analyses typically require target macromolecule concentration at 0.05~5.0 mg/ml, which is often difficult to achieve. Here, we devise Magnetic Isolation and Concentration (MagIC)-cryo-EM, a technique enabling direct structural analysis of targets captured on magnetic beads, thereby reducing the targets' concentration requirement to <0.0005 mg/mL. Adapting MagIC-cryo-EM to a Chromatin Immunoprecipitation protocol, we characterized structural variations of the linker histone H1.8-associated nucleosomes that were isolated from interphase and metaphase chromosomes in Xenopus egg extract. Combining Duplicated Selection To Exclude Rubbish particles (DuSTER), a particle curation method that excludes low signal-to-noise ratio particles, we also resolved the 3D cryo-EM structures of nucleoplasmin NPM2 co-isolated with the linker histone H1.8 and revealed distinct open and closed structural variants. Our study demonstrates the utility of MagIC-cryo-EM for structural analysis of scarce macromolecules in heterogeneous samples and provides structural insights into the cell cycle-regulation of H1.8 association to nucleosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Hide A Konishi
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
2
|
Basanta B, Nugroho K, Yan NL, Kline GM, Powers ET, Tsai FJ, Wu M, Hansel-Harris A, Chen JS, Forli S, Kelly JW, Lander GC. The conformational landscape of human transthyretin revealed by cryo-EM. Nat Struct Mol Biol 2025; 32:876-883. [PMID: 39843982 DOI: 10.1038/s41594-024-01472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Transthyretin (TTR) is a natively tetrameric thyroxine transporter in blood and cerebrospinal fluid whose misfolding and aggregation causes TTR amyloidosis. A rational drug design campaign identified the small molecule tafamidis (Vyndamax) as a stabilizer of the native TTR fold, and this aggregation inhibitor is regulatory agency approved for the treatment of TTR amyloidosis. Here we used cryo-EM to investigate the conformational landscape of this 55 kDa tetramer in the absence and presence of one or two ligands, revealing inherent asymmetries in the tetrameric architecture and previously unobserved conformational states. These findings provide critical mechanistic insights into negatively cooperative ligand binding and the structural pathways responsible for TTR amyloidogenesis, underscoring the capacity of cryo-EM to identify pharmacological targets suppressed by the confines of the crystal lattice, opening uncharted territory in structure-based drug design.
Collapse
Affiliation(s)
- Benjamin Basanta
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
- Arzeda, Seattle, WA, USA
| | - Karina Nugroho
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Nicholas L Yan
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Gabriel M Kline
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Evan T Powers
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Felix J Tsai
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
- Neomorph, San Diego, CA, USA
| | - Althea Hansel-Harris
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Jason S Chen
- Automated Synthesis Facility, Scripps Research, La Jolla, CA, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Jeffrey W Kelly
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
3
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2025; 20:1114-1157. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Chien CT, Maduke M, Chiu W. Single-particle cryogenic electron microscopy structure determination for membrane proteins. Curr Opin Struct Biol 2025; 92:103047. [PMID: 40228430 DOI: 10.1016/j.sbi.2025.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
Membrane proteins are crucial to many cellular functions but are notoriously difficult for structural studies due to their instability outside their natural environment and their amphipathic nature with dual hydrophobic and hydrophilic regions. Single-particle cryogenic electron microscopy (cryo-EM) has emerged as a transformative approach, providing near-atomic-resolution structures without the need for crystallization. This review discusses advancements in cryo-EM, emphasizing membrane sample preparation and data processing techniques. It explores innovations in capturing membrane protein structures within native environments, analyzing their dynamics, binding partner interactions, lipid associations, and responses to electrochemical gradients. These developments continue to enhance our understanding of these vital biomolecules, advancing the contributions of structural biology for basic and translational biomedicine.
Collapse
Affiliation(s)
- Chih-Ta Chien
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Wah Chiu
- Departments of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Liu X, Clemens DL, Lee BY, Aguirre R, Horwitz MA, Zhou ZH. Structure, identification and characterization of the RibD-enolase complex in Francisella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641097. [PMID: 40093042 PMCID: PMC11908141 DOI: 10.1101/2025.03.02.641097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Francisella tularensis is a highly infectious bacterium, a Tier 1-select agent, and the causative agent of tularemia, a potentially fatal zoonotic disease. In this study originally aiming to identify anti-tularemia drug targets, we serendipitously determined the atomic structures and identified their components of the native RibD-enolase protein complex in Francisella novicida; and subsequently systematically characterized the catalytic functions of the RibD-enolase complex. Originally discovered as individually protein in Escherichia coli and yeast, respectively, RibD and enolase are two essential enzymes involved in distinct metabolic pathways, both of which could serve as potential therapeutic targets for tularemia treatment and prevention. Our biochemical validation using pull-down assays confirmed the formation of this complex in vivo, revealing that all eluted RibD is bound to enolase, while the majority of enolase remained uncomplexed. Structural analysis reveals unique features of the Francisella complex, including key RibD-enolase interactions that mediate complex assembly and β-strand swapping between RibD subunits. Furthermore, molecular dynamics simulations of the ligand-bound RibD-enolase complex highlight localized conformational changes within the substrate-binding sites and suggest a gating mechanism between RibD's substrate and cofactor-binding sites to ensure efficient uptake and turnover. Despite the physical association between RibD and enolase, enzymatic assays indicated their catalytic activities are independent of each other, thus the complex may have alternative functional roles that warrant further exploration. Our study provides the first structural and biochemical characterization of the RibD-enolase complex, establishing a foundation for further investigations into its functional significance in Francisella and potential antibacterial development.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA
| | | | - Bai-Yu Lee
- Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Roman Aguirre
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Marcus A. Horwitz
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Omura SN, Nureki O. General and robust sample preparation strategies for cryo-EM studies of CRISPR-Cas9 and Cas12 enzymes. Methods Enzymol 2025; 712:23-39. [PMID: 40121075 DOI: 10.1016/bs.mie.2025.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cas9 and Cas12 are RNA-guided DNA endonucleases derived from prokaryotic CRISPR-Cas adaptive immune systems that have been repurposed as versatile genome-engineering tools. Computational mining of genomes and metagenomes has expanded the diversity of Cas9 and Cas12 enzymes that can be used to develop versatile, orthogonal molecular toolboxes. Structural information is pivotal to uncovering the precise molecular mechanisms of newly discovered Cas enzymes and providing a foundation for their application in genome editing. In this chapter, we describe detailed protocols for the preparation of Cas9 and Cas12 enzymes for cryo-electron microscopy. These methods will enable fast and robust structural determination of newly discovered Cas9 and Cas12 enzymes, which will enhance the understanding of diverse CRISPR-Cas effectors and provide a molecular framework for expanding CRISPR-based genome-editing technologies.
Collapse
Affiliation(s)
- Satoshi N Omura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Neumann B, McCarthy S, Gonen S. Structural basis of inhibition of human Na V1.8 by the tarantula venom peptide Protoxin-I. Nat Commun 2025; 16:1459. [PMID: 39920100 PMCID: PMC11805909 DOI: 10.1038/s41467-024-55764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
Voltage-gated sodium channels (NaVs) selectively permit diffusion of sodium ions across the cell membrane and, in excitable cells, are responsible for propagating action potentials. One of the nine human NaV isoforms, NaV1.8, is a promising target for analgesics, and selective inhibitors are of interest as therapeutics. One such inhibitor, the gating-modifier peptide Protoxin-I derived from tarantula venom, blocks channel opening by shifting the activation voltage threshold to more depolarized potentials, but the structural basis for this inhibition has not previously been determined. Using monolayer graphene grids, we report the cryogenic electron microscopy structures of full-length human apo-NaV1.8 and the Protoxin-I-bound complex at 3.1 Å and 2.8 Å resolution, respectively. The apo structure shows an unexpected movement of the Domain I S4-S5 helix, and VSDI was unresolvable. We find that Protoxin-I binds to and displaces the VSDII S3-S4 linker, hindering translocation of the S4II helix during activation.
Collapse
Affiliation(s)
- Bryan Neumann
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Stephen McCarthy
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Tran-Pearson A, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. Nat Commun 2025; 16:1234. [PMID: 39890776 PMCID: PMC11785957 DOI: 10.1038/s41467-025-56369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multivalent forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Abigail E Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adri Tran-Pearson
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, South Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
9
|
Zhang DY, Xu Z, Li JY, Mao S, Wang H. Graphene-Assisted Electron-Based Imaging of Individual Organic and Biological Macromolecules: Structure and Transient Dynamics. ACS NANO 2025; 19:120-151. [PMID: 39723464 DOI: 10.1021/acsnano.4c12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Characterizing the structures, interactions, and dynamics of molecules in their native liquid state is a long-existing challenge in chemistry, molecular science, and biophysics with profound scientific significance. Advanced transmission electron microscopy (TEM)-based imaging techniques with the use of graphene emerged as promising tools, mainly due to their performance on spatial and temporal resolution. This review focuses on the various approaches to achieving high-resolution imaging of individual molecules and their transient interactions. We highlight the crucial role of graphene grids in cryogenic electron microscopy for achieving Ångstrom-level resolution for resolving molecular structures and the importance of graphene liquid cells in liquid-phase TEM for directly observing dynamics with subnanometer resolution at a frame rate of several frames per second, as well as the cross-talks of the two imaging modes. To understand the chemistry and physics encoded in these molecular movies, incorporating machine learning algorithms for image analysis provides a promising approach that further bolsters the resolution adventure. Besides reviewing the recent advances and methodologies in TEM imaging of individual molecules using graphene, this review also outlines future directions to improve these techniques and envision problems in molecular science, chemistry, and biology that could benefit from these experiments.
Collapse
Affiliation(s)
- De-Yi Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Zhipeng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Mao
- College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
10
|
Arimura Y, Konishi HA, Funabiki H. MagIC-Cryo-EM: Structural determination on magnetic beads for scarce macromolecules in heterogeneous samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.21.576499. [PMID: 38328033 PMCID: PMC10849486 DOI: 10.1101/2024.01.21.576499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cryo-EM single-particle analyses typically require target macromolecule concentration at 0.05~5.0 mg/ml, which is often difficult to achieve. Here, we devise Magnetic Isolation and Concentration (MagIC)-cryo-EM, a technique enabling direct structural analysis of targets captured on magnetic beads, thereby reducing the targets' concentration requirement to < 0.0005 mg/ml. Adapting MagIC-cryo-EM to a Chromatin Immunoprecipitation protocol, we characterized structural variations of the linker histone H1.8-associated nucleosomes that were isolated from interphase and metaphase chromosomes in Xenopus egg extract. Combining Duplicated Selection To Exclude Rubbish particles (DuSTER), a particle curation method that excludes low signal-to-noise ratio particles, we also resolved the 3D cryo-EM structures of nucleoplasmin NPM2 co-isolated with the linker histone H1.8 and revealed distinct open and closed structural variants. Our study demonstrates the utility of MagIC-cryo-EM for structural analysis of scarce macromolecules in heterogeneous samples and provides structural insights into the cell cycle-regulation of H1.8 association to nucleosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
- Current address: Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA, 98109-1024
| | - Hide A. Konishi
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
11
|
Straub MS, Harder OF, Mowry NJ, Barrass SV, Hruby J, Drabbels M, Lorenz UJ. Laser Flash Melting Cryo-EM Samples to Overcome Preferred Orientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624652. [PMID: 39605560 PMCID: PMC11601657 DOI: 10.1101/2024.11.21.624652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sample preparation remains a bottleneck for protein structure determination by cryo-electron microscopy. A frequently encountered issue is that proteins adsorb to the air-water interface of the sample in a limited number of orientations. This makes it challenging to obtain high-resolution reconstructions or may even cause projects to fail altogether. We have previously observed that laser flash melting and revitrification of cryo samples reduces preferred orientation for large, symmetric particles. Here, we demonstrate that our method can in fact be used to scramble the orientation of proteins of a range of sizes and symmetries. The effect can be enhanced for some proteins by increasing the heating rate during flash melting or by depositing amorphous ice onto the sample prior to revitrification. This also allows us to shed light onto the underlying mechanism. Our experiments establish a set of tools for overcoming preferred orientation that can be easily integrated into existing workflows.
Collapse
Affiliation(s)
| | | | | | - Sarah V. Barrass
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015 Lausanne, Switzerland
| | - Jakub Hruby
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015 Lausanne, Switzerland
| | - Marcel Drabbels
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015 Lausanne, Switzerland
| | - Ulrich J. Lorenz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Abe KM, Li G, He Q, Grant T, Lim CJ. Small LEA proteins mitigate air-water interface damage to fragile cryo-EM samples during plunge freezing. Nat Commun 2024; 15:7705. [PMID: 39231985 PMCID: PMC11375022 DOI: 10.1038/s41467-024-52091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Air-water interface (AWI) interactions during cryo-electron microscopy (cryo-EM) sample preparation cause significant sample loss, hindering structural biology research. Organisms like nematodes and tardigrades produce Late Embryogenesis Abundant (LEA) proteins to withstand desiccation stress. Here we show that these LEA proteins, when used as additives during plunge freezing, effectively mitigate AWI damage to fragile multi-subunit molecular samples. The resulting high-resolution cryo-EM maps are comparable to or better than those obtained using existing AWI damage mitigation methods. Cryogenic electron tomography reveals that particles are localized at specific interfaces, suggesting LEA proteins form a barrier at the AWI. This interaction may explain the observed sample-dependent preferred orientation of particles. LEA proteins offer a simple, cost-effective, and adaptable approach for cryo-EM structural biologists to overcome AWI-related sample damage, potentially revitalizing challenging projects and advancing the field of structural biology.
Collapse
Affiliation(s)
- Kaitlyn M Abe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gan Li
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Qixiang He
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
13
|
Neumann B, McCarthy S, Gonen S. Structural basis of inhibition of human Na V1.8 by the tarantula venom peptide Protoxin-I. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609828. [PMID: 39253517 PMCID: PMC11383277 DOI: 10.1101/2024.08.27.609828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Voltage-gated sodium channels (NaVs) selectively permit diffusion of sodium ions across the cell membrane and, in excitable cells, are responsible for propagating action potentials. One of the nine human NaV isoforms, NaV1.8, is a promising target for analgesics, and selective inhibitors are of interest as therapeutics. One such inhibitor, the gating-modifier peptide Protoxin-I derived from tarantula venom, blocks channel opening by shifting the activation voltage threshold to more depolarised potentials, but the structural basis for this inhibition has not previously been determined. Using monolayer graphene grids, we report the cryogenic electron microscopy structures of full-length human apo-NaV1.8 and the Protoxin-I-bound complex at 3.1 Å and 2.8 Å resolution, respectively. The apo structure shows an unexpected movement of the Domain I S4-S5 helix, and VSDI was unresolvable. We find that Protoxin-I binds to and displaces the VSDII S3-S4 linker, hindering translocation of the S4II helix during activation.
Collapse
Affiliation(s)
- Bryan Neumann
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA 92617, USA
| | - Stephen McCarthy
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA 92617, USA
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA 92617, USA
| |
Collapse
|
14
|
Zheng L, Xu J, Wang W, Gao X, Zhao C, Guo W, Sun L, Cheng H, Meng F, Chen B, Sun W, Jia X, Zhou X, Wu K, Liu Z, Ding F, Liu N, Wang HW, Peng H. Self-assembled superstructure alleviates air-water interface effect in cryo-EM. Nat Commun 2024; 15:7300. [PMID: 39181869 PMCID: PMC11344764 DOI: 10.1038/s41467-024-51696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Cryo-electron microscopy (cryo-EM) has been widely used to reveal the structures of proteins at atomic resolution. One key challenge is that almost all proteins are predominantly adsorbed to the air-water interface during standard cryo-EM specimen preparation. The interaction of proteins with air-water interface will significantly impede the success of reconstruction and achievable resolution. Here, we highlight the critical role of impenetrable surfactant monolayers in passivating the air-water interface problems, and develop a robust effective method for high-resolution cryo-EM analysis, by using the superstructure GSAMs which comprises surfactant self-assembled monolayers (SAMs) and graphene membrane. The GSAMs works well in enriching the orientations and improving particle utilization ratio of multiple proteins, facilitating the 3.3-Å resolution reconstruction of a 100-kDa protein complex (ACE2-RBD), which shows strong preferential orientation using traditional specimen preparation protocol. Additionally, we demonstrate that GSAMs enables the successful determinations of small proteins (<100 kDa) at near-atomic resolution. This study expands the understanding of SAMs and provides a key to better control the interaction of protein with air-water interface.
Collapse
Affiliation(s)
- Liming Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihua Wang
- China Academy of Aerospace Science and Innovation, Beijing, 100088, China
| | - Xiaoyin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chao Zhao
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China.
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518103, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Weijun Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luzhao Sun
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Hang Cheng
- Shuimu BioSciences Ltd, Beijing, 100089, China
| | - Fanhao Meng
- Shuimu BioSciences Ltd, Beijing, 100089, China
| | - Buhang Chen
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Weiyu Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Jia
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiong Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kai Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhongfan Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Feng Ding
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518103, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing Graphene Institute (BGI), Beijing, 100095, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Pedrazo-Tardajos A, Claes N, Wang D, Sánchez-Iglesias A, Nandi P, Jenkinson K, De Meyer R, Liz-Marzán LM, Bals S. Direct visualization of ligands on gold nanoparticles in a liquid environment. Nat Chem 2024; 16:1278-1285. [PMID: 38937593 DOI: 10.1038/s41557-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
The interactions between gold nanoparticles, their surface ligands and the solvent critically influence the properties of these nanoparticles. Although spectroscopic and scattering techniques have been used to investigate their ensemble structure, a comprehensive understanding of these processes at the nanoscale remains challenging. Electron microscopy makes it possible to characterize the local structure and composition but is limited by insufficient contrast, electron beam sensitivity and the requirement for ultrahigh-vacuum conditions, which prevent the investigation of dynamic aspects. Here we show that, by exploiting high-quality graphene liquid cells, we can overcome these limitations and investigate the structure of the ligand shell around gold nanoparticles and at the ligand-gold interface in a liquid environment. Using this graphene liquid cell, we visualize the anisotropy, composition and dynamics of ligand distribution on gold nanorod surfaces. Our results indicate a micellar model for surfactant organization. This work provides a reliable and direct visualization of ligand distribution around colloidal nanoparticles.
Collapse
Affiliation(s)
- Adrián Pedrazo-Tardajos
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Nathalie Claes
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Da Wang
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Donostia-San Sebastián, Spain
| | - Proloy Nandi
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Kellie Jenkinson
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Robin De Meyer
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Cinbio, Universidade de Vigo, Vigo, Spain
| | - Sara Bals
- EMAT-University of Antwerp, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
16
|
Zhao Z, Tajkhorshid E. GOLEM: Automated and Robust Cryo-EM-Guided Ligand Docking with Explicit Water Molecules. J Chem Inf Model 2024; 64:5680-5690. [PMID: 38990699 PMCID: PMC12016184 DOI: 10.1021/acs.jcim.4c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A detailed understanding of ligand-protein interaction is essential for developing rational drug-design strategies. In recent years, technological advances in cryo-electron microscopy (cryo-EM) brought a new era to the structural determination of biological macromolecules and assemblies at high resolution, marking cryo-EM as a promising tool for studying ligand-protein interactions. However, even in high-resolution cryo-EM results, the densities for the bound small-molecule ligands are often of lower quality due to their relatively dynamic and flexible nature, frustrating their accurate coordinate assignment. To address the challenge of ligand modeling in cryo-EM maps, here we report the development of GOLEM (Genetic Optimization of Ligands in Experimental Maps), an automated and robust ligand docking method that predicts a ligand's pose and conformation in cryo-EM maps. GOLEM employs a Lamarckian genetic algorithm to perform a hybrid global/local search for exploring the ligand's conformational, orientational, and positional space. As an important feature, GOLEM explicitly considers water molecules and places them at optimal positions and orientations. GOLEM takes into account both molecular energetics and the correlation with the cryo-EM maps in its scoring function to optimally place the ligand. We have validated GOLEM against multiple cryo-EM structures with a wide range of map resolutions and ligand types, returning ligand poses in excellent agreement with the densities. As a VMD plugin, GOLEM is free of charge and accessible to the community. With these features, GOLEM will provide a valuable tool for ligand modeling in cryo-EM efforts toward drug discovery.
Collapse
Affiliation(s)
- Zhiyu Zhao
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Yin JZ, Keszei AFA, Houliston S, Filandr F, Beenstock J, Daou S, Kitaygorodsky J, Schriemer DC, Mazhab-Jafari MT, Gingras AC, Sicheri F. The HisRS-like domain of GCN2 is a pseudoenzyme that can bind uncharged tRNA. Structure 2024; 32:795-811.e6. [PMID: 38531363 DOI: 10.1016/j.str.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.
Collapse
Affiliation(s)
- Jay Z Yin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Frantisek Filandr
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonah Beenstock
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Salima Daou
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Julia Kitaygorodsky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad T Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
18
|
Liu N, Wang HW. Graphene in cryo-EM specimen optimization. Curr Opin Struct Biol 2024; 86:102823. [PMID: 38688075 DOI: 10.1016/j.sbi.2024.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Specimen preparation is a critical but challenging step in high-resolution cryogenic electron microscopy (cryo-EM) structural analysis of macromolecules. In the past decade, graphene has gained much recognition as the supporting substrate to optimize cryo-EM specimen preparation. It improves macromolecule embedding in ice, reduces beam-induced motion, while imposing negligible background noise. Various types of graphene-coated cryo-EM grids were implemented to improve the robustness and efficiency of specimen preparation. Graphene functionalization by different means has been proved specifically useful in addressing challenges related to the air-water interface (AWI), such as preferential orientation and sample denaturation. Graphene sandwich specimen preparation sets a new direction to explore in cryo-EM analysis of biological specimens. In this review, we discuss the current challenges and future prospects of graphene application in cryo-EM analysis of macromolecules.
Collapse
Affiliation(s)
- Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Chew BLA, Ngoh ANQ, Phoo WW, Chan KWK, Ser Z, Tulsian NK, Lim SS, Weng MJG, Watanabe S, Choy MM, Low J, Ooi EE, Ruedl C, Sobota RM, Vasudevan SG, Luo D. Secreted dengue virus NS1 from infection is predominantly dimeric and in complex with high-density lipoprotein. eLife 2024; 12:RP90762. [PMID: 38787378 PMCID: PMC11126310 DOI: 10.7554/elife.90762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Severe dengue infections are characterized by endothelial dysfunction shown to be associated with the secreted nonstructural protein 1 (sNS1), making it an attractive vaccine antigen and biotherapeutic target. To uncover the biologically relevant structure of sNS1, we obtained infection-derived sNS1 (isNS1) from dengue virus (DENV)-infected Vero cells through immunoaffinity purification instead of recombinant sNS1 (rsNS1) overexpressed in insect or mammalian cell lines. We found that isNS1 appeared as an approximately 250 kDa complex of NS1 and ApoA1 and further determined the cryoEM structures of isNS1 and its complex with a monoclonal antibody/Fab. Indeed, we found that the major species of isNS1 is a complex of the NS1 dimer partially embedded in a high-density lipoprotein (HDL) particle. Crosslinking mass spectrometry studies confirmed that the isNS1 interacts with the major HDL component ApoA1 through interactions that map to the NS1 wing and hydrophobic domains. Furthermore, our studies demonstrated that the sNS1 in sera from DENV-infected mice and a human patient form a similar complex as isNS1. Our results report the molecular architecture of a biological form of sNS1, which may have implications for the molecular pathogenesis of dengue.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| | - AN Qi Ngoh
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Wint Wint Phoo
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Nikhil K Tulsian
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Singapore Centre for Life Sciences, Department of Biochemistry, National University of SingaporeSingaporeSingapore
| | - Shiao See Lim
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Mei Jie Grace Weng
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Milly M Choy
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
| | - Jenny Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Infectious Diseases, Singapore General HospitalSingaporeSingapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Saw Swee Hock School of Public Health, National University of SingaporeSingaporeSingapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and ResearchSingaporeSingapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore
- Department of Microbiology and Immunology, National University of SingaporeSingaporeSingapore
- Institute for Glycomics (G26), Griffith University Gold Coast CampusSouthportAustralia
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- NTU Institute of Structural Biology, Nanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
20
|
Chew BLA, Ngoh AQ, Phoo WW, Weng MJG, Sheng HJ, Chan KWK, Tan EYJ, Gelbart T, Xu C, Tan GS, Vasudevan SG, Luo D. Structural basis of Zika virus NS1 multimerization and human antibody recognition. NPJ VIRUSES 2024; 2:14. [PMID: 40295651 PMCID: PMC11721437 DOI: 10.1038/s44298-024-00024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 04/30/2025]
Abstract
Zika virus (ZIKV) belongs to the Flavivirus genus of the Flaviviridae family along with the four serotypes of dengue virus (DENV1-4). The recent global outbreaks of contemporary ZIKV strains demonstrated that infection can lead to neurological sequelae in adults and severe abnormalities in newborns that were previously unreported with ancestral strains. As such, there remains an unmet need for efficacious vaccines and antiviral agents against ZIKV. The non-structural protein 1 (NS1) is secreted from the infected cell and is thought to be associated with disease severity besides its proven usefulness for differential diagnoses. However, its physiologically relevant structure and pathogenesis mechanisms remain unclear. Here, we present high-resolution cryoEM structures of ZIKV recombinant secreted NS1 (rsNS1) and its complexes with three human monoclonal antibodies (AA12, EB9, GB5), as well as evidence for ZIKV infection-derived secreted NS1 (isNS1) binding to High Density Lipoprotein (HDL). We show that ZIKV rsNS1 forms tetramers and filamentous repeats of tetramers. We also observed that antibody binding did not disrupt the ZIKV NS1 tetramers as they bound to the wing and connector subdomain of the β-ladder. Our study reveals new insights into NS1 multimerization, highlights the need to distinguish the polymorphic nature of rsNS1 and isNS1, and expands the mechanistic basis of the protection conferred by antibodies targeting NS1.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - An Qi Ngoh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wint Wint Phoo
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Mei Jie Grace Weng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Ho Jun Sheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eddie Yong Jun Tan
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Terri Gelbart
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, CA, USA
| | - Chenrui Xu
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gene S Tan
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, CA, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.
- Institute for Glycomics (G26), Griffith University Gold Coast Campus, Southport, QLD, Australia.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
- National Centre for Infectious Diseases, Singapore, Singapore.
| |
Collapse
|
21
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589973. [PMID: 38659926 PMCID: PMC11042314 DOI: 10.1101/2024.04.17.589973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S. Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Abigail E. Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
22
|
Greber BJ. High-resolution cryo-EM of a small protein complex: The structure of the human CDK-activating kinase. Structure 2024:S0969-2126(24)00085-6. [PMID: 38565138 DOI: 10.1016/j.str.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The human CDK-activating kinase (CAK) is a multifunctional protein complex and key regulator of cell growth and division. Because of its critical functions in regulating the cell cycle and transcription initiation, it is a key target for multiple cancer drug discovery programs. However, the structure of the active human CAK, insights into its regulation, and its interactions with cellular substrates and inhibitors remained elusive until recently due to the lack of high-resolution structures of the intact complex. This review covers the progress in structure determination of the human CAK by cryogenic electron microscopy (cryo-EM), from early efforts to recent near-atomic resolution maps routinely resolved at 2Å or better. These results were enabled by the latest cryo-EM technologies introduced after the initial phase of the "resolution revolution" and allowed the application of high-resolution methods to new classes of molecular targets, including small protein complexes that were intractable using earlier technology.
Collapse
Affiliation(s)
- Basil J Greber
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
23
|
Lederhofer J, Tsybovsky Y, Nguyen L, Raab JE, Creanga A, Stephens T, Gillespie RA, Syeda HZ, Fisher BE, Skertic M, Yap C, Schaub AJ, Rawi R, Kwong PD, Graham BS, McDermott AB, Andrews SF, King NP, Kanekiyo M. Protective human monoclonal antibodies target conserved sites of vulnerability on the underside of influenza virus neuraminidase. Immunity 2024; 57:574-586.e7. [PMID: 38430907 PMCID: PMC10962683 DOI: 10.1016/j.immuni.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.
Collapse
Affiliation(s)
- Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Lam Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie E Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Z Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michelle Skertic
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Schaub
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Chio US, Palovcak E, Smith AAA, Autzen H, Muñoz EN, Yu Z, Wang F, Agard DA, Armache JP, Narlikar GJ, Cheng Y. Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking. Nat Commun 2024; 15:2225. [PMID: 38472177 PMCID: PMC10933330 DOI: 10.1038/s41467-024-46178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). Here, to address this issue, we develop graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitate collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.
Collapse
Affiliation(s)
- Un Seng Chio
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Eugene Palovcak
- Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Anton A A Smith
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henriette Autzen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Linderstrom-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, København, Denmark
| | - Elise N Muñoz
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
26
|
Abe KM, Lim CJ. Small LEA proteins as an effective air-water interface protectant for fragile samples during cryo-EM grid plunge freezing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579238. [PMID: 38370693 PMCID: PMC10871254 DOI: 10.1101/2024.02.06.579238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sample loss due to air-water interface (AWI) interactions is a significant challenge during cryo-electron microscopy (cryo-EM) sample grid plunge freezing. We report that small Late Embryogenesis Abundant (LEA) proteins, which naturally bind to AWI, can protect samples from AWI damage during plunge freezing. This protection is demonstrated with two LEA proteins from nematodes and tardigrades, which rescued the cryo-EM structural determination outcome of two fragile multisubunit protein complexes.
Collapse
Affiliation(s)
- Kaitlyn M. Abe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
27
|
Xu J, Gao X, Zheng L, Jia X, Xu K, Ma Y, Wei X, Liu N, Peng H, Wang HW. Graphene sandwich-based biological specimen preparation for cryo-EM analysis. Proc Natl Acad Sci U S A 2024; 121:e2309384121. [PMID: 38252835 PMCID: PMC10835136 DOI: 10.1073/pnas.2309384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
High-quality specimen preparation plays a crucial role in cryo-electron microscopy (cryo-EM) structural analysis. In this study, we have developed a reliable and convenient technique called the graphene sandwich method for preparing cryo-EM specimens. This method involves using two layers of graphene films that enclose macromolecules on both sides, allowing for an appropriate ice thickness for cryo-EM analysis. The graphene sandwich helps to mitigate beam-induced charging effect and reduce particle motion compared to specimens prepared using the traditional method with graphene support on only one side, therefore improving the cryo-EM data quality. These advancements may open new opportunities to expand the use of graphene in the field of biological electron microscopy.
Collapse
Affiliation(s)
- Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xiaoyin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Liming Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Xia Jia
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Kui Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yuwei Ma
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
- Beijing Graphene Institute, Beijing100095, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| |
Collapse
|
28
|
Basanta B, Nugroho K, Yan NL, Kline GM, Powers ET, Tsai FJ, Wu M, Hansel-Harris A, Chen JS, Forli S, Kelly JW, Lander GC. The conformational landscape of human transthyretin revealed by cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576879. [PMID: 38328110 PMCID: PMC10849623 DOI: 10.1101/2024.01.23.576879] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Transthyretin (TTR) is a natively tetrameric thyroxine transporter found in blood and cerebrospinal fluid whose misfolding and aggregation causes transthyretin amyloidosis. A rational drug design campaign identified the small molecule tafamidis (Vyndaqel/Vyndamax) as an effective stabilizer of the native TTR fold, and this aggregation inhibitor is regulatory agency-approved for the treatment of TTR amyloidosis. Despite 50 years of structural studies on TTR and this triumph of structure-based drug design, there remains a notable dearth of structural information available to understand ligand binding allostery and amyloidogenic TTR unfolding intermediates. We used single-particle cryo-electron microscopy (cryo-EM) to investigate the conformational landscape of this 55 kiloDalton tetramer in the absence and presence of one or two ligands, revealing inherent asymmetries in the tetrameric architecture and previously unobserved conformational states. These findings provide critical mechanistic insights into negatively cooperative ligand binding and the structural pathways responsible for TTR amyloidogenesis. This study underscores the capacity of cryo-EM to provide new insights into protein structures that have been historically considered too small to visualize and to identify pharmacological targets suppressed by the confines of the crystal lattice, opening uncharted territory in structure-based drug design.
Collapse
Affiliation(s)
- Benjamin Basanta
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Karina Nugroho
- Department of Chemistry, Scripps Research; La Jolla, CA, USA
| | - Nicholas L. Yan
- Department of Chemistry, Scripps Research; La Jolla, CA, USA
| | | | - Evan T. Powers
- Department of Chemistry, Scripps Research; La Jolla, CA, USA
| | - Felix J. Tsai
- Department of Chemistry, Scripps Research; La Jolla, CA, USA
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Althea Hansel-Harris
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Jason S. Chen
- Automated Synthesis Facility, Scripps Research, La Jolla, CA 92037, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | | | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
29
|
Xu Y, Qin Y, Wang L, Zhang Y, Wang Y, Dang S. Metallo-supramolecular branched polymer protects particles from air-water interface in single-particle cryo-electron microscopy. Commun Biol 2024; 7:65. [PMID: 38195919 PMCID: PMC10776832 DOI: 10.1038/s42003-023-05752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
Recent technological breakthroughs in single-particle cryo-electron microscopy (cryo-EM) enable rapid atomic structure determination of biological macromolecules. A major bottleneck in the current single particle cryo-EM pipeline is the preparation of good quality frozen cryo-EM grids, which is mostly a trial-and-error process. Among many issues, preferred particle orientation and sample damage by air-water interface (AWI) are common practical problems. Here we report a method of applying metallo-supramolecular branched polymer (MSBP) in the cryo-sample preparation for high-resolution single-particle cryo-EM. Our data shows that MSBP keeps a majority of particles away from air-water interface and mitigates preferred orientation as verified by the analyses of apoferritin, hemagglutinin) trimer and various sample proteins. The use of MSBP is a simple method to improve particle distribution for high-resolution structure determination in single-particle cryo-EM.
Collapse
Affiliation(s)
- Yixin Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Yuqi Qin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Lang Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yingyi Zhang
- Biological Cryo-EM Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- HKUST-Shenzhen Research Institute, Nanshan, Shenzhen, China.
| |
Collapse
|
30
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. Nat Commun 2024; 15:250. [PMID: 38177118 PMCID: PMC10767040 DOI: 10.1038/s41467-023-44596-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We use electron cryomicroscopy to determine a 3.2 Å helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a distinct protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism shows that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Coby Y Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Tran H Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Plana-Ruiz S, Gómez-Pérez A, Budayova-Spano M, Foley DL, Portillo-Serra J, Rauch E, Grivas E, Housset D, Das PP, Taheri ML, Nicolopoulos S, Ling WL. High-Resolution Electron Diffraction of Hydrated Protein Crystals at Room Temperature. ACS NANO 2023; 17:24802-24813. [PMID: 37890869 PMCID: PMC10753879 DOI: 10.1021/acsnano.3c05378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Structural characterization is crucial to understanding protein function. Compared with X-ray diffraction methods, electron crystallography can be performed on nanometer-sized crystals and can provide additional information from the resulting Coulomb potential map. Whereas electron crystallography has successfully resolved three-dimensional structures of vitrified protein crystals, its widespread use as a structural biology tool has been limited. One main reason is the fragility of such crystals. Protein crystals can be easily damaged by mechanical stress, change in temperature, or buffer conditions as well as by electron irradiation. This work demonstrates a methodology to preserve these nanocrystals in their natural environment at room temperature for electron diffraction experiments as an alternative to existing cryogenic techniques. Lysozyme crystals in their crystallization solution are hermetically sealed via graphene-coated grids, and their radiation damage is minimized by employing a low-dose data collection strategy in combination with a hybrid-pixel direct electron detector. Diffraction patterns with reflections of up to 3 Å are obtained and successfully indexed using a template-matching algorithm. These results demonstrate the feasibility of in situ protein electron diffraction. The method described will also be applicable to structural studies of hydrated nanocrystals important in many research and technological developments.
Collapse
Affiliation(s)
- Sergi Plana-Ruiz
- NanoMegas
SRPL, Rue Emile Claus
49, Brussels 1050, Belgium
- Servei
de Recursos Científics i Tècnics, Universitat Rovira i Virgili, Tarragona 43007, Catalonia, Spain
| | | | | | - Daniel L. Foley
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Edgar Rauch
- SIMAP,
Grenoble INP, Université Grenoble Alpes, CNRS, F-38000 Grenoble, France
| | | | | | | | - Mitra L. Taheri
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Wai Li Ling
- Université
Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
32
|
Yuan C, Yin H, Lv H, Zhang Y, Li J, Xiao D, Yang X, Zhang Y, Zhang P. Defect and Donor Manipulated Highly Efficient Electron-Hole Separation in a 3D Nanoporous Schottky Heterojunction. JACS AU 2023; 3:3127-3140. [PMID: 38034977 PMCID: PMC10685433 DOI: 10.1021/jacsau.3c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Given the rapid recombination of photogenerated charge carriers and photocorrosion, transition metal sulfide photocatalysts usually suffer from modest photocatalytic performance. Herein, S-vacancy-rich ZnIn2S4 (VS-ZIS) nanosheets are integrated on 3D bicontinuous nitrogen-doped nanoporous graphene (N-npG), forming 3D heterostructures with well-fitted geometric configuration (VS-ZIS/N-npG) for highly efficient photocatalytic hydrogen production. The VS-ZIS/N-npG presents ultrafast interfacial photogenerated electrons captured by the S vacancies in VS-ZIS and holes neutralization behaviors by the extra free electrons in N-npG during photocatalysis, which are demonstrated by in situ XPS, femtosecond transient absorption (fs-TA) spectroscopy, and transient-state surface photovoltage (TS-SPV) spectra. The simulated interfacial charge rearrangement behaviors from DFT calculations also verify the separation tendency of photogenerated charge carriers. Thus, the optimized VS-ZIS/N-npG 3D hierarchical heterojunction with 1.0 wt % N-npG exhibits a comparably high hydrogen generation rate of 4222.4 μmol g-1 h-1, which is 5.6-fold higher than the bare VS-ZIS and 12.7-fold higher than the ZIS without S vacancies. This work sheds light on the rational design of photogenerated carrier transfer paths to facilitate charge separation and provides further hints for the design of hierarchical heterostructure photocatalysts.
Collapse
Affiliation(s)
- Chunyu Yuan
- School
of Physics and Physical Engineering, Qufu
Normal University, Qufu 273165, China
| | - Hongfei Yin
- School
of Physics and Physical Engineering, Qufu
Normal University, Qufu 273165, China
| | - Huijun Lv
- School
of Physics and Physical Engineering, Qufu
Normal University, Qufu 273165, China
| | - Yujin Zhang
- School
of Physics and Physical Engineering, Qufu
Normal University, Qufu 273165, China
| | - Jing Li
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Dongdong Xiao
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyong Yang
- School
of Physics and Physical Engineering, Qufu
Normal University, Qufu 273165, China
- Condensed
Matter Theory Group, Materials Theory Division, Department of Physics
and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Yongzheng Zhang
- School
of Physics and Physical Engineering, Qufu
Normal University, Qufu 273165, China
| | - Ping Zhang
- School
of Physics and Physical Engineering, Qufu
Normal University, Qufu 273165, China
| |
Collapse
|
33
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545104. [PMID: 37398449 PMCID: PMC10312762 DOI: 10.1101/2023.06.15.545104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We determined a 3.2 Å electron cryomicroscopy helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a unique protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism revealed that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M. C. Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Coby Y. Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard College, Cambridge, MA 02138, USA
| | - Tran H. Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Kang JS, Zhou X, Liu YT, Wang K, Zhou ZH. Theoretical framework and experimental solution for the air-water interface adsorption problem in cryoEM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541984. [PMID: 37961330 PMCID: PMC10634880 DOI: 10.1101/2023.05.23.541984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As cryogenic electron microscopy (cryoEM) gains traction in the structural biology community as a method of choice for determining atomic structures of biological complexes, it has been increasingly recognized that many complexes that behave well under conventional negative-stain electron microscopy tend to have preferential orientation, aggregate or simply mysteriously "disappear" on cryoEM grids, but the reasons for such misbehavior are not well understood, limiting systematic approaches to solving the problem. Here, we have developed a theoretical formulation that explains these observations. Our formulation predicts that all particles migrate to the air-water interface (AWI) to lower the total potential surface energy - rationalizing the use of surfactant, which is a direct solution to reducing the surface tension of the aqueous solution. By conducting cryogenic electron tomography (cryoET) with the widely-tested sample, GroEL, we demonstrate that, in a standard buffer solution, nearly all particles migrate to the AWI. Gradual reduction of the surface tension by introducing surfactants decreased the percentage of particles exposed to the surface. By conducting single-particle cryoEM, we confirm that applicable surfactants do not damage the biological complex, thus suggesting that they might offer a practical, simple, and general solution to the problem for high-resolution cryoEM. Application of this solution to a real-world AWI adsorption problem with a more challenging membrane protein, namely, the ClC-1 channel, has led to its first near-atomic structure using cryoEM.
Collapse
|
35
|
Chi G, Dietz L, Tang H, Snee M, Scacioc A, Wang D, Mckinley G, Mukhopadhyay SM, Pike AC, Chalk R, Burgess-Brown NA, Timmermans JP, van Putte W, Robinson CV, Dürr KL. Structural characterization of human urea transporters UT-A and UT-B and their inhibition. SCIENCE ADVANCES 2023; 9:eadg8229. [PMID: 37774028 PMCID: PMC10541013 DOI: 10.1126/sciadv.adg8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
In this study, we present the structures of human urea transporters UT-A and UT-B to characterize them at molecular level and to detail the mechanism of UT-B inhibition by its selective inhibitor, UTBinh-14. High-resolution structures of both transporters establish the structural basis for the inhibitor's selectivity to UT-B, and the identification of multiple binding sites for the inhibitor will aid with the development of drug lead molecules targeting both transporters. Our study also discovers phospholipids associating with the urea transporters by combining structural observations, native MS, and lipidomics analysis. These insights improve our understanding of urea transporter function at a molecular level and provide a blueprint for a structure-guided design of therapeutics targeting these transporters.
Collapse
Affiliation(s)
- Gamma Chi
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Larissa Dietz
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Haiping Tang
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Matthew Snee
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Andreea Scacioc
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Dong Wang
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Gavin Mckinley
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Shubhashish M. M. Mukhopadhyay
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Ashley C. W. Pike
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Rod Chalk
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Nicola A. Burgess-Brown
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology (CBH) at Antwerp Centre for Advanced Microscopy (ACAM), Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wouter van Putte
- Laboratory of Cell Biology and Histology (CBH) at Antwerp Centre for Advanced Microscopy (ACAM), Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- PUXANO, Ottergemsesteenweg Zuid 713, 9000 Gent, Belgium
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Katharina L. Dürr
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| |
Collapse
|
36
|
Basanta B, Chen W, Pride DE, Lander GC. Fabrication of Monolayer Graphene-Coated Grids for Cryoelectron Microscopy. J Vis Exp 2023:10.3791/65702. [PMID: 37747197 PMCID: PMC11141527 DOI: 10.3791/65702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Cryogenic electron microscopy (cryoEM) has emerged as a powerful technique for probing the atomic structure of macromolecular complexes. Sample preparation for cryoEM requires preserving specimens in a thin layer of vitreous ice, typically suspended within the holes of a fenestrated support film. However, all commonly used sample preparation approaches for cryoEM studies expose the specimen to the air-water interface, introducing a strong hydrophobic effect on the specimen that often results in denaturation, aggregation, and complex dissociation. Further, preferred hydrophobic interactions between regions of the specimen and the air-water interface impact the orientations adopted by the macromolecules, resulting in 3D reconstructions with anisotropic directional resolution. Adsorption of cryoEM specimens to a monolayer of graphene has been shown to help mitigate interactions with the air-water interface while minimizing the introduction of background noise. Graphene supports also offer the benefit of substantially lowering the required concentration of proteins required for cryoEM imaging. Despite the advantages of these supports, graphene-coated grids are not widely used by the cryoEM community due to the prohibitive expense of commercial options and the challenges associated with large-scale in-house production. This paper describes an efficient method for preparing batches of cryoEM grids that have nearly full coverage of monolayer graphene.
Collapse
Affiliation(s)
- Benjamin Basanta
- Department of Structural and Computational Biology, Scripps Research
| | - Wenqian Chen
- Department of Structural and Computational Biology, Scripps Research
| | - Daniel E Pride
- Department of Structural and Computational Biology, Scripps Research
| | - Gabriel C Lander
- Department of Structural and Computational Biology, Scripps Research;
| |
Collapse
|
37
|
Kang JS, Zhou X, Liu YT, Wang K, Zhou ZH. Theoretical framework and experimental solution for the air-water interface adsorption problem in cryoEM. BIOPHYSICS REPORTS 2023; 9:215-229. [PMID: 38516618 PMCID: PMC10951471 DOI: 10.52601/bpr.2023.230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 03/23/2024] Open
Abstract
As cryogenic electron microscopy (cryoEM) gains traction in the structural biology community as a method of choice for determining atomic structures of biological complexes, it has been increasingly recognized that many complexes that behave well under conventional negative-stain electron microscopy tend to have preferential orientation, aggregate or simply mysteriously "disappear" on cryoEM grids. However, the reasons for such misbehavior are not well understood, which limits systematic approaches to solving the problem. Here, we have developed a theoretical formulation that explains these observations. Our formulation predicts that all particles migrate to the air-water interface (AWI) to lower the total potential surface energy-rationalizing the use of surfactant, which is a direct solution to reduce the surface tension of the aqueous solution. By performing cryogenic electron tomography (cryoET) on the widely-tested sample, GroEL, we demonstrate that, in a standard buffer solution, nearly all particles migrate to the AWI. Gradually reducing the surface tension by introducing surfactants decreased the percentage of particles exposed to the surface. By conducting single-particle cryoEM, we confirm that suitable surfactants do not damage the biological complex, thus suggesting that they might provide a practical, simple, and general solution to the problem for high-resolution cryoEM. Applying this solution to a real-world AWI adsorption problem involving a more challenging membrane protein, namely, the ClC-1 channel, has resulted in its near-atomic structure determination using cryoEM.
Collapse
Affiliation(s)
- Joon S. Kang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Xueting Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yun-Tao Liu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Kaituo Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Zhang Y, van Schayck JP, Pedrazo-Tardajos A, Claes N, Noteborn WEM, Lu PH, Duimel H, Dunin-Borkowski RE, Bals S, Peters PJ, Ravelli RBG. Charging of Vitreous Samples in Cryogenic Electron Microscopy Mitigated by Graphene. ACS NANO 2023; 17:15836-15846. [PMID: 37531407 PMCID: PMC10448747 DOI: 10.1021/acsnano.3c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Cryogenic electron microscopy can provide high-resolution reconstructions of macromolecules embedded in a thin layer of ice from which atomic models can be built de novo. However, the interaction between the ionizing electron beam and the sample results in beam-induced motion and image distortion, which limit the attainable resolutions. Sample charging is one contributing factor of beam-induced motions and image distortions, which is normally alleviated by including part of the supporting conducting film within the beam-exposed region. However, routine data collection schemes avoid strategies whereby the beam is not in contact with the supporting film, whose rationale is not fully understood. Here we characterize electrostatic charging of vitreous samples, both in imaging and in diffraction mode. We mitigate sample charging by depositing a single layer of conductive graphene on top of regular EM grids. We obtained high-resolution single-particle analysis (SPA) reconstructions at 2 Å when the electron beam only irradiates the middle of the hole on graphene-coated grids, using data collection schemes that previously failed to produce sub 3 Å reconstructions without the graphene layer. We also observe that the SPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to data obtained without the graphene layer. This mitigation of charging could have broad implications for various EM techniques, including SPA and cryotomography, and for the study of radiation damage and the development of future sample carriers. Furthermore, it may facilitate the exploration of more dose-efficient, scanning transmission EM based SPA techniques.
Collapse
Affiliation(s)
- Yue Zhang
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - J. Paul van Schayck
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Adrián Pedrazo-Tardajos
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp 2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Nathalie Claes
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp 2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Willem E. M. Noteborn
- Netherlands
Centre for Electron Nanoscopy (NeCEN), Leiden
University, 2300 RS Leiden, The Netherlands
| | - Peng-Han Lu
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, 52425 Jülich, Germany
| | - Hans Duimel
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Rafal E. Dunin-Borkowski
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, 52425 Jülich, Germany
| | - Sara Bals
- Electron
Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp 2020, Belgium
- NANOlab
Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Peter J. Peters
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Raimond B. G. Ravelli
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
39
|
Grassetti AV, May MB, Davis JH. Application of monolayer graphene to cryo-electron microscopy grids for high-resolution structure determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550908. [PMID: 37546934 PMCID: PMC10402136 DOI: 10.1101/2023.07.28.550908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In cryogenic electron microscopy (cryo-EM), purified macromolecules are typically applied to a grid bearing a holey carbon foil, blotted to remove excess liquid and rapidly frozen in a roughly 20-100 nm thick layer of vitreous ice that is suspended across roughly 1 μm-wide foil holes. The resulting sample is then imaged using cryogenic transmission electron microscopy and, after substantial image processing, near-atomic resolution structures can be determined. Despite cryo-EM's widespread adoption, sample preparation remains a severe bottleneck in cryo-EM workflows, with users often encountering challenges related to samples behaving poorly in the suspended vitreous ice. Recently, methods have been developed to modify cryo-EM grids with a single continuous layer of graphene, which acts as a support surface that often increases particle density in the imaged area and can reduce interactions between particles and the air-water interface. Here, we provide detailed protocols for the application of graphene to cryo-EM grids, and for rapidly assessing the relative hydrophilicity of the resulting grids. Additionally, we describe an EM-based method to confirm the presence of graphene by visualizing its characteristic diffraction pattern. Finally, we demonstrate the utility of these graphene supports by rapidly reconstructing a 2.7 Å resolution density map of an exemplar Cas9 complex using a highly pure sample at a relatively low concentration.
Collapse
Affiliation(s)
- Andrew V. Grassetti
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mira B. May
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joseph H. Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
40
|
Qiao L, Pollard N, Senanayake RD, Yang Z, Kim M, Ali AS, Hoang MT, Yao N, Han Y, Hernandez R, Clayborne AZ, Jones MR. Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses. Nat Commun 2023; 14:4408. [PMID: 37479703 PMCID: PMC10362052 DOI: 10.1038/s41467-023-40016-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
Seed-mediated synthesis strategies, in which small gold nanoparticle precursors are added to a growth solution to initiate heterogeneous nucleation, are among the most prevalent, simple, and productive methodologies for generating well-defined colloidal anisotropic nanostructures. However, the size, structure, and chemical properties of the seeds remain poorly understood, which partially explains the lack of mechanistic understanding of many particle growth reactions. Here, we identify the majority component in the seed solution as an atomically precise gold nanocluster, consisting of a 32-atom Au core with 8 halide ligands and 12 neutral ligands constituting a bound ion pair between a halide and the cationic surfactant: Au32X8[AQA+•X-]12 (X = Cl, Br; AQA = alkyl quaternary ammonium). Ligand exchange is dynamic and versatile, occurring on the order of minutes and allowing for the formation of 48 distinct Au32 clusters with AQAX (alkyl quaternary ammonium halide) ligands. Anisotropic nanoparticle syntheses seeded with solutions enriched in Au32X8[AQA+•X-]12 show narrower size distributions and fewer impurity particle shapes, indicating the importance of this cluster as a precursor to the growth of well-defined nanostructures.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Division of Fundamental Research, Petrochemical Research Institute, PetroChina, Beijing, 102206, China
| | - Nia Pollard
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, VA, 22030, USA
| | | | - Zhi Yang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Minjung Kim
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Arzeena S Ali
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Minh Tam Hoang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Nan Yao
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Yimo Han
- Department of Materials Science & Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Andre Z Clayborne
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, VA, 22030, USA
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Department of Materials Science & Nanoengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
41
|
He W, Wu K, Ouyang Z, Bai Y, Luo W, Wu D, An H, Guo Y, Jiao M, Qin Q, Zhang J, Wu Y, She J, Hwang PM, Zheng F, Zhu L, Wen Y. Structure and assembly of type VI secretion system cargo delivery vehicle. Cell Rep 2023; 42:112781. [PMID: 37421630 DOI: 10.1016/j.celrep.2023.112781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 05/06/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023] Open
Abstract
Type VI secretion system is widely used in Gram-negative bacteria for injecting toxic effectors into neighboring prokaryotic or eukaryotic cells. Various effectors can be loaded onto the T6SS delivery tube via its core components: Hcp, VgrG, or PAAR. Here, we report 2.8-Å resolution cryo-EM structure of intact T6SS Hcp5-VgrG-PAAR cargo delivery system and crystal structure of unbound Hcp5 from B. fragilis NCTC 9343. Loading of Hcp5 hexameric ring onto VgrG causes expansion of its inner cavity and external surface, explaining how structural changes could be propagated to regulate co-polymerization and surrounding contractile sheath. High-affinity binding between Hcp and VgrG causes entropically unfavorable structuring of long loops. Furthermore, interactions between VgrG trimer and Hcp hexamer are asymmetric, with three of the six Hcp monomers exhibiting a major loop flip. Our study provides insights into the assembly, loading, and firing of T6SS nanomachine that contributes to bacterial inter-species competition and host interactions.
Collapse
Affiliation(s)
- Wenbo He
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ke Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Bai
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wen Luo
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Di Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hao An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Min Jiao
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Qin
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Wu
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Junjun She
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peter M Hwang
- Department of Biochemistry, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2R3, Canada
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Li Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China.
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China; The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
42
|
Chio US, Palovcak E, Autzen AAA, Autzen HE, Muñoz EN, Yu Z, Wang F, Agard DA, Armache JP, Narlikar GJ, Cheng Y. Functionalized graphene-oxide grids enable high-resolution cryo-EM structures of the SNF2h-nucleosome complex without crosslinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545796. [PMID: 37546986 PMCID: PMC10402172 DOI: 10.1101/2023.06.20.545796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Single-particle cryo-EM is widely used to determine enzyme-nucleosome complex structures. However, cryo-EM sample preparation remains challenging and inconsistent due to complex denaturation at the air-water interface (AWI). To address this issue, we developed graphene-oxide-coated EM grids functionalized with either single-stranded DNA (ssDNA) or thiol-poly(acrylic acid-co-styrene) (TAASTY) co-polymer. These grids protect complexes between the chromatin remodeler SNF2h and nucleosomes from the AWI and facilitated collection of high-quality micrographs of intact SNF2h-nucleosome complexes in the absence of crosslinking. The data yields maps ranging from 2.3 to 3 Å in resolution. 3D variability analysis reveals nucleotide-state linked conformational changes in SNF2h bound to a nucleosome. In addition, the analysis provides structural evidence for asymmetric coordination between two SNF2h protomers acting on the same nucleosome. We envision these grids will enable similar detailed structural analyses for other enzyme-nucleosome complexes and possibly other protein-nucleic acid complexes in general.
Collapse
Affiliation(s)
- Un Seng Chio
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Eugene Palovcak
- Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Anton A. A. Autzen
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
- Current: Department of Health Technology, Technical University of Denmark
| | - Henriette E. Autzen
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Linderstrom-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark
| | - Elise N. Muñoz
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Feng Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Cheng H, Zheng L, Liu N, Huang C, Xu J, Lu Y, Cui X, Xu K, Hou Y, Tang J, Zhang Z, Li J, Ni X, Chen Y, Peng H, Wang HW. Dual-Affinity Graphene Sheets for High-Resolution Cryo-Electron Microscopy. J Am Chem Soc 2023; 145:8073-8081. [PMID: 37011903 PMCID: PMC10103130 DOI: 10.1021/jacs.3c00659] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
With the development of cryo-electron microscopy (cryo-EM), high-resolution structures of macromolecules can be reconstructed by the single particle method efficiently. However, challenges may still persist during the specimen preparation stage. Specifically, proteins tend to adsorb at the air-water interface and exhibit a preferred orientation in vitreous ice. To overcome these challenges, we have explored dual-affinity graphene (DAG) modified with two different affinity ligands as a supporting material for cryo-EM sample preparation. The ligands can bind to distinct sites on the corresponding tagged particles, which in turn generates various orientation distributions of particles and prevents the adsorption of protein particles onto the air-water interface. As expected, the DAG exhibited high binding specificity and affinity to target macromolecules, resulting in more balanced particle Euler angular distributions compared to single functionalized graphene on two different protein cases, including the SARS -CoV-2 spike glycoprotein. We anticipate that the DAG grids will enable facile and efficient three-dimensional (3D) reconstruction for cryo-EM structural determination, providing a robust and general technique for future studies.
Collapse
Affiliation(s)
- Hang Cheng
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Shuimu BioSciences Ltd., Beijing 102206, China
| | - Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing 100084, China
| | - Congyuan Huang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye Lu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoya Cui
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing 100084, China
| | - Kui Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Hou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Junchuan Tang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhong Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jing Li
- Shuimu BioSciences Ltd., Beijing 102206, China
| | - Xiaodan Ni
- Shuimu BioSciences Ltd., Beijing 102206, China
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Ahn E, Kim B, Park S, Erwin AL, Sung SH, Hovden R, Mosalaganti S, Cho US. Batch Production of High-Quality Graphene Grids for Cryo-EM: Cryo-EM Structure of Methylococcus capsulatus Soluble Methane Monooxygenase Hydroxylase. ACS NANO 2023; 17:6011-6022. [PMID: 36926824 PMCID: PMC10062032 DOI: 10.1021/acsnano.3c00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) has become a widely used tool for determining the protein structure. Despite recent technical advances, sample preparation remains a major bottleneck for several reasons, including protein denaturation at the air-water interface, the presence of preferred orientations, nonuniform ice layers, etc. Graphene, a two-dimensional allotrope of carbon consisting of a single atomic layer, has recently gained attention as a near-ideal support film for cryo-EM that can overcome these challenges because of its superior properties, including mechanical strength and electrical conductivity. Here, we introduce a reliable, easily implemented, and reproducible method to produce 36 graphene-coated grids within 1.5 days. To demonstrate their practical application, we determined the cryo-EM structure of Methylococcus capsulatus soluble methane monooxygenase hydroxylase (sMMOH) at resolutions of 2.9 and 2.5 Å using Quantifoil and graphene-coated grids, respectively. We found that the graphene-coated grid has several advantages, including a smaller amount of protein required and avoiding protein denaturation at the air-water interface. By comparing the cryo-EM structure of sMMOH with its crystal structure, we identified subtle yet significant geometrical changes at the nonheme diiron center, which may better indicate the active site configuration of sMMOH in the resting/oxidized state.
Collapse
Affiliation(s)
- Eungjin Ahn
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Byungchul Kim
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Soyoung Park
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Fine Chemistry, Seoul National University
of Science and Technology, Seoul 139-743, Korea
| | - Amanda L. Erwin
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United
States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Suk Hyun Sung
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48105, United
States
| | - Robert Hovden
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48105, United
States
- Applied
Physics Program, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Shyamal Mosalaganti
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United
States
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Uhn-Soo Cho
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
45
|
Fujita J, Makino F, Asahara H, Moriguchi M, Kumano S, Anzai I, Kishikawa JI, Matsuura Y, Kato T, Namba K, Inoue T. Epoxidized graphene grid for highly efficient high-resolution cryoEM structural analysis. Sci Rep 2023; 13:2279. [PMID: 36755111 PMCID: PMC9908306 DOI: 10.1038/s41598-023-29396-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Functionalization of graphene is one of the most important fundamental technologies in a wide variety of fields including industry and biochemistry. We have successfully achieved a novel oxidative modification of graphene using photoactivated ClO2· as a mild oxidant and confirmed the oxidized graphene grid is storable with its functionality for at least three months under N2 atmosphere. Subsequent chemical functionalization enabled us to develop an epoxidized graphene grid (EG-grid™), which effectively adsorbs protein particles for electron cryomicroscopy (cryoEM) image analysis. The EG-grid dramatically improved the particle density and orientation distribution. The density maps of GroEL and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were reconstructed at 1.99 and 2.16 Å resolution from only 504 and 241 micrographs, respectively. A sample solution of 0.1 mg ml-1 was sufficient to reconstruct a 3.10 Å resolution map of SARS-CoV-2 spike protein from 1163 micrographs. The map resolutions of β-galactosidase and apoferritin easily reached 1.81 Å and 1.29 Å resolution, respectively, indicating its atomic-resolution imaging capability. Thus, the EG-grid will be an extremely powerful tool for highly efficient high-resolution cryoEM structural analysis of biological macromolecules.
Collapse
Affiliation(s)
- Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL Ltd, 3-2-1 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Haruyasu Asahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Open and Transdisciplinary Research Initiatives, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Maiko Moriguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shota Kumano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Open and Transdisciplinary Research Initiatives, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,dotAqua Inc., 2-1 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
46
|
Zheng L, Liu N, Gao X, Zhu W, Liu K, Wu C, Yan R, Zhang J, Gao X, Yao Y, Deng B, Xu J, Lu Y, Liu Z, Li M, Wei X, Wang HW, Peng H. Uniform thin ice on ultraflat graphene for high-resolution cryo-EM. Nat Methods 2023; 20:123-130. [PMID: 36522503 PMCID: PMC9834055 DOI: 10.1038/s41592-022-01693-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/20/2022] [Indexed: 12/23/2022]
Abstract
Cryo-electron microscopy (cryo-EM) visualizes the atomic structure of macromolecules that are embedded in vitrified thin ice at their close-to-native state. However, the homogeneity of ice thickness, a key factor to ensure high image quality, is poorly controlled during specimen preparation and has become one of the main challenges for high-resolution cryo-EM. Here we found that the uniformity of thin ice relies on the surface flatness of the supporting film, and developed a method to use ultraflat graphene (UFG) as the support for cryo-EM specimen preparation to achieve better control of vitreous ice thickness. We show that the uniform thin ice on UFG improves the image quality of vitrified specimens. Using such a method we successfully determined the three-dimensional structures of hemoglobin (64 kDa), α-fetoprotein (67 kDa) with no symmetry, and streptavidin (52 kDa) at a resolution of 3.5 Å, 2.6 Å and 2.2 Å, respectively. Furthermore, our results demonstrate the potential of UFG for the fields of cryo-electron tomography and structure-based drug discovery.
Collapse
Affiliation(s)
- Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute (BGI), Beijing, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Xiaoyin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wenqing Zhu
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Cang Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rui Yan
- Beijing Graphene Institute (BGI), Beijing, China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yating Yao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bing Deng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ye Lu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhongmin Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, China.
- Peking University Nanchang Innovation Institute, Nanchang, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute (BGI), Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
47
|
DiIorio MC, Kulczyk AW. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. MICROMACHINES 2022; 14:118. [PMID: 36677177 PMCID: PMC9866264 DOI: 10.3390/mi14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Biological macromolecules and assemblies precisely rearrange their atomic 3D structures to execute cellular functions. Understanding the mechanisms by which these molecular machines operate requires insight into the ensemble of structural states they occupy during the functional cycle. Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide near-atomic resolution, structural information about dynamic biological macromolecules elusive to other structure determination methods. Recent advances in cryo-EM methodology have allowed structural biologists not only to probe the structural intermediates of biochemical reactions, but also to resolve different compositional and conformational states present within the same dataset. This article reviews newly developed sample preparation and single-particle analysis (SPA) techniques for high-resolution structure determination of intrinsically dynamic and heterogeneous samples, shedding light upon the intricate mechanisms employed by molecular machines and helping to guide drug discovery efforts.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry and Microbiology, Rutgers University, 75 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
48
|
Liu N, Wang HW. Better Cryo-EM Specimen Preparation: How to Deal with the Air-Water Interface? J Mol Biol 2022; 435:167926. [PMID: 36563741 DOI: 10.1016/j.jmb.2022.167926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) is now one of the most powerful and widely used methods to determine high-resolution structures of macromolecules. A major bottleneck of cryo-EM is to prepare high-quality vitrified specimen, which still faces many practical challenges. During the conventional vitrification process, macromolecules tend to adsorb at the air-water interface (AWI), which is known unfriendly to biological samples. In this review, we outline the nature of AWI and the problems caused by it, such as unpredictable or uneven particle distribution, protein denaturation, dissociation of complex and preferential orientation. We review and discuss the approaches and underlying mechanisms to deal with AWI: 1) Additives, exemplified by detergents, forming a protective layer at AWI and thus preserving the native folds of target macromolecules. 2) Fast vitrification devices based on the idea to freeze in-solution macromolecules before their touching of AWI. 3) Thin layer of continuous supporting films to adsorb macromolecules, and when functionalized with affinity ligands, to specifically anchor the target particles away from the AWI. Among these supporting films, graphene, together with its derivatives, with negligible background noise and mechanical robustness, has emerged as a new generation of support. These strategies have been proven successful in various cases and enable us a better handling of the problems caused by the AWI in cryo-EM specimen preparation.
Collapse
Affiliation(s)
- Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
49
|
Tan YB, Chmielewski D, Law MCY, Zhang K, He Y, Chen M, Jin J, Luo D. Molecular architecture of the Chikungunya virus replication complex. SCIENCE ADVANCES 2022; 8:eadd2536. [PMID: 36449616 PMCID: PMC9710867 DOI: 10.1126/sciadv.add2536] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
To better understand how positive-strand (+) RNA viruses assemble membrane-associated replication complexes (RCs) to synthesize, process, and transport viral RNA in virus-infected cells, we determined both the high-resolution structure of the core RNA replicase of chikungunya virus and the native RC architecture in its cellular context at subnanometer resolution, using in vitro reconstitution and in situ electron cryotomography, respectively. Within the core RNA replicase, the viral polymerase nsP4, which is in complex with nsP2 helicase-protease, sits in the central pore of the membrane-anchored nsP1 RNA-capping ring. The addition of a large cytoplasmic ring next to the C terminus of nsP1 forms the holo-RNA-RC as observed at the neck of spherules formed in virus-infected cells. These results represent a major conceptual advance in elucidating the molecular mechanisms of RNA virus replication and the principles underlying the molecular architecture of RCs, likely to be shared with many pathogenic (+) RNA viruses.
Collapse
Affiliation(s)
- Yaw Bia Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - David Chmielewski
- Biophysics Graduate Program, Departments of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Michelle Cheok Yien Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Kuo Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Yu He
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Jing Jin
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
- Vitalant Research Institute, San Francisco, CA 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
50
|
Lu Y, Liu N, Liu Y, Zheng L, Yang J, Wang J, Jia X, Zi Q, Peng H, Rao Y, Wang HW. Functionalized graphene grids with various charges for single-particle cryo-EM. Nat Commun 2022; 13:6718. [PMID: 36344519 PMCID: PMC9640669 DOI: 10.1038/s41467-022-34579-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
A major hurdle for single particle cryo-EM in structural determination lies in the specimen preparation impaired by the air-water interface (AWI) and preferential particle-orientation problems. In this work, we develop functionalized graphene grids with various charges via a dediazoniation reaction for cryo-EM specimen preparation. The graphene grids are paraffin-assistant fabricated, which appear with less contaminations compared with those produced by polymer transfer method. By applying onto three different types of macromolecules, we demonstrate that the high-yield charged graphene grids bring macromolecules away from the AWI and enable adjustable particle-orientation distribution for more robust single particle cryo-EM structural determination.
Collapse
Affiliation(s)
- Ye Lu
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Nan Liu
- School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
| | - Yongbo Liu
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Graphene Institute, Beijing, China
| | - Junhao Yang
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Jia Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Xia Jia
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Qinru Zi
- School of Life Sciences, Tsinghua University, Beijing, China
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Graphene Institute, Beijing, China.
| | - Yu Rao
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| | - Hong-Wei Wang
- School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|