1
|
Zhang Y, Shen C, Zhu J, Huang X, Wang X, Guo F, Li X, Wang C, Wu H, Yan Q, Wang P, Lv Q, Yan C, Yi Z. Disorganized Striatal Functional Connectivity as a Partially Shared Pathophysiological Mechanism in Both Schizophrenia and Major Depressive Disorder: A Transdiagnostic fMRI Study. Brain Topogr 2025; 38:38. [PMID: 40131502 DOI: 10.1007/s10548-025-01112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Negative symptoms represent pervasive symptoms in schizophrenia (SZ) and major depressive disorder (MDD). Empirical findings suggest that disrupted striatal function contributes significantly to negative symptoms. However, the changes in striatal functional connectivity in relation to these negative symptoms, in the transdiagnostic context, remain unclear. The present study aimed to capture the shared neural mechanisms underlying negative symptoms in SZ and MDD. Resting-state functional magnetic resonance imaging data were obtained from 60 patients with SZ and MDD (33 with SZ and 27 with MDD) exhibiting predominant negative symptoms, and 52 healthy controls (HC). Negative symptoms and hedonic capacity were assessed using the Scale for Assessment of Negative Symptoms (SANS) and the Temporal Experience of Pleasure Scale (TEPS), respectively. Signal extraction for time series from 12 subregions of the striatum was carried out to examine the group differences in resting-state functional connectivity (rsFC) between striatal subregions and the whole brain. We observed significantly decreased rsFC between the right dorsal rostral putamen (DRP) and the right pallidum, the bilateral rostral putamen and the contralateral putamen, as well as between the dorsal caudal putamen and the right middle frontal gyrus in both patients with SZ and MDD. The right DRP-right pallidum rsFC was positively correlated with the level of negative symptoms in SZ. However, patients with SZ showed increased rsFC between the dorsal striatum and the left precentral gyrus, the right middle temporal gyrus, and the right lingual gyrus compared with those with MDD. Our findings expand on the understanding that reduced putaminal rsFC contributes to negative symptoms in both SZ and MDD. Abnormal functional connectivity of the putamen may represent a partially common neural substrate for negative symptoms in SZ and MDD, supporting that the comparable clinical manifestations between the two disorders are underpinned by partly shared mechanisms, as proposed by the transdiagnostic Research Domain Criteria.
Collapse
Affiliation(s)
- Yao Zhang
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Chengjia Shen
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jiayu Zhu
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Xinxin Huang
- Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Xiaoxiao Wang
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Fang Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China
| | - Xin Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China
| | - Chongze Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China
| | - Haisu Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China
| | - Qi Yan
- Nantong Fourth People's Hospital, 37 Chenggang Road, Nantong, 226000, China
| | - Peijuan Wang
- Nantong Fourth People's Hospital, 37 Chenggang Road, Nantong, 226000, China
| | - Qinyu Lv
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China.
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Zhenghui Yi
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China.
- Institute of Mental Health, Fudan University, 600 South Wanping Road, Shanghai, 200030, China.
| |
Collapse
|
2
|
Ratna DD, Francis TC. Extrinsic and intrinsic control of striatal cholinergic interneuron activity. Front Mol Neurosci 2025; 18:1528419. [PMID: 40018010 PMCID: PMC11865219 DOI: 10.3389/fnmol.2025.1528419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
The striatum is an integrated component of the basal ganglia responsible for associative learning and response. Besides the presence of the most abundant γ-aminobutyric acid (GABA-ergic) medium spiny neurons (MSNs), the striatum also contains distributed populations of cholinergic interneurons (ChIs), which bidirectionally communicate with many of these neuronal subtypes. Despite their sparse distribution, ChIs provide the largest source of acetylcholine (ACh) to striatal cells, have a prominent level of arborization and activity, and are potent modulators of striatal output and play prominent roles in plasticity underlying associative learning and reinforcement. Deviations from this tonic activity, including phasic bursts or pauses caused by region-selective excitatory input, neuromodulator, or neuropeptide release can exert strong influences on intrinsic activity and synaptic plasticity via diverse receptor signaling. Recent studies and new tools have allowed improved identification of factors driving or suppressing cholinergic activity, including peptides. This review aims to outline our current understanding of factors that control tonic and phasic ChI activity, specifically focusing on how neuromodulators and neuropeptides interact to facilitate or suppress phasic ChI responses underlying learning and plasticity.
Collapse
Affiliation(s)
| | - Tanner Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
3
|
Buck SA, Mabry SJ, Glausier JR, Banks-Tibbs T, Ward C, Kozel J, Fu C, Fish KN, Lewis DA, Logan RW, Freyberg Z. Aging disrupts the coordination between mRNA and protein expression in mouse and human midbrain. Mol Psychiatry 2025:10.1038/s41380-025-02909-1. [PMID: 39875589 DOI: 10.1038/s41380-025-02909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/27/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no difference in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th+/Vglut2+ neurons, Th and Vglut2 transcripts decreased with aging. However, Th and Vglut2 protein levels in striatal synaptic release sites (e.g., terminals and axonal projections) did not differ throughout aging. Similar to the mouse, an initial study of human brain showed no effect of aging on midbrain neuron number with a concomitant decrease in TH and VGLUT2 mRNA expression. Unlike in mice, the density of striatal TH+ dopaminergic terminals was lower in aged human subjects. However, TH and VGLUT2 protein levels were unaffected in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th+ neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel J Mabry
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tabitha Banks-Tibbs
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Caroline Ward
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenesis Kozel
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Andreou D, Jørgensen KN, Nerland S, Calkova T, Mørch-Johnsen L, Smelror RE, Wortinger LA, Lundberg M, Bohman H, Myhre AM, Jönsson EG, Andreassen OA, Agartz I. Caudate nucleus volume in medicated and unmedicated patients with early- and adult-onset schizophrenia. Sci Rep 2024; 14:22755. [PMID: 39353988 PMCID: PMC11445249 DOI: 10.1038/s41598-024-73322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
The caudate nucleus is a part of the striatum, and striatal hyperdopaminergia is considered central to the pathophysiology of schizophrenia. How caudate volume is affected in schizophrenia and what role antipsychotics play remains unclear. In early-onset schizophrenia (EOS), where psychosis emerges during a neurodevelopmentally critical phase, the caudate may exhibit a heightened vulnerability to the effects of antipsychotic medications. We hypothesized effects of both antipsychotic medication use and age of onset on caudate in schizophrenia. We included adult patients with EOS (n = 83) and adult-onset schizophrenia (AOS) (n = 246), adult healthy controls (HC, n = 774), adolescent patients with non-affective psychosis (n = 56) and adolescent HC (n = 97). We obtained T1-weighted MRI scans using a 1.5T Siemens scanner and General Electric 3T scanners. In our main analysis, we tested for main and interaction effects of diagnosis and current antipsychotic medication use on caudate volume. Adult patients with EOS (p < 0.001) and AOS (p = 0.002) had both larger caudate than HC. Age of onset (EOS/AOS) interacted with antipsychotic use (p = 0.004) which was associated with larger caudate in EOS (p < 0.001) but not in AOS (p = 0.654). Conversely, among medicated patients only, EOS had larger caudate than AOS (p < 0.001). No other subcortical structures showed differences between medicated EOS and AOS. Medicated adolescent patients with non-affective psychosis and medicated adult patients with EOS showed similar caudate volumes. The results may indicate a schizophrenia-related and a medication-induced caudate increase, the latter restricted to patients with EOS and possibly occurring already in adolescence shortly after disease onset.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Department of Psychiatric Research, Diakonhjemmet Hospital, Forskningsveien 7, 0373, Oslo, Norway.
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden.
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Forskningsveien 7, 0373, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tereza Calkova
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
- Centre for Clinical Research, Vastmanland Hospital Vasteras, Region Vastmanland - Uppsala University, Västerås, Sweden
| | - Lynn Mørch-Johnsen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Runar Elle Smelror
- Department of Psychiatric Research, Diakonhjemmet Hospital, Forskningsveien 7, 0373, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Forskningsveien 7, 0373, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathias Lundberg
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Bohman
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroscience, Child and Adolescent Psychiatry and Psychiatry Unit, Uppsala University, Uppsala, Sweden
| | - Anne Margrethe Myhre
- Division of Mental Health and Addiction, Departement of Research and innovation, Oslo University Hospital, Oslo, Norway
- Child and Adolescent Psychiatry Unit, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Forskningsveien 7, 0373, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
5
|
Citro S, Lazzaro GD, Cimmino AT, Giuffrè GM, Marra C, Calabresi P. A multiple hits hypothesis for memory dysfunction in Parkinson disease. Nat Rev Neurol 2024; 20:50-61. [PMID: 38052985 DOI: 10.1038/s41582-023-00905-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Cognitive disorders are increasingly recognized in Parkinson disease (PD), even in early disease stages, and memory is one of the most affected cognitive domains. Classically, hippocampal cholinergic system dysfunction was associated with memory disorders, whereas nigrostriatal dopaminergic system impairment was considered responsible for executive deficits. Evidence from PD studies now supports involvement of the amygdala, which modulates emotional attribution to experiences. Here, we propose a tripartite model including the hippocampus, striatum and amygdala as key structures for cognitive disorders in PD. First, the anatomo-functional relationships of these structures are explored and experimental evidence supporting their role in cognitive dysfunction in PD is summarized. We then discuss the potential role of α-synuclein, a pathological hallmark of PD, in the tripartite memory system as a key mechanism in the pathogenesis of memory disorders in the disease.
Collapse
Affiliation(s)
- Salvatore Citro
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Di Lazzaro
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Angelo Tiziano Cimmino
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Guido Maria Giuffrè
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Camillo Marra
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
6
|
Ruan Y, Zheng D, Guo W, Cao X, Qi W, Yuan Q, Zhang X, Liang X, Zhang D, Xue C, Xiao C. Shared and Specific Changes of Cortico-Striatal Functional Connectivity in Stable Mild Cognitive Impairment and Progressive Mild Cognitive Impairment. J Alzheimers Dis 2024; 98:1301-1317. [PMID: 38517789 DOI: 10.3233/jad-231174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Background Mild cognitive impairment (MCI), the prodromal stage of Alzheimer's disease, has two distinct subtypes: stable MCI (sMCI) and progressive MCI (pMCI). Early identification of the two subtypes has important clinical significance. Objective We aimed to compare the cortico-striatal functional connectivity (FC) differences between the two subtypes of MCI and enhance the accuracy of differential diagnosis between sMCI and pMCI. Methods We collected resting-state fMRI data from 31 pMCI patients, 41 sMCI patients, and 81 healthy controls. We chose six pairs of seed regions, including the ventral striatum inferior, ventral striatum superior, dorsal-caudal putamen, dorsal-rostral putamen, dorsal caudate, and ventral-rostral putamen and analyzed the differences in cortico-striatal FC among the three groups, additionally, the relationship between the altered FC within the MCI subtypes and cognitive function was examined. Results Compared to sMCI, the pMCI patients exhibited decreased FC between the left dorsal-rostral putamen and right middle temporal gyrus, the right dorsal caudate and right inferior temporal gyrus, and the left dorsal-rostral putamen and left superior frontal gyrus. Additionally, the altered FC between the right inferior temporal gyrus and right putamen was significantly associated with episodic memory and executive function. Conclusions Our study revealed common and distinct cortico-striatal FC changes in sMCIs and pMCI across different seeds; these changes were associated with cognitive function. These findings can help us understand the underlying pathophysiological mechanisms of MCI and distinguish pMCI and sMCI in the early stage potentially.
Collapse
Affiliation(s)
- Yiming Ruan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Darui Zheng
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenxuan Guo
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Cao
- Department of Mathematical Sciences, Division of Statistics and Data Science, University of Cincinnati, Cincinnati, OH, USA
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianqian Yuan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xulian Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuhong Liang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Da Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Fernandes L, Kleene R, Congiu L, Freitag S, Kneussel M, Loers G, Schachner M. CHL1 depletion affects dopamine receptor D2-dependent modulation of mouse behavior. Front Behav Neurosci 2023; 17:1288509. [PMID: 38025382 PMCID: PMC10665519 DOI: 10.3389/fnbeh.2023.1288509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The dopaminergic system plays a key role in the appropriate functioning of the central nervous system, where it is essential for emotional balance, arousal, reward, and motor control. The cell adhesion molecule close homolog of L1 (CHL1) contributes to dopaminergic system development, and CHL1 and the dopamine receptor D2 (D2R) are associated with mental disorders like schizophrenia, addiction, autism spectrum disorder and depression. Methods Here, we investigated how the interplay between CHL1 and D2R affects the behavior of young adult male and female wild-type (CHL+/+) and CHL1-deficient (CHL1-/-) mice, when D2R agonist quinpirole and antagonist sulpiride are applied. Results Low doses of quinpirole (0.02 mg/kg body weight) induced hypolocomotion of CHL1+/+ and CHL1-/- males and females, but led to a delayed response in CHL1-/- mice. Sulpiride (1 mg/kg body weight) affected locomotion of CHL1-/- females and social interaction of CHL1+/+ females as well as social interactions of CHL1-/- and CHL1+/+ males. Quinpirole increased novelty-seeking behavior of CHL1-/- males compared to CHL1+/+ males. Vehicle-treated CHL1-/- males and females showed enhanced working memory and reduced stress-related behavior. Discussion We propose that CHL1 regulates D2R-dependent functions in vivo. Deficiency of CHL1 leads to abnormal locomotor activity and emotionality, and to sex-dependent behavioral differences.
Collapse
Affiliation(s)
- Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Freitag
- Institut für Molekulare Neurogenetik, Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- Institut für Molekulare Neurogenetik, Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
8
|
Chen SY, Liu FC. The Fgf9-Nolz1-Wnt2 axis regulates morphogenesis of the lung. Development 2023; 150:dev201827. [PMID: 37497597 DOI: 10.1242/dev.201827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Morphological development of the lung requires complex signal crosstalk between the mesenchymal and epithelial progenitors. Elucidating the genetic cascades underlying signal crosstalk is essential to understanding lung morphogenesis. Here, we identified Nolz1 as a mesenchymal lineage-specific transcriptional regulator that plays a key role in lung morphogenesis. Nolz1 null mutation resulted in a severe hypoplasia phenotype, including a decreased proliferation of mesenchymal cells, aberrant differentiation of epithelial cells and defective growth of epithelial branches. Nolz1 deletion also downregulated Wnt2, Lef1, Fgf10, Gli3 and Bmp4 mRNAs. Mechanistically, Nolz1 regulates lung morphogenesis primarily through Wnt2 signaling. Loss-of-function and overexpression studies demonstrated that Nolz1 transcriptionally activated Wnt2 and downstream β-catenin signaling to control mesenchymal cell proliferation and epithelial branching. Exogenous Wnt2 could rescue defective proliferation and epithelial branching in Nolz1 knockout lungs. Finally, we identified Fgf9 as an upstream regulator of Nolz1. Collectively, Fgf9-Nolz1-Wnt2 signaling represents a novel axis in the control of lung morphogenesis. These findings are relevant to lung tumorigenesis, in which a pathological function of Nolz1 is implicated.
Collapse
Affiliation(s)
- Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
9
|
Chen X, Chen H, Liu J, Tang H, Zhou J, Liu P, Tian Y, Wang X, Lu F, Zhou J. Functional connectivity alterations in reward-related circuits associated with non-suicidal self-injury behaviors in drug-naïve adolescents with depression. J Psychiatr Res 2023; 163:270-277. [PMID: 37244065 DOI: 10.1016/j.jpsychires.2023.05.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Non-suicidal self-injury (NSSI) behaviors are a major public health concern among adolescents with depression. Such behaviors may be associated with the reward system. However, the underlying mechanism in patients with depression and NSSI still remains unclear. A total of 56 drug-naïve adolescents with depression, including 23 patients with NSSI (the NSSI group) and 33 patients without NSSI (the nNSSI group), and 25 healthy controls (HCs) were recruited in this study. Seed-based functional connectivity (FC) was used to explore the NSSI-related FC alterations in the reward circuit. Correlation analysis was conducted between the altered FCs and clinical data. Compared with the nNSSI group, the NSSI group showed greater FC between left nucleus accumbens (NAcc) and right lingual gyrus and between right putamen accumbens and right angular gyrus (ANG). The NSSI group also had declined FC between right NAcc and left inferior cerebellum, between left cingulate gyrus (CG) and right ANG, between left CG and left middle temporal gyrus (MTG), and between right CG and bilateral MTG (voxel-wise p < 0.01, cluster-wise p < 0.05, Gaussian random field correction). The FC between right NAcc and left inferior cerebellum was found positively correlated with the score of addictive features of NSSI (r = 0.427, p = 0.042). Our findings indicated that the regions in the reward circuit with NSSI-related FC alterations included bilateral NAcc, right putamen and bilateral CG, which may provide new evidence on the neural mechanisms of NSSI behaviors in adolescents with depression.
Collapse
Affiliation(s)
- Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiawei Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peiqu Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Choi EJ, Vandewouw MM, de Villa K, Inoue T, Taylor MJ. The development of functional connectivity within the dorsal striatum from early childhood to adulthood. Dev Cogn Neurosci 2023; 61:101258. [PMID: 37247471 PMCID: PMC10236186 DOI: 10.1016/j.dcn.2023.101258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023] Open
Abstract
Dorsal striatum, principally comprising of caudate and putamen, is well-known to support motor function but also various higher-order cognitive functions. This is enabled by developing short- and long-range connections to distributed cortical regions throughout the life span, but few studies have examined developmental changes from young children to adults in the same cohort. Here we investigated the development of dorsal-striatal network in a large (n = 476), single-site sample of healthy subjects 3-42 years of age in three groups (children, adolescence, adults). The results showed that the connectivity within the striatum and to sensorimotor regions was established at an early stage of life and remained strong in adolescence, supporting that sensory-seeking behaviours and habit formation are important learning mechanisms during the developmental periods. This connectivity diminished with age, as many behaviours become more efficient and automated. Adolescence demonstrated a remarkable transition phase where the connectivity to dorsolateral prefrontal cortex emerged but connectivity to the dorsomedial prefrontal and posterior brain, which belong to the ventral attentional and default mode networks, was only seen in adults. This prolonged maturation in between-network integration may explain the behavioural characteristics of adolescents in that they exhibit elaborated cognitive performance but also demonstrate high risk-taking behaviours.
Collapse
Affiliation(s)
- Eun Jung Choi
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marlee M Vandewouw
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kathrina de Villa
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Takeshi Inoue
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, Center for Child Development and Psychosomatic, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Margot J Taylor
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Departments of Medical Imaging and Psychology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Bomyea J, Sweet A, Davey DK, Boland M, Paulus MP, Stein MB, Taylor CT. Randomized controlled trial of computerized approach/avoidance training in social anxiety disorder: Neural and symptom outcomes. J Affect Disord 2023; 324:36-45. [PMID: 36549342 DOI: 10.1016/j.jad.2022.12.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Social anxiety is associated with diminished automatic approach toward positive social cues that may limit the ability to connect with others. This diminished approach bias may be a modifiable treatment target. We evaluated the effects of an approach avoidance training procedure on positive emotions, social relationship outcomes, clinical symptoms, and neural indices of social approach and reward processing. Forty-five individuals with social anxiety disorder were randomized (parallel 1:1 randomization) to complete computerized Approach Positive training (n = 21) or Balanced training(n = 24). Sessions included a standardized social interaction task. Participants were blind to training group. Participants completed clinical outcome measures and functional magnetic resonance imaging at baseline and post intervention with an MRI-compatible AAT and the social incentive delay task (SID). Both groups displayed significant improvements of similar magnitude on the primary outcome of social connectedness (between group post-treatment d = -0.21) but not positive affect (d = -0.09), from before to after treatment, persisting through follow-up. Groups demonstrated significant improvements on additional outcomes including anxiety, depression, and anhedonia symptoms. Participants in Approach Positive AAT demonstrated increased activation in the thalamus and medial prefrontal cortex during social versus neutral- approach relative to Balanced AAT during the fMRI AAT. Participants in Balanced AAT showed increased activation in regions within an a priori-defined striatum region of interest mask during anticipation of social reward (vs. baseline) in the SID relative to Approach Positive AAT. At a neural processing level AAT may influence the valuation and motivations associated with positive social cues regulated by the mPFC and thalamus. NCT02136212, NIMH R00MH090243.
Collapse
Affiliation(s)
- Jessica Bomyea
- VA San Diego Center of Excellence for Stress and Mental Health, United States of America; University of California San Diego, United States of America
| | - Alison Sweet
- University of California San Diego, United States of America
| | - Delaney K Davey
- VA San Diego Center of Excellence for Stress and Mental Health, United States of America; University of California San Diego, United States of America
| | - Matthew Boland
- University of Nevada Reno, United States of America; University of Nevada School of Medicine
| | - Martin P Paulus
- University of California San Diego, United States of America; Laureate Institute for Brain Research, United States of America
| | - Murray B Stein
- University of California San Diego, United States of America
| | | |
Collapse
|
12
|
D’Elia A, Schiavi S, Manduca A, Rava A, Buzzelli V, Ascone F, Orsini T, Putti S, Soluri A, Galli F, Soluri A, Mattei M, Cicconi R, Massari R, Trezza V. FMR1 deletion in rats induces hyperactivity with no changes in striatal dopamine transporter availability. Sci Rep 2022; 12:22535. [PMID: 36581671 PMCID: PMC9800572 DOI: 10.1038/s41598-022-26986-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder emerging in early life characterized by impairments in social interaction, poor verbal and non-verbal communication, and repetitive patterns of behaviors. Among the best-known genetic risk factors for ASD, there are mutations causing the loss of the Fragile X Messenger Ribonucleoprotein 1 (FMRP) leading to Fragile X syndrome (FXS), a common form of inherited intellectual disability and the leading monogenic cause of ASD. Being a pivotal regulator of motor activity, motivation, attention, and reward processing, dopaminergic neurotransmission has a key role in several neuropsychiatric disorders, including ASD. Fmr1 Δexon 8 rats have been validated as a genetic model of ASD based on FMR1 deletion, and they are also a rat model of FXS. Here, we performed behavioral, biochemical and in vivo SPECT neuroimaging experiments to investigate whether Fmr1 Δexon 8 rats display ASD-like repetitive behaviors associated with changes in striatal dopamine transporter (DAT) availability assessed through in vivo SPECT neuroimaging. At the behavioral level, Fmr1 Δexon 8 rats displayed hyperactivity in the open field test in the absence of repetitive behaviors in the hole board test. However, these behavioral alterations were not associated with changes in striatal DAT availability as assessed by non-invasive in vivo SPECT and Western blot analyses.
Collapse
Affiliation(s)
- Annunziata D’Elia
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy ,grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Sara Schiavi
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Antonia Manduca
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy ,grid.417778.a0000 0001 0692 3437Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Alessandro Rava
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Valeria Buzzelli
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Fabrizio Ascone
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Tiziana Orsini
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Sabrina Putti
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Andrea Soluri
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy ,grid.9657.d0000 0004 1757 5329Unit of Molecular Neurosciences, University Campus Bio-Medico, Rome, Rome, Italy
| | - Filippo Galli
- grid.7841.aNuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Alessandro Soluri
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Maurizio Mattei
- grid.6530.00000 0001 2300 0941Department of Biology and Centro di Servizi Interdipartimentale-Stazione per la Tecnologia Animale, “Tor Vergata” University, Rome, Italy
| | - Rosella Cicconi
- grid.6530.00000 0001 2300 0941Department of Biology and Centro di Servizi Interdipartimentale-Stazione per la Tecnologia Animale, “Tor Vergata” University, Rome, Italy
| | - Roberto Massari
- grid.5326.20000 0001 1940 4177Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), c/o International Campus “A. Buzzati-Traverso”, Via E. Ramarini, 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Viviana Trezza
- grid.8509.40000000121622106Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| |
Collapse
|
13
|
Shang Z, Yang L, Wang Z, Tian Y, Gao Y, Su Z, Guo R, Li W, Liu G, Li X, Yang Z, Li Z, Zhang Z. The transcription factor Zfp503 promotes the D1 MSN identity and represses the D2 MSN identity. Front Cell Dev Biol 2022; 10:948331. [PMID: 36081908 PMCID: PMC9445169 DOI: 10.3389/fcell.2022.948331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
The striatum is primarily composed of two types of medium spiny neurons (MSNs) expressing either D1- or D2-type dopamine receptors. However, the fate determination of these two types of neurons is not fully understood. Here, we found that D1 MSNs undergo fate switching to D2 MSNs in the absence of Zfp503. Furthermore, scRNA-seq revealed that the transcription factor Zfp503 affects the differentiation of these progenitor cells in the lateral ganglionic eminence (LGE). More importantly, we found that the transcription factors Sp8/9, which are required for the differentiation of D2 MSNs, are repressed by Zfp503. Finally, sustained Zfp503 expression in LGE progenitor cells promoted the D1 MSN identity and repressed the D2 MSN identity. Overall, our findings indicated that Zfp503 promotes the D1 MSN identity and represses the D2 MSN identity by regulating Sp8/9 expression during striatal MSN development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhenmeiyu Li
- *Correspondence: Zhenmeiyu Li, ; Zhuangzhi Zhang,
| | | |
Collapse
|
14
|
Li Z, Shang Z, Sun M, Jiang X, Tian Y, Yang L, Wang Z, Su Z, Liu G, Li X, You Y, Yang Z, Xu Z, Zhang Z. Transcription factor Sp9 is a negative regulator of D1-type MSN development. Cell Death Dis 2022; 8:301. [PMID: 35773249 PMCID: PMC9247084 DOI: 10.1038/s41420-022-01088-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
The striatum is the main input structure of the basal ganglia, receiving information from the cortex and the thalamus and consisting of D1- and D2- medium spiny neurons (MSNs). D1-MSNs and D2-MSNs are essential for motor control and cognitive behaviors and have implications in Parkinson’s Disease. In the present study, we demonstrated that Sp9-positive progenitors produced both D1-MSNs and D2-MSNs and that Sp9 expression was rapidly downregulated in postmitotic D1-MSNs. Furthermore, we found that sustained Sp9 expression in lateral ganglionic eminence (LGE) progenitor cells and their descendants led to promoting D2-MSN identity and repressing D1-MSN identity during striatal development. As a result, sustained Sp9 expression resulted in an imbalance between D1-MSNs and D2-MSNs in the mouse striatum. In addition, the fate-changed D2-like MSNs survived normally in adulthood. Taken together, our findings supported that Sp9 was sufficient to promote D2-MSN identity and repress D1-MSN identity, and Sp9 was a negative regulator of D1-MSN fate.
Collapse
Affiliation(s)
- Zhenmeiyu Li
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zicong Shang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Mengge Sun
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Xin Jiang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Yu Tian
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Lin Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Ziwu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zihao Su
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Guoping Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Xiaosu Li
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Yan You
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zhengang Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China
| | - Zhejun Xu
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China.
| | - Zhuangzhi Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, state Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
15
|
Imam A, Bhagwandin A, Ajao MS, Manger PR. The brain of the tree pangolin (Manis tricuspis). VIII. The subpallial telencephalon. J Comp Neurol 2022; 530:2611-2644. [PMID: 35708120 PMCID: PMC9543335 DOI: 10.1002/cne.25353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
The current study provides a detailed architectural analysis of the subpallial telencephalon of the tree pangolin. In the tree pangolin, the subpallial telencephalon was divided into septal and striatopallidal regions. The septal region contained the septal nuclear complex, diagonal band of Broca, and the bed nuclei of the stria terminalis. The striatopallidal region comprised of the dorsal (caudate, putamen, internal and external globus pallidus) and ventral (nucleus accumbens, olfactory tubercle, ventral pallidum, nucleus basalis, basal part of the substantia innominata, lateral stripe of the striatum, navicular nucleus, and the major island of Calleja) striatopallidal complexes. In the tree pangolin, the organization and numbers of nuclei forming these regions and complexes, their topographical relationships to each other, and the cyto‐, myelo‐, and chemoarchitecture, were found to be very similar to that observed in commonly studied mammals. Minor variations, such as less nuclear parcellation in the bed nuclei of the stria terminalis, may represent species‐specific variations, or may be the result of the limited range of stains used. Given the overall similarity across mammalian species, it appears that the subpallial telencephalon of the mammalian brain is highly conserved in terms of evolutionary changes detectable with the methods used. It is also likely that the functions associated with these nuclei in other mammals can be translated directly to the tree pangolin, albeit with the understanding that the stimuli that produce activity within these regions may be specific to the life history requirements of the tree pangolin.
Collapse
Affiliation(s)
- Aminu Imam
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Moyosore S Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| |
Collapse
|
16
|
Su Z, Wang Z, Lindtner S, Yang L, Shang Z, Tian Y, Guo R, You Y, Zhou W, Rubenstein JL, Yang Z, Zhang Z. Dlx1/2-dependent expression of Meis2 promotes neuronal fate determination in the mammalian striatum. Development 2022; 149:dev200035. [PMID: 35156680 PMCID: PMC8918808 DOI: 10.1242/dev.200035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
The striatum is a central regulator of behavior and motor function through the actions of D1 and D2 medium-sized spiny neurons (MSNs), which arise from a common lateral ganglionic eminence (LGE) progenitor. The molecular mechanisms of cell fate specification of these two neuronal subtypes are incompletely understood. Here, we found that deletion of murine Meis2, which is highly expressed in the LGE and derivatives, led to a large reduction in striatal MSNs due to a block in their differentiation. Meis2 directly binds to the Zfp503 and Six3 promoters and is required for their expression and specification of D1 and D2 MSNs, respectively. Finally, Meis2 expression is regulated by Dlx1/2 at least partially through the enhancer hs599 in the LGE subventricular zone. Overall, our findings define a pathway in the LGE whereby Dlx1/2 drives expression of Meis2, which subsequently promotes the fate determination of striatal D1 and D2 MSNs via Zfp503 and Six3.
Collapse
Affiliation(s)
- Zihao Su
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Ziwu Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Susan Lindtner
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Lin Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zicong Shang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yu Tian
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Rongliang Guo
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yan You
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - John L. Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zhuangzhi Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| |
Collapse
|
17
|
Ru FX, Kong F, Ren CY, He YS, Xia SY, Li YN, Liang YP, Feng JJ, Wei ZY, Chen JH. Repeated Winning and Losing Experiences in Chronic Social Conflicts Are Linked to RNA Editing Pattern Difference. Front Psychiatry 2022; 13:896794. [PMID: 35664469 PMCID: PMC9161819 DOI: 10.3389/fpsyt.2022.896794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Winner-loser effects influence subsequent agonistic interactions between conspecifics. Previous winning experiences could strengthen future aggression and increase the chance of winning the next agonistic interaction, while previous losing experiences could have the opposite effect. Although the role of A-to-I RNA editing has been recently implicated in chronic social defeat stress and aggressive behavior, it remains to be further elucidated in chronic social conflicts in agonistic interactions, especially in the repeated aggression (winners) and repeated defeat (losers) resulted from these conflicts. In the current study, transcriptome-wide A-to-I RNA editing in the dorsal striatum was investigated in a mouse model of chronic social conflicts, and compared between mice repeatedly winning and losing daily agonistic interactions. Our analysis identified 622 A-to-I RNA editing sites in the mouse dorsal striatum, with 23 to be differentially edited in 22 genes, most of which had been previously associated with neurological, psychiatric, or immune disorders. Among these differential RNA editing (DRE) sites four missense variants were observed in neuroligin 2 (Nlgn2), Cdc42 guanine nucleotide exchange factor 9 (Arhgef9) BLCAP apoptosis inducing factor (Blcap), and cytoplasmic FMR1 interacting protein 2 (Cyfip2), as well as two noncoding RNA sites in small nucleolar RNA host gene 11 (Snhg11) and the maternally expressed 3 (Meg3) gene. Moreover, significant changes were observed in gene functions and pathways enriched by genes with A-to-I RNA editing in losers and especially winners compared to controls. Our results demonstrate that repeated winning and losing experiences in chronic social conflicts are linked to A-to-I RNA editing pattern difference, underlining its role in the molecular mechanism of agonistic interactions between conspecifics.
Collapse
Affiliation(s)
- Fu-Xia Ru
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Fanzhi Kong
- Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Shan He
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Jun-Jie Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| |
Collapse
|
18
|
Knowles R, Dehorter N, Ellender T. From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. J Neurosci 2021; 41:9483-9502. [PMID: 34789560 PMCID: PMC8612473 DOI: 10.1523/jneurosci.0620-21.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding how neurons of the striatum are formed and integrate into complex synaptic circuits is essential to provide insight into striatal function in health and disease. In this review, we summarize our current understanding of the development of striatal neurons and associated circuits with a focus on their embryonic origin. Specifically, we address the role of distinct types of embryonic progenitors, found in the proliferative zones of the ganglionic eminences in the ventral telencephalon, in the generation of diverse striatal interneurons and projection neurons. Indeed, recent evidence would suggest that embryonic progenitor origin dictates key characteristics of postnatal cells, including their neurochemical content, their location within striatum, and their long-range synaptic inputs. We also integrate recent observations regarding embryonic progenitors in cortical and other regions and discuss how this might inform future research on the ganglionic eminences. Last, we examine how embryonic progenitor dysfunction can alter striatal formation, as exemplified in Huntington's disease and autism spectrum disorder, and how increased understanding of embryonic progenitors can have significant implications for future research directions and the development of improved therapeutic options.SIGNIFICANCE STATEMENT This review highlights recently defined novel roles for embryonic progenitor cells in shaping the functional properties of both projection neurons and interneurons of the striatum. It outlines the developmental mechanisms that guide neuronal development from progenitors in the embryonic ganglionic eminences to progeny in the striatum. Where questions remain open, we integrate observations from cortex and other regions to present possible avenues for future research. Last, we provide a progenitor-centric perspective onto both Huntington's disease and autism spectrum disorder. We suggest that future investigations and manipulations of embryonic progenitor cells in both research and clinical settings will likely require careful consideration of their great intrinsic diversity and neurogenic potential.
Collapse
Affiliation(s)
- Rhys Knowles
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
19
|
Han MJ, Park CU, Kang S, Kim B, Nikolaidis A, Milham MP, Hong SJ, Kim SG, Baeg E. Mapping functional gradients of the striatal circuit using simultaneous microelectric stimulation and ultrahigh-field fMRI in non-human primates. Neuroimage 2021; 236:118077. [PMID: 33878384 DOI: 10.1016/j.neuroimage.2021.118077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in functional magnetic resonance imaging (fMRI) have significantly enhanced our understanding of the striatal system of both humans and non-human primates (NHP) over the last few decades. However, its circuit-level functional anatomy remains poorly understood, partly because in-vivo fMRI cannot directly perturb a brain system and map its casual input-output relationship. Also, routine 3T fMRI has an insufficient spatial resolution. We performed electrical microstimulation (EM) of the striatum in lightly-anesthetized NHPs while simultaneously mapping whole-brain activation, using contrast-enhanced fMRI at ultra-high-field 7T. By stimulating multiple positions along the striatum's main (dorsal-to-ventral) axis, we revealed its complex functional circuit concerning mutually connected subsystems in both cortical and subcortical areas. Indeed, within the striatum, there were distinct brain activation patterns across different stimulation sites. Specifically, dorsal stimulation revealed a medial-to-lateral elongated shape of activation in upper caudate and putamen areas, whereas ventral stimulation evoked areas confined to the medial and lower caudate. Such dorsoventral gradients also appeared in neocortical and thalamic activations, indicating consistent embedding profiles of the striatal system across the whole brain. These findings reflect different forms of within-circuit and inter-regional neuronal connectivity between the dorsal and ventromedial striatum. These patterns both shared and contrasted with previous anatomical tract-tracing and in-vivo resting-state fMRI studies. Our approach of combining microstimulation and whole-brain fMRI mapping in NHPs provides a unique opportunity to integrate our understanding of a targeted brain area's meso- and macro-scale functional systems.
Collapse
Affiliation(s)
- Min-Jun Han
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chan-Ung Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sangyun Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Byounghoon Kim
- Neuroscience, University of Wisconsin - Madison, Madison, WI, United States
| | - Aki Nikolaidis
- Center for the Developing Brain, Child Mind Institute, New York, NY, United States
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, United States; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, New York, NY, United States
| | - Seok Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea,; Center for the Developing Brain, Child Mind Institute, New York, NY, United States
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea,.
| | - Eunha Baeg
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea,.
| |
Collapse
|
20
|
Castagnola E, Garg R, Rastogi SK, Cohen-Karni T, Cui XT. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution. Biosens Bioelectron 2021; 191:113440. [PMID: 34171734 DOI: 10.1016/j.bios.2021.113440] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
The development of a high sensitivity real-time sensor for multi-site detection of dopamine (DA) with high spatial and temporal resolution is of fundamental importance to study the complex spatial and temporal pattern of DA dynamics in the brain, thus improving the understanding and treatments of neurological and neuropsychiatric disorders. In response to this need, here we present high surface area out-of-plane grown three-dimensional (3D) fuzzy graphene (3DFG) microelectrode arrays (MEAs) for highly selective, sensitive, and stable DA electrochemical sensing. 3DFG microelectrodes present a remarkable sensitivity to DA (2.12 ± 0.05 nA/nM, with LOD of 364.44 ± 8.65 pM), the highest reported for nanocarbon MEAs using Fast Scan Cyclic Voltammetry (FSCV). The high surface area of 3DFG allows for miniaturization of electrode down to 2 × 2 μm2, without compromising the electrochemical performance. Moreover, 3DFG MEAs are electrochemically stable under 7.2 million scans of continuous FSCV cycling, present exceptional selectivity over the most common interferents in vitro with minimum fouling by electrochemical byproducts and can discriminate DA and serotonin (5-HT) in response to the injection of their 50:50 mixture. These results highlight the potential of 3DFG MEAs as a promising platform for FSCV based multi-site detection of DA with high sensitivity, selectivity, and spatial resolution.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Sahil K Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA.
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260 Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219-3110, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA 15213, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
21
|
Seefelder M, Kochanek S. A meta-analysis of transcriptomic profiles of Huntington's disease patients. PLoS One 2021; 16:e0253037. [PMID: 34111223 PMCID: PMC8191979 DOI: 10.1371/journal.pone.0253037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Description of robust transcriptomic alterations in Huntington’s disease is essential to identify targets for biochemical studies and drug development. We analysed publicly available transcriptome data from the brain and blood of 220 HD patients and 241 healthy controls and identified 737 and 661 genes with robustly altered mRNA levels in the brain and blood of HD patients, respectively. In the brain, a subnetwork of 320 genes strongly correlated with HD and was enriched in transport-related genes. Bioinformatical analysis of this subnetwork highlighted CDC42, PAK1, YWHAH, NFY, DLX1, HMGN3, and PRMT3. Moreover, we found that CREB1 can regulate 78.0% of genes whose mRNA levels correlated with HD in the blood of patients. Alterations in protein transport, metabolism, transcriptional regulation, and CDC42-mediated functions are likely central features of HD. Further our data substantiate the role of transcriptional regulators that have not been reported in the context of HD (e.g. DLX1, HMGN3 and PRMT3) and strongly suggest dysregulation of NFY and its target genes across tissues. A large proportion of the identified genes such as CDC42 were also altered in Parkinson’s (PD) and Alzheimer’s disease (AD). The observed dysregulation of CDC42 and YWHAH in samples from HD, AD and PD patients indicates that those genes and their upstream regulators may be interesting therapeutic targets.
Collapse
Affiliation(s)
- Manuel Seefelder
- Department of Gene Therapy, Ulm University, Ulm, Germany
- * E-mail:
| | | |
Collapse
|
22
|
Chang CC, Kuo HY, Chen SY, Lin WT, Lu KM, Saito T, Liu FC. Developmental Characterization of Schizophrenia-Associated Gene Zswim6 in Mouse Forebrain. Front Neuroanat 2021; 15:669631. [PMID: 34054439 PMCID: PMC8161499 DOI: 10.3389/fnana.2021.669631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia is a devastating neuropsychiatric disease with a globally 1% life-long prevalence. Clinical studies have linked Zswim6 mutations to developmental and neurological diseases, including schizophrenia. Zswim6’s function remains largely unknown. Given the involvement of Zswim6 in schizophrenia and schizophrenia as a neurodevelopmental disease, it is important to understand the spatiotemporal expression pattern of Zswim6 in the developing brain. Here, we performed a comprehensive analysis of the spatiotemporal expression pattern of Zswim6 in the mouse forebrain by in situ hybridization with radioactive and non-radioactive-labeled riboprobes. Zswim6 mRNA was detected as early as E11.5 in the ventral forebrain. At E11.5–E13.5, Zswim6 was highly expressed in the lateral ganglionic eminence (LGE). The LGE consisted of two progenitor populations. Dlx+;Er81+ cells in dorsal LGE comprised progenitors of olfactory bulb interneurons, whereas Dlx+;Isl1+ progenitors in ventral LGE gave rise to striatal projection neurons. Zswim6 was not colocalized with Er81 in the dorsal LGE. In the ventral LGE, Zswim6 was colocalized with striatal progenitor marker Nolz-1. Zswim6 was highly expressed in the subventricular zone (SVZ) of LGE in which progenitors undergo the transition from proliferation to differentiation. Double labeling showed that Zswim6 was not colocalized with proliferation marker Ki67 but was colocalized with differentiation marker Tuj1 in the SVZ, suggesting Zswim6 expression in early differentiating neurons. Zswim6 was also expressed in the adjacent structures of medial and caudal ganglionic eminences (MGE, CGE) that contained progenitors of cortical interneurons. At E15.5 and E17.5, Zswim6 was expressed in several key brain regions that were involved in the pathogenesis of schizophrenia, including the striatum, cerebral cortex, hippocampus, and medial habenular nucleus. Zswim6 was persistently expressed in the postnatal brain. Cell type analysis indicated that Zswim6 mRNA was colocalized with D1R-expressing striatonigral and D2R-expressing striatopallidal neurons of the adult striatum with a higher colocalization in striatopallidal neurons. These findings are of particular interest as striatal dopamine D2 receptors are known to be involved in the pathophysiology of schizophrenia. In summary, the comprehensive analysis provides an anatomical framework for the study of Zswim6 function and Zswim6-associated neurological disorders.
Collapse
Affiliation(s)
- Chuan-Chie Chang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Ying Kuo
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Ting Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuan-Ming Lu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tetsuichiro Saito
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
23
|
Lebouc M, Richard Q, Garret M, Baufreton J. Striatal circuit development and its alterations in Huntington's disease. Neurobiol Dis 2020; 145:105076. [PMID: 32898646 DOI: 10.1016/j.nbd.2020.105076] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that usually starts during midlife with progressive alterations of motor and cognitive functions. The disease is caused by a CAG repeat expansion within the huntingtin gene leading to severe striatal neurodegeneration. Recent studies conducted on pre-HD children highlight early striatal developmental alterations starting as soon as 6 years old, the earliest age assessed. These findings, in line with data from mouse models of HD, raise the questions of when during development do the first disease-related striatal alterations emerge and whether they contribute to the later appearance of the neurodegenerative features of the disease. In this review we will describe the different stages of striatal network development and then discuss recent evidence for its alterations in rodent models of the disease. We argue that a better understanding of the striatum's development should help in assessing aberrant neurodevelopmental processes linked to the HD mutation.
Collapse
Affiliation(s)
- Margaux Lebouc
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Quentin Richard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Maurice Garret
- Université de Bordeaux, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France.
| | - Jérôme Baufreton
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|