1
|
Motorina DM, Galimova YA, Battulina NV, Omelina ES. Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals. Int J Mol Sci 2024; 25:5231. [PMID: 38791270 PMCID: PMC11121118 DOI: 10.3390/ijms25105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
At present, there are a variety of different approaches to the targeted regulation of gene expression. However, most approaches are devoted to the activation of gene transcription, and the methods for gene silencing are much fewer in number. In this review, we describe the main systems used for the targeted suppression of gene expression (including RNA interference (RNAi), chimeric transcription factors, chimeric zinc finger proteins, transcription activator-like effectors (TALEs)-based repressors, optogenetic tools, and CRISPR/Cas-based repressors) and their application in eukaryotes-plants and animals. We consider the advantages and disadvantages of each approach, compare their effectiveness, and discuss the peculiarities of their usage in plant and animal organisms. This review will be useful for researchers in the field of gene transcription suppression and will allow them to choose the optimal method for suppressing the expression of the gene of interest depending on the research object.
Collapse
Affiliation(s)
| | | | | | - Evgeniya S. Omelina
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Singewar K, Kersten B, Moschner CR, Hartung E, Fladung M. Transcriptome analysis of North American sweet birch (Betula lenta) revealed a higher expression of genes involved in the biosynthesis of secondary metabolites than European silver birch (B. pendula). JOURNAL OF PLANT RESEARCH 2021; 134:1253-1264. [PMID: 34499285 PMCID: PMC8514364 DOI: 10.1007/s10265-021-01343-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The North American Betula lenta L. (sweet birch) has been used for medicinal reasons for centuries by native Americans. Although sophisticated technologies have rapidly been developed, a large information gap has been observed regarding genetic regulators of medicinally important compounds in sweet birch. Very little is known on the different genes involved in secondary metabolic biosynthesis in sweet birch. To gain a deeper insight into genetic factors, we performed a transcriptome analysis of each three biological samples from different independent trees of sweet and European silver birch (B. pendula Roth). This allowed us to precisely quantify the transcripts of about 24,000 expressed genes including 29 prominent candidate genes putatively involved in the biosynthesis of secondary metabolites like terpenoids, and aromatic benzoic acids. A total number of 597 genes were differentially expressed between B. lenta and B. pendula, while 264 and 210 genes showed upregulation in the bark and leaf of B. lenta, respectively. Moreover, we identified 39 transcriptional regulatory elements, involved in secondary metabolite biosynthesis, upregulated in B. lenta. Our study demonstrated the potential of RNA sequencing to identify candidate genes interacting in secondary metabolite biosynthesis in sweet birch. The candidate genes identified in this study could be subjected to genetic engineering to functionally characterize them in sweet birch. This knowledge can be beneficial to the increase of therapeutically important compounds.
Collapse
Affiliation(s)
- Kiran Singewar
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Max-Eyth- Str. 6, 24118, Kiel, Germany
- Thuenen-Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany
| | - Birgit Kersten
- Thuenen-Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany
| | - Christian R Moschner
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Max-Eyth- Str. 6, 24118, Kiel, Germany
| | - Eberhard Hartung
- Institute of Agricultural Process Engineering, Christian-Albrechts University of Kiel, Max-Eyth- Str. 6, 24118, Kiel, Germany
| | - Matthias Fladung
- Thuenen-Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.
| |
Collapse
|
3
|
Perspectives for epigenetic editing in crops. Transgenic Res 2021; 30:381-400. [PMID: 33891288 DOI: 10.1007/s11248-021-00252-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
Site-specific nucleases (SSNs) have drawn much attention in plant biotechnology due to their ability to drive precision mutagenesis, gene targeting or allele replacement. However, when devoid of its nuclease activity, the underlying DNA-binding activity of SSNs can be used to bring other protein functional domains close to specific genomic sites, thus expanding further the range of applications of the technology. In particular, the addition of functional domains encoding epigenetic effectors and chromatin modifiers to the CRISPR/Cas ribonucleoprotein complex opens the possibility to introduce targeted epigenomic modifications in plants in an easily programmable manner. Here we examine some of the most important agronomic traits known to be controlled epigenetically and review the best studied epigenetic catalytic effectors in plants, such as DNA methylases/demethylases or histone acetylases/deacetylases and their associated marks. We also review the most efficient strategies developed to date to functionalize Cas proteins with both catalytic and non-catalytic epigenetic effectors, and the ability of these domains to influence the expression of endogenous genes in a regulatable manner. Based on these new technical developments, we discuss the possibilities offered by epigenetic editing tools in plant biotechnology and their implications in crop breeding.
Collapse
|
4
|
Mohanta TK, Yadav D, Khan A, Hashem A, Tabassum B, Khan AL, Abd_Allah EF, Al-Harrasi A. Genomics, molecular and evolutionary perspective of NAC transcription factors. PLoS One 2020; 15:e0231425. [PMID: 32275733 PMCID: PMC7147800 DOI: 10.1371/journal.pone.0231425] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/23/2020] [Indexed: 01/05/2023] Open
Abstract
NAC (NAM, ATAF1,2, and CUC2) transcription factors are one of the largest transcription factor families found in the plants and are involved in diverse developmental and signalling events. Despite the availability of comprehensive genomic information from diverse plant species, the basic genomic, biochemical, and evolutionary details of NAC TFs have not been established. Therefore, NAC TFs family proteins from 160 plant species were analyzed in the current study. Study revealed, Brassica napus (410) encodes highest number and Klebsormidium flaccidum (3) encodes the lowest number of TFs. The study further revealed the presence of NAC TF in the Charophyte algae K. flaccidum. On average, the monocot plants encode higher number (141.20) of NAC TFs compared to the eudicots (125.04), gymnosperm (75), and bryophytes (22.66). Furthermore, our analysis revealed that several NAC TFs are membrane bound and contain monopartite, bipartite, and multipartite nuclear localization signals. NAC TFs were also found to encode several novel chimeric proteins and regulate a complex interactome network. In addition to the presence of NAC domain, several NAC proteins were found to encode other functional signature motifs as well. Relative expression analysis of NAC TFs in A. thaliana revealed root tissue treated with urea and ammonia showed higher level of expression and leaf tissues treated with urea showed lower level of expression. The synonymous codon usage is absent in the NAC TFs and it appears that they have evolved from orthologous ancestors and undergone vivid duplications to give rise to paralogous NAC TFs. The presence of novel chimeric NAC TFs are of particular interest and the presence of chimeric NAC domain with other functional signature motifs in the NAC TF might encode novel functional properties in the plants.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Dhananjay Yadav
- Dept. of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Adil Khan
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Baby Tabassum
- Department of Zoology, Toxicology laboratory, Raza P.G. College, Rampur, Uttar Pradesh, India
| | - Abdul Latif Khan
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medicinal Plant Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
5
|
Lei R, Li Y, Cai Y, Li C, Pu M, Lu C, Yang Y, Liang G. bHLH121 Functions as a Direct Link that Facilitates the Activation of FIT by bHLH IVc Transcription Factors for Maintaining Fe Homeostasis in Arabidopsis. MOLECULAR PLANT 2020; 13:634-649. [PMID: 31962167 DOI: 10.1016/j.molp.2020.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Iron (Fe) deficiency is prevalent in plants grown in neutral or alkaline soil. Plants have evolved sophisticated mechanisms that regulate Fe homeostasis, ensuring survival. In Arabidopsis, FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) is a crucial regulator of Fe-deficiency response. FIT is activated indirectly by basic helix-loop-helix (bHLH) IVc transcription factors (TFs) under Fe deficiency; however, it remains unclear which protein(s) act as the linker to mediate the activation of FIT by bHLH IVc TFs. In this study, we characterize the functions of bHLH121 and demonstrate that it directly associates with the FIT promoter. We found that loss-of-function mutations of bHLH121 cause severe Fe-deficiency symptoms, reduced Fe accumulation, and disrupted expression of genes associated with Fe homeostasis. Genetic analysis showed that FIT is epistatic to bHLH121 and FIT overexpression partially rescues the bhlh121 mutant. Further investigations revealed that bHLH IVc TFs interact with and promote nuclear accumulation of bHLH121. We demonstrated that bHLH121 has DNA-binding activity and can bind the promoters of the FIT and bHLH Ib genes, but we did not find that it has either direct transcriptional activation or repression activity toward these genes. Meanwhile, we found that bHLH121 functions downstream of and is a direct target of bHLH IVc TFs, and its expression is induced by Fe deficiency in a bHLH IVc-dependent manner. Taken together, these results establish that bHLH121 functions together with bHLH IVc TFs to positively regulate the expression of FIT and thus plays a pivotal role in maintaining Fe homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Rihua Lei
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yuerong Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengna Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengkai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yujie Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| |
Collapse
|
6
|
Common Functions of Disordered Proteins across Evolutionary Distant Organisms. Int J Mol Sci 2020; 21:ijms21062105. [PMID: 32204351 PMCID: PMC7139818 DOI: 10.3390/ijms21062105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins and regions typically lack a well-defined structure and thus fall outside the scope of the classic sequence–structure–function relationship. Hence, classic sequence- or structure-based bioinformatic approaches are often not well suited to identify homology or predict the function of unknown intrinsically disordered proteins. Here, we give selected examples of intrinsic disorder in plant proteins and present how protein function is shared, altered or distinct in evolutionary distant organisms. Furthermore, we explore how examining the specific role of disorder across different phyla can provide a better understanding of the common features that protein disorder contributes to the respective biological mechanism.
Collapse
|
7
|
Zhang N, McHale LK, Finer JJ. Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:724-735. [PMID: 30191675 PMCID: PMC6419578 DOI: 10.1111/pbi.13010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/05/2018] [Accepted: 08/31/2018] [Indexed: 05/22/2023]
Abstract
Cis-regulatory elements in promoters are major determinants of binding specificity of transcription factors (TFs) for transcriptional regulation. To improve our understanding of how these short DNA sequences regulate gene expression, synthetic promoters consisting of both classical (CACGTG) and variant G-box core sequences along with different flanking sequences derived from the promoters of three different highly expressing soybean genes, were constructed and used to regulate a green fluorescent protein (gfp) gene. Use of the classical 6-bp G-box provided information on the base level of GFP expression while modifications to the 2-4 flanking bases on either side of the G-box influenced the intensity of gene expression in both transiently transformed lima bean cotyledons and stably transformed soybean hairy roots. The proximal 2-bp sequences on either flank of the G-box significantly affected G-box activity, while the distal 2-bp flanking nucleotides also influenced gene expression albeit with a decreasing effect. Manipulation of the upstream 2- to 4-bp flanking sequence of a G-box variant (GACGTG), found in the proximal region of a relatively weak soybean glycinin promoter, significantly enhanced promoter activity using both transient and stable expression assays, if the G-box variant was first converted into a classical G-box (CACGTG). In addition to increasing our understanding of regulatory element composition and structure, this study shows that minimal targeted changes in native promoter sequences can lead to enhanced gene expression, and suggests that genome editing of the promoter region can result in useful and predictable changes in native gene expression.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
- Present address:
Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Leah K. McHale
- Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusOHUSA
| | - John J. Finer
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
| |
Collapse
|
8
|
Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 2019; 10:729. [PMID: 30760722 PMCID: PMC6374409 DOI: 10.1038/s41467-019-08736-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/23/2019] [Indexed: 01/10/2023] Open
Abstract
Understanding genomic functions requires site-specific manipulation of loci via efficient protein effector targeting systems. However, few approaches for targeted manipulation of the epigenome are available in plants. Here, we adapt the dCas9-SunTag system to engineer targeted gene activation and DNA methylation in Arabidopsis. We demonstrate that a dCas9-SunTag system utilizing the transcriptional activator VP64 drives robust and specific activation of several loci, including protein coding genes and transposable elements, in diverse chromatin contexts. In addition, we present a CRISPR-based methylation targeting system for plants, utilizing a SunTag system with the catalytic domain of the Nicotiana tabacum DRM methyltransferase, which efficiently targets DNA methylation to specific loci, including the FWA promoter, triggering a developmental phenotype, and the SUPERMAN promoter. These SunTag systems represent valuable tools for the site-specific manipulation of plant epigenomes.
Collapse
|
9
|
Ali S, Kim WC. A Fruitful Decade Using Synthetic Promoters in the Improvement of Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1433. [PMID: 31737027 PMCID: PMC6838210 DOI: 10.3389/fpls.2019.01433] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/16/2019] [Indexed: 05/17/2023]
Abstract
Advances in plant biotechnology provide various means to improve crop productivity and greatly contributing to sustainable agriculture. A significant advance in plant biotechnology has been the availability of novel synthetic promoters for precise spatial and temporal control of transgene expression. In this article, we review the development of various synthetic promotors and the rise of their use over the last several decades for regulating the transcription of various transgenes. Similarly, we provided a brief description of the structure and scope of synthetic promoters and the engineering of their cis-regulatory elements for different targets. Moreover, the functional characteristics of different synthetic promoters, their modes of regulating the expression of candidate genes in response to different conditions, and the resulting plant trait improvements reported in the past decade are discussed.
Collapse
|
10
|
Shrestha A, Khan A, Dey N. cis-trans Engineering: Advances and Perspectives on Customized Transcriptional Regulation in Plants. MOLECULAR PLANT 2018; 11:886-898. [PMID: 29859265 DOI: 10.1016/j.molp.2018.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 05/03/2023]
Abstract
Coordinated transcriptional control employing synthetic promoters and transcription factors (TFs) can be used to achieve customized regulation of gene expression in planta. Synthetic promoter technology has yielded a series of promoters with modified cis-regulatory elements that provide useful tools for efficient modulation of gene expression. In addition, the use of zinc fingers (ZFs), transcription activator-like effectors (TALEs), and catalytically inactive clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (dCas9) has made it feasible to engineer TFs that can produce targeted gene expression regulation; these approaches are particularly effective when artificial TFs are coupled with transcriptional activators or repressors. This review focuses on strategies used to engineer both promoters and TFs in the context of targeted transcriptional regulation. We also discuss the creation of synthetic inducible platforms, which can be used to impart stress tolerance to plants. We propose that combinatorial "cis-trans engineering" using a CRISPR-dCas9-based bipartite module could be used to regulate the expression of multiple target genes. This approach provides an attractive tool for introduction of specific qualitative traits into plants, thus enhancing their overall environmental adaptability.
Collapse
Affiliation(s)
- Ankita Shrestha
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Ahamed Khan
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India.
| |
Collapse
|
11
|
Brophy JAN, LaRue T, Dinneny JR. Understanding and engineering plant form. Semin Cell Dev Biol 2017; 79:68-77. [PMID: 28864344 DOI: 10.1016/j.semcdb.2017.08.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
Abstract
A plant's form is an important determinant of its fitness and economic value. Here, we review strategies for producing plants with altered forms. Historically, the process of changing a plant's form has been slow in agriculture, requiring iterative rounds of growth and selection. We discuss modern techniques for identifying genes involved in the development of plant form and tools that will be needed to effectively design and engineer plants with altered forms. Synthetic genetic circuits are highlighted for their potential to generate novel plant forms. We emphasize understanding development as a prerequisite to engineering and discuss the potential role of computer models in translating knowledge about single genes or pathways into a more comprehensive understanding of development.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Therese LaRue
- Stanford University, Department of Biology, Stanford, CA 94305, USA
| | - José R Dinneny
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Meng Z, Gao P, Chen L, Peng J, Huang J, Wu M, Chen K, Zhou Z. Artificial Zinc-Finger Transcription Factor of A20 Suppresses Restenosis in Sprague Dawley Rats after Carotid Injury via the PPARα Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:123-131. [PMID: 28918014 PMCID: PMC5493820 DOI: 10.1016/j.omtn.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/25/2023]
Abstract
The inhibition of inflammation and vascular smooth muscle cell (VSMC) proliferation is an ideal strategy to suppress intimal hyperplasia after percutaneous transluminal angioplasty (PTA). Evidence has indicated that overexpression of A20 suppresses neointima formation, but its low transfection efficiency limits its application. Hence, we upregulated A20 expression via transfection of rAd.ATF (recombinant adenovirus vector of artificial transcription factor) and rAd.A20 in rat carotid arteries after balloon dilatation (in vivo) and isolated VSMCs (in vitro). In vivo, we found that after rAd.ATF and rAd.A20 transfection, A20 expression was markedly increased, whereas proliferating cell nuclear antigen (PCNA) and nuclear factor κB p65 (NF-κBp65) protein levels were significantly decreased, and intimal hyperplasia and secretion of proinflammatory factors were significantly reduced when compared with empty vector and saline control groups. Most importantly, the rAd.ATF-treated group showed more significant inhibition on intimal hyperplasia and expression of PCNA than the rAd.A20-treated group. In vitro, compared with the control group, transfection of rAd.ATF and rAd.A20 significantly increased A20 expression, which upregulated the proliferator-activated receptor (PPAR) level for both mRNA and protein, and reduced migration and proliferation of VSMCs and lipopolysaccharide (LPS)-induced inflammation. Furthermore, the PPARα agonist GW6471 could partially restore the effect of A20 on VSMCs. Our findings indicate that the ATF of A20 inhibits neointimal hyperplasia and, therefore, constitutes a novel potential alternative to prevent restenosis.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Pan Gao
- Department of Geratology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lin Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jing Peng
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jialu Huang
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Min Wu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Kangning Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
13
|
Liang Y, Richardson S, Yan J, Benites VT, Cheng-Yue C, Tran T, Mortimer J, Mukhopadhyay A, Keasling JD, Scheller HV, Loqué D. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants. ACS Synth Biol 2017; 6:806-816. [PMID: 28094975 DOI: 10.1021/acssynbio.6b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. Meeting these challenges will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression-repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repress transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Using a bioinformatics approach, we identified 54 orthologous systems from various bacteria, and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.
Collapse
Affiliation(s)
- Yan Liang
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Sarah Richardson
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jingwei Yan
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Veronica T. Benites
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Clarabelle Cheng-Yue
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Thu Tran
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jenny Mortimer
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Henrik V. Scheller
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Dominique Loqué
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- INSA de Lyon, CNRS, UMR5240, Microbiologie,
Adaptation et Pathogénie, Université Claude Bernard Lyon 1, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
| |
Collapse
|
14
|
Tao YB, He LL, Niu L, Xu ZF. Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds. PLANTA 2016; 244:467-78. [PMID: 27095108 DOI: 10.1007/s00425-016-2519-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION The 1.5 kb JcAP1 promoter from the biofuel plant Jatropha curcas is predominantly active in the inflorescence buds of transgenic plants, in which the -1313/-1057 region is essential for maintaining the activity. Arabidopsis thaliana APETALA1 (AP1) is a MADS-domain transcription factor gene that functions primarily in flower development. We isolated a homolog of AP1 from Jatropha curcas (designated JcAP1), which was shown to exhibit flower-specific expression in Jatropha. JcAP1 is first expressed in inflorescence buds and continues to be primarily expressed in the sepals. We isolated a 1.5 kb JcAP1 promoter and evaluated its activity in transgenic Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. In transgenic Arabidopsis and Jatropha, the inflorescence buds exhibited notable GUS activity, whereas the sepals did not. Against expectations, the JcAP1 promoter was active in the anthers of Arabidopsis and Jatropha and was highly expressed in Jatropha seeds. An analysis of promoter deletions in transgenic Arabidopsis revealed that deletion of the -1313/-1057 region resulted in loss of JcAP1 promoter activity in the inflorescence buds and increased activity in the anthers. These results suggested that some regulatory sequences in the -1313/-1057 region are essential for maintaining promoter activity in inflorescence buds and can partly suppress activity in the anthers. Based on these findings, we hypothesized that other elements located upstream of the 1.5 kb JcAP1 promoter may be required for flower-specific activation. The JcAP1 promoter characterized in this study can be used to drive transgene expression in both the inflorescence buds and seeds of Jatropha.
Collapse
Affiliation(s)
- Yan-Bin Tao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Liang-Liang He
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longjian Niu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zeng-Fu Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|
15
|
Schneider K, Schiermeyer A, Dolls A, Koch N, Herwartz D, Kirchhoff J, Fischer R, Russell SM, Cao Z, Corbin DR, Sastry-Dent L, Ainley WM, Webb SR, Schinkel H, Schillberg S. Targeted gene exchange in plant cells mediated by a zinc finger nuclease double cut. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1151-60. [PMID: 26426390 PMCID: PMC11388843 DOI: 10.1111/pbi.12483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/21/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Genome modification by homology-directed repair (HDR) is an attractive tool for the controlled genetic manipulation of plants. Here, we report the HDR-mediated gene exchange of expression cassettes in tobacco BY-2 cells using a designed zinc finger nuclease (ZFN). The target contained a 7-kb fragment flanked by two ZFN cutting sites. That fragment was replaced with a 4-kb donor cassette, which integrates gene markers for selection (kanamycin resistance) and for scoring targeting (red fluorescent protein, RFP). Candidates resulting from cassette exchange were identified by molecular analysis of calli generated by transformation via direct DNA delivery. The precision of HDR-mediated donor integration was evaluated by Southern blot analysis, sequencing of the integration locus and analysis of RFP fluorescence by flow cytometry. Screening of 1326 kanamycin-resistant calli yielded 18 HDR events, 16 of which had a perfect cassette exchange at the insert junction and 13 of which produced functional RFP. Our results demonstrate that ZFN-based HDR can be used for high frequency, precise, targeted exchange of fragments of sizes that are commercially relevant in plants.
Collapse
Affiliation(s)
- Katja Schneider
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Anja Dolls
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Natalie Koch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Denise Herwartz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Janina Kirchhoff
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | - Zehui Cao
- Dow AgroSciences LLC, Indianapolis, IN, USA
| | | | | | | | | | - Helga Schinkel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
16
|
Liu W, Stewart CN. Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 2016; 37:36-44. [DOI: 10.1016/j.copbio.2015.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
17
|
Gersbach CA, Gaj T, Barbas CF. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc Chem Res 2014; 47:2309-18. [PMID: 24877793 PMCID: PMC4139171 DOI: 10.1021/ar500039w] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The understanding
of gene regulation and the structure and function
of the human genome increased dramatically at the end of the 20th
century. Yet the technologies for manipulating the genome have been
slower to develop. For instance, the field of gene therapy has been
focused on correcting genetic diseases and augmenting tissue repair
for more than 40 years. However, with the exception of a few very
low efficiency approaches, conventional genetic engineering methods
have only been able to add auxiliary genes to cells. This has been
a substantial obstacle to the clinical success of gene therapies and
has also led to severe unintended consequences in several cases. Therefore,
technologies that facilitate the precise modification of cellular
genomes have diverse and significant implications in many facets of
research and are essential for translating the products of the Genomic
Revolution into tangible benefits for medicine and biotechnology.
To address this need, in the 1990s, we embarked on a mission to develop
technologies for engineering protein–DNA interactions with
the aim of creating custom tools capable of targeting any DNA sequence.
Our goal has been to allow researchers to reach into genomes to specifically
regulate, knock out, or replace any gene. To realize these goals,
we initially focused on understanding and manipulating zinc finger
proteins. In particular, we sought to create a simple and straightforward
method that enables unspecialized laboratories to engineer custom
DNA-modifying proteins using only defined modular components, a web-based
utility, and standard recombinant DNA technology. Two significant
challenges we faced were (i) the development of zinc finger domains
that target sequences not recognized by naturally occurring zinc finger
proteins and (ii) determining how individual zinc finger domains could
be tethered together as polydactyl proteins to recognize unique locations
within complex genomes. We and others have since used this modular
assembly method to engineer artificial proteins and enzymes that activate,
repress, or create defined changes to user-specified genes in human
cells, plants, and other organisms. We have also engineered novel
methods for externally controlling protein activity and delivery,
as well as developed new strategies for the directed evolution of
protein and enzyme function. This Account summarizes our work in these
areas and highlights independent studies that have successfully used
the modular assembly approach to create proteins with novel function.
We also discuss emerging alternative methods for genomic targeting,
including transcription activator-like effectors (TALEs) and CRISPR/Cas
systems, and how they complement the synthetic zinc finger protein
technology.
Collapse
Affiliation(s)
- Charles A. Gersbach
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Thomas Gaj
- The
Skaggs Institute for Chemical Biology and the Departments of Chemistry
and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Carlos F. Barbas
- The
Skaggs Institute for Chemical Biology and the Departments of Chemistry
and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Ruan J, Liu N, Ouyang H, Yang S, Li K. Spatiotemporal control of porcine p65RHD expression by advanced Tet-On system in PIEC cells helps regulate NFкB activity. Mol Biol Rep 2014; 41:1753-61. [PMID: 24443222 DOI: 10.1007/s11033-014-3024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/03/2014] [Indexed: 11/24/2022]
Abstract
NFкB transcription activation leads to malfunction of endothelial cells, which is the main reason for pig xenograft rejection. Overexpression of a dominant negative mutant of porcine NFκB p65 (pp65RHD) could inhibit NFкB activation in endothelial cells. This study presents an advanced tetracycline-regulated system for pp65RHD spatiotemporal expression in porcine iliac endothelial cell line. In this system, an endothelial specific promoter ICAM-2 is used to improve pTet-On and internal ribosome entry site as well as enhanced green fluorescent protein (EGFP) elements are used to facilitate the result observation in pTRE-Tight. Through transfection and drug selection, we obtained 7 single cell clones containing the advanced Tet-On system, in which pp65RHD expression is under tight regulated by doxycycline and can be visualized easily through EGFP. The distribution of induced pp65RHD was verified by immunocytochemical assays test. Then, NFкB activity was tested. Luciferase reporter assays showed that NFкB activity in two clones was influenced by the Dox-induced pp65RHD expression, but other clones weren't influenced. Therefore, we picked up 2 cell clones from the uninfluenced clones for further investigation by immunocytochemical assays and RT-PCR detection. The final results supported the overexpression of pp65RHD in one clone could successfully inhibit NFкB activity. The success of pp65RHD spatiotemporal expression system is helpful to regulate NFкB activity and conquer cell-mediated immunity and could be used for preparation of transgenic pig, contributing to xenotransplantation.
Collapse
Affiliation(s)
- Jinxue Ruan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, 130012, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Abstract
Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.
Collapse
|
20
|
Li J, Blue R, Zeitler B, Strange TL, Pearl JR, Huizinga DH, Evans S, Gregory PD, Urnov FD, Petolino JF. Activation domains for controlling plant gene expression using designed transcription factors. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:671-80. [PMID: 23521778 DOI: 10.1111/pbi.12057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/03/2013] [Accepted: 01/27/2013] [Indexed: 06/01/2023]
Abstract
Targeted gene regulation via designed transcription factors has great potential for precise phenotypic modification and acceleration of novel crop trait development. To this end, designed transcriptional activators have been constructed by fusing transcriptional activation domains to DNA-binding proteins. In this study, a transcriptional activator from the herpes simplex virus, VP16, was used to identify plant regulatory proteins. Transcriptional activation domains were identified from each protein and fused with zinc finger DNA-binding proteins (ZFPs) to generate designed transcriptional activators. In addition, specific sequences within each transcriptional activation domain were modified to mimic the VP16 contact motif that interacts directly with RNA polymerase II core transcription factors. To evaluate these designed transcriptional activators, test systems were built in yeast and tobacco comprising reporter genes driven by promoters containing ZFP-binding sites upstream of the transcriptional start site. In yeast, transcriptional domains from the plant proteins ERF2 and PTI4 activated MEL1 reporter gene expression to levels similar to VP16 and the modified sequences displayed even greater levels of activation. Following stable transformation of the tobacco reporter system with transcriptional activators derived from ERF2, GUS reporter gene transcript accumulation was equal to or greater than those derived from VP16. Moreover, a modified ERF2 domain displayed significantly enhanced transcriptional activation compared with VP16 and with the unmodified ERF2 sequence. These results demonstrate that plant sequences capable of facilitating transcriptional activation can be found and, when fused to DNA-binding proteins, can enhance gene expression.
Collapse
|
21
|
Huisman C, Wisman GBA, Kazemier HG, van Vugt MATM, van der Zee AGJ, Schuuring E, Rots MG. Functional validation of putative tumor suppressor gene C13ORF18 in cervical cancer by Artificial Transcription Factors. Mol Oncol 2013; 7:669-79. [PMID: 23522960 DOI: 10.1016/j.molonc.2013.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/03/2013] [Accepted: 02/21/2013] [Indexed: 01/04/2023] Open
Abstract
C13ORF18 is frequently hypermethylated in cervical cancer but not in normal cervix and might serve as a biomarker for the early detection of cervical cancer in scrapings. As hypermethylation is often observed for silenced tumor suppressor genes (TSGs), hypermethylated biomarker genes might exhibit tumor suppressive activities upon re-expression. Epigenetic drugs are successfully exploited to reverse TSG silencing, but act genome-wide. Artificial Transcription Factors (ATFs) provide a gene-specific approach for re-expression of silenced genes. Here, we investigated the potential tumor suppressive role of C13ORF18 in cervical cancer by ATF-induced re-expression. Five zinc finger proteins were engineered to bind the C13ORF18 promoter and fused to a strong transcriptional activator. C13ORF18 expression could be induced in cervical cell lines: ranging from >40-fold in positive (C13ORF18-unmethylated) cells to >110-fold in negative (C13ORF18-methylated) cells. Re-activation of C13ORF18 resulted in significant cell growth inhibition and/or induction of apoptosis. Co-treatment of cell lines with ATFs and epigenetic drugs further enhanced the ATF-induced effects. Interestingly, re-activation of C13ORF18 led to partial demethylation of the C13ORF18 promoter and decreased repressive histone methylation. These data demonstrate the potency of ATFs to re-express and potentially demethylate hypermethylated silenced genes. Concluding, we show that C13ORF18 has a TSG function in cervical cancer and may serve as a therapeutic anti-cancer target. As the amount of epimutations in cancer exceeds the number of gene mutations, ATFs provide promising tools to validate hypermethylated marker genes as therapeutic targets.
Collapse
Affiliation(s)
- Christian Huisman
- Dept. of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
22
|
Petolino JF, Davies JP. Designed transcriptional regulators for trait development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 201-202:128-36. [PMID: 23352411 DOI: 10.1016/j.plantsci.2012.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 05/21/2023]
Abstract
Development is largely controlled by proteins that regulate gene expression at the level of transcription. These regulatory proteins, the genes that control them, and the genes that they control, are organized in a hierarchical structure of complex interactions. Altering the expression of genes encoding regulatory proteins controlling critical nodes in this hierarchy has potential for dramatic phenotypic modification. Constitutive over-expression of genes encoding regulatory proteins in transgenic plants has resulted in agronomically interesting phenotypes along with developmental abnormalities. For trait development, the magnitude and timing of expression of genes encoding key regulatory proteins will need to be precisely controlled and targeted to specific cells and tissues at certain developmental timepoints. Such control is made possible by designed transcriptional regulators which are fusions of engineered DNA binding proteins and activator or repressor domains. Expression of genes encoding such designed transcriptional regulators enable the selective modulation of endogenous gene expression. Genes encoding proteins controlling regulatory networks are prime targets for up- or down-regulation via such designed transcriptional regulators.
Collapse
MESH Headings
- Adaptation, Physiological
- Crops, Agricultural/genetics
- Crops, Agricultural/metabolism
- Crops, Agricultural/physiology
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Droughts
- Gene Expression Regulation, Plant
- Genes, Plant
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Protein Interaction Mapping
- Protein Structure, Tertiary
- Regulatory Elements, Transcriptional
- Regulatory Sequences, Nucleic Acid
- Temperature
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
|
23
|
Mercer AC, Gaj T, Fuller RP, Barbas CF. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 2012; 40:11163-72. [PMID: 23019222 PMCID: PMC3510496 DOI: 10.1093/nar/gks875] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Andrew C Mercer
- The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
24
|
de Groote ML, Verschure PJ, Rots MG. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 2012; 40:10596-613. [PMID: 23002135 PMCID: PMC3510492 DOI: 10.1093/nar/gks863] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined DNA sequences are uniquely suited to answer such questions and could provide potent (bio)medical tools. Toward the goal of gene-specific GEM by overwriting epigenetic marks (Epigenetic Editing, EGE), instructive epigenetic marks need to be identified and their writers/erasers should then be fused to gene-specific DNA binding domains. The appropriate epigenetic mark(s) to change in order to efficiently modulate gene expression might have to be validated for any given chromatin context and should be (mitotically) stable. Various insights in such issues have been obtained by sequence-specific targeting of epigenetic enzymes, as is presented in this review. Features of such studies provide critical aspects for further improving EGE. An example of this is the direct effect of the edited mark versus the indirect effect of recruited secondary proteins by targeting epigenetic enzymes (or their domains). Proof-of-concept of expression modulation of an endogenous target gene is emerging from the few EGE studies reported. Apart from its promise in correcting disease-associated epi-mutations, EGE represents a powerful tool to address fundamental epigenetic questions.
Collapse
Affiliation(s)
- Marloes L de Groote
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713 GZ, Groningen, The Netherlands
| | | | | |
Collapse
|
25
|
Gupta M, DeKelver RC, Palta A, Clifford C, Gopalan S, Miller JC, Novak S, Desloover D, Gachotte D, Connell J, Flook J, Patterson T, Robbins K, Rebar EJ, Gregory PD, Urnov FD, Petolino JF. Transcriptional activation of Brassica napus β-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:783-791. [PMID: 22520333 DOI: 10.1111/j.1467-7652.2012.00695.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Targeted gene regulation via designed transcription factors has great potential for precise phenotypic modification and acceleration of novel crop trait development. Canola seed oil composition is dictated largely by the expression of genes encoding enzymes in the fatty acid biosynthetic pathway. In the present study, zinc finger proteins (ZFPs) were designed to bind DNA sequences common to two canola β-ketoacyl-ACP Synthase II (KASII) genes downstream of their transcription start site. Transcriptional activators (ZFP-TFs) were constructed by fusing these ZFP DNA-binding domains to the VP16 transcriptional activation domain. Following transformation using Agrobacterium, transgenic events expressing ZFP-TFs were generated and shown to have elevated KASII transcript levels in the leaves of transgenic T(0) plants when compared to 'selectable marker only' controls as well as of T(1) progeny plants when compared to null segregants. In addition, leaves of ZFP-TF-expressing T(1) plants contained statistically significant decreases in palmitic acid (consistent with increased KASII activity) and increased total C18. Similarly, T(2) seed displayed statistically significant decreases in palmitic acid, increased total C18 and reduced total saturated fatty acid contents. These results demonstrate that designed ZFP-TFs can be used to regulate the expression of endogenous genes to elicit specific phenotypic modifications of agronomically relevant traits in a crop species.
Collapse
|
26
|
Zhang HS, Liu D, Huang Y, Schmidt S, Hickey R, Guschin D, Su H, Jovin IS, Kunis M, Hinkley S, Liang Y, Hinh L, Spratt SK, Case CC, Rebar EJ, Ehrlich BE, Ehrlich B, Gregory PD, Giordano FJ. A designed zinc-finger transcriptional repressor of phospholamban improves function of the failing heart. Mol Ther 2012; 20:1508-15. [PMID: 22828502 PMCID: PMC3412484 DOI: 10.1038/mt.2012.80] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Selective inhibition of disease-related proteins underpins the majority of successful drug-target interactions. However, development of effective antagonists is often hampered by targets that are not druggable using conventional approaches. Here, we apply engineered zinc-finger protein transcription factors (ZFP TFs) to the endogenous phospholamban (PLN) gene, which encodes a well validated but recalcitrant drug target in heart failure. We show that potent repression of PLN expression can be achieved with specificity that approaches single-gene regulation. Moreover, ZFP-driven repression of PLN increases calcium reuptake kinetics and improves contractile function of cardiac muscle both in vitro and in an animal model of heart failure. These results support the development of the PLN repressor as therapy for heart failure, and provide evidence that delivery of engineered ZFP TFs to native organs can drive therapeutically relevant levels of gene repression in vivo. Given the adaptability of designed ZFPs for binding diverse DNA sequences and the ubiquity of potential targets (promoter proximal DNA), our findings suggest that engineered ZFP repressors represent a powerful tool for the therapeutic inhibition of disease-related genes, therefore, offering the potential for therapeutic intervention in heart failure and other poorly treated human diseases.
Collapse
|
27
|
Egelkrout E, Rajan V, Howard JA. Overproduction of recombinant proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:83-101. [PMID: 22284713 DOI: 10.1016/j.plantsci.2011.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 05/21/2023]
Abstract
Recombinant protein production in microbial hosts and animal cell cultures has revolutionized the pharmaceutical and industrial enzyme industries. Plants as alternative hosts for the production of recombinant proteins are being actively pursued, taking advantage of their unique characteristics. The key to cost-efficient production in any system is the level of protein accumulation, which is inversely proportional to the cost. Levels of up to 5 g/kg biomass have been obtained in plants, making this production system competitive with microbial hosts. Increasing protein accumulation at the cellular level by varying host, germplasm, location of protein accumulation, and transformation procedure is reviewed. At the molecular level increased expression by improving transcription, translation and accumulation of the protein is critically evaluated. The greatest increases in protein accumulation will occur when various optimized parameters are more fully integrated with each other. Because of the complex nature of plants, this will take more time and effort to accomplish than has been the case for the simpler unicellular systems. However the potential for plants to become one of the major avenues for protein production appears very promising.
Collapse
Affiliation(s)
- Erin Egelkrout
- Applied Biotechnology Institute, Cal Poly Technology Park, Building 83, San Luis Obispo, CA 93407, USA
| | | | | |
Collapse
|
28
|
Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK, Zhu JK. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. PLANT MOLECULAR BIOLOGY 2012; 78:311-21. [PMID: 22167390 PMCID: PMC3259320 DOI: 10.1007/s11103-011-9866-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/27/2011] [Indexed: 05/18/2023]
Abstract
Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3.SRDX protein efficiently repressed the transcription of the RD29A::LUC transgene and endogenous RD29A gene in Arabidopsis. Genome wide expression profiling showed that the chimeric repressor also inhibited the expression of several other genes that contain the designer TALE-target sequence in their promoters. Our data suggest that TALEs can be used to generate chimeric repressors to specifically repress the transcription of genes of interest in plants. This sequence-specific transcriptional repression by direct on promoter effector technology is a powerful tool for functional genomics studies and biotechnological applications.
Collapse
Affiliation(s)
- Magdy M. Mahfouz
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Lixin Li
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Marek Piatek
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Xiaoyun Fang
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Hicham Mansour
- BioScience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Dhinoth K. Bangarusamy
- BioScience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
29
|
Pensato S, Renda M, Leccia F, Saviano M, D'Andrea LD, Pedone C, Pedone PV, Romanelli A. PNA zipper as a dimerization tool: development of a bZip mimic. Biopolymers 2010; 93:434-41. [PMID: 19938072 DOI: 10.1002/bip.21357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The article describes the use of a PNA duplex (PNA zipper) as a tool to dimerize or bring in close proximity two polypeptides or protein domains. The amino acid sequence to be dimerized is covalently bound to complementary PNA sequences. Annealing of the PNA strands results in dimer formation. To test the ability of the "PNA-zipper" as a dimerization tool, we designed a GCN4 mimetic, where the leucine-zipper dimerization domain was replaced by the PNA zipper, whereas the basic DNA-binding domain was covalently attached to the PNA. The molecule was assembled by chemical ligation of the peptide corresponding to the DNA-binding domain of GCN4 modified with a succinyl thioester with two complementary PNAs harboring a cysteine residue. Electromobility-shift experiments show the ability of the PNA zipper-GCN4 to bind selected DNA duplexes. The PNA zipper-GCN4 binds both the TRE and CRE DNA sites, but it does not bind TRE and CRE mutants containing even a single base mutation, as the native GCN4. The ability to fold upon complexation with DNA was investigated by CD. A good correlation between the ability of the PNA zipper-GCN4 to fold into alpha helices and the ability to bind DNA was found.
Collapse
|
30
|
Olsen PA, Gelazauskaite M, Randøl M, Krauss S. Analysis of illegitimate genomic integration mediated by zinc-finger nucleases: implications for specificity of targeted gene correction. BMC Mol Biol 2010; 11:35. [PMID: 20459736 PMCID: PMC2875229 DOI: 10.1186/1471-2199-11-35] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 05/10/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Formation of site specific genomic double strand breaks (DSBs), induced by the expression of a pair of engineered zinc-finger nucleases (ZFNs), dramatically increases the rates of homologous recombination (HR) between a specific genomic target and a donor plasmid. However, for the safe use of ZFN induced HR in practical applications, possible adverse effects of the technology such as cytotoxicity and genotoxicity need to be well understood. In this work, off-target activity of a pair of ZFNs has been examined by measuring the ratio between HR and illegitimate genomic integration in cells that are growing exponentially, and in cells that have been arrested in the G2/M phase. RESULTS A reporter cell line that contained consensus ZFN binding sites in an enhanced green fluorescent protein (EGFP) reporter gene was used to measure ratios between HR and non-homologous integration of a plasmid template. Both in human cells (HEK 293) containing the consensus ZFN binding sites and in cells lacking the ZFN binding sites, a 3.5 fold increase in the level of illegitimate integration was observed upon ZFN expression. Since the reporter gene containing the consensus ZFN target sites was found to be intact in cells where illegitimate integration had occurred, increased rates of illegitimate integration most likely resulted from the formation of off-target genomic DSBs. Additionally, in a fraction of the ZFN treated cells the co-occurrence of both specific HR and illegitimate integration was observed. As a mean to minimize unspecific effects, cell cycle manipulation of the target cells by induction of a transient G2/M cell cycle arrest was shown to stimulate the activity of HR while having little effect on the levels of illegitimate integration, thus resulting in a nearly eight fold increase in the ratio between the two processes. CONCLUSIONS The demonstration that ZFN expression, in addition to stimulating specific gene targeting by HR, leads to increased rates of illegitimate integration emphasizes the importance of careful characterization of ZFN treated cells. In order to reduce off-target events, reversible cell cycle arrest of the target cells in the G2/M phase is an efficient way for increasing the ratio between specific HR and illegitimate integration.
Collapse
Affiliation(s)
- Petter A Olsen
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| | - Monika Gelazauskaite
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| | - Markus Randøl
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| | - Stefan Krauss
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Oslo University Hospital, Rikshospitalet, Gausdadalleen 21, 0349 Oslo, Norway
- University of Oslo, 0027 Oslo, Norway
| |
Collapse
|
31
|
Ordiz MI, Magnenat L, Barbas CF, Beachy RN. Negative regulation of the RTBV promoter by designed zinc finger proteins. PLANT MOLECULAR BIOLOGY 2010; 72:621-630. [PMID: 20169401 DOI: 10.1007/s11103-010-9600-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/08/2010] [Indexed: 05/28/2023]
Abstract
The symptoms of rice tungro disease are caused by infection by a DNA-containing virus, rice tungro bacilliform virus (RTBV). To reduce expression of the RTBV promoter, and to ultimately reduce virus replication, we tested three synthetic zinc finger protein transcription factors (ZF-TFs), each comprised of six finger domains, designed to bind to sequences between -58 and +50 of the promoter. Two of these ZF-TFs reduced expression from the promoter in transient assays and in transgenic Arabidopsis thaliana plants. One of the ZF-TFs had significant effects on plant regeneration, apparently as a consequence of binding to multiple sites in the A. thaliana genome. Expression from the RTBV promoter was reduced by approximately 45% in transient assays and was reduced by up to 80% in transgenic plants. Co-expression of two different ZF-TFs did not further reduce expression of the promoter. These experiments suggest that ZF-TFs may be used to reduce replication of RTBV and thereby offer a potential method for control of an important crop disease.
Collapse
Affiliation(s)
- M Isabel Ordiz
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | | | | | | |
Collapse
|
32
|
Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 2010; 5:791-810. [PMID: 20360772 DOI: 10.1038/nprot.2010.34] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Engineered zinc-finger transcription factors (ZF-TF) are powerful tools to modulate the expression of specific genes. Complex libraries of ZF-TF can be delivered into cells to scan the genome for genes responsible for a particular phenotype or to select the most effective ZF-TF to regulate an individual gene. In both cases, the construction of highly representative and unbiased libraries is critical. In this protocol, we describe a user-friendly ZF technology suitable for the creation of complex libraries and the construction of customized ZF-TFs. The new technology described here simplifies the building of ZF libraries, avoids PCR-introduced bias and ensures equal representation of every module. We also describe the construction of a customized ZF-TF that can be transferred to a number of expression vectors. This protocol can be completed in 9-11 d.
Collapse
|
33
|
Pellicer S, Bes MT, González A, Neira JL, Peleato ML, Fillat MF. High-recovery one-step purification of the DNA-binding protein Fur by mild guanidinium chloride treatment. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Pattanaik S, Werkman JR, Kong Q, Yuan L. Site-directed mutagenesis and saturation mutagenesis for the functional study of transcription factors involved in plant secondary metabolite biosynthesis. Methods Mol Biol 2010; 643:47-57. [PMID: 20552443 DOI: 10.1007/978-1-60761-723-5_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Regulation of gene expression is largely coordinated by a complex network of interactions between transcription factors (TFs), co-factors, and their cognate cis-regulatory elements in the genome. TFs are multidomain proteins that arise evolutionarily through protein domain shuffling. The modular nature of TFs has led to the idea that specific modules of TFs can be re-designed to regulate desired gene(s) through protein engineering. Utilization of designer TFs for the control of metabolic pathways has emerged as an effective approach for metabolic engineering. We are interested in engineering the basic helix-loop-helix (bHLH, Myc-type) transcription factors. Using site-directed and saturation mutagenesis, in combination with efficient and high-throughput screening systems, we have identified and characterized several amino acid residues critical for higher transactivation activity of a Myc-like bHLH transcription factor involved in anthocyanin biosynthetic pathway in plants. Site-directed and saturation mutagenesis should be generally applicable to engineering of all TFs.
Collapse
Affiliation(s)
- Sitakanta Pattanaik
- Department of Plant and Soil Sciences, The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
35
|
Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK. Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc 2009; 4:1471-501. [PMID: 19798082 PMCID: PMC2858690 DOI: 10.1038/nprot.2009.98] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Engineered zinc-finger nucleases (ZFNs) form the basis of a broadly applicable method for targeted, efficient modification of eukaryotic genomes. In recent work, we described OPEN (oligomerized pool engineering), an 'open-source,' combinatorial selection-based method for engineering zinc-finger arrays that function well as ZFNs. We have also shown in direct comparisons that the OPEN method has a higher success rate than previously described 'modular-assembly' methods for engineering ZFNs. OPEN selections are carried out in Escherichia coli using a bacterial two-hybrid system and do not require specialized equipment. Here we provide a detailed protocol for carrying out OPEN to engineer zinc-finger arrays that have a high probability of functioning as ZFNs. Using OPEN, researchers can generate multiple, customized ZFNs in approximately 8 weeks.
Collapse
Affiliation(s)
- Morgan L. Maeder
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Stacey Thibodeau-Beganny
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jeffry D. Sander
- Department of Genetics, Development & Cell Biology, 1043 Roy J. Carver Co-Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Daniel F. Voytas
- Department of Genetics, Development & Cell Biology, 1043 Roy J. Carver Co-Laboratory, Iowa State University, Ames, IA 50011, USA
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, 321 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - J. Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
Cellular responses to targeted genomic sequence modification using single-stranded oligonucleotides and zinc-finger nucleases. DNA Repair (Amst) 2008; 8:298-308. [PMID: 19071233 DOI: 10.1016/j.dnarep.2008.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 10/23/2008] [Accepted: 11/05/2008] [Indexed: 01/27/2023]
Abstract
Single-stranded oligonucleotides (ssODNs) and zinc-finger nucleases (ZFNs) are two approaches that are being pursued to achieve sequence specific genome modification. ZFNs induce high rates of homologous recombination (HR) between the target sequence and a given donor by introducing site-specific genomic double-strand breaks (DSBs). The mode of action that is used by ssODNs remains largely unknown, but may involve genomic integration of the ssODNs. In this work, cellular responses following ssODN and ZFN mediated correction of a genomic reporter gene have been investigated in human cells. Comparison of the cell cycle distribution of corrected cells following ssODN or ZFN exposure, established that ssODN corrected cells were arrested in the late S and G2/M cell cycle phases, while ZFN corrected cells displayed normal cell cycle profiles. We demonstrate that after ssODN mediated gene correction, phosphorylation of the damage sensor protein H2AX could be observed in 5.8% and 29% of the corrected cells, using a single copy and a multi copy reporter, respectively. When using the ZFN strategy in a single copy reporter only 1.5% of the corrected cells were positive for gamma-H2AX staining. By direct detection of genomic DSBs we establish that the observed cell cycle arrest following ssODN mediated gene correction could be associated with the presence of unrepaired genomic DSBs. Lastly, we establish that although a mutant cellular mismatch repair (MMR) system as expected enhanced ssODN mediated gene correction, the capacity of the ssODN corrected cells to proliferate was not influenced by the MMR system. In conclusion gene correction by means of the ssODN strategy leads to activation of DNA damage signalling and cell cycle arrest due to formation of unrepaired genomic DSBs in a high proportion of the corrected cells. On the contrary, cells corrected using ZFNs displayed normal cell cycle distribution and lower rates of DNA damage.
Collapse
|
37
|
|
38
|
Yokoi K, Zhang HS, Kachi S, Balaggan KS, Yu Q, Guschin D, Kunis M, Surosky R, Africa LM, Bainbridge JW, Spratt SK, Gregory PD, Ali RR, Campochiaro PA. Gene transfer of an engineered zinc finger protein enhances the anti-angiogenic defense system. Mol Ther 2007; 15:1917-23. [PMID: 17700545 DOI: 10.1038/sj.mt.6300280] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Zinc finger protein transcription factors (ZFP TFs) have been shown to positively or negatively regulate the expression of endogenous genes involved in a number of different disease processes. In this study we investigated whether gene transfer of an engineered ZFP TF designed to up-regulate expression of the chromosomal pigment epithelium-derived factor (Pedf) gene could suppress experimentally induced choroidal neovascularization (CNV). Transient transfection with engineered ZFP TFs significantly increased both Pedf messenger RNA (mRNA) and secreted PEDF protein levels in cell culture. Six weeks after intravitreous or subretinal injection of an adeno-associated viral (AAV) vector expressing the PEDF-activating ZFP TF in mice, we observed increased retinal Pedf mRNA, and a significant reduction in the size of CNV at Bruch's membrane rupture sites, assessed in vivo by fluorescein angiography or by postmortem measurements on choroidal flat mounts. Importantly, the anti-angiogenic activity persisted at 3 months after intravitreous injection. These data suggest that ZFP TF-driven enhancement of the endogenous anti-angiogenic defense system may provide a new approach for prophylaxis and treatment of neovascular diseases of the eye.
Collapse
Affiliation(s)
- Katsutoshi Yokoi
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9277, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dent CL, Lau G, Drake EA, Yoon A, Case CC, Gregory PD. Regulation of endogenous gene expression using small molecule-controlled engineered zinc-finger protein transcription factors. Gene Ther 2007; 14:1362-9. [PMID: 17637799 DOI: 10.1038/sj.gt.3302985] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small-molecule-regulated gene expression offers the promise of titrating the dose and duration of action of DNA-based therapies. To this end, we show that engineered zinc-finger protein transcription factors (ZFP TFs) can be coupled with a drug-inducible regulatory domain to permit small-molecule control of endogenous gene transcription. We constructed a drug-responsive ZFP TF via the fusion of a ZFP DNA-binding domain (DBD) targeting the human VEGF-A gene and an effector domain containing a truncated progesterone receptor ligand-binding domain linked to the NFkappaB p65 activation domain. Introduction of this engineered ZFP TF into human or murine cells allowed expression of the chromosomal VEGF-A gene to be induced upon addition of mifepristone, a synthetic steroid analog. Mifepristone-dependent VEGF-A induction was rapid, dose-dependent and reversible. Moreover, stable lines expressing the drug-responsive ZFP TF could be maintained in a state of continuous induction for at least 30 days without loss of viability. Potent VEGF-A induction was demonstrated using different engineered ZFP DBDs, thus this approach may represent a general solution to small-molecule regulation of targeted endogenous genes.
Collapse
Affiliation(s)
- C L Dent
- Sangamo BioSciences Inc., Point Richmond Tech Center, Richmond, CA 94804, USA
| | | | | | | | | | | |
Collapse
|
40
|
Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007; 25:778-85. [PMID: 17603475 DOI: 10.1038/nbt1319] [Citation(s) in RCA: 774] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 06/04/2007] [Indexed: 11/08/2022]
Abstract
Genome editing driven by zinc-finger nucleases (ZFNs) yields high gene-modification efficiencies (>10%) by introducing a recombinogenic double-strand break into the targeted gene. The cleavage event is induced using two custom-designed ZFNs that heterodimerize upon binding DNA to form a catalytically active nuclease complex. Using the current ZFN architecture, however, cleavage-competent homodimers may also form that can limit safety or efficacy via off-target cleavage. Here we develop an improved ZFN architecture that eliminates this problem. Using structure-based design, we engineer two variant ZFNs that efficiently cleave DNA only when paired as a heterodimer. These ZFNs modify a native endogenous locus as efficiently as the parental architecture, but with a >40-fold reduction in homodimer function and much lower levels of genome-wide cleavage. This architecture provides a general means for improving the specificity of ZFNs as gene modification reagents.
Collapse
Affiliation(s)
- Jeffrey C Miller
- Sangamo BioSciences, Inc., Pt. Richmond Tech Center, 501 Canal Blvd., Suite A100 Richmond, California 94804, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, VanWormer K, Strauss SH. Genetic containment of forest plantations. TREE GENETICS & GENOMES 2007; 3:75-100. [PMID: 0 DOI: 10.1007/s11295-006-0067-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
42
|
Lindhout BI, Pinas JE, Hooykaas PJJ, van der Zaal BJ. Employing libraries of zinc finger artificial transcription factors to screen for homologous recombination mutants in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:475-83. [PMID: 17052325 DOI: 10.1111/j.1365-313x.2006.02877.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A library of genes for zinc finger artificial transcription factors (ZF-ATF) was generated by fusion of DNA sequences encoding three-finger Cys(2)His(2) ZF domains to the VP16 activation domain under the control of the promoter of the ribosomal protein gene RPS5A from Arabidopsis thaliana. After introduction of this library into an Arabidopsis homologous recombination (HR) indicator line, we selected primary transformants exhibiting multiple somatic recombination events. After PCR-mediated rescue of ZF sequences, reconstituted ZF-ATFs were re-introduced in the target line. In this manner, a ZF-ATF was identified that led to a 200-1000-fold increase in somatic HR (replicated in an independent second target line). A mutant plant line expressing the HR-inducing ZF-ATF exhibited increased resistance to the DNA-damaging agent bleomycin and was more sensitive to methyl methanesulfonate (MMS), a combination of traits not described previously. Our results demonstrate that the use of ZF-ATF pools is highly rewarding when screening for novel dominant phenotypes in Arabidopsis.
Collapse
Affiliation(s)
- Beatrice I Lindhout
- Clusius Laboratory, Department of Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
43
|
Jamieson AC, Guan B, Cradick TJ, Xiao H, Holmes MC, Gregory PD, Carroll PM. Controlling gene expression in Drosophila using engineered zinc finger protein transcription factors. Biochem Biophys Res Commun 2006; 348:873-9. [PMID: 16899226 DOI: 10.1016/j.bbrc.2006.07.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 07/20/2006] [Indexed: 11/19/2022]
Abstract
Zinc finger protein transcription factors (ZFP TFs) have been designed to control the expression of endogenous genes in a variety of cells. However, thus far the use of engineered ZFP TFs in germline transgenic settings has been restricted to plants. Here we report that ZFP TFs can regulate gene expression in transgenic Drosophila. To demonstrate this, we targeted the promoter of the well-characterized fushi tarazu (ftz) gene with a ZFP TF activator using the VP16 activation domain from Herpes simplex virus, and ZFP TF repressors using the Drosophila methyl-CpG binding domain (MBD)-like Delta protein. Heat-shock-inducible expression of the ZFP TF activator and repressors resulted in reciprocal effects on ftz regulation, as deduced from changes in the staining pattern and intensity of ftz and en gene expression, and from the cuticular analysis of first instar larvae. These data demonstrate the utility of ZFP TFs as tools for controlling gene expression in the context of a metazoan organism.
Collapse
Affiliation(s)
- Andrew C Jamieson
- Sangamo BioSciences, Inc., Point Richmond Tech Center, 501, Canal Blvd., Suite A100, Richmond, CA 94804, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Pattanaik S, Xie CH, Kong Q, Shen KA, Yuan L. Directed evolution of plant basic helix-loop-helix transcription factors for the improvement of transactivational properties. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1759:308-18. [PMID: 16837081 DOI: 10.1016/j.bbaexp.2006.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/09/2006] [Accepted: 04/21/2006] [Indexed: 11/18/2022]
Abstract
Myc-RP from Perilla frutescens and Delila from Antirrhinum majus, two plant basic helix-loop-helix transcription factors (bHLH TFs) involved in the flavonoid biosynthetic pathway, have been used for the improvement of transactivational properties by directed evolution. Through two rounds of DNA shuffling, Myc-RP variants with up to 70-fold increase in transcriptional activities have been identified using a yeast transactivation system. In a tobacco protoplast transient expression assay, one of the most improved variants, M2-1, also shows significant increase of transactivation. The majority of resulting mutations (approximately 53%) are localized in the acidic (activation) domains of the improved Myc-RP variants. In variant M2-1, three of the four mutations (L301P/N354D/S401F) are in the acidic domain. The fourth mutation (K157M) is localized to a helix within the N-terminal interaction domain. Combinatorial site-directed mutagenesis reveals that, while the acidic domain mutations contribute modestly to the increase in activity, the K157M substitution is responsible for 80% of the improvement observed in variant M2-1. The transactivation activity of the K157M/N354D double mutant is equal to that of M2-1. These results suggest that the interaction domain plays a critical role in transactivation of these bHLH TFs. Delila variants have also been screened for increased activities toward the Arabidopsis chalcone synthase (CHS) promoter, a pathway promoter that responds weakly to the bHLH TFs. Variants with increased activity on the CHS promoter, while maintaining wildtype-level activities on the naturally responsive dihydroflavonol reductase promoter, have been obtained. This study demonstrates that functional properties of TFs can be modified by directed evolution.
Collapse
Affiliation(s)
- Sitakanta Pattanaik
- Department of Plant and Soil Sciences, University of Kentucky, Cooper and University Drives, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
45
|
Mitsuda N, Hiratsu K, Todaka D, Nakashima K, Yamaguchi-Shinozaki K, Ohme-Takagi M. Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:325-32. [PMID: 17147638 DOI: 10.1111/j.1467-7652.2006.00184.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Male and female sterile plants are particularly useful for the effective production of commercial hybrid plants and for preventing the diffusion of seeds or pollen grains of genetically modified plants in the open field. In an attempt to create several types of sterile plant by genetic manipulation, we applied our Chimeric REpressor Gene-Silencing Technology (CRES-T) to four transcription factors, namely APETALA3, AGAMOUS, LEAFY and AtMYB26, involved in the regulation of petal and stamen identity, stamen and carpel identity, floral meristem identity and anther dehiscence, respectively, in Arabidopsis. Transgenic plants expressing each chimeric repressor exhibited, at high frequency, a sterile phenotype that resembled the loss-of-function phenotype of each corresponding gene. Furthermore, in the monocotyledonous crop plant 'rice', expression of the chimeric repressor derived from SUPERWOMAN1, the rice orthologue of APETALA3, resulted in the male sterile phenotype with high efficiency. Our results indicate that CRES-T provides a powerful tool for controlling the fertility of both monocots and dicots by exploiting transcription factors that are strongly conserved amongst plants.
Collapse
Affiliation(s)
- Nobutaka Mitsuda
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Eberhardy SR, Goncalves J, Coelho S, Segal DJ, Berkhout B, Barbas CF. Inhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site. J Virol 2006; 80:2873-83. [PMID: 16501096 PMCID: PMC1395442 DOI: 10.1128/jvi.80.6.2873-2883.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) primer-binding site (PBS) is a highly conserved region in the HIV genome and represents an attractive target for the development of new anti-HIV therapies. In this study, we designed four artificial zinc finger transcription factors to bind at or adjacent to the PBS and repress transcription from the HIV-1 long terminal repeat (LTR). These proteins bound to the LTR in vivo, as demonstrated by the chromatin immunoprecipitation assay. In transient reporter assays, three of the four proteins repressed transcription of a reporter driven by the HIV-1 LTR. Only one of these proteins, however, designated KRAB-PBS2, was able to prevent virus production when transduced into primary lymphocytes. We observed >90% inhibition of viral replication over the course of several weeks compared to untransduced cells, and no significant cytotoxicity was observed. Long-term exposure of HIV-1 to KRAB-PBS2 induced mutations in the HIV-1 PBS that reduced the effectiveness of the repressor, but these mutations also resulted in decreased rates of viral replication. These results show that KRAB-PBS2 has the potential to be used in antiviral therapy for AIDS patients and might complement other gene-based strategies.
Collapse
Affiliation(s)
- Scott R Eberhardy
- The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tan W, Dong Z, Wilkinson TA, Barbas CF, Chow SA. Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. J Virol 2006; 80:1939-48. [PMID: 16439549 PMCID: PMC1367172 DOI: 10.1128/jvi.80.4.1939-1948.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 12/01/2005] [Indexed: 12/31/2022] Open
Abstract
In vitro studies using fusion proteins consisting of human immunodeficiency virus type 1 integrase (IN) and a synthetic polydactyl zinc finger protein E2C, a sequence-specific DNA-binding protein, showed that integration of retroviral DNA can be biased towards a contiguous 18-bp E2C-recognition site. To determine whether the fusion protein strategy can achieve site-specific integration in vivo, viruses were prepared by cotransfection and various IN-E2C fusion proteins were packaged in trans into virions. The resulting viruses incorporated with the IN-E2C fusion proteins were functional and capable of performing integration at a level ranging from 1 to 24% of that of viruses containing wild-type (WT) IN. Two of the more infectious viruses, which contained E2C fused to either the N (E2C/IN) or to the C (IN/E2C) terminus of IN, were tested for their ability to direct integration into a unique E2C-binding site present within the 5' untranslated region of erbB-2 gene on human chromosome 17. The copy number of proviral DNA was measured using a quantitative real-time nested-PCR assay, and the specificity of directed integration was determined by comparing the number of proviruses within the vicinity of the E2C-binding site to that in the whole genome. Viruses containing IN/E2C fusion proteins had sevenfold higher preference for integrating near the E2C-binding site than those viruses containing WT IN, whereas viruses containing E2C/IN had 10-fold higher preference. The results indicated that the IN-E2C fusion protein strategy is capable of directing integration of retroviral DNA into a predetermined chromosomal region in the human genome.
Collapse
Affiliation(s)
- Wenjie Tan
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute, and UCLA AIDS Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
48
|
Sánchez JP, Ullman C, Moore M, Choo Y, Chua NH. Regulation of Arabidopsis thaliana 4-coumarate:coenzyme-A ligase-1 expression by artificial zinc finger chimeras. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:103-14. [PMID: 17177789 DOI: 10.1111/j.1467-7652.2005.00161.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The use of artificial zinc finger chimeras to manipulate the expression of a gene of interest is a promising approach because zinc finger proteins can be engineered to bind any given DNA sequence in the genome. We have previously shown that a zinc finger chimera with a VP16 activation domain can activate a reporter gene in transgenic Arabidopsis thaliana (Sánchez, J.P., Ullman, C., Moore, M., Choo, Y. and Chua, N.H. (2002) Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Plant Cell Physiol. 43, 1465-1472). Here, we report the use of artificial zinc finger chimeras to specifically regulate the 4-coumarate:coenzyme-A ligase-1 (At4CL1) gene in A. thaliana. At4CL1 is a key enzyme in lignin biosynthesis and the down-regulation of At4CL1 can lead to a decrease in lignin content, which has a significant commercial value for the paper industry. To this end, we designed zinc finger chimeras containing either an activation or a repression domain, which bind specifically to the At4CL1 promoter region. Transgenic lines expressing a zinc finger chimera with the VP16 activation domain showed an increase in At4CL1 expression and enzyme activity. In contrast, transgenic lines expressing a chimera with the KOX (KRAB) repression domain displayed repression of At4CL1 expression and enzyme activity. The activation of At4CL1 expression produced an increase in lignin content, and transgenic plant stems showed ectopic lignin distribution. Repression of the At4CL1 gene resulted in reduced lignin content, and lignin distribution in transgenic stems was severely diminished. Our results confirm and extend previous studies of gene regulation using various artificial zinc finger chimeras in animal and plant systems, and show that this system can be used to up- and down-regulate the expression of an endogenous plant gene such as At4CL1.
Collapse
Affiliation(s)
- Juan Pablo Sánchez
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
49
|
Papworth M, Kolasinska P, Minczuk M. Designer zinc-finger proteins and their applications. Gene 2006; 366:27-38. [PMID: 16298089 DOI: 10.1016/j.gene.2005.09.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/18/2005] [Indexed: 10/25/2022]
Abstract
The Cys(2)His(2) zinc finger is one of the most common DNA-binding motifs in Eukaryota. A simple mode of DNA recognition by the Cys(2)His(2) zinc finger domain provides an ideal scaffold for designing proteins with novel sequence specificities. The ability to bind specifically to virtually any DNA sequence combined with the potential of fusing them with effector domains has led to the technology of engineering of chimeric DNA-modifying enzymes and transcription factors. This in turn has opened the possibility of using the engineered zinc finger-based factors as novel human therapeutics. One such synthetic factor-designer zinc finger transcription activator of the vascular endothelial growth factor A gene-has recently entered clinical trials to evaluate the ability of stimulating the growth of blood vessels in treating the peripheral arterial obstructive disease. This review concentrates on the aspects of natural Cys(2)His(2) zinc fingers evolution and fundamental steps in design of engineered zinc finger proteins. The applications of engineered zinc finger proteins are discussed in a context of the mechanism mediating their effect on the targeted DNA. Furthermore, the regulation of the expression of zinc finger proteins and their targeting to various cellular compartments and to chromatin and non-chromatin target templates are described. Also possible future applications of designer zinc finger proteins are discussed.
Collapse
Affiliation(s)
- Monika Papworth
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, UK.
| | | | | |
Collapse
|
50
|
Wright DA, Townsend JA, Winfrey RJ, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:693-705. [PMID: 16262717 DOI: 10.1111/j.1365-313x.2005.02551.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Homologous recombination offers great promise for plant genome engineering. This promise has not been realized, however, because when DNA enters plant cells homologous recombination occurs infrequently and random integration predominates. Using a tobacco test system, we demonstrate that chromosome breaks created by zinc-finger nucleases greatly enhance the frequency of localized recombination. Homologous recombination was measured by restoring function to a defective GUS:NPTII reporter gene integrated at various chromosomal sites in 10 different transgenic tobacco lines. The reporter gene carried a recognition site for a zinc-finger nuclease, and protoplasts from each tobacco line were electroporated with both DNA encoding the nuclease and donor DNA to effect repair of the reporter. Homologous recombination occurred in more than 10% of the transformed protoplasts regardless of the reporter's chromosomal position. Approximately 20% of the GUS:NPTII reporter genes were repaired solely by homologous recombination, whereas the remainder had associated DNA insertions or deletions consistent with repair by both homologous recombination and non-homologous end joining. The DNA-binding domain encoded by zinc-finger nucleases can be engineered to recognize a variety of chromosomal target sequences. This flexibility, coupled with the enhancement in homologous recombination conferred by double-strand breaks, suggests that plant genome engineering through homologous recombination can now be reliably accomplished using zinc-finger nucleases.
Collapse
Affiliation(s)
- David A Wright
- Phytodyne, Inc., 2711 South Loop Drive, Building 4, Suite 4400, Ames, IA 50010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|