1
|
Cheng SY, Giguere D, Silverstein I, Conza A, Seddon JM, Kim S, Iwata T, Mueller C, Punzo C. Role of alpha-1 antitrypsin in Bruch's membrane integrity. Sci Rep 2025; 15:12223. [PMID: 40210893 PMCID: PMC11985914 DOI: 10.1038/s41598-025-96570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Alpha-1 antitrypsin (AAT) is a serine protease inhibitor that plays a crucial role in maintaining extracellular matrix integrity. Studies suggest that AAT augmentation therapy may benefit multiple eye diseases, including age-related macular degeneration (AMD). However, the function of endogenous AAT in the eye remains unclear. Here we used genetic knockout mice to study the role of AAT in eye health. We show that loss of AAT results in Bruch's membrane (BrM) thickening driven in part by increased laminin deposition with a concomitant decrease in collagen and elastin, which are two other critical BrM components. Interestingly, BrM remodeling due to excess extracellular protease activity reduced the age-related deposition at the BrM of apolipoprotein E, while increasing complement factor H and lowering secretion of the proangiogenic vascular endothelial growth factor. Despite these changes, the phagocytic function of the retinal pigment epithelium was not affected nor was the expression of genes that partake in photoreceptor cell metabolism. Consistent with loss of AAT resulting in changes that should alleviate AMD pathologies, human AMD donor eyes exhibited lower AAT expression levels in the BrM/choroid layer when compared to healthy donor eyes. Together, the study provides insight into AAT's function and its potential involvement in AMD.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Delaney Giguere
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ilana Silverstein
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Adrienne Conza
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Johanna M Seddon
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - San Kim
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Takeshi Iwata
- Divivion of Molecular and Cellular Biology, National Institute of Sensory Organ, NHO Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | | | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Genetics and Cellular Medicine and Horae Gene Therapy Center, Worcester, MA, 01605, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Wang JH, Cui M, Liu H, Guo P, McGowan J, Cheng SY, Gessler DJ, Xie J, Punzo C, Tai PW, Gao G. Cell-penetrating peptide-grafted AAV2 capsids for improved retinal delivery via intravitreal injection. Mol Ther Methods Clin Dev 2025; 33:101426. [PMID: 40027263 PMCID: PMC11872077 DOI: 10.1016/j.omtm.2025.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Recombinant adeno-associated virus (rAAV) is a leading vector for retinal gene therapy due to its favorable safety profile demonstrated by the FDA-approved Luxturna for Leber congenital amaurosis. However, challenges with low transduction efficiency and immunogenicity, coupled with the invasiveness of subretinal injections, have driven efforts to engineer AAV capsids for minimally invasive intravitreal delivery. Intravitreal injections face the barrier of the inner limiting membrane (ILM), particularly with AAV2-based vectors. In this study, we displayed cell-penetrating peptides (CPPs) on AAV2 capsids to enhance retinal cell transduction via intravitreal injection. Through in vivo capsid screening, we identified AAV2.CPP1, which showed significantly improved pan-retinal expression and photoreceptor transduction in mice as well as a reduced immune response compared to the AAV2.7m8 vector. We also revealed that the CPP1 insertion reduced heparan sulfate binding, improving ILM penetration. These findings highlight AAV2.CPP1 as a promising candidate for retinal gene therapy via intravitreal injection, offering enhanced efficiency and a minimized immune response.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Mengtian Cui
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hao Liu
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Peiyi Guo
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jackson McGowan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dominic J. Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Claudio Punzo
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Phillip W.L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Wei P, Gao S, Han G. Evidence for Genetic Causal Association Between the Gut Microbiome, Derived Metabolites, and Age-Related Macular Degeneration: A Mediation Mendelian Randomization Analysis. Biomedicines 2025; 13:639. [PMID: 40149615 PMCID: PMC11940807 DOI: 10.3390/biomedicines13030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Despite substantial research, the causal relationships between gut microbiota (GM) and age-related macular degeneration (AMD) remain unclear. We aimed to explore these causal associations using Mendelian randomization (MR) and elucidate the potential mechanisms mediated by blood metabolites. Methods: We utilized the 211 GM dataset (n = 18,340) provided by the MiBioGen consortium. AMD outcome data were sourced from the MRC Integrated Epidemiology Unit (IEU) OpenGWAS Project. We performed bidirectional MR, two mediation analyses, and two-step MR to assess the causal links between GM and different stages of AMD (early, dry, and wet). Results: Our findings indicate that the Bacteroidales S24.7 group and genus Dorea are associated with an increased risk of early AMD, while Ruminococcaceae UCG011 and Parasutterella are linked to a higher risk of dry AMD. Conversely, Lachnospiraceae UCG004 and Anaerotruncus are protective against dry AMD. In the case of wet AMD, Intestinimonas and Sellimonas increase risk, whereas Anaerotruncus and Rikenellaceae RC9 reduce it. Additionally, various blood metabolites were implicated: valine, arabinose, creatine, lysine, alanine, and apolipoprotein A1 were associated with early AMD; glutamine and hyodeoxycholate-with a reduced risk of dry AMD; and androsterone sulfate, epiandrosterone sulfate, and lipopolysaccharide-with a reduced risk of wet AMD. Notably, the association between family Oxalobacteraceae and early AMD was mediated by valine, accounting for 19.1% of the association. Conclusions: This study establishes causal links between specific gut microbiota and AMD, mediated by blood metabolites, thereby enhancing our understanding of the gut-retina axis in AMD pathophysiology.
Collapse
Affiliation(s)
- Pinghui Wei
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; (P.W.); (S.G.)
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300071, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Shan Gao
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; (P.W.); (S.G.)
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Guoge Han
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; (P.W.); (S.G.)
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300071, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| |
Collapse
|
4
|
Boeck M, Yagi H, Chen CT, Zeng Y, Lee D, Nian S, Kasai T, Lee J, Hirst V, Wang C, Neilsen K, Rodrick TC, McCutcheon A, Yu M, Lodhi IJ, Singh SA, Aikawa M, Bazinet RP, Fu Z. Nutrient supplementation mitigates retinal dysfunction in Acox1 knockout mice with impaired peroxisomal fatty acid oxidation. J Adv Res 2025:S2090-1232(25)00145-6. [PMID: 40049514 DOI: 10.1016/j.jare.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION Dyslipidemia contributes to many retinal diseases, but underlying lipid processing pathways are not fully understood. Peroxisomes oxidize very long-chain fatty acids and generate docosahexaenoic acid (DHA). Mutations in peroxisomal genes can result in severe neural retinal dysfunction. However, therapeutic approaches for peroxisomal diseases remain scarce, and dietary strategies yield inconsistent results. OBJECTIVES This study sought to elucidate retinal metabolic adaptations resulting from impaired peroxisomal fatty acid oxidation and to evaluate the therapeutic potential of nutrient supplementation in peroxisomal retinal disease. METHODS In mice with global knockout (KO) of acyl-coenzyme A oxidase 1 (Acox1), encoding the first and rate-limiting enzyme in peroxisomal fatty acid oxidation, the retina was characterized at postnatal day (P) 30 during development. Retinal thickness, photoreceptor structure, and function were examined. Proteome analysis was utilized for molecular mechanistic investigation. Metabolomics and fatty acid profiling were conducted to study metabolic alterations in the retina. Nutrient intervention was performed to test if providing deficient nutrients could attenuate the observed retinal dysfunction. RESULTS In P30 Acox1 KO mice, we observed impaired neural retinal signaling, accompanied by reduced expression of genes involved in phototransduction. Proteomics suggested diminished glucose and mitochondrial metabolism, supported by decreased mitochondrial number and mitochondrial DNA copy number. Metabolomics showed reduced abundance of retinal pyruvate, and pyruvate supplementation from P30-P60 attenuated neural retinal dysfunction in Acox1 KO mice at P60. Furthermore, Acox1 KO mice at P30 exhibited a significant decrease in omega-3 (n-3) fatty acids and a compensatory increase in n-6 fatty acids. Dietary supplementation with DHA (n-3) or DHA plus arachidonic acid (n-6) from P30-P60 mitigated the progression of retinal dysfunction in Acox1 KO mice. CONCLUSION Retinal dysfunction, decreased mitochondrial number, and metabolic imbalance were observed in mice with impaired peroxisomal fatty acid oxidation. Nutrient intervention may offer a promising therapeutic approach for peroxisomal diseases.
Collapse
Affiliation(s)
- Myriam Boeck
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106 Germany
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Yan Zeng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Deokho Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shen Nian
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Xi'an Medical University, Xi'an, Shaanxi Province, 710021, China
| | - Taku Kasai
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeff Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria Hirst
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chaomei Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tori C Rodrick
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Andrew McCutcheon
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Mathew Yu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto M5S 1A8 ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Hanna J, Touahri Y, Pak A, David LA, van Oosten E, Dixit R, Vecchio LM, Mehta DN, Minamisono R, Aubert I, Schuurmans C. Pten Loss Triggers Progressive Photoreceptor Degeneration in an mTORC1-Independent Manner. Invest Ophthalmol Vis Sci 2025; 66:45. [PMID: 40116678 PMCID: PMC11935561 DOI: 10.1167/iovs.66.3.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
Purpose Silencing Phosphatase and tensin homolog (Pten) is a proposed therapeutic strategy for tissue regeneration to treat neurological disorders. However, Pten is pleiotropic, inhibiting several signaling and metabolic pathways, including mTORC1 and glycolysis, both pro-regenerative in certain contexts. This study aims to assess the long-term impact of inactivating Pten on photoreceptor survival in the retina and to identify downstream pathway(s). Methods We assessed retinal integrity in Pten conditional knock-outs (cKOs) that were retinal progenitor cell (RPC)-specific (Pten RPC-cKO), a congenital model, or rod-specific (Pten Rho-cKO). We examined early changes in photoreceptor gene expression and used immunostaining to assess photoreceptors, reactive astrocytes, microglia, angiogenesis, and subretinal deposit formation from postnatal day (P) 21 to 1 year of age. Pten RPC-cKO retinal explants were treated with rapamycin, an mTOR inhibitor, or 2-deoxy-D-glucose (2DG), a glycolysis inhibitor. Results In both Pten-cKO models, retinas display signs of early pathogenesis as photoreceptor-specific gene expression is downregulated at P0, before photoreceptor loss. Pten loss triggers progressive rod and cone degeneration beginning at P21 in Pten RPC-cKOs and at 6 months of age in Pten Rho-cKOs. Activated microglia and astrocytes, and increased angiogenesis, are observed in both Pten-cKO models, while subretinal amyloid-β deposits develop in Pten RPC-cKOs. Rapamycin accelerates photoreceptor degeneration in Pten RPC-cKOs, whereas 2DG has no effect. Conclusions Our findings suggest that Pten loss, either in RPCs as a congenital model, or solely in mature rod photoreceptors, leads to progressive retinal degeneration that is exacerbated by mTORC1 suppression, drawing into question the therapeutic value of Pten-mTORC1 manipulations.
Collapse
Affiliation(s)
- Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Edwin van Oosten
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Laura M. Vecchio
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ren Minamisono
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Abokyi S, Tse DYY. Age-related driving mechanisms of retinal diseases and neuroprotection by transcription factor EB-targeted therapy. Neural Regen Res 2025; 20:366-377. [PMID: 38819040 PMCID: PMC11317960 DOI: 10.4103/nrr.nrr-d-23-02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/01/2024] Open
Abstract
Retinal aging has been recognized as a significant risk factor for various retinal disorders, including diabetic retinopathy, age-related macular degeneration, and glaucoma, following a growing understanding of the molecular underpinnings of their development. This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches, focusing on the activation of transcription factor EB. Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies, such as exercise, calorie restriction, rapamycin, and metformin, in patients and animal models of these common retinal diseases. The review critically assesses the role of transcription factor EB in retinal biology during aging, its neuroprotective effects, and its therapeutic potential for retinal disorders. The impact of transcription factor EB on retinal aging is cell-specific, influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways. In vascular endothelial cells, transcription factor EB controls important processes, including endothelial cell proliferation, endothelial tube formation, and nitric oxide levels, thereby influencing the inner blood-retinal barrier, angiogenesis, and retinal microvasculature. Additionally, transcription factor EB affects vascular smooth muscle cells, inhibiting vascular calcification and atherogenesis. In retinal pigment epithelial cells, transcription factor EB modulates functions such as autophagy, lysosomal dynamics, and clearance of the aging pigment lipofuscin, thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization. These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis, neuronal synapse plasticity, energy metabolism, microvasculature, and inflammation, ultimately offering protection against retinal aging and diseases. The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases. Therefore, it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Research Center for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Dennis Yan-yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Research Center for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Center for Eye and Vision Research, Sha Tin, Hong Kong Special Administrative Region, China
| |
Collapse
|
7
|
Dey PN, Singh N, Zelinger L, Batz Z, Nellissery J, White Carreiro ND, Qian H, Li T, Fariss RN, Dong L, Swaroop A. Loss of paired immunoglobin-like type 2 receptor B gene associated with age-related macular degeneration impairs photoreceptor function in mouse retina. Hum Mol Genet 2025; 34:64-76. [PMID: 39532089 PMCID: PMC12034095 DOI: 10.1093/hmg/ddae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Genome-wide association studies have uncovered mostly non-coding variants at over 60 genetic loci linked to susceptibility for age-related macular degeneration (AMD). To ascertain the causal gene at the PILRB/PILRA locus, we used a CRISPR strategy to produce germline deletions in the mouse paired immunoglobin-like type 2 receptor (Pilr) genes that encode highly related activating (PILRB) and inhibitory (PILRA) receptors. We show that a combined loss of Pilrb1 and Pilrb2, but not Pilra, leads to an early but relatively stationary defect as the electroretinography (ERG) amplitudes of Pilrb1/2-/- mice exhibit a marked reduction as early as postnatal day 15 and do not show additional significant decrease at 3 and 12-months. No alterations are evident in Müller glia, microglia, bipolar, amacrine and horizontal cells based on immunohistochemistry using cell-type specific markers. PILRB immunostaining is specifically detected at the proximal part of photoreceptor outer segment. Reduced expression of select calcium-regulated phototransduction and synapse-associated proteins, including GCAP1 and 2, PDE6b, AIPL1, PSD95, and CTBP1 indicates dysregulation of calcium homeostasis as a possible mechanism of retinal phenotype in Pilrb1/2-/- mice. Our studies suggest a novel function of PILRB in retinal photoreceptors and an association of PILRB, but not PILRA, with AMD pathogenesis.
Collapse
Affiliation(s)
- Partha Narayan Dey
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Nivedita Singh
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Lina Zelinger
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Zachary Batz
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Noor D White Carreiro
- Biological Imaging Core, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Haohua Qian
- Visual Function Core Facility, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Tiansen Li
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, United States
| |
Collapse
|
8
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Wubben TJ, Weh E, Besirli CG. Photoreceptor Degeneration: More Than a Bystander in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:27-31. [PMID: 39930168 DOI: 10.1007/978-3-031-76550-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment affecting nearly 200 million people worldwide, and this number is expected to increase in the coming decades. The role of the retinal pigment epithelium (RPE) in AMD pathogenesis has been extensively studied. However, the contribution of photoreceptor (PR) dysfunction to AMD pathogenesis remains understudied and is a critical gap in our knowledge. The RPE and PRs are coupled to promote and enhance their respective survival and function, and this delicate relationship becomes disrupted in AMD. Furthermore, PR metabolic demands are postulated to contribute to AMD pathogenesis, their dysfunction is associated with both the early and end stages of AMD, and their death is central to the vision loss patient's experience in AMD. Here, we review clinical and basic science data indicating that PRs are likely more than a bystander in AMD and play a significant role in AMD pathogenesis.
Collapse
Affiliation(s)
- Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Rajala A, Rajala RVS. Age-Related Changes in the Glycolytic Enzymes of M2-Isoform of Pyruvate Kinase and Fructose-1,6-Bisphosphate Aldolase: Implications to Age-Related Macular Degeneration. Aging Dis 2024; 15:2271-2283. [PMID: 38739943 PMCID: PMC11346409 DOI: 10.14336/ad.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Prior studies have emphasized a bioenergetic crisis in the retinal pigment epithelium (RPE) as a critical factor in the development of age-related macular degeneration (AMD). The isoforms Fructose-1,6-bisphosphate aldolase C (ALDOC) and pyruvate kinase M2 (PKM2) have been proposed to play a role in AMD pathogenesis. While PKM2 and ALDOC are crucial for aerobic glycolysis in the neural retina, they are not as essential for the RPE. In this study, we examined the expression and activity of PKM2 and ALDOC in both young and aged RPE cells, as well as in the retina and RPE tissue of mice, including an experimentally induced AMD mouse model. Our findings reveal an upregulation in PKM2 and ALDOC expression, accompanied by increased pyruvate kinase activity, in the aged and AMD mouse RPE. Conversely, there is a decrease in ALDOC expression but an increase in PKM2 expression and pyruvate kinase activity in the aged and AMD retina. Overall, our study indicates that aged and AMD RPE cells tend to favor aerobic glycolysis, while this tendency is diminished in the aged and AMD retina. These results underscore the significance of targeting PKM2 and ALDOC in the RPE as a promising therapeutic approach to address the bioenergetic crisis and prevent vision loss in AMD.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology
- Dean McGee Eye Institute, Oklahoma, Oklahoma 73104, USA.
| | - Raju V. S. Rajala
- Department of Ophthalmology
- Department of Biochemistry and Physiology, and
- Department of Cell Biology, University of Oklahoma Health Sciences Center
- Dean McGee Eye Institute, Oklahoma, Oklahoma 73104, USA.
| |
Collapse
|
11
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
12
|
Zhou Y, Zhou W, Rao Y, He J, Huang Y, Zhao P, Li J. Dysregulated energy and protein homeostasis and the loss of GABAergic amacrine cells in aging retina. Exp Eye Res 2024; 245:109985. [PMID: 38945518 DOI: 10.1016/j.exer.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Aging is a major risk factor for the development or the worsening of retinal degenerative conditions. The intricate network of the neural retina determined that the retinal aging is a complicated process. The aim of this study is to delineate the transcriptomic changes of major retinal neurons during aging in C57BL/6 mice at single-cell level. We analyzed the transcriptional profiles of the photoreceptor, bipolar, amacrine, and Müller glial cells of 1.5-2 and 24-30 months old mice using single-cell RNA sequencing technique. We selectively confirmed the differences in gene expression using immunofluorescence staining and RNA in situ hybridization analysis. We found that each retinal cell type had unique changes upon aging. However, they all showed signs of dysregulated glucose and energy metabolism, and perturbed proteostasis. In particular, old Müller glia exhibited the most profound changes, including the upregulation of cell metabolism, stress-responses, antigen-presentation and immune responses and metal ion homeostasis. The dysregulated gliogenesis and differentiation was confirmed by the presence of Müller glia expressing rod-specific genes in the inner nuclear layer and the outer plexiform layer of the old retina. We further pinpointed the specific loss of GABAergic amacrine cells in old retina. Our study emphasized changes of amacrine and Müller glia during retinal aging, provided resources for further research on the molecular and cellular regulatory mechanisms underlying aging-associated retinal deterioration.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yue Huang
- Department of Ophthalmology, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 202150, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
13
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. Neuron 2024; 112:1978-1996.e6. [PMID: 38599212 PMCID: PMC11189759 DOI: 10.1016/j.neuron.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Interactions among neuronal, glial, and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA sequencing (scRNA-seq), and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas where neurons fail to release glutamate. By contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1-/- retinas and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1-/- retinas rescues defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Panos Arvanitis
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Danny Jamoul
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; John Jay College of Criminal Justice, City University of New York, New York, NY 10019, USA
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Xue Y, Cepko CL. Gene Therapies for Retinitis Pigmentosa that Target Glucose Metabolism. Cold Spring Harb Perspect Med 2024; 14:a041289. [PMID: 37460158 PMCID: PMC11065158 DOI: 10.1101/cshperspect.a041289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Retinitis pigmentosa is a blinding disease wherein rod photoreceptors are affected first, due to the expression of a disease gene, leading to the loss of dim light vision. In many cases, cones do not express the disease gene, yet they are also affected and eventually die, typically after most of the rods in their neighborhood have died. The cause of secondary cone death is unclear. Photoreceptors are one of the most energy-demanding cell types in the body and consume a high amount of glucose. At an early stage of degeneration, the cones appear to have a shortage of glucose to fuel their metabolism. This review focuses on gene therapy approaches that address this potential metabolic shortcoming.
Collapse
Affiliation(s)
- Yunlu Xue
- Lingang Laboratory, Shanghai 200031, China
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Hansman D, Ma Y, Thomas D, Smith J, Casson R, Peet D. Metabolic reprogramming of the retinal pigment epithelium by cytokines associated with age-related macular degeneration. Biosci Rep 2024; 44:BSR20231904. [PMID: 38567515 PMCID: PMC11043024 DOI: 10.1042/bsr20231904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024] Open
Abstract
The complex metabolic relationship between the retinal pigment epithelium (RPE) and photoreceptors is essential for maintaining retinal health. Recent evidence indicates the RPE acts as an adjacent lactate sink, suppressing glycolysis in the epithelium in order to maximize glycolysis in the photoreceptors. Dysregulated metabolism within the RPE has been implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of vision loss. In the present study, we investigate the effects of four cytokines associated with AMD, TNFα, TGF-β2, IL-6, and IL-1β, as well as a cocktail containing all four cytokines, on RPE metabolism using ARPE-19 cells, primary human RPE cells, and ex vivo rat eyecups. Strikingly, we found cytokine-specific changes in numerous metabolic markers including lactate production, glucose consumption, extracellular acidification rate, and oxygen consumption rate accompanied by increases in total mitochondrial volume and ATP production. Together, all four cytokines could potently override the constitutive suppression of glycolysis in the RPE, through a mechanism independent of PI3K/AKT, MEK/ERK, or NF-κB. Finally, we observed changes in glycolytic gene expression with cytokine treatment, including in lactate dehydrogenase subunit and glucose transporter expression. Our findings provide new insights into the metabolic changes in the RPE under inflammatory conditions and highlight potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- David S. Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Daniel Thomas
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Robert J. Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J. Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
Grubaugh CR, Dhingra A, Prakash B, Montenegro D, Sparrow JR, Daniele LL, Curcio CA, Bell BA, Hussain MM, Boesze-Battaglia K. Microsomal triglyceride transfer protein is necessary to maintain lipid homeostasis and retinal function. FASEB J 2024; 38:e23522. [PMID: 38445789 PMCID: PMC10949407 DOI: 10.1096/fj.202302491r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (APOB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic depletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor-associated cholesterol deposits, and photoreceptor cell death, and loss of rod but not cone function. RPE-specific reduction in Mttp had no significant effect on plasma lipids and lipoproteins. While APOB was decreased in the RPE, most ocular retinoids remained unchanged, with the exception of the storage form of retinoid, retinyl ester. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but is not directly involved in plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.
Collapse
Affiliation(s)
- Catharina R. Grubaugh
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Binu Prakash
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Diego Montenegro
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY, 10027 USA
| | - Janet R. Sparrow
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY, 10027 USA
| | - Lauren L. Daniele
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Cheng SY, Caiazzi J, Biscans A, Alterman JF, Echeverria D, McHugh N, Hassler M, Jolly S, Giguere D, Cipi J, Khvorova A, Punzo C. Single intravitreal administration of a tetravalent siRNA exhibits robust and efficient gene silencing in mouse and pig photoreceptors. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102088. [PMID: 38192611 PMCID: PMC10772295 DOI: 10.1016/j.omtn.2023.102088] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Inherited retinal dystrophies caused by dominant mutations in photoreceptor (PR) cell expressed genes are a major cause of irreversible vision loss. Oligonucleotide therapy has been of interest in diseases that conventional medicine cannot target. In the early days, small interfering RNAs (siRNAs) were explored in clinical trials for retinal disorders with limited success due to a lack of stability and efficient cellular delivery. Thus, an unmet need exists to identify siRNA chemistry that targets PR cell expressed genes. Here, we evaluated 12 different fully chemically modified siRNA configurations, where the valency and conjugate structure were systematically altered. The impact on retinal distribution following intravitreal delivery was examined. We found that the increase in valency (tetravalent siRNA) supports the best PR accumulation. A single intravitreal administration induces multimonths efficacy in rodent and porcine retinas while demonstrating a good safety profile. The data suggest that this configuration can treat retinal diseases caused by PR cell expressed genes with 1-2 intravitreal injections per year.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jillian Caiazzi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Julia F. Alterman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Samson Jolly
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Delaney Giguere
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Joris Cipi
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
18
|
Seddon JM, De D, Casazza W, Cheng SY, Punzo C, Daly M, Zhou D, Coss SL, Atkinson JP, Yu CY. Risk and protection of different rare protein-coding variants of complement component C4A in age-related macular degeneration. Front Genet 2024; 14:1274743. [PMID: 38348408 PMCID: PMC10859408 DOI: 10.3389/fgene.2023.1274743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction: Age-related macular degeneration (AMD) is the leading cause of central vision loss in the elderly. One-third of the genetic contribution to this disease remains unexplained. Methods: We analyzed targeted sequencing data from two independent cohorts (4,245 cases, 1,668 controls) which included genomic regions of known AMD loci in 49 genes. Results: At a false discovery rate of <0.01, we identified 11 low-frequency AMD variants (minor allele frequency <0.05). Two of those variants were present in the complement C4A gene, including the replacement of the residues that contribute to the Rodgers-1/Chido-1 blood group antigens: [VDLL1207-1210ADLR (V1207A)] with discovery odds ratio (OR) = 1.7 (p = 3.2 × 10-5) which was replicated in the UK Biobank dataset (3,294 cases, 200,086 controls, OR = 1.52, p = 0.037). A novel variant associated with reduced risk for AMD in our discovery cohort was P1120T, one of the four C4A-isotypic residues. Gene-based tests yielded aggregate effects of nonsynonymous variants in 10 genes including C4A, which were associated with increased risk of AMD. In human eye tissues, immunostaining demonstrated C4A protein accumulation in and around endothelial cells of retinal and choroidal vasculature, and total C4 in soft drusen. Conclusion: Our results indicate that C4A protein in the complement activation pathways may play a role in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Johanna M. Seddon
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Dikha De
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - William Casazza
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Mark Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Samantha L. Coss
- Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - John P. Atkinson
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
19
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548410. [PMID: 37503079 PMCID: PMC10369888 DOI: 10.1101/2023.07.10.548410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Interactions among neuronal, glial and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA-sequencing and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1 -/- retinas where neurons fail to release glutamate. In contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1 -/- retinas where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1 -/- retinas, and upregulated in Gnat1 -/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1 -/- retinas rescued defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
|
20
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Grubaugh CR, Dhingra A, Prakash B, Montenegro D, Sparrow JR, Daniele LL, Curcio CA, Bell BA, Hussain MM, Boesze-Battaglia K. Microsomal triglyceride transfer protein is necessary to maintain lipid homeostasis and retinal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570418. [PMID: 38105975 PMCID: PMC10723417 DOI: 10.1101/2023.12.06.570418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or to age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (apoB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor -associated cholesterol deposits and photoreceptor cell death, and loss of rod but not cone function. RPE-specific ablation of Mttp had no significant effect on plasma lipids and lipoproteins. While, apoB was decreased in the RPE, ocular retinoid concentrations remained unchanged. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but not directly involved in ocular retinoid and plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.
Collapse
Affiliation(s)
- Catharina R. Grubaugh
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Binu Prakash
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Diego Montenegro
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY,10027 USA
| | - Janet R. Sparrow
- Department of Ophthalmology and Department of Pathology and Cell Biology, Columbia University, New York, NY,10027 USA
| | - Lauren L. Daniele
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY, 11501 USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Schultz A, Cheng SY, Kirchner E, Costello S, Miettinen H, Chaverra M, King C, George L, Zhao X, Narasimhan J, Weetall M, Slaugenhaupt S, Morini E, Punzo C, Lefcort F. Reduction of retinal ganglion cell death in mouse models of familial dysautonomia using AAV-mediated gene therapy and splicing modulators. Sci Rep 2023; 13:18600. [PMID: 37903840 PMCID: PMC10616160 DOI: 10.1038/s41598-023-45376-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Familial dysautonomia (FD) is a rare neurodevelopmental and neurodegenerative disease caused by a splicing mutation in the Elongator Acetyltransferase Complex Subunit 1 (ELP1) gene. The reduction in ELP1 mRNA and protein leads to the death of retinal ganglion cells (RGCs) and visual impairment in all FD patients. Currently patient symptoms are managed, but there is no treatment for the disease. We sought to test the hypothesis that restoring levels of Elp1 would thwart the death of RGCs in FD. To this end, we tested the effectiveness of two therapeutic strategies for rescuing RGCs. Here we provide proof-of-concept data that gene replacement therapy and small molecule splicing modifiers effectively reduce the death of RGCs in mouse models for FD and provide pre-clinical foundational data for translation to FD patients.
Collapse
Affiliation(s)
- Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Shun-Yun Cheng
- Department of Ophthalmology, Neurobiology and Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Emily Kirchner
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Stephanann Costello
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Heini Miettinen
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Marta Chaverra
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Colin King
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lynn George
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
- Department of Biological and Physical Science, Montana State University Billings, Billings, MT, USA
| | - Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ, 07080, USA
| | | | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ, 07080, USA
| | - Susan Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Claudio Punzo
- Department of Ophthalmology, Neurobiology and Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
23
|
Cheng SY, Caiazzi J, Biscans A, Alterman JF, Echeverria D, McHugh N, Hassler M, Jolly S, Giguere D, Cipi J, Khvorova A, Punzo C. Single intravitreal administration of a tetravalent siRNA exhibits robust and efficient gene silencing in rodent and swine photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558641. [PMID: 37790464 PMCID: PMC10542117 DOI: 10.1101/2023.09.20.558641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Inherited retinal dystrophies caused by dominant mutations in photoreceptor-expressed genes, are a major cause of irreversible vision loss. Oligonucleotide therapy has been of interest in diseases that conventional medicine cannot target. In the early days, small interfering RNAs (siRNAs) were explored in clinical trials for retinal disorders with limited success due to a lack of stability and efficient cellular delivery. Thus, an unmet need exists to identify siRNA chemistry that targets photoreceptor-expressed genes. Here we evaluated 12 different fully chemically modified siRNA configurations, where the valency and conjugate structure were systematically altered. The impact on retinal distribution following intravitreal delivery was examined. We found that the increase in valency (tetravalent siRNA) supports the best photoreceptor accumulation. A single intravitreal administration induces multi-months efficacy in rodent and porcine retinas while showing a good safety profile. The data suggest that this configuration can treat retinal diseases caused by photoreceptor-expressed genes with 1-2 intravitreal injections per year.
Collapse
|
24
|
Wang W(J, Snider N. Discovery and Potential Utility of a Novel Non-Invasive Ocular Delivery Platform. Pharmaceutics 2023; 15:2344. [PMID: 37765311 PMCID: PMC10535219 DOI: 10.3390/pharmaceutics15092344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
To this day, the use of oily eye drops and non-invasive retinal delivery remain a major challenge. Oily eye drops usually cause ocular irritation and interfere with the normal functioning of the eye, while ocular injections for retinal drug delivery cause significant adverse effects and a high burden on the healthcare system. Here, the authors report a novel topical non-invasive ocular delivery platform (NIODP) through the periorbital skin for high-efficiency anterior and posterior ocular delivery in a non-human primate model (NHP). A single dose of about 7 mg JV-MD2 (omega 3 DHA) was delivered via the NIODP and reached the retina at a Cmax of 111 µg/g and the cornea at a Cmax of 66 µg/g. The NIODP also delivered JV-DE1, an anti-inflammatory agent in development for dry eye diseases, as efficiently as eye drops did to the anterior segments of the NHP. The topical NIODP seems to transport drug candidates through the corneal pathway to the anterior and via the conjunctiva/sclera pathway to the posterior segments of the eye. The novel NIODP method has the potential to reshape the landscape of ocular drug delivery. This is especially the case for oily eye drops and retinal delivery, where the success of the treatment lies in the ocular tolerability and bioavailability of drugs in the target tissue.
Collapse
|
25
|
Xiang L, Yang QL, Xie BT, Zeng HY, Ding LJ, Rao FQ, Yan T, Lu F, Chen Q, Huang XF. Dysregulated Arginine Metabolism Is Linked to Retinal Degeneration in Cep250 Knockout Mice. Invest Ophthalmol Vis Sci 2023; 64:2. [PMID: 37656476 PMCID: PMC10479211 DOI: 10.1167/iovs.64.12.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Purpose Degeneration of retinal photoreceptors is frequently observed in diverse ciliopathy disorders, and photoreceptor cilium gates the molecular trafficking between the inner and the outer segment (OS). This study aims to generate a homozygous global Cep250 knockout (KO) mouse and study the resulting phenotype. Methods We used Cep250 KO mice and untargeted metabolomics to uncover potential mechanisms underlying retinal degeneration. Long-term follow-up studies using optical coherence tomography (OCT) and electroretinography (ERG) were performed. Results OCT and ERG results demonstrated gradual thinning of the outer nuclear layer (ONL) and progressive attenuation of the scotopic ERG responses in Cep250-/- mice. More TUNEL signal was observed in the ONL of these mice. Immunostaining of selected OS proteins revealed mislocalization of these proteins in the ONL of Cep250-/- mice. Interestingly, untargeted metabolomics analysis revealed arginine-related metabolic pathways were altered and enriched in Cep250-/- mice. Mis-localization of a key protein in the arginine metabolism pathway, arginase 1 (ARG1), in the ONL of KO mice further supports this model. Moreover, adeno-associated virus (AAV)-based retinal knockdown of Arg1 led to similar architectural and functional alterations in wild-type retinas. Conclusions Altogether, these results suggest that dysregulated arginine metabolism contributes to retinal degeneration in Cep250-/- mice. Our findings provide novel insights that increase understanding of retinal degeneration in ciliopathy disorders.
Collapse
Affiliation(s)
- Lue Xiang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiao-Li Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin-Tao Xie
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui-Yi Zeng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liu-Jun Ding
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng-Qin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tong Yan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Lu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
26
|
Weh E, Goswami M, Chaudhury S, Fernando R, Miller N, Hager H, Sheskey S, Sharma V, Wubben TJ, Besirli CG. Metabolic Alterations Caused by Simultaneous Loss of HK2 and PKM2 Leads to Photoreceptor Dysfunction and Degeneration. Cells 2023; 12:2043. [PMID: 37626853 PMCID: PMC10453858 DOI: 10.3390/cells12162043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
HK2 and PKM2 are two main regulators of aerobic glycolysis. Photoreceptors (PRs) use aerobic glycolysis to produce the biomass necessary for the daily renewal of their outer segments. Previous work has shown that HK2 and PKM2 are important for the normal function and long-term survival of PRs but are dispensable for PR maturation, and their individual loss has opposing effects on PR survival during acute nutrient deprivation. We generated double conditional (dcKO) mice lacking HK2 and PKM2 expression in rod PRs. Western blotting, immunofluorescence, optical coherence tomography, and electroretinography were used to characterize the phenotype of dcKO animals. Targeted and stable isotope tracing metabolomics, qRT-PCR, and retinal oxygen consumption were performed. We show that dcKO animals displayed early shortening of PR inner/outer segments, followed by loss of PRs with aging, much more rapidly than either knockout alone without functional loss as measured by ERG. Significant alterations to central glucose metabolism were observed without any apparent changes to mitochondrial function, prior to PR degeneration. Finally, PR survival following experimental retinal detachment was unchanged in dcKO animals as compared to wild-type animals. These data suggest that HK2 and PKM2 have differing roles in promoting PR neuroprotection and identifying them has important implications for developing therapeutic options for combating PR loss during retinal disease.
Collapse
Affiliation(s)
- Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.G.); (S.C.); (R.F.); (N.M.); (H.H.); (S.S.); (V.S.); (T.J.W.)
| | | | | | | | | | | | | | | | | | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (M.G.); (S.C.); (R.F.); (N.M.); (H.H.); (S.S.); (V.S.); (T.J.W.)
| |
Collapse
|
27
|
Nwagbo U, Bernstein PS. Understanding the Roles of Very-Long-Chain Polyunsaturated Fatty Acids (VLC-PUFAs) in Eye Health. Nutrients 2023; 15:3096. [PMID: 37513514 PMCID: PMC10383069 DOI: 10.3390/nu15143096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Lipids serve many roles in the neural system, from synaptic stabilization and signaling to DNA regulation and neuroprotection. They also regulate inflammatory responses, maintain cellular membrane structure, and regulate the homeostatic balance of ions and signaling molecules. An imbalance of lipid subgroups is implicated in the progression of many retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, and diet can play a key role in influencing these diseases' onset, progression, and severity. A special class of lipids termed very-long-chain polyunsaturated fatty acids (VLC-PUFAs) is found exclusively in mammalian vertebrate retinas and a few other tissues. They comprise <2% of fatty acids in the retina and are depleted in the retinas of patients with diseases like diabetic retinopathy and AMD. However, the implications of the reduction in VLC-PUFA levels are poorly understood. Dietary supplementation studies and ELOVL4 transgene studies have had positive outcomes. However, much remains to be understood about their role in retinal health and the potential for targeted therapies against retinal disease.
Collapse
Affiliation(s)
- Uzoamaka Nwagbo
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84132, USA;
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Paul S. Bernstein
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84132, USA;
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
28
|
Schultz A, Cheng SY, Kirchner E, Costello S, Miettinen H, Chaverra M, King C, George L, Zhao X, Narasimhan J, Weetall M, Slaugenhaupt S, Morini E, Punzo C, Lefcort F. Reduction of retinal ganglion cell death in mouse models of familial dysautonomia using AAV-mediated gene therapy and splicing modulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541535. [PMID: 37293016 PMCID: PMC10245894 DOI: 10.1101/2023.05.22.541535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Familial dysautonomia (FD) is a rare neurodevelopmental and neurodegenerative disease caused by a splicing mutation in the Elongator Acetyltransferase Complex Subunit 1 ( ELP1 ) gene. The reduction in ELP1 mRNA and protein leads to the death of retinal ganglion cells (RGCs) and visual impairment in all FD patients. Currently, patient symptoms are managed, but there is no treatment for the disease. We sought to test the hypothesis that restoring levels of Elp1 would thwart the death of RGCs in FD. To this end, we tested the effectiveness of two therapeutic strategies for rescuing RGCs. Here we provide proof-of-concept data that gene replacement therapy and small molecule splicing modifiers effectively reduce the death of RGCs in mouse models for FD and provide pre-clinical data foundation for translation to FD patients.
Collapse
|
29
|
Bernardo-Colón A, Dong L, Abu-Asab M, Brush RS, Agbaga MP, Becerra SP. Ablation of pigment epithelium-derived factor receptor (PEDF-R/Pnpla2) causes photoreceptor degeneration. J Lipid Res 2023; 64:100358. [PMID: 36934843 PMCID: PMC10233210 DOI: 10.1016/j.jlr.2023.100358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
Photoreceptor cells express the patatin-like phospholipase domain-containing 2 (PNPLA2) gene that codes for pigment epithelium-derived factor receptor (PEDF-R) (also known as ATGL). PEDF-R exhibits phospholipase activity that mediates the neurotrophic action of its ligand PEDF. Because phospholipids are the most abundant lipid class in the retina, we investigated the role of PEDF-R in photoreceptors by generating CRISPR Pnpla2 knock-out mouse lines in a retinal degeneration-free background. Pnpla2-/- mice had undetectable retinal Pnpla2 gene expression and PEDF-R protein levels as assayed by RT-PCR and immunofluorescence, respectively. The photoreceptors of mice deficient in PEDF-R had deformities as examined by histology and transmission electron microscopy. Pnpla2 knockdown diminished the PLA2 enzymatic activity of PEDF-R in the retina. Lipidomic analyses revealed the accumulation of lysophosphatidyl choline-DHA and lysophosphatidyl ethanolamine-DHA in PEDF-R-deficient retinas, suggesting a possible causal link to photoreceptor dysfunction. Loss of PEDF-R decreased levels of rhodopsin, opsin, PKCα, and synaptophysin relative to controls. Pnpla2-/- photoreceptors had surface-exposed phosphatidylserine, and their nuclei were TUNEL positive and condensed, revealing an apoptotic onset. Paralleling its structural defects, PEDF-R deficiency compromised photoreceptor function in vivo as indicated by the attenuation of photoreceptor a- and b-waves in Pnpla2-/- and Pnpla2+/- mice relative to controls as determined by electroretinography. In conclusion, ablation of PEDF-R in mice caused alteration in phospholipid composition associated with malformation and malperformance of photoreceptors. These findings identify PEDF-R as an important component for photoreceptor structure and function, highlighting its role in phospholipid metabolism for retinal survival and its consequences.
Collapse
Affiliation(s)
- Alexandra Bernardo-Colón
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mones Abu-Asab
- Histopathology Core Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard S Brush
- Department of Ophthalmology(,) and Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology(,) and Dean A. McGee Eye Institute, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Huan T, Cheng SY, Tian B, Punzo C, Lin H, Daly M, Seddon JM. Identifying Novel Genes and Variants in Immune and Coagulation Pathways Associated with Macular Degeneration. OPHTHALMOLOGY SCIENCE 2023; 3:100206. [PMID: 36275200 PMCID: PMC9574715 DOI: 10.1016/j.xops.2022.100206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
Purpose To select individuals and families with a low genetic burden for age-related macular degeneration (AMD), to inform the clinical diagnosis of macular disorders, and to find novel genetic variants associated with maculopathies. Design Genetic association study based on targeted and whole-exome sequencing. Participants A total of 758 subjects (481 individuals with maculopathy and 277 controls), including 316 individuals in 72 families. Methods We focused on 150 genes involved in the complement, coagulation, and inflammatory pathways. Single-variant tests were performed on 7755 variants shared among ≥ 5 subjects using logistic regression. Gene-based tests were used to evaluate aggregate effects from rare and low-frequency variants (at minor allele frequency [MAF] ≤ 5% or ≤ 1%) in a gene using burden tests. For families whose affected members had a low burden of genetic risk based on known common and rare variants related to AMD, we searched for rare variants (MAF < 0.001) whose risk alleles occurred in ≥ 80% of affected individuals but not in controls. Immunohistochemistry was performed to determine the protein expression of a novel gene (coagulation factor II thrombin receptor-like 2 [F2RL2]) in retinal tissues. Main Outcome Measures Genotypes and phenotypes of macular degeneration. Results We confirmed the association of a synonymous variant in complement factor H (Ala473, rs2274700, proxy to intronic rs1410996, r 2 = 1) with maculopathy (odds ratio, 0.64; P = 4.5 × 10-4). Higher AMD polygenic risk scores (PRSs) were associated with intermediate and advanced AMD. Among families with low PRSs and no known rare variants for maculopathy, we identified 2 novel, highly penetrant missense rare variants in ADAM15, A disintegrin and metalloprotease, metallopeptidase domain 15 (p.Arg288Cys) and F2RL2 (p.Leu289Arg). Immunohistochemistry analyses revealed F2RL2 protein expression in cone photoreceptor outer segments and Müller glia cells of human and pig retinas. Coagulation factor II thrombin receptor-like 2 expression appeared increased in fibrotic areas in advanced AMD samples with neovascularization, suggesting that F2RL2 may play a role in the progression to advanced macular disease. Conclusions New missense rare variants in the genes ADAM15 and F2RL2 were associated with maculopathies. Results suggest that novel genes related to the coagulation and immune pathways may be involved in the pathogenesis of macular diseases.
Collapse
Key Words
- AMD, age-related macular degeneration
- ATP, adenosine triphosphate
- C3, complement component 3
- C9, complement component 9
- CADD, Combined Annotation Dependent Depletion
- CFH, complement factor H
- CFI, complement factor I
- Coagulation pathway, Immune pathways
- ENG, endoglin
- F2RL2, coagulation factor II thrombin receptor-like 2
- FANTOM5, functional annotation of the mammalian genome
- GS, glutamine synthetase
- GWAS, genome-wide association studies
- MAF, minor allele frequency
- Macular degeneration
- Maculopathy
- PECAM1, Platelet Endothelial Cell Adhesion Molecule 1
- PRS, polygenic risk score
- SKAT, sequence kernel association testing
- SNP, single nucleotide polymorphism
- TPM, tags per million
- Targeted sequencing
- WES, whole-exome sequencing
- Whole-exome sequencing
Collapse
Affiliation(s)
- Tianxiao Huan
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Bo Tian
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Haijiang Lin
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mark Daly
- Massachusetts General Hospital and Broad Institute, Cambridge, Massachusetts
| | - Johanna M. Seddon
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
31
|
Rajala A, Bhat MA, Teel K, Gopinadhan Nair GK, Purcell L, Rajala RVS. The function of lactate dehydrogenase A in retinal neurons: implications to retinal degenerative diseases. PNAS NEXUS 2023; 2:pgad038. [PMID: 36896135 PMCID: PMC9991461 DOI: 10.1093/pnasnexus/pgad038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The postmitotic retina is highly metabolic and the photoreceptors depend on aerobic glycolysis for an energy source and cellular anabolic activities. Lactate dehydrogenase A (LDHA) is a key enzyme in aerobic glycolysis, which converts pyruvate to lactate. Here we show that cell-type-specific actively translating mRNA purification by translating ribosome affinity purification shows a predominant expression of LDHA in rods and cones and LDHB in the retinal pigment epithelium and Müller cells. We show that genetic ablation of LDHA in the retina resulted in diminished visual function, loss of structure, and a loss of dorsal-ventral patterning of the cone-opsin gradient. Loss of LDHA in the retina resulted in increased glucose availability, promoted oxidative phosphorylation, and upregulated the expression of glutamine synthetase (GS), a neuron survival factor. However, lacking LDHA in Müller cells does not affect visual function in mice. Glucose shortage is associated with retinal diseases, such as age-related macular degeneration (AMD), and regulating the levels of LDHA may have therapeutic relevance. These data demonstrate the unique and unexplored roles of LDHA in the maintenance of a healthy retina.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Mohd A Bhat
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Kenneth Teel
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Gopa Kumar Gopinadhan Nair
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Lindsey Purcell
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| |
Collapse
|
32
|
Sirolimus loaded chitosan functionalized PLGA nanoparticles protect against sodium iodate-induced retinal degeneration. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
33
|
Xu R, Wang Y, Du J, Salido EM. Retinal Metabolic Profile on IMPG2 Deficiency Mice with Subretinal Lesions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:457-463. [PMID: 37440072 DOI: 10.1007/978-3-031-27681-1_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The interphotoreceptor matrix (IPM) is the extracellular matrix between the photoreceptors and the retinal pigment epithelium (RPE). The IPM has two proteoglycans: the IPM proteoglycans 1 and 2 (IMPG1 and IMPG2, respectively). Patients with mutations on IMPG2 develop subretinal vitelliform lesions that affect vision. We previously created an IMPG2 knockout (KO) mice model that generates subretinal lesions similar to those found in humans. These subretinal lesions in IMPG2 KO mice retinas are, in part, composed of mislocalized IMPG1. In addition, IMPG2 KO mice show microscopic IMPG1 material accumulation between the RPE and the photoreceptor outer segments. In this work we discuss the possibility that material accumulation on IMPG2 KO mice retinas affects photoreceptor metabolism. To further investigate this idea, we used targeted metabolomics to profile retinal metabolome on IMPG2 KO mice. The metabolite set enrichment analysis showed reduced glutamate metabolism, urea cycle, and galactose metabolism suggesting affected energy metabolism in mice retinas of IMPG2 KO mice with subretinal lesion.
Collapse
Affiliation(s)
- Rong Xu
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Yekai Wang
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianhai Du
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Ezequiel M Salido
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
34
|
Agbaga MP, McClellan ME, Elliott MH. Analysis of Lipids, Fatty Acid, and Cholesterol in Membrane Microdomains. Methods Mol Biol 2023; 2625:129-139. [PMID: 36653639 PMCID: PMC11238714 DOI: 10.1007/978-1-0716-2966-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The original concept that lipid and protein components are randomly distributed in cellular membranes has been challenged by evidence of compartmentalization of such components into discrete membrane microdomains (known as lipid rafts). The lipid microdomain hypothesis has generated significant controversy and rigorous inquiry to test the idea that such domains concentrate machinery to mediate cellular processes such as signaling, synaptic plasticity, and endocytosis. As such, a large number of studies have used biochemical, cell biological, and biophysical methodologies to define the composition of membrane microdomains in experimental contexts. Although biochemical preparation strategies are not without limitations (as discussed herein), the isolation of detergent-resistant and detergent-free membrane domains can provide important information about the segregation of lipids and proteins in membranes. In this chapter, we describe methodologies to isolate membranes from cell or tissue sources with biophysical/biochemical properties of membrane microdomains and also provide methods for subsequent classical or mass spectrometry-based lipid analytical approaches.
Collapse
Affiliation(s)
- Martin-Paul Agbaga
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mark E McClellan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
35
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
36
|
Abstract
In 2001, the first large animal was successfully treated with a gene therapy that restored its vision. Lancelot, the Briard dog that was treated, suffered from a human childhood blindness called Leber's congenital amaurosis type 2. Sixteen years later, the gene therapy was approved by the U.S. Food and Drug Administration. The success of this gene therapy in dogs led to a fast expansion of the ocular gene therapy field. By now every class of inherited retinal dystrophy has been treated in at least one animal model and many clinical trials have been initiated in humans. In this study, we review the status of viral gene therapies for the retina, with a focus on ongoing human clinical trials. It is likely that in the next decade we will see several new viral gene therapies approved.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- University of Massachusetts Medical School, Ophthalmology, Worcester, Massachusetts, United States;
| | - Claudio Punzo
- University of Massachusetts Medical School, Ophthalmology, 368 Plantation Street, Albert Sherman Center, AS6-2041, Worcester, Massachusetts, United States, 01605;
| |
Collapse
|
37
|
Abidi M, Karrer E, Csaky K, Handa JT. A Clinical and Preclinical Assessment of Clinical Trials for Dry Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2022; 2:100213. [PMID: 36570624 PMCID: PMC9767821 DOI: 10.1016/j.xops.2022.100213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 12/27/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness for the elderly in high-income countries. Although multivitamin antioxidant nutrients can slow the progression of intermediate "dry" or nonneovascular AMD, no treatment can halt or reverse any stage of dry disease. Multiple biologic pathways have been implicated in AMD pathobiology, including the complement pathway. These pathways have been targeted by various approaches in clinical trials. To date, no treatment has reached their prespecified primary end point in 2 phase III trials, a requirement by the US Food and Drug Administration for a new drug approval. Here, we describe perspectives on the failures and possible successes of various clinical trials that will guide further investigation. These perspectives will also discuss clinical trial design issues to consider in future investigations, and how recent insights into AMD pathobiology might both provide additional explanation for trials not reaching the prespecified primary end points and offer direction for identifying prioritized treatment targets.
Collapse
Affiliation(s)
- Muhammad Abidi
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | - Erik Karrer
- Character Biosciences, Inc., San Carlos, California
| | - Karl Csaky
- Retina Institute of the Southwest, Dallas, Texas
| | - James T. Handa
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland,Correspondence: James T. Handa, MD, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, 400 N. Broadway, Smith 3015, Baltimore, MD 21287.
| |
Collapse
|
38
|
Song X, Xu Q, Li H, Fan Q, Zheng Y, Zhang Q, Chu C, Zhang Z, Yuan C, Ning M, Bian C, Ma K, Qu Y. Automatic quantification of retinal photoreceptor integrity to predict persistent disease activity in neovascular age-related macular degeneration using deep learning. Front Neurosci 2022; 16:952735. [PMID: 36061600 PMCID: PMC9434346 DOI: 10.3389/fnins.2022.952735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Using deep learning (DL)-based technique, we identify risk factors and create a prediction model for refractory neovascular age-related macular degeneration (nAMD) characterized by persistent disease activity (PDA) in spectral domain optical coherence tomography (SD-OCT) images. Materials and methods A total of 671 typical B-scans were collected from 186 eyes of 186 patients with nAMD. Spectral domain optical coherence tomography images were analyzed using a classification convolutional neural network (CNN) and a fully convolutional network (FCN) algorithm to extract six features involved in nAMD, including ellipsoid zone (EZ), external limiting membrane (ELM), intraretinal fluid (IRF), subretinal fluid (SRF), pigment epithelium detachment (PED), and subretinal hyperreflective material (SHRM). Random forest models were probed to predict 1-year disease activity (stable, PDA, and cured) based on the quantitative features computed from automated segmentation and evaluated with cross-validation. Results The algorithm to segment six SD-OCT features achieved the mean accuracy of 0.930 (95% CI: 0.916–0.943), dice coefficients of 0.873 (95% CI: 0.847–0.899), a sensitivity of 0.873 (95% CI: 0.844–0.910), and a specificity of 0.922 (95% CI: 0.905–0.940). The six-metric model including EZ and ELM achieved the optimal performance to predict 1-year disease activity, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.980, the accuracy of 0.930, the sensitivity of 0.920, and the specificity of 0.962. The integrity of EZ and ELM significantly improved the performance of the six-metric model than that of the four-metric model. Conclusion The prediction model reveals the potential to predict PDA in nAMD eyes. The integrity of EZ and ELM constituted the strongest predictive factor for PDA in nAMD eyes in real-world clinical practice. The results of this study are a significant step toward image-guided prediction of long-term disease activity in the management of nAMD and highlight the importance of the automatic identification of photoreceptor layers.
Collapse
Affiliation(s)
- Xian Song
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Qian Xu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Haiming Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Qian Fan
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | - Cheng Bian
- Xiaohe Healthcare, ByteDance, Guangzhou, China
| | - Kai Ma
- Tencent Healthcare, Shenzhen, China
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Yi Qu,
| |
Collapse
|
39
|
Aparicio A, Camacho ET, Philp NJ, Wirkus SA. A mathematical model of GLUT1 modulation in rods and RPE and its differential impact in cell metabolism. Sci Rep 2022; 12:10645. [PMID: 35739198 PMCID: PMC9226191 DOI: 10.1038/s41598-022-13950-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
We present a mathematical model of key glucose metabolic pathways in two cells of the human retina: the rods and the retinal pigmented epithelium (RPE). Computational simulations of glucose transporter 1 (GLUT1) inhibition in the model accurately reproduce experimental data from conditional knockout mice and reveal that modification of GLUT1 expression levels of both cells differentially impacts their metabolism. We hypothesize that, under glucose scarcity, the RPE's energy producing pathways are altered in order to preserve its functionality, impacting the photoreceptors' outer segment renewal. On the other hand, when glucose is limited in the rods, aerobic glycolysis is preserved, which maintains the lactate contribution to the RPE.
Collapse
Affiliation(s)
- Andrea Aparicio
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA.
| | - Erika T Camacho
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen A Wirkus
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, USA
| |
Collapse
|
40
|
Hanna J, David LA, Touahri Y, Fleming T, Screaton RA, Schuurmans C. Beyond Genetics: The Role of Metabolism in Photoreceptor Survival, Development and Repair. Front Cell Dev Biol 2022; 10:887764. [PMID: 35663397 PMCID: PMC9157592 DOI: 10.3389/fcell.2022.887764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
Vision commences in the retina with rod and cone photoreceptors that detect and convert light to electrical signals. The irreversible loss of photoreceptors due to neurodegenerative disease leads to visual impairment and blindness. Interventions now in development include transplanting photoreceptors, committed photoreceptor precursors, or retinal pigment epithelial (RPE) cells, with the latter protecting photoreceptors from dying. However, introducing exogenous human cells in a clinical setting faces both regulatory and supply chain hurdles. Recent work has shown that abnormalities in central cell metabolism pathways are an underlying feature of most neurodegenerative disorders, including those in the retina. Reversal of key metabolic alterations to drive retinal repair thus represents a novel strategy to treat vision loss based on cell regeneration. Here, we review the connection between photoreceptor degeneration and alterations in cell metabolism, along with new insights into how metabolic reprogramming drives both retinal development and repair following damage. The potential impact of metabolic reprogramming on retinal regeneration is also discussed, specifically in the context of how metabolic switches drive both retinal development and the activation of retinal glial cells known as Müller glia. Müller glia display latent regenerative properties in teleost fish, however, their capacity to regenerate new photoreceptors has been lost in mammals. Thus, re-activating the regenerative properties of Müller glia in mammals represents an exciting new area that integrates research into developmental cues, central metabolism, disease mechanisms, and glial cell biology. In addition, we discuss this work in relation to the latest insights gleaned from other tissues (brain, muscle) and regenerative species (zebrafish).
Collapse
Affiliation(s)
- Joseph Hanna
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Yacine Touahri
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Taylor Fleming
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
| | - Robert A. Screaton
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- *Correspondence: Carol Schuurmans,
| |
Collapse
|
41
|
Koller A, Brandl C, Lamina C, Zimmermann ME, Summerer M, Stark KJ, Würzner R, Heid IM, Kronenberg F. Relative Telomere Length Is Associated With Age-Related Macular Degeneration in Women. Invest Ophthalmol Vis Sci 2022; 63:30. [PMID: 35612837 PMCID: PMC9150829 DOI: 10.1167/iovs.63.5.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose Relative telomere length (RTL) is a biomarker for physiological aging. Premature shortening of telomeres is associated with oxidative stress, which is one possible pathway that might contribute to age-related macular degeneration (AMD). We therefore aimed to investigate the association between RTL and AMD in a well-characterized group of elderly individuals. Methods We measured RTL in participants of the AugUR study using a multiplex quantitative PCR-based assay determining the ratio between the telomere product and a single-copy gene product (T/S ratio). AMD was assessed by manual grading of color fundus images using the Three Continent AMD Consortium Severity Scale. Results Among the 2262 individuals 70 to 95 years old (627 with AMD and 1635 without AMD), RTL was significantly shorter in individuals with AMD compared to AMD-free participants. In age- and sex-adjusted logistic regression analyses, we observed an 8% higher odds for AMD per 0.1 unit shorter RTL (odds ratio [OR] = 1.08; 95% confidence interval [CI], 1.02-1.14; P = 0.005). The estimates remained stable when adjusted for smoking, high-density lipoprotein cholesterol, cardiovascular disease, diabetes, and hypertension. Interestingly, this association was only present in women (OR = 1.14; 95% CI, 1.06-1.23; P < 0.001), but not in men (OR = 1.01; 95% CI, 0.93-1.10; P = 0.76). A significant sex-by-RTL interaction on AMD was detected (P = 0.043). Conclusions Our results show an association of RTL with AMD that was restricted to women. This is in line with altered reactive oxygen species levels and higher telomerase activity in women and provides an indication for a sex-differential pathway for oxidative stress and AMD.
Collapse
Affiliation(s)
- Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Caroline Brandl
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Monika Summerer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus J. Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
McLaughlin T, Medina A, Perkins J, Yera M, Wang JJ, Zhang SX. Cellular stress signaling and the unfolded protein response in retinal degeneration: mechanisms and therapeutic implications. Mol Neurodegener 2022; 17:25. [PMID: 35346303 PMCID: PMC8962104 DOI: 10.1186/s13024-022-00528-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background The retina, as part of the central nervous system (CNS) with limited capacity for self-reparation and regeneration in mammals, is under cumulative environmental stress due to high-energy demands and rapid protein turnover. These stressors disrupt the cellular protein and metabolic homeostasis, which, if not alleviated, can lead to dysfunction and cell death of retinal neurons. One primary cellular stress response is the highly conserved unfolded protein response (UPR). The UPR acts through three main signaling pathways in an attempt to restore the protein homeostasis in the endoplasmic reticulum (ER) by various means, including but not limited to, reducing protein translation, increasing protein-folding capacity, and promoting misfolded protein degradation. Moreover, recent work has identified a novel function of the UPR in regulation of cellular metabolism and mitochondrial function, disturbance of which contributes to neuronal degeneration and dysfunction. The role of the UPR in retinal neurons during aging and under disease conditions in age-related macular degeneration (AMD), retinitis pigmentosa (RP), glaucoma, and diabetic retinopathy (DR) has been explored over the past two decades. Each of the disease conditions and their corresponding animal models provide distinct challenges and unique opportunities to gain a better understanding of the role of the UPR in the maintenance of retinal health and function. Method We performed an extensive literature search on PubMed and Google Scholar using the following keywords: unfolded protein response, metabolism, ER stress, retinal degeneration, aging, age-related macular degeneration, retinitis pigmentosa, glaucoma, diabetic retinopathy. Results and conclusion We summarize recent advances in understanding cellular stress response, in particular the UPR, in retinal diseases, highlighting the potential roles of UPR pathways in regulation of cellular metabolism and mitochondrial function in retinal neurons. Further, we provide perspective on the promise and challenges for targeting the UPR pathways as a new therapeutic approach in age- and disease-related retinal degeneration.
Collapse
Affiliation(s)
- Todd McLaughlin
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Andy Medina
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jacob Perkins
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Maria Yera
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA. .,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA. .,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
43
|
Wang Y, Punzo C, Ash JD, Lobanova ES. Tsc2 knockout counteracts ubiquitin-proteasome system insufficiency and delays photoreceptor loss in retinitis pigmentosa. Proc Natl Acad Sci U S A 2022; 119:e2118479119. [PMID: 35275792 PMCID: PMC8931319 DOI: 10.1073/pnas.2118479119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
SignificanceStudies in multiple experimental systems have demonstrated that an increase in proteolytic capacity of post-mitotic cells improves cellular resistance to a variety of stressors, delays cellular aging and senescence. Therefore, approaches to increase the ability of cells to degrade misfolded proteins could potentially be applied to the treatment of a broad spectrum of human disorders. An example would be retinal degenerations, which cause irreversible loss of vision and are linked to impaired protein degradation. This study suggests that chronic activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway in degenerating photoreceptor neurons could stimulate the degradation of ubiquitinated proteins and enhance proteasomal activity through phosphorylation.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655
| | - John D. Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
| | - Ekaterina S. Lobanova
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
| |
Collapse
|
44
|
Insights into pathological mechanisms and interventions revealed by analyzing a mathematical model for cone metabolism. Biosci Rep 2022; 42:230791. [PMID: 35156683 PMCID: PMC8905305 DOI: 10.1042/bsr20212457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
This work analyzes a mathematical model for the metabolic dynamics of a cone photoreceptor, which is the first model to account for energy generation from fatty acids oxidation of shed photoreceptor outer segments (POS). Multiple parameter bifurcation analysis shows that joint variations in external glucose, the efficiency of glucose transporter 1 (GLUT1), lipid utilization for POS renewal, and oxidation of fatty acids affect the cone’s metabolic vitality and its capability to adapt under glucose-deficient conditions. The analysis further reveals that when glucose is scarce, cone viability cannot be sustained by only fueling energy production in the mitochondria, but it also requires supporting anabolic processes to create lipids necessary for cell maintenance and repair. In silico experiments are used to investigate how the duration of glucose deprivation impacts the cell without and with a potential GLUT1 or oxidation of fatty acids intervention as well as a dual intervention. The results show that for prolonged duration of glucose deprivation, the cone metabolic system does not recover with higher oxidation of fatty acids and requires greater effectiveness of GLUT1 to recover. Finally, time-varying global sensitivity analysis (GSA) is applied to assess the sensitivity of the model outputs of interest to changes and uncertainty in the parameters at specific times. The results reveal a critical temporal window where there would be more flexibility for interventions to rescue a cone cell from the detrimental consequences of glucose shortage.
Collapse
|
45
|
Mahmoud SS, Al Abrak ES, Aly EM, Fouly MA. Spectroscopic investigation of retinal degeneration unravel molecular changes associated with vision impairment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120459. [PMID: 34634734 DOI: 10.1016/j.saa.2021.120459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Although retinal degeneration is one of the causes of blindness worldwide and involve the loss of the photoreceptors of the retina, the cause(s) of its development still need to be determined in order to reach an effective treatment instead of trying to slow the progression of the disease. Retinal degeneration condition was induced by intravitreal injection of 2 μl of adenosine triphosphate (ATP) solution. The progress of the disease was monitored by retinal imaging (ocular coherence tomography, OCT) after 1, 8 and 15 days of injecting ATP. At the end of each period, retinal tissue was obtained where retinal proteins were extracted and then subjected to spectroscopic studies. Another part of the retinal tissue was investigated by Fourier transform infrared spectroscopy. The OCT images reflect significant reduction in retinal full thickness and provide evidence of intraretinal inflammation while; the obtained results indicate that both primarily and secondary structure of retinal proteins are influenced by the degeneration condition and, the electrical conductance of retinal proteins is decreased due to degeneration condition. Multivariate principal component analysis identifies that the variance noticed in the infrared spectra due to degeneration condition is not time dependent and revealed intra-groups structural dissimilarity. This dissimilarity was clearly resolved by fluorescence study where the content of amino acids phenylalanine, tryptophan and tyrosine varies with the progress of the degeneration condition. All together provide scientific facts that vision impairment is due to loss of signal transduction and formation of protein aggregates as well.
Collapse
Affiliation(s)
- Sherif S Mahmoud
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt.
| | - Eman S Al Abrak
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Eman M Aly
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Marwa A Fouly
- Ophthalmology department, Research Institute of Ophthalmology, Giza, Egypt
| |
Collapse
|
46
|
Clare AJ, Liu J, Copland DA, Theodoropoulou S, Dick AD. Unravelling the therapeutic potential of IL-33 for atrophic AMD. Eye (Lond) 2022; 36:266-272. [PMID: 34531552 PMCID: PMC8807696 DOI: 10.1038/s41433-021-01725-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease affecting the retinal pigment epithelium (RPE) and photoreceptors in the macula, is the leading cause of central blindness in the elderly. AMD progresses to advanced stages of the disease, atrophic AMD (aAMD), or in 15% of cases "wet" or neovascular AMD (nAMD), associated with substantial vision loss. Whilst there has been advancement in therapies treating nAMD, to date, there are no licenced effective treatments for the 85% affected by aAMD, with disease managed by changes to diet, vitamin supplements, and regular monitoring. AMD has a complex pathogenesis, involving highly integrated and common age-related disease pathways, including dysregulated complement/inflammation, impaired autophagy, and oxidative stress. The intricacy of AMD pathogenesis makes therapeutic development challenging and identifying a target that combats the converging disease pathways is essential to provide a globally effective treatment. Interleukin-33 is a cytokine, classically known for the proinflammatory role it plays in allergic disease. Recent evidence across degenerative and inflammatory disease conditions reveals a diverse immune-modulatory role for IL-33, with promising therapeutic potential. Here, we will review IL-33 function in disease and discuss the future potential for this homeostatic cytokine in treating AMD.
Collapse
Affiliation(s)
- Alison J. Clare
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Jian Liu
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A. Copland
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sofia Theodoropoulou
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Andrew D. Dick
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK ,grid.439257.e0000 0000 8726 5837NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK ,grid.83440.3b0000000121901201UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
47
|
Renormalization of metabolic coupling treats age-related degenerative disorders: an oxidative RPE niche fuels the more glycolytic photoreceptors. Eye (Lond) 2022; 36:278-283. [PMID: 34974542 PMCID: PMC8807833 DOI: 10.1038/s41433-021-01726-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Retinitis pigmentosa is characterized by a dysregulation within the metabolic coupling of the retina, particularly between the glycolytic photoreceptors and the oxidative retina pigment epithelium. This phenomenon of metabolic uncoupling is seen in both aging and retinal degenerative diseases, as well as across a variety of cell types in human biology. Given its crucial role in the health and maintenance of these cell types, the metabolic pathways involved present a suitable area for therapeutic intervention. Herein, this review covers the scope of this delicate metabolic interplay, its dysregulation, how it relates to the retina as well other cell types, and finally concludes with a summary of various strategies aimed at reinstating normal metabolic coupling within the retina, and future directions within the field.
Collapse
|
48
|
Müller glial responses compensate for degenerating photoreceptors in retinitis pigmentosa. Exp Mol Med 2021; 53:1748-1758. [PMID: 34799683 PMCID: PMC8639781 DOI: 10.1038/s12276-021-00693-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/20/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Photoreceptor degeneration caused by genetic defects leads to retinitis pigmentosa, a rare disease typically diagnosed in adolescents and young adults. In most cases, rod loss occurs first, followed by cone loss as well as altered function in cells connected to photoreceptors directly or indirectly. There remains a gap in our understanding of retinal cellular responses to photoreceptor abnormalities. Here, we utilized single-cell transcriptomics to investigate cellular responses in each major retinal cell type in retinitis pigmentosa model (P23H) mice vs. wild-type littermate mice. We found a significant decrease in the expression of genes associated with phototransduction, the inner/outer segment, photoreceptor cell cilium, and photoreceptor development in both rod and cone clusters, in line with the structural changes seen with immunohistochemistry. Accompanying this loss was a significant decrease in the expression of genes involved in metabolic pathways and energy production in both rods and cones. We found that in the Müller glia/astrocyte cluster, there was a significant increase in gene expression in pathways involving photoreceptor maintenance, while concomitant decreases were observed in rods and cones. Additionally, the expression of genes involved in mitochondrial localization and transport was increased in the Müller glia/astrocyte cluster. The Müller glial compensatory increase in the expression of genes downregulated in photoreceptors suggests that Müller glia adapt their transcriptome to support photoreceptors and could be thought of as general therapeutic targets to protect against retinal degeneration.
Collapse
|
49
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
50
|
mTORC1 Activation in Chx10-Specific Tsc1 Knockout Mice Accelerates Retina Aging and Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6715758. [PMID: 34777691 PMCID: PMC8589503 DOI: 10.1155/2021/6715758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Age-associated decline in retina function is largely responsible for the irreversible vision deterioration in the elderly population. It is also an important risk factor for the development of degenerative and angiogenic diseases. However, the molecular mechanisms involved in the process of aging in the retina remain largely elusive. This study investigated the role of mTORC1 signaling in aging of the retina. We showed that mTORC1 was activated in old-aged retina, particularly in the ganglion cells. The role of mTORC1 activation was further investigated in Chx10-Cre;Tsc1fx/fx mouse (Tsc1-cKO). Activation of mTORC1 was found in bipolar and some of the ganglion and amacrine cells in the adult Tsc1-cKO retina. Bipolar cell hypertrophy and Müller gliosis were observed in Tsc1-cKO since 6 weeks of age. The abnormal endings of bipolar cell dendritic tips at the outer nuclear layer resembled that of the old-aged mice. Microglial cell activation became evident in 6-week-old Tsc1-cKO. At 5 months, the Tsc1-cKO mice exhibited advanced features of old-aged retina, including the expression of p16Ink4a and p21, expression of SA-β-gal in ganglion cells, decreased photoreceptor cell numbers, decreased electroretinogram responses, increased oxidative stress, microglial cell activation, and increased expression of immune and inflammatory genes. Inhibition of microglial cells by minocycline partially prevented photoreceptor cell loss and restored the electroretinogram responses. Collectively, our study showed that the activation of mTORC1 signaling accelerated aging of the retina by both cell autonomous and nonautonomous mechanisms. Our study also highlighted the role of microglia cells in driving the decline in retina function.
Collapse
|