1
|
Zhang Q. Antimicrobial peptides: from discovery to developmental applications. Appl Environ Microbiol 2025; 91:e0211524. [PMID: 40178173 PMCID: PMC12016500 DOI: 10.1128/aem.02115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a significant crisis in global health. Due to their advantageous properties, antimicrobial peptides (AMPs) have garnered considerable attention as a potential alternative therapy to address the AMR crisis. These peptides might disrupt cell membranes or cell walls to exhibit antimicrobial activity, or modulate the immune response to promote recovery from diseases. In recent years, significant progress has been made in the research of AMPs, alongside the emergence of new challenges. This review first systematically summarizes and critically discusses recent advancements in understanding the characteristics and current landscapes of AMPs, as well as their regulatory mechanisms of action and practical applications, particularly those reported or approved within the last 5 years. Additionally, the principles, paths for their identification, and future research trends in AMPs are also analyzed following a discussion of the advantages and disadvantages of AMPs in comparison to conventional antibiotics. Unlike significant prior literature in this field, this report has summarized the latest major discovery methods for AMPs and, more importantly, emphasized their practical applications by supporting various viewpoints using selected examples of AMPs' applications in real-life scenarios. Besides, some emerging hot topics of AMPs, including those derived from gut microbiota and their potential synergistic effects in combating AMR, were profiled. All of these indicate the originality of the report and provide valuable references for future AMP discoveries and applications.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong, Hong Kong
| |
Collapse
|
2
|
Cai YM, Hong F, De Craemer A, Malone JG, Crabbé A, Coenye T. Echinacoside reduces intracellular c-di-GMP levels and potentiates tobramycin activity against Pseudomonas aeruginosa biofilm aggregates. NPJ Biofilms Microbiomes 2025; 11:40. [PMID: 40055321 PMCID: PMC11889090 DOI: 10.1038/s41522-025-00673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Cyclic diguanylate (c-di-GMP) is a central biofilm regulator in Pseudomonas aeruginosa, where increased intracellular levels promote biofilm formation and antibiotic tolerance. Targeting the c-di-GMP network may be a promising anti-biofilm approach, but most strategies studied so far aimed at eliminating surface-attached biofilms, while in vivo P. aeruginosa biofilms often occur as suspended aggregates. Here, the expression profile of c-di-GMP metabolism-related genes was analysed among 32 P. aeruginosa strains grown as aggregates in synthetic cystic fibrosis sputum. The diguanylate cyclase SiaD proved essential for auto-aggregation under in vivo-like conditions. Virtual screening predicted a high binding affinity of echinacoside towards the active site of SiaD. Echinacoside reduced c-di-GMP levels and aggregate sizes and potentiated tobramycin activity against aggregates in >80% of strains tested. This synergism was also observed in P. aeruginosa-infected 3-D alveolar epithelial cells and murine lungs, demonstrating echinacoside's potential as an adjunctive therapy for recalcitrant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK.
| | - Feng Hong
- Group of Microbiological Engineering and Biomedical Materials, College of Biological Science and Medical Engineering, Donghua University, North Ren Min Road 2999, 201620, Shanghai, China
- National Advanced Functional Fiber Innovation Centre, Wu Jiang, Su Zhou, China
| | - Amber De Craemer
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Jacob George Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Ramamourthy G, Ishida H, Vogel HJ. Antibiofilm Activities of Tritrpticin Analogs Against Pathogenic Pseudomonas aeruginosa PA01 Strains. Molecules 2025; 30:826. [PMID: 40005137 PMCID: PMC11858513 DOI: 10.3390/molecules30040826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
In our previous work, we showed that short antimicrobial hexapeptides (AMPs) containing three Trp and three Arg residues had a potent antibiofilm activity against a pathogenic Gram-positive Staphylococcus aureus MRSA strain. However, the activity of these hexapeptides against a Gram-negative Pseudomonas aeruginosa PA01 strain was relatively poor. Herein, we tested the longer 13-residue synthetic AMP tritrpticin-NH2 (Tritrp) and several of its analogs as potential antibiofilm agents that can prevent biofilm formation (MBIC) and/or cause biofilm dissolution (MBEC) for two P. aeruginosa PA01 strains, one of which expressed the GFP protein. Tritrp, a porcine cathelicidin, is currently the only known naturally occurring cationic AMP that has three Trp in sequence (WWW), a feature that was found to be important in our previous study. Our results show that several Tritrp analogs were effective. In particular, analogs with Pro substitutions that had altered peptide backbone structures compared to the naturally occurring amphipathic two-turn structure showed more potent MBIC and MBEC antibiofilm activities. Selectivity of the peptides towards P. aeruginosa could be improved by introducing the non-proteinogenic amino acid 2,3-diaminopropionic acid, rather than Arg or Lys, as the positively charged residues. Using 1H NMR spectroscopy, we also reinvestigated the role of the two Pro residues in cis-trans isomerism of the peptide in aqueous solution. Overall, our results show that the WWW motif embedded in longer cationic AMPs has considerable potential to combat biofilm formation in pathogenic Gram-negative strains.
Collapse
Affiliation(s)
| | | | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.I.)
| |
Collapse
|
4
|
Liu Y, Blanco-Toral C, Larrouy-Maumus G. The role of cyclic nucleotides in bacterial antimicrobial resistance and tolerance. Trends Microbiol 2025; 33:164-183. [PMID: 39242230 DOI: 10.1016/j.tim.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Nucleotide signalling molecules - mainly cyclic 3',5'-adenosine phosphate (cAMP), bis-(3',5')-cyclic diguanosine monophosphate (c-di-GMP), and bis-(3',5')-cyclic diadenosine monophosphate (c-di-AMP) - contribute to the regulation of cellular pathways. Numerous recent works have focused on the involvement of these cyclic nucleotide phosphates (cNPs) in bacterial resistance and tolerance to antimicrobial treatment. Indeed, the rise of antimicrobial resistance (AMR) is a rising global threat to human health, while the rise of antimicrobial tolerance underlies the development of AMR and long-term infections, placing an additional burden on this problem. Here, we summarise the current understanding of cNP signalling in bacterial physiology with a focus on our understanding of how cNP signalling affects AMR and antimicrobial tolerance in different bacterial species. We also discuss additional cNP-related drug targets in bacterial pathogens that may have therapeutic potential.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Claudia Blanco-Toral
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Li H, Quan S, He W. A genetically encoded fluorescent biosensor for sensitive detection of cellular c-di-GMP levels in Escherichia coli. Front Chem 2025; 12:1528626. [PMID: 39867593 PMCID: PMC11757272 DOI: 10.3389/fchem.2024.1528626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Cyclic di-guanosine monophosphate (c-di-GMP) acts as a second messenger regulating bacterial behaviors including cell cycling, biofilm formation, adhesion, and virulence. Monitoring c-di-GMP levels is crucial for understanding these processes and designing inhibitors to combat biofilm-related antibiotic resistance. Here, we developed a genetically encoded biosensor, cdiGEBS, based on the transcriptional activity of the c-di-GMP-responsive transcription factor MrkH. Notably, cdiGEBS can detect both low and high cellular c-di-GMP levels, with a high fluorescence dynamic change of 23-fold. Moreover, it can detect subtle changes in c-di-GMP concentrations due to variations in the expression of c-di-GMP synthesis or degradation enzymes and can distinguish different synthesis activities among WspR mutants. These capabilities allow us to apply cdiGEBS for identifying new diguanylate cyclases and evaluating chemicals that modulate c-di-GMP levels, highlighting its potential as a high-throughput tool for screening inhibitors of c-di-GMP synthesis enzymes. Overall, cdiGEBS enhances the study of c-di-GMP-regulated functions and holds the potential for screening antimicrobials targeting c-di-GMP or its synthesis enzymes.
Collapse
Affiliation(s)
- He Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Shu Quan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Wei He
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Wang Y, Zhang R, Mathivanan K, Zhang Y, Yang L, Guan F, Duan J. Proteomics and EPS Compositional Analysis Reveals Desulfovibrio bisertensis SY-1 Induced Corrosion on Q235 Steel by Biofilm Formation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5060. [PMID: 39459765 PMCID: PMC11509735 DOI: 10.3390/ma17205060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Microorganisms that exist in the seawater form microbial biofilms on materials used in marine construction, especially on metal surfaces submerged in seawater, where they form biofilms and cause severe corrosion. Biofilms are mainly composed of bacteria and their secreted polymeric substances. In order to understand how biofilms promote metal corrosion, planktonic and biofilm cells of Desulfovibrio bizertensis SY-1 (D. bizertensis) from Q235 steel were collected and analyzed as to their intracellular proteome and extracellular polymeric substances (EPS). The intracellular proteome analysis showed that the cellular proteins were strongly regulated in biofilm cells compared to planktonic cells, e.g., along with flagellar proteins, signaling-related proteins were significantly increased, whereas energy production and conversion proteins and DNA replication proteins were significantly regulated. The up-and-down regulation of proteins revealed that biofilm formation by bacteria on metal surfaces is affected by flagellar and signaling proteins. A significant decrease in DNA replication proteins indicated that DNA is no longer replicated and transcribed in mature biofilms, thus reducing energy consumption. Quantitative analysis and lectin staining of the biofilm on the metal's surface revealed that the bacteria secreted a substantial amount of EPS when they began to attach to the surface, and proteins dominated the main components of EPS. Further, the infrared analysis showed that the secondary structure of the proteins in the EPS of the biofilm was mainly dominated by β-sheet and 3-turn helix, which may help to enhance the adhesion of EPS. The functional groups of EPS analyzed using XPS showed that the C element of EPS in the biofilm mainly existed in the form of combinations with N. Furthermore, the hydroxyl structure in the EPS extracted from the biofilm had a stronger hydrogen bonding effect, which could maintain the stability of the EPS structure and biofilm. The study results revealed that D. bizertensis regulates the metabolic pathways and their secreted EPS structure to affect biofilm formation and cause metal corrosion, which has a certain reference significance for the study of the microbially influenced corrosion (MIC) mechanism.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Krishnamurthy Mathivanan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Luhua Yang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jizhou Duan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
7
|
Zhu X, Tang Q, Zhou X, Momeni MR. Antibiotic resistance and nanotechnology: A narrative review. Microb Pathog 2024; 193:106741. [PMID: 38871198 DOI: 10.1016/j.micpath.2024.106741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The rise of antibiotic resistance poses a significant threat to public health worldwide, leading researchers to explore novel solutions to combat this growing problem. Nanotechnology, which involves manipulating materials at the nanoscale, has emerged as a promising avenue for developing novel strategies to combat antibiotic resistance. This cutting-edge technology has gained momentum in the medical field by offering a new approach to combating infectious diseases. Nanomaterial-based therapies hold significant potential in treating difficult bacterial infections by circumventing established drug resistance mechanisms. Moreover, their small size and unique physical properties enable them to effectively target biofilms, which are commonly linked to resistance development. By leveraging these advantages, nanomaterials present a viable solution to enhance the effectiveness of existing antibiotics or even create entirely new antibacterial mechanisms. This review article explores the current landscape of antibiotic resistance and underscores the pivotal role that nanotechnology plays in augmenting the efficacy of traditional antibiotics. Furthermore, it addresses the challenges and opportunities within the realm of nanotechnology for combating antibiotic resistance, while also outlining future research directions in this critical area. Overall, this comprehensive review articulates the potential of nanotechnology in addressing the urgent public health concern of antibiotic resistance, highlighting its transformative capabilities in healthcare.
Collapse
Affiliation(s)
- Xunxian Zhu
- Huaqiao University Hospital, Quanzhou, Fujian, 362021, China.
| | - Qiuhua Tang
- Quanzhou First Hospital, Quanzhou, Fujian, 362000, China
| | - Xiaohang Zhou
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, 157012, China
| | | |
Collapse
|
8
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024; 65:2976-3000. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Kalia VC, Patel SKS, Lee JK. Bacterial biofilm inhibitors: An overview. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115389. [PMID: 37634478 DOI: 10.1016/j.ecoenv.2023.115389] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bacteria that cause infectious diseases adopt biofilms as one of their most prevalent lifestyles. Biofilms enable bacteria to tolerate environmental stress and evade antibacterial agents. This bacterial defense mechanism has rendered the use of antibiotics ineffective for the treatment of infectious diseases. However, many highly drug-resistant microbes have rapidly emerged owing to such treatments. Different signaling mechanisms regulate bacterial biofilm formation, including cyclic dinucleotide (c-di-GMP), small non-coding RNAs, and quorum sensing (QS). A cell density-dependent phenomenon, QS is associated with c-di-GMP (a global messenger), which regulates gene expression related to adhesion, extracellular matrix production, the transition from the planktonic to biofilm stage, stability, pathogenicity, virulence, and acquisition of nutrients. The article aims to provide information on inhibiting biofilm formation and disintegrating mature/preformed biofilms. This treatment enables antimicrobials to target the free-living/exposed bacterial cells at lower concentrations than those needed to treat bacteria within the biofilm. Therefore, a complementary action of antibiofilm and antimicrobial agents can be a robust strategic approach to dealing with infectious diseases. Taken together, these molecules have broad implications for human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
10
|
Slavik KM, Kranzusch PJ. CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling. Annu Rev Virol 2023; 10:423-453. [PMID: 37380187 DOI: 10.1146/annurev-virology-111821-115636] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Host defense against viral pathogens is an essential function for all living organisms. In cell-intrinsic innate immunity, dedicated sensor proteins recognize molecular signatures of infection and communicate to downstream adaptor or effector proteins to activate immune defense. Remarkably, recent evidence demonstrates that much of the core machinery of innate immunity is shared across eukaryotic and prokaryotic domains of life. Here, we review a pioneering example of evolutionary conservation in innate immunity: the animal cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) signaling pathway and its ancestor in bacteria, CBASS (cyclic nucleotide-based antiphage signaling system) antiphage defense. We discuss the unique mechanism by which animal cGLRs (cGAS-like receptors) and bacterial CD-NTases (cGAS/dinucleotide-cyclase in Vibrio (DncV)-like nucleotidyltransferases) in these pathways link pathogen detection with immune activation using nucleotide second messenger signals. Comparing the biochemical, structural, and mechanistic details of cGAS-STING, cGLR signaling, and CBASS, we highlight emerging questions in the field and examine evolutionary pressures that may have shaped the origins of nucleotide second messenger signaling in antiviral defense.
Collapse
Affiliation(s)
- Kailey M Slavik
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA;
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Agüero-Chapin G, Antunes A, Mora JR, Pérez N, Contreras-Torres E, Valdes-Martini JR, Martinez-Rios F, Zambrano CH, Marrero-Ponce Y. Complex Networks Analyses of Antibiofilm Peptides: An Emerging Tool for Next-Generation Antimicrobials' Discovery. Antibiotics (Basel) 2023; 12:antibiotics12040747. [PMID: 37107109 PMCID: PMC10135022 DOI: 10.3390/antibiotics12040747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial biofilms cause several environmental and industrial issues, even affecting human health. Although they have long represented a threat due to their resistance to antibiotics, there are currently no approved antibiofilm agents for clinical treatments. The multi-functionality of antimicrobial peptides (AMPs), including their antibiofilm activity and their potential to target multiple microbes, has motivated the synthesis of AMPs and their relatives for developing antibiofilm agents for clinical purposes. Antibiofilm peptides (ABFPs) have been organized in databases that have allowed the building of prediction tools which have assisted in the discovery/design of new antibiofilm agents. However, the complex network approach has not yet been explored as an assistant tool for this aim. Herein, a kind of similarity network called the half-space proximal network (HSPN) is applied to represent/analyze the chemical space of ABFPs, aiming to identify privileged scaffolds for the development of next-generation antimicrobials that are able to target both planktonic and biofilm microbial forms. Such analyses also considered the metadata associated with the ABFPs, such as origin, other activities, targets, etc., in which the relationships were projected by multilayer networks called metadata networks (METNs). From the complex networks' mining, a reduced but informative set of 66 ABFPs was extracted, representing the original antibiofilm space. This subset contained the most central to atypical ABFPs, some of them having the desired properties for developing next-generation antimicrobials. Therefore, this subset is advisable for assisting the search for/design of both new antibiofilms and antimicrobial agents. The provided ABFP motifs list, discovered within the HSPN communities, is also useful for the same purpose.
Collapse
Affiliation(s)
- Guillermin Agüero-Chapin
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José R Mora
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias e Ingenierías "El Politécnico", Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
| | - Noel Pérez
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias e Ingenierías "El Politécnico", Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
| | - Ernesto Contreras-Torres
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas and Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
| | | | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, Mexico
| | - Cesar H Zambrano
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias e Ingenierías "El Politécnico", Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas and Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| |
Collapse
|
12
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Choudhary MI, Römling U, Nadeem F, Bilal HM, Zafar M, Jahan H, ur-Rahman A. Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance. Microorganisms 2022; 11:microorganisms11010016. [PMID: 36677308 PMCID: PMC9863313 DOI: 10.3390/microorganisms11010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance and tolerance are natural phenomena that arose due to evolutionary adaptation of microorganisms against various xenobiotic agents. These adaptation mechanisms make the current treatment options challenging as it is increasingly difficult to treat a broad range of infections, associated biofilm formation, intracellular and host adapted microbes, as well as persister cells and microbes in protected niches. Therefore, novel strategies are needed to identify the most promising drug targets to overcome the existing hurdles in the treatment of infectious diseases. Furthermore, discovery of novel drug candidates is also much needed, as few novel antimicrobial drugs have been introduced in the last two decades. In this review, we focus on the strategies that may help in the development of innovative small molecules which can interfere with microbial resistance mechanisms. We also highlight the recent advances in optimization of growth media which mimic host conditions and genome scale molecular analyses of microbial response against antimicrobial agents. Furthermore, we discuss the identification of antibiofilm molecules and their mechanisms of action in the light of the distinct physiology and metabolism of biofilm cells. This review thus provides the most recent advances in host mimicking growth media for effective drug discovery and development of antimicrobial and antibiofilm agents.
Collapse
Affiliation(s)
- M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Faiza Nadeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hafiz Muhammad Bilal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Munirah Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Atta ur-Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
14
|
Silva FJ, Santos-Garcia D, Zheng X, Zhang L, Han XY. Construction and Analysis of the Complete Genome Sequence of Leprosy Agent Mycobacterium lepromatosis. Microbiol Spectr 2022; 10:e0169221. [PMID: 35467405 PMCID: PMC9248898 DOI: 10.1128/spectrum.01692-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/07/2022] [Indexed: 12/29/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae and Mycobacterium lepromatosis. We report construction and analyses of the complete genome sequence of M. lepromatosis FJ924. The genome contained 3,271,694 nucleotides to encode 1,789 functional genes and 1,564 pseudogenes. It shared 1,420 genes and 885 pseudogenes (71.4%) with M. leprae but differed in 1,281 genes and pseudogenes (28.6%). In phylogeny, the leprosy bacilli started from a most recent common ancestor (MRCA) that diverged ~30 million years ago (Mya) from environmental organism Mycobacterium haemophilum. The MRCA then underwent reductive evolution with pseudogenization, gene loss, and chromosomal rearrangements. Analysis of the shared pseudogenes estimated the pseudogenization event ~14 Mya, shortly before species bifurcation. Afterwards, genomic changes occurred to lesser extent in each species. Like M. leprae, four major types of highly repetitive sequences were detected in M. lepromatosis, contributing to chromosomal rearrangements within and after MRCA. Variations in genes and copy numbers were noted, such as three copies of the gene encoding bifunctional diguanylate cyclase/phosphodiesterase in M. lepromatosis, but single copy in M. leprae; 6 genes encoding the TetR family transcriptional regulators in M. lepromatosis, but 11 such genes in M. leprae; presence of hemW gene in M. lepromatosis, but absence in M. leprae; and others. These variations likely aid unique pathogenesis, such as diffuse lepromatous leprosy associated with M. lepromatosis, while the shared genomic features should explain the common pathogenesis of dermatitis and neuritis in leprosy. Together, these findings and the genomic data of M. lepromatosis may facilitate future research and care for leprosy. IMPORTANCE Leprosy is a dreaded infection that still affects millions of people worldwide. Mycobacterium lepromatosis is a recently recognized cause in addition to the well-known Mycobacterium leprae. M. lepromatosis is likely specific for diffuse lepromatous leprosy, a severe form of the infection and endemic in Mexico. This study constructed and annotated the complete genome sequence of M. lepromatosis FJ924 and performed comparative genomic analyses with related mycobacteria. The results afford new and refined insights into the genome size, gene repertoire, pseudogenes, phylogenomic relationship, genome organization and plasticity, process and timing of reductive evolution, and genetic and proteomic basis for pathogenesis. The availability of the complete M. lepromatosis genome may prove to be useful for future research and care for the infection.
Collapse
Affiliation(s)
- Francisco J. Silva
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Paterna, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology UMR CNRS, University of Lyon, Villeurbanne, France
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiang Y. Han
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Martínez OF, Duque HM, Franco OL. Peptidomimetics as Potential Anti-Virulence Drugs Against Resistant Bacterial Pathogens. Front Microbiol 2022; 13:831037. [PMID: 35516442 PMCID: PMC9062693 DOI: 10.3389/fmicb.2022.831037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The uncontrollable spread of superbugs calls for new approaches in dealing with microbial-antibiotic resistance. Accordingly, the anti-virulence approach has arisen as an attractive unconventional strategy to face multidrug-resistant pathogens. As an emergent strategy, there is an imperative demand for discovery, design, and development of anti-virulence drugs. In this regard, peptidomimetic compounds could be a valuable source of anti-virulence drugs, since these molecules circumvent several shortcomings of natural peptide-based drugs like proteolytic instability, immunogenicity, toxicity, and low bioavailability. Some emerging evidence points to the feasibility of peptidomimetics to impair pathogen virulence. Consequently, in this review, we shed some light on the potential of peptidomimetics as anti-virulence drugs to overcome antibiotic resistance. Specifically, we address the anti-virulence activity of peptidomimetics against pathogens' secretion systems, biofilms, and quorum-sensing systems.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Harry Morales Duque
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
16
|
Hoffman SM, Tang AY, Avalos JL. Optogenetics Illuminates Applications in Microbial Engineering. Annu Rev Chem Biomol Eng 2022; 13:373-403. [PMID: 35320696 DOI: 10.1146/annurev-chembioeng-092120-092340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optogenetics has been used in a variety of microbial engineering applications, such as chemical and protein production, studies of cell physiology, and engineered microbe-host interactions. These diverse applications benefit from the precise spatiotemporal control that light affords, as well as its tunability, reversibility, and orthogonality. This combination of unique capabilities has enabled a surge of studies in recent years investigating complex biological systems with completely new approaches. We briefly describe the optogenetic tools that have been developed for microbial engineering, emphasizing the scientific advancements that they have enabled. In particular, we focus on the unique benefits and applications of implementing optogenetic control, from bacterial therapeutics to cybergenetics. Finally, we discuss future research directions, with special attention given to the development of orthogonal multichromatic controls. With an abundance of advantages offered by optogenetics, the future is bright in microbial engineering. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon M Hoffman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , ,
| | - Allison Y Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , ,
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , , .,The Andlinger Center for Energy and the Environment, Department of Molecular Biology, and High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
17
|
Park S, Sauer K. Controlling Biofilm Development Through Cyclic di-GMP Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:69-94. [PMID: 36258069 PMCID: PMC9891824 DOI: 10.1007/978-3-031-08491-1_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date summary of c-di-GMP pathways connected to biofilm formation by the opportunistic pathogen P. aeruginosa. Emphasis will be on the timing of c-di-GMP production over the course of biofilm formation, to highlight non-uniform and hierarchical increases in c-di-GMP levels, as well as biofilm growth conditions that do not conform with our current model of c-di-GMP.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
- Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
- Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
18
|
de Souza CM, da Silva ÁP, Júnior NGO, Martínez OF, Franco OL. Peptides as a therapeutic strategy against Klebsiella pneumoniae. Trends Pharmacol Sci 2022; 43:335-348. [DOI: 10.1016/j.tips.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
|
19
|
Poulin MB, Kuperman LL. Regulation of Biofilm Exopolysaccharide Production by Cyclic Di-Guanosine Monophosphate. Front Microbiol 2021; 12:730980. [PMID: 34566936 PMCID: PMC8461298 DOI: 10.3389/fmicb.2021.730980] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Many bacterial species in nature possess the ability to transition into a sessile lifestyle and aggregate into cohesive colonies, known as biofilms. Within a biofilm, bacterial cells are encapsulated within an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, nucleic acids, lipids, and other small molecules. The transition from planktonic growth to the biofilm lifecycle provides numerous benefits to bacteria, such as facilitating adherence to abiotic surfaces, evasion of a host immune system, and resistance to common antibiotics. As a result, biofilm-forming bacteria contribute to 65% of infections in humans, and substantially increase the energy and time required for treatment and recovery. Several biofilm specific exopolysaccharides, including cellulose, alginate, Pel polysaccharide, and poly-N-acetylglucosamine (PNAG), have been shown to play an important role in bacterial biofilm formation and their production is strongly correlated with pathogenicity and virulence. In many bacteria the biosynthetic machineries required for assembly of these exopolysaccharides are regulated by common signaling molecules, with the second messenger cyclic di-guanosine monophosphate (c-di-GMP) playing an especially important role in the post-translational activation of exopolysaccharide biosynthesis. Research on treatments of antibiotic-resistant and biofilm-forming bacteria through direct targeting of c-di-GMP signaling has shown promise, including peptide-based treatments that sequester intracellular c-di-GMP. In this review, we will examine the direct role c-di-GMP plays in the biosynthesis and export of biofilm exopolysaccharides with a focus on the mechanism of post-translational activation of these pathways, as well as describe novel approaches to inhibit biofilm formation through direct targeting of c-di-GMP.
Collapse
Affiliation(s)
- Myles B Poulin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD, United States
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
20
|
Xuan TF, Wang ZQ, Liu J, Yu HT, Lin QW, Chen WM, Lin J. Design and Synthesis of Novel c-di-GMP G-Quadruplex Inducers as Bacterial Biofilm Inhibitors. J Med Chem 2021; 64:11074-11089. [PMID: 34323486 DOI: 10.1021/acs.jmedchem.1c00465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The formation of biofilms by clinical pathogens typically leads to chronic and recurring antibiotic-resistant infections. High cellular levels of cyclic diguanylate (c-di-GMP), a ubiquitous secondary messenger of bacteria, have been proven to be associated with a sessile biofilm lifestyle of pathogens. A promising antibiofilm strategy involving the induction of c-di-GMP to form dysfunctional G-quadruplexes, thereby blocking the c-di-GMP-mediated biofilm regulatory pathway, was proposed in this study. In this new strategy, a series of novel c-di-GMP G-quadruplex inducers were designed and synthesized for development of therapeutic biofilm inhibitors. Compound 5h exhibited favorable c-di-GMP G-quadruplex-inducing activity and 62.18 ± 6.76% biofilm inhibitory activity at 1.25 μM without any DNA intercalation effect. Moreover, the favorable performance of 5h in interfering with c-di-GMP-related biological functions, including bacterial motility and bacterial extracellular polysaccharide secretion, combined with the reporter strain and transcriptome analysis results confirmed the c-di-GMP signaling-related action mechanism of 5h.
Collapse
Affiliation(s)
- Teng-Fei Xuan
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zi-Qiang Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Hai-Tao Yu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Qian-Wen Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
21
|
Andersen JB, Hultqvist LD, Jansen CU, Jakobsen TH, Nilsson M, Rybtke M, Uhd J, Fritz BG, Seifert R, Berthelsen J, Nielsen TE, Qvortrup K, Givskov M, Tolker-Nielsen T. Identification of small molecules that interfere with c-di-GMP signaling and induce dispersal of Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 2021; 7:59. [PMID: 34244523 PMCID: PMC8271024 DOI: 10.1038/s41522-021-00225-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Microbial biofilms are involved in a number of infections that cannot be cured, as microbes in biofilms resist host immune defenses and antibiotic therapies. With no strict biofilm-antibiotic in the current pipelines, there is an unmet need for drug candidates that enable the current antibiotics to eradicate bacteria in biofilms. We used high-throughput screening to identify chemical compounds that reduce the intracellular c-di-GMP content in Pseudomonas aeruginosa. This led to the identification of a small molecule that efficiently depletes P. aeruginosa for c-di-GMP, inhibits biofilm formation, and disperses established biofilm. A combination of our lead compound with standard of care antibiotics showed improved eradication of an implant-associated infection established in mice. Genetic analyses provided evidence that the anti-biofilm compound stimulates the activity of the c-di-GMP phosphodiesterase BifA in P. aeruginosa. Our work constitutes a proof of concept for c-di-GMP phosphodiesterase-activating drugs administered in combination with antibiotics as a viable treatment strategy for otherwise recalcitrant infections.
Collapse
Affiliation(s)
- Jens Bo Andersen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Dahl Hultqvist
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tim Holm Jakobsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Nilsson
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Uhd
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Blaine Gabriel Fritz
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School Carl-Neuberg-Straße 1, Hannover, Germany
| | - Jens Berthelsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Eiland Nielsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Michael Givskov
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center. Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
De Smet J, Wagemans J, Hendrix H, Staes I, Visnapuu A, Horemans B, Aertsen A, Lavigne R. Bacteriophage-mediated interference of the c-di-GMP signalling pathway in Pseudomonas aeruginosa. Microb Biotechnol 2021; 14:967-978. [PMID: 33314648 PMCID: PMC8085984 DOI: 10.1111/1751-7915.13728] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 11/22/2020] [Indexed: 01/10/2023] Open
Abstract
C-di-GMP is a key signalling molecule which impacts bacterial motility and biofilm formation and is formed by the condensation of two GTP molecules by a diguanylate cyclase. We here describe the identification and characterization of a family of bacteriophage-encoded peptides that directly impact c-di-GMP signalling in Pseudomonas aeruginosa. These phage proteins target Pseudomonas diguanylate cyclase YfiN by direct protein interaction (termed YIPs, YfiN Interacting Peptides). YIPs induce an increase of c-di-GMP production in the host cell, resulting in a decrease in motility and an increase in biofilm mass in P. aeruginosa. A dynamic analysis of the biofilm morphology indicates a denser biofilm structure after induction of the phage protein. This intracellular signalling interference strategy by a lytic phage constitutes an unexplored phage-based mechanism of metabolic regulation and could potentially serve as inspiration for the development of molecules that interfere with biofilm formation in P. aeruginosa and other pathogens.
Collapse
Affiliation(s)
- Jeroen De Smet
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenHeverlee3001Belgium
- Present address:
Lab4FoodDepartment of Microbial and Molecular Systems (M2S)KU Leuven Campus GeelGeel2440Belgium
| | - Jeroen Wagemans
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenHeverlee3001Belgium
| | - Hanne Hendrix
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenHeverlee3001Belgium
| | - Ines Staes
- Laboratory of Food MicrobiologyDepartment of Microbial and Molecular SystemsKU LeuvenHeverlee3001Belgium
| | - Annegrete Visnapuu
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenHeverlee3001Belgium
| | - Benjamin Horemans
- Department of Earth and Environmental SciencesKU LeuvenHeverlee3001Belgium
| | - Abram Aertsen
- Laboratory of Food MicrobiologyDepartment of Microbial and Molecular SystemsKU LeuvenHeverlee3001Belgium
| | - Rob Lavigne
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenHeverlee3001Belgium
| |
Collapse
|
23
|
An AY, Choi KYG, Baghela AS, Hancock REW. An Overview of Biological and Computational Methods for Designing Mechanism-Informed Anti-biofilm Agents. Front Microbiol 2021; 12:640787. [PMID: 33927701 PMCID: PMC8076610 DOI: 10.3389/fmicb.2021.640787] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial biofilms are complex and highly antibiotic-resistant aggregates of microbes that form on surfaces in the environment and body including medical devices. They are key contributors to the growing antibiotic resistance crisis and account for two-thirds of all infections. Thus, there is a critical need to develop anti-biofilm specific therapeutics. Here we discuss mechanisms of biofilm formation, current anti-biofilm agents, and strategies for developing, discovering, and testing new anti-biofilm agents. Biofilm formation involves many factors and is broadly regulated by the stringent response, quorum sensing, and c-di-GMP signaling, processes that have been targeted by anti-biofilm agents. Developing new anti-biofilm agents requires a comprehensive systems-level understanding of these mechanisms, as well as the discovery of new mechanisms. This can be accomplished through omics approaches such as transcriptomics, metabolomics, and proteomics, which can also be integrated to better understand biofilm biology. Guided by mechanistic understanding, in silico techniques such as virtual screening and machine learning can discover small molecules that can inhibit key biofilm regulators. To increase the likelihood that these candidate agents selected from in silico approaches are efficacious in humans, they must be tested in biologically relevant biofilm models. We discuss the benefits and drawbacks of in vitro and in vivo biofilm models and highlight organoids as a new biofilm model. This review offers a comprehensive guide of current and future biological and computational approaches of anti-biofilm therapeutic discovery for investigators to utilize to combat the antibiotic resistance crisis.
Collapse
Affiliation(s)
| | | | | | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Cendra MDM, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv 2021; 49:107734. [PMID: 33785375 DOI: 10.1016/j.biotechadv.2021.107734] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.
Collapse
Affiliation(s)
- Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
25
|
Yuan X, Yu M, Yang CH. Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms 2020; 8:microorganisms8121956. [PMID: 33317075 PMCID: PMC7764658 DOI: 10.3390/microorganisms8121956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. Therefore, it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease management. This review focuses on a model plant pathogen, Dickeyadadantii, and summarizes the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators that were recently discovered, including the transcriptional regulators: FlhDC, RpoS, and SlyA; the post-transcriptional regulators: PNPase, Hfq with its dependent sRNA ArcZ, and the RsmA/B system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory components have also been characterized in almost all major bacterial plant pathogens like Erwiniaamylovora, Pseudomonassyringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second half of this review shifts focus to an in-depth discussion of the innovation and development of T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene acylhydrazides. We also discuss their modes of action in bacteria and application for controlling plant diseases.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| |
Collapse
|