1
|
Song Q, Wu X, Yang J, Li S, Duan J. Glial connexins in glaucoma. Front Neurosci 2025; 19:1560344. [PMID: 40270762 PMCID: PMC12014763 DOI: 10.3389/fnins.2025.1560344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Glial cells play a crucial role in maintaining central nervous system (CNS) homeostasis and facilitating the repair of neural tissue following injury. The regulation of neuroglia may serve as a safe and effective strategy for modulating neuroinflammatory responses and restoring glial homeostasis and defense functions. Given that the glial network is composed of connexin (CX) proteins, its neuroprotective role is extensive. Therefore, connexins should be considered as functional "bridges" within this network. This review examines evidence for the active involvement of glial networks in neuroinflammation under both physiological and pathological conditions and summarizes the role of CXs in glaucoma. Finally, potential therapeutic strategies for glaucoma are explored.
Collapse
Affiliation(s)
- Qiuyi Song
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
| | - Xi Wu
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
| | - Jiawei Yang
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, China
| | - Siqi Li
- Chengdu University of TCM, Chengdu, China
| | - Junguo Duan
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, China
| |
Collapse
|
2
|
Holden JM, Calkins DJ. Bilateral astrocyte reaction to unilateral insult in the optic projection to the brain. Proc Natl Acad Sci U S A 2025; 122:e2502602122. [PMID: 40163738 PMCID: PMC12002340 DOI: 10.1073/pnas.2502602122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Affiliation(s)
- Joseph M. Holden
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN37212
- Vanderbilt Vision Research Center, Vanderbilt University Medical Center, Nashville, TN37212
| | - David J. Calkins
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN37212
- Vanderbilt Vision Research Center, Vanderbilt University Medical Center, Nashville, TN37212
| |
Collapse
|
3
|
Huang J, Chang Z, Deng X, Cai S, Jiang B, Zeng W, Ke M. Identification of Sequential Molecular Mechanisms and Key Biomarkers in Early Glaucoma by Integrated Bioinformatics Analysis. Mol Neurobiol 2025; 62:4952-4970. [PMID: 39495230 DOI: 10.1007/s12035-024-04563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive optic nerve degeneration and retinal ganglion cell (RGC) loss. In early glaucoma, before obvious axon loss, highly organized pathological processes in RGCs occur sequentially, involving axons, dendrites and synaptic terminals. The optic nerve head (ONH) is the critical structure of early glaucomatous neurodegeneration. Taking advantage of high-throughput data from the ONH and the weighted gene coexpression network analysis (WGCNA) method, the current study aims to gain insight into the full scope of pathological events in early glaucoma and define their chronological sequence. The expression profiles of GSE26299, GSE110019, and GSE139605, which measure ONH gene expression in different glaucoma models, were downloaded from the Gene Expression Omnibus (GEO) database. In GSE26299, which uses 10.5-month-old DBA/2 J mice, WGCNA was utilized to construct a gene coexpression network, and the most significant modules of early (NOE), moderate (MOD) and severe (SEV) glaucoma were identified. The differentially expressed genes (DEGs) of GSE110019 and GSE139605 significantly overlapped with the correlated module of the MOD group, so the 3 gene sets were analyzed together. Pathway enrichment analysis via the GO, KEGG, and Reactome pathways was subsequently performed, followed by protein‒protein interaction (PPI) analysis to screen key genes associated with each stage. Several hub gene expression patterns were identified in a glucocorticoid-induced glaucoma (GIG) model via quantitative PCR and immunostaining. The pink module was positively correlated with the NOE group (r = 0.48, p = 4e-04) and negatively correlated with the glaucoma stage (r = -0.88, p = 3e-17). The genes in the pink module were enriched in the synaptic transmission and axonal transport pathways. The tan module was negatively correlated with the NOE group (r = -0.43, p = 0.002) and positively correlated with the glaucoma stage (r = 0.77, p = 7e-11). The genes in the tan module were associated with pathways such as tight junctions, retinol metabolism, and linoleic acid metabolism. The purple module was positively correlated with the MOD group (r = 0.64, p = 5e-07). The common genes among the purple module and the DEGs of the two other datasets were enriched in pathways related to mitotic cell division, cytokine activity, and the extracellular matrix (ECM). The hub genes identified by PPI included Nrn1, Cplx1, Timp1, and Cdk1. Quantitative PCR and immunostaining confirmed that Limk1 expression was increased in the ONH of GIG mice. In early glaucomatous neuropathy, intrinsic changes in RGCs precede the activation of glial cells and ECM remodeling. These latter events are common pathological changes observed in the ONH in both cats and mice. Our study may provide new targets for the early detection and treatment of glaucoma.
Collapse
Affiliation(s)
- Jingqiu Huang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhaohui Chang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuncheng Cai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Jiang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Batsuuri K, Toychiev AH, Viswanathan S, Wohl SG, Srinivas M. Targeting Connexin 43 in Retinal Astrocytes Promotes Neuronal Survival in Glaucomatous Injury. Glia 2025. [PMID: 40156150 DOI: 10.1002/glia.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Astrocytes in the retina and optic nerve head play an important role in the pathogenesis of glaucoma. Astrocytes extensively express connexin 43 (Cx43), a protein that forms gap junction (GJ) channels and transmembrane unopposed hemichannels. While it is well documented that Cx43 expression is augmented in retinal injuries, the role of astrocytic Cx43 channels in glaucomatous injury is not fully understood. Here, we used a mouse model of ocular hypertension caused by intracameral microbead injections and a more severe model, optic nerve crush (ONC) injury, and assessed changes in Cx43 expression and GJ channel function. The effect of astrocyte-specific deletion of Cx43 (Cx43KO) on retinal ganglion cell (RGC) loss and visual function was also assessed. We show that the Cx43 expression is increased in retinal astrocytes at early time points and remained elevated even after sustained elevation of intraocular pressure (IOP) (~8 weeks), which paralleled an increase in astrocytic GJ coupling. Deletion of astrocytic Cx43 markedly improved the survival of RGCs by ~93% and preserved visual function as assessed by ERG and reduced numbers of activated microglial/macrophages in the glaucomatous retina. Cx43 expression was also substantially increased after ONC injury, and the absence of Cx43 in this model increased RGC survival by ~48%. These results reveal a deleterious role for Cx43 in glaucoma progression. Intravitreal injections of Gap19, a peptide that reportedly inhibits Cx43 hemichannels but not GJ channels, markedly increased RGC survival and visual function. Further studies are required to assess whether targeting Cx43 hemichannels might be useful for glaucoma treatment.
Collapse
Affiliation(s)
- Khulan Batsuuri
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, New York, USA
| | - Abduqodir H Toychiev
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, New York, USA
| | | | - Stefanie G Wohl
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, New York, USA
| | - Miduturu Srinivas
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, New York, USA
| |
Collapse
|
5
|
Cooper ML, Gildea HK, Selles MC, Katafygiotou E, Liddelow SA, Chao MV. Astrocytes in the mouse brain respond bilaterally to unilateral retinal neurodegeneration. Proc Natl Acad Sci U S A 2025; 122:e2418249122. [PMID: 40063795 PMCID: PMC11929491 DOI: 10.1073/pnas.2418249122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 03/25/2025] Open
Abstract
Glaucomatous optic neuropathy, or glaucoma, is the world's primary cause of irreversible blindness. Glaucoma is comorbid with other neurodegenerative diseases, but how it might impact the environment of the full central nervous system to increase neurodegenerative vulnerability is unknown. Two neurodegenerative events occur early in the optic nerve, the structural link between the retina and brain: loss of anterograde transport in retinal ganglion cell (RGC) axons and early alterations in astrocyte structure and function. Here, we used whole-mount tissue clearing of full mouse brains to image RGC anterograde transport function and astrocyte responses across retinorecipient regions early in a unilateral microbead occlusion model of glaucoma. Using light sheet imaging, we found that RGC projections terminating specifically in the accessory optic tract are the first to lose transport function. Although degeneration was induced in one retina, astrocytes in both brain hemispheres responded to transport loss in a retinotopic pattern that mirrored the degenerating RGCs. A subpopulation of these astrocytes in contact with large descending blood vessels were immunopositive for LCN2, a marker associated with astrocyte reactivity. Together, these data suggest that even early stages of unilateral glaucoma have broad impacts on the health of astrocytes across both hemispheres of the brain, implying a glial mechanism behind neurodegenerative comorbidity in glaucoma.
Collapse
Affiliation(s)
- Melissa L. Cooper
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Holly K. Gildea
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Maria Clara Selles
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Eleni Katafygiotou
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Shane A. Liddelow
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Ophthalmology, New York University Langone Health, New York, NY10016
| | - Moses V. Chao
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Psychiatry, New York University Langone Health, New York, NY10016
| |
Collapse
|
6
|
Schoot Uiterkamp FE, Maes ME, Alamalhoda MA, Firoozi A, Colombo G, Siegert S. Optic Nerve Crush Does Not Induce Retinal Ganglion Cell Loss in the Contralateral Eye. Invest Ophthalmol Vis Sci 2025; 66:49. [PMID: 40126507 PMCID: PMC11951053 DOI: 10.1167/iovs.66.3.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/16/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose Optic nerve crush (ONC) is a model for studying optic nerve trauma. Unilateral ONC induces massive retinal ganglion cell (RGC) degeneration in the affected eye, leading to vision loss within a month. A common assumption has been that the non-injured contralateral eye is unaffected due to the minimal retino-retinal projections of the RGCs at the chiasm. Yet, recently, microglia, the brain-resident macrophages, have shown a responsive phenotype in the contralateral eye after ONC. Whether RGC loss accompanies this phenotype is still controversial. Methods Using the available RGCode algorithm and developing our own RGC-Quant deep-learning-based tool, we quantify RGC's total number and density across the entire retina after ONC. Results We confirm a short-term microglia response in the contralateral eye after ONC, but this did not affect the microglia number. Furthermore, we cannot confirm the previously reported RGC loss between naïve and contralateral retinas 5 weeks after ONC induction across the commonly used Cx3cr1creERT2 and C57BL6/J mouse models. Neither sex nor the direct comparison of the RGC markers Brn3a and RBPMS, with Brn3a co-labeling, on average, 89% of the RBPMS+-cells, explained this discrepancy, suggesting that the early microglia-responsive phenotype does not have immediate consequences on the RGC number. Conclusions Our results corroborate that unilateral optic nerve injury elicits a microglial response in the uninjured contralateral eye but without RGC loss. Therefore, the contralateral eye should be treated separately and not as an ONC control.
Collapse
Affiliation(s)
| | - Margaret E. Maes
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | | | - Arsalan Firoozi
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | - Gloria Colombo
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | - Sandra Siegert
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| |
Collapse
|
7
|
Li S, Wang J, Andersen JV, Aldana BI, Zhang B, Prochownik EV, Rosenberg PA. Misprogramming of glucose metabolism impairs recovery of hippocampal slices from neuronal GLT-1 knockout mice and contributes to excitotoxic injury through mitochondrial superoxide production. J Neurochem 2025; 169:e16205. [PMID: 39193789 PMCID: PMC11659059 DOI: 10.1111/jnc.16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
We have previously reported a failure of recovery of synaptic function in the CA1 region of acute hippocampal slices from mice with a conditional neuronal knockout (KO) of GLT-1 (EAAT2, Slc1A2) driven by synapsin-Cre (synGLT-1 KO). The failure of recovery of synaptic function is due to excitotoxic injury. We hypothesized that changes in mitochondrial metabolism contribute to the heightened vulnerability to excitotoxicity in the synGLT-1 KO mice. We found impaired flux of carbon from 13C-glucose into the tricarboxylic acid cycle in synGLT-1 KO cortical and hippocampal slices compared with wild-type (WT) slices. In addition, we found downregulation of the neuronal glucose transporter GLUT3 in both genotypes. Flux of carbon from [1,2-13C]acetate, thought to be astrocyte-specific, was increased in the synGLT-KO hippocampal slices but not cortical slices. Glycogen stores, predominantly localized to astrocytes, are rapidly depleted in slices after cutting, and are replenished during ex vivo incubation. In the synGLT-1 KO, replenishment of glycogen stores during ex vivo incubation was compromised. These results suggest both neuronal and astrocytic metabolic perturbations in the synGLT-1 KO slices. Supplementing incubation medium during recovery with 20 mM D-glucose normalized glycogen replenishment but had no effect on recovery of synaptic function. In contrast, 20 mM non-metabolizable L-glucose substantially improved recovery of synaptic function, suggesting that D-glucose metabolism contributes to the excitotoxic injury in the synGLT-1 KO slices. L-lactate substitution for D-glucose did not promote recovery of synaptic function, implicating mitochondrial metabolism. Consistent with this hypothesis, phosphorylation of pyruvate dehydrogenase, which decreases enzyme activity, was increased in WT slices during the recovery period, but not in synGLT-1 KO slices. Since metabolism of glucose by the mitochondrial electron transport chain is associated with superoxide production, we tested the effect of drugs that scavenge and prevent superoxide production. The superoxide dismutase/catalase mimic EUK-134 conferred complete protection and full recovery of synaptic function. A site-specific inhibitor of complex III superoxide production, S3QEL-2, was also protective, but inhibitors of NADPH oxidase were not. In summary, we find that the failure of recovery of synaptic function in hippocampal slices from the synGLT-1 KO mouse, previously shown to be due to excitotoxic injury, is caused by production of superoxide by mitochondrial metabolism.
Collapse
Affiliation(s)
- S Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J Wang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - E V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital, Pittsburgh, Pennsylvania, USA
| | - P A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
9
|
Cooper ML, Calkins DJ. Beyond hypertrophy: Changing views of astrocytes in glaucoma. Vision Res 2024; 223:108461. [PMID: 39059109 DOI: 10.1016/j.visres.2024.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Astrocytes serve multiple roles in helping to maintain homeostatic physiology of central nervous system tissue, ranging from metabolic support to coupling between vascular and neural elements. Astrocytes are especially critical in axonal tracts such as the optic nerve, where axons propagate energy-demanding action potentials great distances. In disease, astrocyte remodeling is a dynamic, multifaceted process that is often over-simplified between states of quiescence and reactivity. In glaucoma, axon degeneration in the optic nerve is characterized by progressive stages. So too is astrocyte remodeling. Here, using quantitative analysis of light and electron micrographs of myelinated optic nerve sections from the DBA/2J mouse model of glaucoma, we offer further insight into how astrocyte organization reflects stages of degeneration. This analysis indicates that even as axons degenerate, astrocyte gliosis in the nerve increases without abject proliferation, similar to results in the DBA/2J retina. Gliosis is accompanied by reorganization. As axons expand prior to frank degeneration, astrocyte processes retract from the extra-axonal space and reorient towards the nerve edge. After a critical threshold of expansion, axons drop out, and astrocyte processes distribute more evenly across the nerve reflecting gliosis. This multi-stage process likely reflects local rather than global cues from axons and the surrounding tissue that induce rapid reorganization to promote axon survival and extend functionality of the nerve.
Collapse
Affiliation(s)
- Melissa L Cooper
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Cullen PF, Gammerdinger WJ, Sui SJH, Mazumder AG, Sun D. Transcriptional profiling of retinal astrocytes identifies a specific marker and points to functional specialization. Glia 2024; 72:1604-1628. [PMID: 38785355 PMCID: PMC11262981 DOI: 10.1002/glia.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Astrocyte heterogeneity is an increasingly prominent research topic, and studies in the brain have demonstrated substantial variation in astrocyte form and function, both between and within regions. In contrast, retinal astrocytes are not well understood and remain incompletely characterized. Along with optic nerve astrocytes, they are responsible for supporting retinal ganglion cell axons and an improved understanding of their role is required. We have used a combination of microdissection and Ribotag immunoprecipitation to isolate ribosome-associated mRNA from retinal astrocytes and investigate their transcriptome, which we also compared to astrocyte populations in the optic nerve. Astrocytes from these regions are transcriptionally distinct, and we identified retina-specific astrocyte genes and pathways. Moreover, although they share much of the "classical" gene expression patterns of astrocytes, we uncovered unexpected variation, including in genes related to core astrocyte functions. We additionally identified the transcription factor Pax8 as a highly specific marker of retinal astrocytes and demonstrated that these astrocytes populate not only the retinal surface, but also the prelaminar region at the optic nerve head. These findings are likely to contribute to a revised understanding of the role of astrocytes in the retina.
Collapse
Affiliation(s)
- Paul F Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - William J Gammerdinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
11
|
Pang Y, Bang JW, Kasi A, Li J, Parra C, Fieremans E, Wollstein G, Schuman JS, Wang M, Chan KC. Contributions of Brain Microstructures and Metabolism to Visual Field Loss Patterns in Glaucoma Using Archetypal and Information Gain Analyses. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38975942 PMCID: PMC11232899 DOI: 10.1167/iovs.65.8.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Purpose To investigate the contributions of the microstructural and metabolic brain environment to glaucoma and their association with visual field (VF) loss patterns by using advanced diffusion magnetic resonance imaging (dMRI), proton magnetic resonance spectroscopy (MRS), and clinical ophthalmic measures. Methods Sixty-nine glaucoma and healthy subjects underwent dMRI and/or MRS at 3 Tesla. Ophthalmic data were collected from VF perimetry and optical coherence tomography. dMRI parameters of microstructural integrity in the optic radiation and MRS-derived neurochemical levels in the visual cortex were compared among early glaucoma, advanced glaucoma, and healthy controls. Multivariate regression was used to correlate neuroimaging metrics with 16 archetypal VF loss patterns. We also ranked neuroimaging, ophthalmic, and demographic attributes in terms of their information gain to determine their importance to glaucoma. Results In dMRI, decreasing fractional anisotropy, radial kurtosis, and tortuosity and increasing radial diffusivity correlated with greater overall VF loss bilaterally. Regionally, decreasing intra-axonal space and extra-axonal space diffusivities correlated with greater VF loss in the superior-altitudinal area of the right eye and the inferior-altitudinal area of the left eye. In MRS, both early and advanced glaucoma patients had lower gamma-aminobutyric acid (GABA), glutamate, and choline levels than healthy controls. GABA appeared to associate more with superonasal VF loss, and glutamate and choline more with inferior VF loss. Choline ranked third for importance to early glaucoma, whereas radial kurtosis and GABA ranked fourth and fifth for advanced glaucoma. Conclusions Our findings highlight the importance of non-invasive neuroimaging biomarkers and analytical modeling for unveiling glaucomatous neurodegeneration and how they reflect complementary VF loss patterns.
Collapse
Affiliation(s)
- Yueyin Pang
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Ji Won Bang
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Anisha Kasi
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Jeremy Li
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Carlos Parra
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
| | - Els Fieremans
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
| | - Gadi Wollstein
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
- Center for Neural Science, New York University, New York, New York, United States
- Wills Eye Hospital, Philadelphia, Pennsylvania, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Joel S Schuman
- Wills Eye Hospital, Philadelphia, Pennsylvania, United States
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
- Drexel University School of Biomedical Engineering, Science and Health Studies, Philadelphia, Pennsylvania, United States
| | - Mengyu Wang
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Kevin C Chan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Radiology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, United States
- Center for Neural Science, New York University, New York, New York, United States
- Neuroscience Institute and Tech4Health Institute, New York University Grossman School of Medicine, New York, New York, United States
| |
Collapse
|
12
|
Baldwin KT, Murai KK, Khakh BS. Astrocyte morphology. Trends Cell Biol 2024; 34:547-565. [PMID: 38180380 PMCID: PMC11590062 DOI: 10.1016/j.tcb.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system (CNS). A cardinal feature of astrocytes is their complex and visually enchanting morphology, referred to as bushy, spongy, and star-like. A central precept of this review is that such complex morphological shapes evolved to allow astrocytes to contact and signal with diverse cells at a range of distances in order to sample, regulate, and contribute to the extracellular milieu, and thus participate widely in cell-cell signaling during physiology and disease. The recent use of improved imaging methods and cell-specific molecular evaluations has revealed new information on the structural organization and molecular underpinnings of astrocyte morphology, the mechanisms of astrocyte morphogenesis, and the contributions to disease states of reduced morphology. These insights have reignited interest in astrocyte morphological complexity as a cornerstone of fundamental glial biology and as a critical substrate for multicellular spatial and physiological interactions in the CNS.
Collapse
Affiliation(s)
- Katherine T Baldwin
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90034, USA; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90034, USA.
| |
Collapse
|
13
|
Su Y, Verkhratsky A, Yi C. Targeting connexins: possible game changer in managing neuropathic pain? Trends Mol Med 2024; 30:642-659. [PMID: 38594094 DOI: 10.1016/j.molmed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Neuropathic pain is a chronic debilitating condition caused by nerve injury or a variety of diseases. At the core of neuropathic pain lies the aberrant neuronal excitability in the peripheral and/or central nervous system (PNS and CNS). Enhanced connexin expression and abnormal activation of connexin-assembled gap junctional channels are prominent in neuropathic pain along with reactive gliosis, contributing to neuronal hypersensitivity and hyperexcitability. In this review, we delve into the current understanding of how connexin expression and function contribute to the pathogenesis and pathophysiology of neuropathic pain and argue for connexins as potential therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, China.
| |
Collapse
|
14
|
Holden JM, Wareham LK, Calkins DJ. Morphological and electrophysiological characterization of a novel displaced astrocyte in the mouse retina. Glia 2024; 72:1356-1370. [PMID: 38591270 PMCID: PMC11081821 DOI: 10.1002/glia.24536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Astrocytes throughout the central nervous system are heterogeneous in both structure and function. This diversity leads to tissue-specific specialization where morphology is adapted to the surrounding neuronal circuitry, as seen in Bergman glia of the cerebellum and Müller glia of the retina. Because morphology can be a differentiating factor for cellular classification, we recently developed a mouse where glial-fibrillary acidic protein (GFAP)-expressing cells stochastically label for full membranous morphology. Here we utilize this tool to investigate whether morphological and electrophysiological features separate types of mouse retinal astrocytes. In this work, we report on a novel glial population found in the inner plexiform layer and ganglion cell layer which expresses the canonical astrocyte markers GFAP, S100β, connexin-43, Sox2 and Sox9. Apart from their retinal layer localization, these cells are unique in their radial distribution. They are notably absent from the mid-retina but are heavily concentrated near the optic nerve head, and to a lesser degree the peripheral retina. Additionally, their morphology is distinct from both nerve fiber layer astrocytes and Müller glia, appearing more similar to amacrine cells. Despite this structural similarity, these cells lack protein expression of common neuronal markers. Additionally, they do not exhibit action potentials, but rather resemble astrocytes and Müller glia in their small amplitude, graded depolarization to both light onset and offset. Their structure, protein expression, physiology, and intercellular connections suggest that these cells are astrocytic, displaced from their counterparts in the nerve fiber layer. As such, we refer to these cells as displaced retinal astrocytes.
Collapse
Affiliation(s)
- Joseph Matthew Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
- Vanderbilt Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37212
| | - Lauren Katie Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
| | - David John Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
| |
Collapse
|
15
|
Zheng Z, Yu X. Insulin resistance in the retina: possible implications for certain ocular diseases. Front Endocrinol (Lausanne) 2024; 15:1415521. [PMID: 38952394 PMCID: PMC11215121 DOI: 10.3389/fendo.2024.1415521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Insulin resistance (IR) is becoming a worldwide medical and public health challenge as an increasing prevalence of obesity and metabolic disorders. Accumulated evidence has demonstrated a strong relationship between IR and a higher incidence of several dramatically vision-threatening retinal diseases, including diabetic retinopathy, age-related macular degeneration, and glaucoma. In this review, we provide a schematic overview of the associations between IR and certain ocular diseases and further explore the possible mechanisms. Although the exact causes explaining these associations have not been fully elucidated, underlying mechanisms of oxidative stress, chronic low-grade inflammation, endothelial dysfunction and vasoconstriction, and neurodegenerative impairments may be involved. Given that IR is a modifiable risk factor, it may be important to identify patients at a high IR level with prompt treatment, which may decrease the risk of developing certain ocular diseases. Additionally, improving IR through the activation of insulin signaling pathways could become a potential therapeutic target.
Collapse
Affiliation(s)
- Zhaoxia Zheng
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Xiaobing Yu
- Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Hassan AK, Mohsen M, Abu Serhan H. Efficacy of Intravitreal rAAV2-ND4 Injection in Treated Versus Fellow Eyes with Leber's Hereditary Optic Neuropathy: A Meta-Analysis. Neuroophthalmology 2024; 48:391-400. [PMID: 39583020 PMCID: PMC11581153 DOI: 10.1080/01658107.2024.2360413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/26/2024] Open
Abstract
To compare the outcomes of rAAV2-ND4 injection in treated versus fellow eyes with Leber's hereditary optic neuropathy (LHON). The protocol was pre-registered on PROSPERO (CRD42023441669). PubMed, Ovid MEDLINE, Cochrane CENTRAL, Google Scholar, Embase, CrossRef, OpenAlex, and Web of Science were reviewed from 1990-2023. Our analysis included 358 eyes of 307 patients. Of them, 256 (83%) patients received unilateral injections while 51 (17%) received bilateral injections. The mean age was 32 years. Baseline visual acuity (VA) of unilaterally injected eyes was 1.62. At 1 year, it was 1.6 compared to 1.4 (p = 0.002) in noninjected eyes. Baseline VA of bilaterally injected eyes was 1.6 and postoperatively at 1.5 years, it became 1.3 (p = 0.003). rAAV2/2-ND4 intravitreal injections showed no major differences in terms of improving visual acuity between treated and untreated eyes of the same patient. However, larger prospective RCTs, especially concerning OCT parameters, and visual field, are recommended to provide a better understanding and comparison.
Collapse
Affiliation(s)
- Amr K. Hassan
- Gavin Herbert Eye Institute, University of California, Irvine, California, USA
| | - Maram Mohsen
- Faculty of Medicine, University of Jordan, Amman, Jordan
| | | |
Collapse
|
17
|
Li Z, Jiang YY, Long C, Peng X, Tao J, Pu Y, Yue R. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front Endocrinol (Lausanne) 2024; 15:1393253. [PMID: 38800473 PMCID: PMC11116704 DOI: 10.3389/fendo.2024.1393253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Metabolic syndrome (MetS) and cognitive dysfunction pose significant challenges to global health and the economy. Systemic inflammation, endocrine disruption, and autoregulatory impairment drive neurodegeneration and microcirculatory damage in MetS. Due to their unique anatomy and function, astrocytes sense and integrate multiple metabolic signals, including peripheral endocrine hormones and nutrients. Astrocytes and synapses engage in a complex dialogue of energetic and immunological interactions. Astrocytes act as a bridge between MetS and cognitive dysfunction, undergoing diverse activation in response to metabolic dysfunction. This article summarizes the alterations in astrocyte phenotypic characteristics across multiple pathological factors in MetS. It also discusses the clinical value of astrocytes as a critical pathologic diagnostic marker and potential therapeutic target for MetS-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Zihan Li
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-yi Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyi Long
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Peng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajing Tao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueheng Pu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
19
|
Zimmer TS, Orr AL, Orr AG. Astrocytes in selective vulnerability to neurodegenerative disease. Trends Neurosci 2024; 47:289-302. [PMID: 38521710 PMCID: PMC11006581 DOI: 10.1016/j.tins.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Selective vulnerability of specific brain regions and cell populations is a hallmark of neurodegenerative disorders. Mechanisms of selective vulnerability involve neuronal heterogeneity, functional specializations, and differential sensitivities to stressors and pathogenic factors. In this review we discuss the growing body of literature suggesting that, like neurons, astrocytes are heterogeneous and specialized, respond to and integrate diverse inputs, and induce selective effects on brain function. In disease, astrocytes undergo specific, context-dependent changes that promote different pathogenic trajectories and functional outcomes. We propose that astrocytes contribute to selective vulnerability through maladaptive transitions to context-divergent phenotypes that impair specific brain regions and functions. Further studies on the multifaceted roles of astrocytes in disease may provide new therapeutic approaches to enhance resilience against neurodegenerative disorders.
Collapse
Affiliation(s)
- Till S Zimmer
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Adam L Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Pitha I, Du L, Nguyen TD, Quigley H. IOP and glaucoma damage: The essential role of optic nerve head and retinal mechanosensors. Prog Retin Eye Res 2024; 99:101232. [PMID: 38110030 PMCID: PMC10960268 DOI: 10.1016/j.preteyeres.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
There are many unanswered questions on the relation of intraocular pressure to glaucoma development and progression. IOP itself cannot be distilled to a single, unifying value, because IOP level varies over time, differs depending on ocular location, and can be affected by method of measurement. Ultimately, IOP level creates mechanical strain that affects axonal function at the optic nerve head which causes local extracellular matrix remodeling and retinal ganglion cell death - hallmarks of glaucoma and the cause of glaucomatous vision loss. Extracellular tissue strain at the ONH and lamina cribrosa is regionally variable and differs in magnitude and location between healthy and glaucomatous eyes. The ultimate targets of IOP-induced tissue strain in glaucoma are retinal ganglion cell axons at the optic nerve head and the cells that support axonal function (astrocytes, the neurovascular unit, microglia, and fibroblasts). These cells sense tissue strain through a series of signals that originate at the cell membrane and alter cytoskeletal organization, migration, differentiation, gene transcription, and proliferation. The proteins that translate mechanical stimuli into molecular signals act as band-pass filters - sensing some stimuli while ignoring others - and cellular responses to stimuli can differ based on cell type and differentiation state. Therefore, to fully understand the IOP signals that are relevant to glaucoma, it is necessary to understand the ultimate cellular targets of IOP-induced mechanical stimuli and their ability to sense, ignore, and translate these signals into cellular actions.
Collapse
Affiliation(s)
- Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liya Du
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D Nguyen
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Harry Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Sojka C, Sloan SA. Gliomas: a reflection of temporal gliogenic principles. Commun Biol 2024; 7:156. [PMID: 38321118 PMCID: PMC10847444 DOI: 10.1038/s42003-024-05833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The hijacking of early developmental programs is a canonical feature of gliomas where neoplastic cells resemble neurodevelopmental lineages and possess mechanisms of stem cell resilience. Given these parallels, uncovering how and when in developmental time gliomagenesis intersects with normal trajectories can greatly inform our understanding of tumor biology. Here, we review how elapsing time impacts the developmental principles of astrocyte (AS) and oligodendrocyte (OL) lineages, and how these same temporal programs are replicated, distorted, or circumvented in pathological settings such as gliomas. Additionally, we discuss how normal gliogenic processes can inform our understanding of the temporal progression of gliomagenesis, including when in developmental time gliomas originate, thrive, and can be pushed towards upon therapeutic coercion.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
22
|
Rozpędek-Kamińska W, Galita G, Saramowicz K, Granek Z, Barczuk J, Siwecka N, Pytel D, Majsterek I. Evaluation of the LDN-0060609 PERK Inhibitor as a Selective Treatment for Primary Open-Angle Glaucoma: An In Vitro Study on Human Retinal Astrocytes. Int J Mol Sci 2024; 25:728. [PMID: 38255802 PMCID: PMC10815359 DOI: 10.3390/ijms25020728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The term glaucoma encompasses various neurodegenerative eye disorders, among which the most common is primary open-angle glaucoma (POAG). Recently, the essential role of human retinal astrocytes (HRA) in glaucoma progression has been placed in the spotlight. It has been found that placing the endoplasmic reticulum (ER) under stress and activating PERK leads to apoptosis of HRA cells, which inhibits their neuroprotective effect in the course of glaucoma. Therefore, the aim of the present study was to evaluate the effectiveness of the small-molecule PERK inhibitor LDN-0060609 in countering ER stress conditions induced in HRA cells in vitro. The activity of LDN-0060609 was studied in terms of protein and mRNA expression, cytotoxicity, genotoxicity, caspase-3 level and cell cycle progression. LDN-0060609 at 25 μM proved to be a potent inhibitor of the major PERK substrate, p-eIF2α (49% inhibition). The compound markedly decreased the expression of pro-apoptotic ER stress-related genes (ATF4, DDIT3, BAX and Bcl-2). Treatment with LDN-0060609 significantly increased cell viability, decreased genotoxicity and caspase-3 levels, and restored cell cycle distribution in HRA cells with activated ER stress conditions. These findings indicate that the small-molecule PERK inhibitor LDN-0060609 can potentially be developed into a novel anti-glaucoma agent.
Collapse
Affiliation(s)
- Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Dariusz Pytel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| |
Collapse
|
23
|
Rombaut A, Brautaset R, Williams PA, Tribble JR. Glial metabolic alterations during glaucoma pathogenesis. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1290465. [PMID: 38983068 PMCID: PMC11182098 DOI: 10.3389/fopht.2023.1290465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/10/2023] [Indexed: 07/11/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness. Current treatment options are limited and often only slow disease progression. Metabolic dysfunction has recently been recognized as a key early and persistent mechanism in glaucoma pathophysiology. Several intrinsic metabolic dysfunctions have been identified and treated in retinal ganglion cells to provide neuroprotection. Growing pre-clinical and clinical evidence has confirmed that metabolic alterations in glaucoma are widespread, occurring across visual system tissues, in ocular fluids, in blood/serum, and at the level of genomic and mitochondrial DNA. This suggests that metabolic dysfunction is not constrained to retinal ganglion cells and that metabolic alterations extrinsic to retinal ganglion cells may contribute to their metabolic compromise. Retinal ganglion cells are reliant on glial metabolic support under normal physiological conditions, but the implications of metabolic dysfunction in glia are underexplored. We highlight emerging evidence that has demonstrated metabolic alterations occurring within glia in glaucoma, and how this may affect neuro-glial metabolic coupling and the metabolic vulnerability of retinal ganglion cells. In other neurodegenerative diseases which share features with glaucoma, several other glial metabolic alterations have been identified, suggesting that similar mechanisms and therapeutic targets may exist in glaucoma.
Collapse
Affiliation(s)
| | | | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Wurl JA, Mac Nair CE, Dietz JA, Shestopalov VI, Nickells RW. Contralateral Astrocyte Response to Acute Optic Nerve Damage Is Mitigated by PANX1 Channel Activity. Int J Mol Sci 2023; 24:15641. [PMID: 37958624 PMCID: PMC10647301 DOI: 10.3390/ijms242115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Glial reactivity is considered a hallmark of damage-induced innate immune responses in the central nervous system. In the visual system, unilateral optic nerve damage elicits dramatic glial reactivity in the retina directly affected by the lesion and a similar, albeit more modest, effect in the contralateral eye. Evaluation of astrocyte changes in a mouse model of optic nerve crush indicates that astrocyte reactivity, as a function of retinal coverage and cellular hypertrophy, occurs within both the experimental and contralateral retinas, although the hypertrophic response of the astrocytes in the contralateral eyes is delayed for at least 24 h. Evaluation of astrocytic reactivity as a function of Gfap expression indicates a similar, muted but significant, response in contralateral eyes. This constrained glial response is completely negated by conditional knock out of Panx1 in both astrocytes and Müller cells. Further studies are required to identify if this is an autocrine or a paracrine suppression of astroglial reactivity.
Collapse
Affiliation(s)
- Jasmine A. Wurl
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.A.W.); (C.E.M.N.); (J.A.D.)
| | - Caitlin E. Mac Nair
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.A.W.); (C.E.M.N.); (J.A.D.)
| | - Joel A. Dietz
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.A.W.); (C.E.M.N.); (J.A.D.)
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.A.W.); (C.E.M.N.); (J.A.D.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
25
|
Sperling EL, Hulett JM, Sherwin LB, Thompson S, Bettencourt BA. The effect of mindfulness interventions on stress in medical students: A systematic review and meta-analysis. PLoS One 2023; 18:e0286387. [PMID: 37796866 PMCID: PMC10553303 DOI: 10.1371/journal.pone.0286387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/16/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Medical students have high levels of stress, which is associated with higher incidents of burnout, depression, and suicide compared to age-matched peers. Mindfulness practices have been shown to reduce stress among medical students. PURPOSE The purpose of this systematic review and meta-analysis was to examine if mindfulness interventions have an overall effect on stress outcomes in the high-stress population of medical students globally, particularly given the wide variety of interventions. Any intervention designed to promote mindfulness was included. METHODS A comprehensive literature search was completed to include multiple databases, ancestry, and hand-searching and 35 studies were included. Standardized mean difference effect sizes (ES) were synthesized across studies using a random-effects model for changes in stress levels in medical students ≥ 18. Moderator analyses were performed to explore variations in effects by participant and intervention characteristics. RESULTS Mindfulness interventions significantly improved stress among medical students in both the two-arm studies (d = 0.370, k = 19, n = 2,199, 95% CI 0.239-0.501, p < .001) and one-arm pre-post studies (d = 0.291, k = 30, n = 18 (two cohorts from Dyrbye et al), 95% CI 0.127-0.455, p = 0.001). Moderator analyses found trends in less hours and less required practice resulted in better improvement in stress. CONCLUSIONS This study further confirms that despite a wide variety of mindfulness interventions for medical students around the world, they produce an overall small-to-moderate effect on stress reduction. Future research looking at the most effective protocols for high-stress medical students would be beneficial.
Collapse
Affiliation(s)
- Edie L. Sperling
- Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific–Northwest, Western University of Health Sciences, Lebanon, Oregon, United States of America
- Sinclair School of Nursing, University of Missouri, Columbia, Missouri, United States of America
| | - Jennifer M. Hulett
- Sinclair School of Nursing, University of Missouri, Columbia, Missouri, United States of America
- Ellis Fischel Cancer Center, University of Missouri, Columbia, Missouri, United States of America
| | - LeeAnne B. Sherwin
- Sinclair School of Nursing, University of Missouri, Columbia, Missouri, United States of America
| | - Sarah Thompson
- Sinclair School of Nursing, University of Missouri, Columbia, Missouri, United States of America
| | - B. Ann Bettencourt
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
26
|
Mazumder AG, Julé AM, Sun D. Astrocytes of the optic nerve exhibit a region-specific and temporally distinct response to elevated intraocular pressure. Mol Neurodegener 2023; 18:68. [PMID: 37759301 PMCID: PMC10523752 DOI: 10.1186/s13024-023-00658-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The optic nerve is an important tissue in glaucoma and the unmyelinated nerve head region remains an important site of many early neurodegenerative changes. In both humans and mice, astrocytes constitute the major glial cell type in the region, and in glaucoma they become reactive, influencing the optic nerve head (ONH) microenvironment and disease outcome. Despite recognizing their importance in the progression of the disease, the reactive response of optic nerve head astrocytes remains poorly understood. METHODS To determine the global reactive response of ONH astrocytes in glaucoma we studied their transcriptional response to an elevation in IOP induced by the microbead occlusion model. To specifically isolate astrocyte mRNA in vivo from complex tissues, we used the ribotag method to genetically tag ribosomes in astrocytes, restricting analysis to astrocytes and enabling purification of astrocyte-associated mRNA throughout the entire cell, including the fine processes, for bulk RNA-sequencing. We also assessed the response of astrocytes in the more distal myelinated optic nerve proper (ONP) as glaucomatous changes manifest differently between the two regions. RESULTS Astrocytes of the optic nerve exhibited a region-specific and temporally distinct response. Surprisingly, ONH astrocytes showed very few early transcriptional changes and ONP astrocytes demonstrated substantially larger changes over the course of the experimental period. Energy metabolism, particularly oxidative phosphorylation and mitochondrial protein translation emerged as highly upregulated processes in both ONH and ONP astrocytes, with the former showing additional upregulation in antioxidative capacity and proteolysis. Interestingly, optic nerve astrocytes demonstrated a limited neuroinflammatory response, even when challenged with a more severe elevation in IOP. Lastly, there were a greater number of downregulated processes in both astrocyte populations compared to upregulated processes. CONCLUSION Our findings demonstrate an essential role for energy metabolism in the response of optic nerve astrocytes to elevated IOP, and contrary to expectations, neuroinflammation had a limited overall role. The transcriptional response profile is supportive of the notion that optic nerve astrocytes have a beneficial role in glaucoma. These previously uncharacterized transcriptional response of optic nerve astrocytes to injury reveal their functional diversity and a greater heterogeneity than previously appreciated.
Collapse
Affiliation(s)
- Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Amélie M Julé
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
27
|
Cullen PF, Mazumder AG, Sun D, Flanagan JG. Rapid isolation of intact retinal astrocytes: a novel approach. Acta Neuropathol Commun 2023; 11:154. [PMID: 37749651 PMCID: PMC10521529 DOI: 10.1186/s40478-023-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Astrocytes are a major category of glial support cell in the central nervous system and play a variety of essential roles in both health and disease. As our understanding of the diverse functions of these cells improves, the extent of heterogeneity between astrocyte populations has emerged as a key area of research. Retinal astrocytes, which form the direct cellular environment of retinal ganglion cells somas and axons, undergo a reactive response in both human glaucoma and animal models of the disease, yet their contributions to its pathology and progression remain relatively unknown. This gap in knowledge is largely a function of inadequate isolation techniques, driven in part by the sparseness of these cells and their similarities with the more abundant retinal Müller cells. Here, we present a novel method of isolating retinal astrocytes and enriching their RNA, tested in both normal and ocular hypertensive mice, a common model of experimental glaucoma. Our approach combines a novel enzyme assisted microdissection of retinal astrocytes with selective ribosome immunoprecipitation using the Ribotag method. Our microdissection method is rapid and preserves astrocyte morphology, resulting in a brief post-mortem interval and minimizing loss of RNA from distal regions of these cells. Both microdissection and Ribotag immunoprecipitation require a minimum of specialized equipment or reagents, and by using them in conjunction we are able to achieve > 100-fold enrichment of astrocyte RNA.
Collapse
Affiliation(s)
- Paul F Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
28
|
Fang F, Liu P, Huang H, Feng X, Li L, Sun Y, Kaufman RJ, Hu Y. RGC-specific ATF4 and/or CHOP deletion rescues glaucomatous neurodegeneration and visual function. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:286-295. [PMID: 37547290 PMCID: PMC10400881 DOI: 10.1016/j.omtn.2023.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Endoplasmic reticulum (ER) stress has been linked with various acute and chronic neurodegenerative diseases. We previously found that optic nerve (ON) injury and diseases induce neuronal ER stress in retinal ganglion cells (RGCs). We further demonstrated that germline deletion of CHOP preserves the structure and function of both RGC somata and axons in mouse glaucoma models. Here we report that RGC-specific deletion of CHOP and/or its upstream regulator ATF4 synergistically promotes RGC and ON survival and preserves visual function in mouse ON crush and silicone oil-induced ocular hypertension (SOHU) glaucoma models. Consistently, topical application of the ATF4/CHOP chemical inhibitor ISRIB or RGC-specific CRISPR-mediated knockdown of the ATF4 downstream effector Gadd45a also delivers significant neuroprotection in the SOHU glaucoma model. These studies suggest that blocking the neuronal intrinsic ATF4/CHOP axis of ER stress is a promising neuroprotection strategy for neurodegeneration.
Collapse
Affiliation(s)
- Fang Fang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Pingting Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xue Feng
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
29
|
Geiduschek EK, McDowell CM. The Fibro-Inflammatory Response in the Glaucomatous Optic Nerve Head. Int J Mol Sci 2023; 24:13240. [PMID: 37686046 PMCID: PMC10487997 DOI: 10.3390/ijms241713240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a progressive disease and the leading cause of irreversible blindness. The limited therapeutics available are only able to manage the common risk factor of glaucoma, elevated intraocular pressure (IOP), indicating a great need for understanding the cellular mechanisms behind optic nerve head (ONH) damage during disease progression. Here we review the known inflammatory and fibrotic changes occurring in the ONH. In addition, we describe a novel mechanism of toll-like receptor 4 (TLR4) and transforming growth factor beta-2 (TGFβ2) signaling crosstalk in the cells of the ONH that contribute to glaucomatous damage. Understanding molecular signaling within and between the cells of the ONH can help identify new drug targets and therapeutics.
Collapse
Affiliation(s)
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
30
|
Freitas-Andrade M, Comin CH, Van Dyken P, Ouellette J, Raman-Nair J, Blakeley N, Liu QY, Leclerc S, Pan Y, Liu Z, Carrier M, Thakur K, Savard A, Rurak GM, Tremblay MÈ, Salmaso N, da F Costa L, Coppola G, Lacoste B. Astroglial Hmgb1 regulates postnatal astrocyte morphogenesis and cerebrovascular maturation. Nat Commun 2023; 14:4965. [PMID: 37587100 PMCID: PMC10432480 DOI: 10.1038/s41467-023-40682-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Astrocytes are intimately linked with brain blood vessels, an essential relationship for neuronal function. However, astroglial factors driving these physical and functional associations during postnatal brain development have yet to be identified. By characterizing structural and transcriptional changes in mouse cortical astrocytes during the first two postnatal weeks, we find that high-mobility group box 1 (Hmgb1), normally upregulated with injury and involved in adult cerebrovascular repair, is highly expressed in astrocytes at birth and then decreases rapidly. Astrocyte-selective ablation of Hmgb1 at birth affects astrocyte morphology and endfoot placement, alters distribution of endfoot proteins connexin43 and aquaporin-4, induces transcriptional changes in astrocytes related to cytoskeleton remodeling, and profoundly disrupts endothelial ultrastructure. While lack of astroglial Hmgb1 does not affect the blood-brain barrier or angiogenesis postnatally, it impairs neurovascular coupling and behavior in adult mice. These findings identify astroglial Hmgb1 as an important player in postnatal gliovascular maturation.
Collapse
Affiliation(s)
| | - Cesar H Comin
- Federal University of São Carlos, Department of Computer Science, São Carlos, Brazil
| | - Peter Van Dyken
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julie Ouellette
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Joanna Raman-Nair
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qing Yan Liu
- National Research Council of Canada, Human Health and Therapeutics, Ottawa, ON, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sonia Leclerc
- National Research Council of Canada, Human Health and Therapeutics, Ottawa, ON, Canada
| | - Youlian Pan
- Digital Technologies, National Research Council of Canada, Ottawa, ON, Canada
| | - Ziying Liu
- Digital Technologies, National Research Council of Canada, Ottawa, ON, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Karan Thakur
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Alexandre Savard
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Luciano da F Costa
- University of São Paulo, São Carlos Institute of Physics, FCM-USP, São Paulo, Brazil
| | | | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
31
|
Cullen PF, Sun D. Astrocytes of the eye and optic nerve: heterogeneous populations with unique functions mediate axonal resilience and vulnerability to glaucoma. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1217137. [PMID: 37829657 PMCID: PMC10569075 DOI: 10.3389/fopht.2023.1217137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The role of glia, particularly astrocytes, in mediating the central nervous system's response to injury and neurodegenerative disease is an increasingly well studied topic. These cells perform myriad support functions under physiological conditions but undergo behavioral changes - collectively referred to as 'reactivity' - in response to the disruption of neuronal homeostasis from insults, including glaucoma. However, much remains unknown about how reactivity alters disease progression - both beneficially and detrimentally - and whether these changes can be therapeutically modulated to improve outcomes. Historically, the heterogeneity of astrocyte behavior has been insufficiently addressed under both physiological and pathological conditions, resulting in a fragmented and often contradictory understanding of their contributions to health and disease. Thanks to increased focus in recent years, we now know this heterogeneity encompasses both intrinsic variation in physiological function and insult-specific changes that vary between pathologies. Although previous studies demonstrate astrocytic alterations in glaucoma, both in human disease and animal models, generally these findings do not conclusively link astrocytes to causative roles in neuroprotection or degeneration, rather than a subsequent response. Efforts to bolster our understanding by drawing on knowledge of brain astrocytes has been constrained by the primacy in the literature of findings from peri-synaptic 'gray matter' astrocytes, whereas much early degeneration in glaucoma occurs in axonal regions populated by fibrous 'white matter' astrocytes. However, by focusing on findings from astrocytes of the anterior visual pathway - those of the retina, unmyelinated optic nerve head, and myelinated optic nerve regions - we aim to highlight aspects of their behavior that may contribute to axonal vulnerability and glaucoma progression, including roles in mitochondrial turnover and energy provisioning. Furthermore, we posit that astrocytes of the retina, optic nerve head and myelinated optic nerve, although sharing developmental origins and linked by a network of gap junctions, may be best understood as distinct populations residing in markedly different niches with accompanying functional specializations. A closer investigation of their behavioral repertoires may elucidate not only their role in glaucoma, but also mechanisms to induce protective behaviors that can impede the progressive axonal damage and retinal ganglion cell death that drive vision loss in this devastating condition.
Collapse
Affiliation(s)
- Paul F. Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
McGrady NR, Boal AM, Risner ML, Taiel M, Sahel JA, Calkins DJ. Ocular stress enhances contralateral transfer of lenadogene nolparvovec gene therapy through astrocyte networks. Mol Ther 2023; 31:2005-2013. [PMID: 37016579 PMCID: PMC10362393 DOI: 10.1016/j.ymthe.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/10/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Lenadogene nolparvovec (GS010) was developed to treat a point mutation in mitochondrial ND4 that causes Leber hereditary optic neuropathy. GS010 delivers human cDNA encoding wild-type ND4 packaged into an rAAV2/2 vector that transduces retinal ganglion cells, to induce allotopic expression of hybrid mitochondrial ND4. GS010 clinical trials improved best-corrected visual acuity (BCVA) up to 5 years after treatment. Interestingly, unilateral treatment improved BCVA bilaterally. Subsequent studies revealed GS010 DNA in visual tissues contralateral to the injected eye, suggesting migration. Here we tested whether unilateral intraocular pressure (IOP) elevation could influence the transfer of viral ND4 RNA in contralateral tissues after GS010 delivery to the IOP-elevated eye and probed a potential mechanism mediating translocation in mice. We found IOP elevation enhanced viral ND4 RNA transcripts in contralateral visual tissues, including retinas. Using conditional transgenic mice, we depleted astrocytic gap junction connexin 43 (Cx43), required for distant redistribution of metabolic resources between astrocytes during stress. After unilateral IOP elevation and GS010 injection, Cx43 knockdown eradicated ND4 RNA transcript detection in contralateral retinal tissues, while transcript was still detectable in optic nerves. Overall, our study indicates long-range migration of GS010 product to contralateral visual tissues is enhanced by Cx43-linked astrocyte networks.
Collapse
Affiliation(s)
- Nolan R McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew M Boal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael L Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jose A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Fondation Ophtalmologique A. de Rothschild, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; CHNO des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC, Paris, France
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
34
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
Goyal V, Read AT, Brown DM, Brawer L, Bateh K, Hannon BG, Feola AJ, Ethier CR. Morphometric Analysis of Retinal Ganglion Cell Axons in Normal and Glaucomatous Brown Norway Rats Optic Nerves. Transl Vis Sci Technol 2023; 12:8. [PMID: 36917118 PMCID: PMC10020949 DOI: 10.1167/tvst.12.3.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/23/2022] [Indexed: 03/15/2023] Open
Abstract
Purpose A reference atlas of optic nerve (ON) retinal ganglion cell (RGC) axons could facilitate studies of neuro-ophthalmic diseases by detecting subtle RGC axonal changes. Here we construct an RGC axonal atlas for normotensive eyes in Brown Norway rats, widely used in glaucoma research, and also develop/evaluate several novel metrics of axonal damage in hypertensive eyes. Methods Light micrographs of entire ON cross-sections from hypertensive and normotensive eyes were processed through a deep learning-based algorithm, AxoNet2.0, to determine axonal morphological properties and were semiquantitatively scored using the Morrison grading scale (MGS) to provide a damage score independent of AxoNet2.0 outcomes. To construct atlases, ONs were conformally mapped onto an ON "template," and axonal morphometric data was computed for each region. We also developed damage metrics based on myelin morphometry. Results In normotensive eyes, average axon density was ∼0.3 axons/µm2 (i.e., ∼80,000 axons in an ON). We measured axoplasm diameter, eccentricity, cross-sectional area, and myelin g-ratio and thickness. Most morphological parameters exhibited a wide range of coefficients of variation (CoV); however, myelin thickness CoV was only ∼2% in normotensive eyes. In hypertensive eyes, increased myelin thickness correlated strongly with MGS (P < 0.0001). Conclusions We present the first comprehensive normative RGC axon morphometric atlas for Brown Norway rat eyes. We suggest objective, repeatable damage metrics based on RGC axon myelin thickness for hypertensive eyes. Translational Relevance These tools can evaluate regional changes in RGCs and overall levels of damage in glaucoma studies using Brown Norway rats.
Collapse
Affiliation(s)
- Vidisha Goyal
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - A. Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Dillon M. Brown
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Luke Brawer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kaitlyn Bateh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Bailey G. Hannon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew J. Feola
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
| |
Collapse
|
36
|
Zhao GL, Zhou H, Guo YH, Zhong SM, Zhou H, Li F, Lei B, Wang Z, Miao Y. Modulation of Rac1/PAK1/connexin43-mediated ATP release from astrocytes contributes to retinal ganglion cell survival in experimental glaucoma. Glia 2023; 71:1502-1521. [PMID: 36794533 DOI: 10.1002/glia.24354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Connexin43 (Cx43) is a major gap junction protein in glial cells. Mutations have been found in the gap-junction alpha 1 gene encoding Cx43 in glaucomatous human retinas, suggestive of the involvement of Cx43 in the pathogenesis of glaucoma. However, how Cx43 is involved in glaucoma is still unknown. We showed that increased intraocular pressure in a glaucoma mouse model of chronic ocular hypertension (COH) downregulated Cx43, which was mainly expressed in retinal astrocytes. Astrocytes in the optic nerve head where they gather and wrap the axons (optic nerve) of retinal ganglion cells (RGCs) were activated earlier than neurons in COH retinas and the alterations in astrocytes plasticity in the optic nerve caused a reduction in Cx43 expression. A time course showed that reductions of Cx43 expression were correlated with the activation of Rac1, a member of the Rho family. Co-immunoprecipitation assays showed that active Rac1, or the downstream signaling effector PAK1, negatively regulated Cx43 expression, Cx43 hemichannel opening and astrocyte activation. Pharmacological inhibition of Rac1 stimulated Cx43 hemichannel opening and ATP release, and astrocytes were identified to be one of the main sources of ATP. Furthermore, conditional knockout of Rac1 in astrocytes enhanced Cx43 expression and ATP release, and promoted RGC survival by upregulating the adenosine A3 receptor in RGCs. Our study provides new insight into the relationship between Cx43 and glaucoma, and suggests that regulating the interaction between astrocytes and RGCs via the Rac1/PAK1/Cx43/ATP pathway may be used as part of a therapeutic strategy for managing glaucoma.
Collapse
Affiliation(s)
- Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hong Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Hui Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shu-Min Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Han Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Ahmed CM, Massengill MT, Ildefonso CJ, Jalligampala A, Zhu P, Li H, Patel AP, McCall MA, Lewin AS. Binocular benefit following monocular subretinal AAV injection in a mouse model of autosomal dominant retinitis pigmentosa (adRP). Vision Res 2023; 206:108189. [PMID: 36773475 DOI: 10.1016/j.visres.2023.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
Autosomal dominant retinitis pigmentosa (adRP) is frequently caused by mutations in RHO, the gene for rhodopsin. In previous experiments in dogs with the T4R mutation in RHO, an AAV2/5 vector expressing an shRNA directed to human and dog RHO mRNA and an shRNA-resistant human RHO cDNA (AAV-RHO820-shRNA820) prevented retinal degeneration for more than eight months following injection. It is crucial, however, to determine if this RNA replacement vector acts in a mutation-independent and species-independent manner. We, therefore, injected mice transgenic for human P23H RHO with this vector unilaterally at postnatal day 30. We monitored their retinal structure by using spectral-domain optical coherence tomography (SD-OCT) and retinal function using electroretinography (ERG) for nine months. We compared these to P23H RHO transgenic mice injected unilaterally with a control vector. Though retinas continued to thin over time, compared to control injected eyes, treatment with AAV-RHO820-shRNA820 slowed the loss of photoreceptor cells and the decrease in ERG amplitudes during the nine-month study period. Unexpectedly, we also observed the preservation of retinal structure and function in the untreated contralateral eyes of AAV-RHO820-shRNA820 treated mice. PCR analysis and western blots showed that a low amount of vector from injected eyes was present in uninjected eyes. In addition, protective neurotrophic factors bFGF and GDNF were elevated in both eyes of treated mice. Our finding suggests that using this or similar RNA replacement vectors in human gene therapy may provide clinical benefit to both eyes of patients with adRP.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Michael T Massengill
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | - Archana Jalligampala
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Ping Zhu
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Hong Li
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Anil P Patel
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
38
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
39
|
Foliaki ST, Smith A, Schwarz B, Bohrnsen E, Bosio CM, Williams K, Orrú CD, Lachenauer H, Groveman BR, Haigh CL. Altered energy metabolism in Fatal Familial Insomnia cerebral organoids is associated with astrogliosis and neuronal dysfunction. PLoS Genet 2023; 19:e1010565. [PMID: 36656833 PMCID: PMC9851538 DOI: 10.1371/journal.pgen.1010565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/12/2022] [Indexed: 01/20/2023] Open
Abstract
Fatal familial insomnia (FFI) is a rare neurodegenerative disease caused by a dominantly inherited single amino acid substitution (D178N) within the prion protein (PrP). No in vitro human brain tissue model for this disease has previously been available. Consequently, how this mutation exerts its damaging effect on brain cells is still unknown. Using CRISPR-Cas9 engineered induced pluripotent stem cells, we made D178N cerebral organoids and compared these with isotype control organoids. We found that, in the absence of other hallmarks of FFI, the D178N organoids exhibited astrogliosis with cellular oxidative stress. Abnormal post-translational processing of PrP was evident but no tissue deposition or propagation of mis-folded PrP isoforms were observed. Neuronal electrophysiological function was compromised and levels of neurotransmitters, particularly acetylcholine and GABA, altered. Underlying these dysfunctions were changes in cellular energy homeostasis, with substantially increased glycolytic and Krebs cycle intermediates, and greater mitochondrial activity. This increased energy demand in D178N organoids was associated with increased mitophagy and depletion of lipid droplets, in turn resulting in shifts of cellular lipid composition. Using a double mutation (178NN) we could confirm that most changes were caused by the presence of the mutation rather than interaction with PrP molecules lacking the mutation. Our data strongly suggests that shifting biosynthetic intermediates and oxidative stress, caused by an imbalance of energy supply and demand, results in astrogliosis with compromised neuronal activity in FFI organoids. They further support that many of the disease associated changes are due to a corruption of PrP function and do not require propagation of PrP mis-folding.
Collapse
Affiliation(s)
- Simote T. Foliaki
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Anna Smith
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Catharine M. Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Christina D. Orrú
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Hailey Lachenauer
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bradley R. Groveman
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Cathryn L. Haigh
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America,* E-mail:
| |
Collapse
|
40
|
Rangel B, Mesentier-Louro LA, Lowe LL, Shariati AM, Dalal R, Imventarza JA, Liao YJ. Upregulation of retinal VEGF and connexin 43 in murine nonarteritic anterior ischemic optic neuropathy induced with 577 nm laser. Exp Eye Res 2022; 225:109139. [PMID: 35691373 PMCID: PMC10870834 DOI: 10.1016/j.exer.2022.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 12/29/2022]
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is a common acute optic neuropathy and cause of irreversible vision loss in those older than 50 years of age. There is currently no effective treatment for NAION and the biological mechanisms leading to neuronal loss are not fully understood. Promising novel targets include glial cells activation and intercellular communication mediated by molecules such as gap junction protein Connexin 43 (Cx43), which modulate neuronal fate in central nervous system disorders. In this study, we investigated retinal glial changes and neuronal loss following a novel NAION animal model using a 577 nm yellow laser. We induced unilateral photochemical thrombosis using rose bengal at the optic nerve head vasculature in adult C57BL/6 mice using a 577 nm laser and performed morphometric analysis of the retinal structure using serial in vivo optical coherence tomography (OCT) and histology for glial and neuronal markers. One day after experimental NAION, in acute phase, OCT imaging revealed peripapillary thickening of the retinal ganglion cell complex (GCC, baseline: 79.5 ± 1.0 μm, n = 8; NAION: 93.0 ± 2.5 μm, n = 8, P < 0.01) and total retina (baseline: 202.9 ± 2.4 μm, n = 8; NAION: 228.1 ± 6.8 μm, n = 8, P < 0.01). Twenty-one days after ischemia, at a chronic phase, there was significant GCC thinning (baseline 78.3 ± 2.1 μm, n = 6; NAION: 72.2 ± 1.9 μm, n = 5, P < 0.05), mimicking human disease. Examination of molecular changes in the retina one day after ischemia revealed that NAION induced a significant increase in retinal VEGF levels (control: 2319 ± 195, n = 5; NAION: 4549 ± 683 gray mean value, n = 5, P < 0.05), which highly correlated with retinal thickness (r = 0.89, P < 0.05). NAION also led to significant increase in mRNA level for Cx43 (Gj1a) at day 1 (control: 1.291 ± 0.38; NAION: 3.360 ± 0.58 puncta/mm2, n = 5, P < 0.05), but not of glial fibrillary acidic protein (Gfap) at the same time (control: 2,800 ± 0.59; NAION: 4,690 ± 0.90 puncta/mm2 n = 5, P = 0.19). Retinal ganglion cell loss at day 21 was confirmed by a 30% decrease in Brn3a+ cells (control: 2,844 ± 235; NAION: 2,001 ± 264 cells/mm2, n = 4, P < 0.05). We described a novel protocol of NAION induction by photochemical thrombosis using a 577 nm laser, leading to retinal edema and VEGF increase at day 1 and RGCs loss at day 21 after injury, consistent with the pathophysiology of human NAION. Early changes in glial cells intercommunication revealed by increased Cx43+ gap junctions are consistent with a retinal glial role in mediating cell-to-cell signaling after an ischemic insult. Our study demonstrates an early glial response in a novel NAION animal model and reveals glial intercommunication molecules such as Cx43 as a promising therapeutic target in acute NAION.
Collapse
Affiliation(s)
- Barbara Rangel
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | | | - Lauryn L Lowe
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Ali Mohammad Shariati
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Joel A Imventarza
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA; Department of Neurology, Stanford University School of Medicine, Stanford, CA, 94304, USA.
| |
Collapse
|
41
|
Holden JM, Wareham LK. cGMP signaling: a potential therapeutic target for neurodegeneration in glaucoma? Neural Regen Res 2022; 18:1267-1268. [PMID: 36453407 PMCID: PMC9838148 DOI: 10.4103/1673-5374.360169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Joseph M. Holden
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren K. Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA,Correspondence to: Lauren K. Wareham, .
| |
Collapse
|
42
|
Tang Y, Chen Y, Chen D. The heterogeneity of astrocytes in glaucoma. Front Neuroanat 2022; 16:995369. [PMID: 36466782 PMCID: PMC9714578 DOI: 10.3389/fnana.2022.995369] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a leading cause of blindness with progressive degeneration of retinal ganglion cells. Aging and increased intraocular pressure (IOP) are major risk factors. Lowering IOP does not always stop the disease progression. Alternative ways of protecting the optic nerve are intensively studied in glaucoma. Astrocytes are macroglia residing in the retina, optic nerve head (ONH), and visual brain, which keep neuronal homeostasis, regulate neuronal activities and are part of the immune responses to the retina and brain insults. In this brief review, we discuss the activation and heterogeneity of astrocytes in the retina, optic nerve head, and visual brain of glaucoma patients and animal models. We also discuss some recent transgenic and gene knockout studies using glaucoma mouse models to clarify the role of astrocytes in the pathogenesis of glaucoma. Astrocytes are heterogeneous and play crucial roles in the pathogenesis of glaucoma, especially in the process of neuroinflammation and mitochondrial dysfunction. In astrocytes, overexpression of Stat3 or knockdown of IκKβ/p65, caspase-8, and mitochondrial uncoupling proteins (Ucp2) can reduce ganglion cell loss in glaucoma mouse models. Based on these studies, therapeutic strategies targeting the heterogeneity of reactive astrocytes by enhancing their beneficial reactivity or suppressing their detrimental reactivity are alternative options for glaucoma treatment in the future.
Collapse
Affiliation(s)
- Yunjing Tang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Haider AA, Rex TS, Wareham LK. cGMP Signaling in the Neurovascular Unit-Implications for Retinal Ganglion Cell Survival in Glaucoma. Biomolecules 2022; 12:1671. [PMID: 36421684 PMCID: PMC9687235 DOI: 10.3390/biom12111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Glaucoma is a progressive age-related disease of the visual system and the leading cause of irreversible blindness worldwide. Currently, intraocular pressure (IOP) is the only modifiable risk factor for the disease, but even as IOP is lowered, the pathology of the disease often progresses. Hence, effective clinical targets for the treatment of glaucoma remain elusive. Glaucoma shares comorbidities with a multitude of vascular diseases, and evidence in humans and animal models demonstrates an association between vascular dysfunction of the retina and glaucoma pathology. Integral to the survival of retinal ganglion cells (RGCs) is functional neurovascular coupling (NVC), providing RGCs with metabolic support in response to neuronal activity. NVC is mediated by cells of the neurovascular unit (NVU), which include vascular cells, glial cells, and neurons. Nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling is a prime mediator of NVC between endothelial cells and neurons, but emerging evidence suggests that cGMP signaling is also important in the physiology of other cells of the NVU. NO-cGMP signaling has been implicated in glaucomatous neurodegeneration in humans and mice. In this review, we explore the role of cGMP signaling in the different cell types of the NVU and investigate the potential links between cGMP signaling, breakdown of neurovascular function, and glaucoma pathology.
Collapse
Affiliation(s)
| | | | - Lauren K. Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
44
|
Preeti K, Sood A, Fernandes V. Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer's Disease. Cell Mol Neurobiol 2022; 42:2527-2551. [PMID: 34515874 PMCID: PMC11421648 DOI: 10.1007/s10571-021-01147-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder. It is characterized clinically by progressive memory loss and impaired cognitive function. Its progression occurs from neuronal synapse loss to amyloid pathology and Tau deposit which eventually leads to the compromised neuronal function. Neurons in central nervous tissue work in a composite and intricate network with the glia and vascular cells. Microglia and astrocytes are becoming the prime focus due to their involvement in various aspects of neurophysiology, such as trophic support to neurons, synaptic modulation, and brain surveillance. AD is also often considered as the sequela of prolonged metabolic dyshomeostasis. The neuron and glia have different metabolic profiles as cytosolic glycolysis and mitochondrial-dependent oxidative phosphorylation (OXPHOS), especially under dyshomeostasis or with aging pertaining to their unique genetic built-up. Various efforts are being put in to decipher the role of mitochondrial dynamics regarding their trafficking, fission/fusion imbalance, and mitophagy spanning over both neurons and glia to improve aging-related brain health. The mitochondrial dysfunction may lead to activation in various signaling mechanisms causing metabolic reprogramming in glia cells, further accelerating AD-related pathogenic events. The glycolytic-dominant astrocytes switch to the neurotoxic phenotype, i.e., disease-associated astrocyte under metabolic stress. The microglia also transform from resting to reactive phenotype, i.e., disease-associated microglia. It may also exist in otherwise a misconception an M1, glycolytic, or M2, an OXPHOS-dependent phenotype. Further, glial transformation plays a vital role in regulating hallmarks of AD pathologies like synapse maintenance, amyloid, and Tau clearance. In this updated review, we have tried to emphasize the metabolic regulation of glial reactivity, mitochondrial quality control mechanisms, and their neuroinflammatory response in Alzheimer's progression.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
45
|
Chaudhary P, Stowell C, Reynaud J, Gardiner SK, Yang H, Williams G, Williams I, Marsh-Armstrong N, Burgoyne CF. Optic Nerve Head Myelin-Related Protein, GFAP, and Iba1 Alterations in Non-Human Primates With Early to Moderate Experimental Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:9. [PMID: 36239974 PMCID: PMC9586137 DOI: 10.1167/iovs.63.11.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose The purpose of this study was to test if optic nerve head (ONH) myelin basic protein (MBP), 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), glial fibrillary acidic protein (GFAP), and ionized calcium binding adaptor molecule 1 (Iba1) proteins are altered in non-human primate (NHP) early/moderate experimental glaucoma (EG). Methods Following paraformaldehyde perfusion, control and EG eye ONH tissues from four NHPs were paraffin embedded and serially (5 µm) vertically sectioned. Anti-MBP, CNPase, GFAP, Iba1, and nuclear dye-stained sections were imaged using sub-saturating light intensities. Whole-section images were segmented creating anatomically consistent laminar (L) and retrolaminar (RL) regions/sub-regions. EG versus control eye intensity/pixel-cluster density data within L and two RL regions (RL1 [1-250 µm]/RL2 [251-500 µm] from L) were compared using random effects models within the statistical program “R.” Results EG eye retinal nerve fiber loss ranged from 0% to 20%. EG eyes’ MBP and CNPase intensity were decreased within the RL1 (MBP = 31.4%, P < 0.001; CNPase =62.3%, P < 0.001) and RL2 (MBP = 19.6%, P < 0.001; CNPase = 56.1%, P = 0.0004) regions. EG eye GFAP intensity was decreased in the L (41.6%, P < 0.001) and RL regions (26.7% for RL1, and 28.4% for RL2, both P < 0.001). Iba1+ and NucBlue pixel-cluster density were increased in the laminar (28.2%, P = 0.03 and 16.6%, P = 0.008) and both RL regions (RL1 = 37.3%, P = 0.01 and 23.7%, P = 0.0002; RL2 = 53.7%, P = 0.002 and 33.2%, P < 0.001). Conclusions Retrolaminar myelin disruption occurs early in NHP EG and may be accompanied by laminar and retrolaminar decreases in astrocyte process labeling and increases in microglial/ macrophage density. The mechanistic and therapeutic implications of these findings warrant further study.
Collapse
Affiliation(s)
- Priya Chaudhary
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Cheri Stowell
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Juan Reynaud
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Stuart K Gardiner
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Hongli Yang
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Galen Williams
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Imee Williams
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | | | - Claude F Burgoyne
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
46
|
McGrady NR, Holden JM, Ribeiro M, Boal AM, Risner ML, Calkins DJ. Axon hyperexcitability in the contralateral projection following unilateral optic nerve crush in mice. Brain Commun 2022; 4:fcac251. [PMID: 36267329 PMCID: PMC9576152 DOI: 10.1093/braincomms/fcac251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
Optic neuropathies are characterized by degeneration of retinal ganglion cell axonal projections to the brain, including acute conditions like optic nerve trauma and progressive conditions such as glaucoma. Despite different aetiologies, retinal ganglion cell axon degeneration in traumatic optic neuropathy and glaucoma share common pathological signatures. We compared how early pathogenesis of optic nerve trauma and glaucoma influence axon function in the mouse optic projection. We assessed pathology by measuring anterograde axonal transport from retina to superior colliculus, current-evoked optic nerve compound action potential and retinal ganglion cell density 1 week following unilateral optic nerve crush or intraocular pressure elevation. Nerve crush reduced axon transport, compound axon potential and retinal ganglion cell density, which were unaffected by intraocular pressure elevation. Surprisingly, optic nerves contralateral to crush demonstrated 5-fold enhanced excitability in compound action potential compared with naïve nerves. Enhanced excitability in contralateral sham nerves is not due to increased accumulation of voltage-gated sodium channel 1.6, or ectopic voltage-gated sodium channel 1.2 expression within nodes of Ranvier. Our results indicate hyperexcitability is driven by intrinsic responses of αON-sustained retinal ganglion cells. We found αON-sustained retinal ganglion cells in contralateral, sham and eyes demonstrated increased responses to depolarizing currents compared with those from naïve eyes, while light-driven responses remained intact. Dendritic arbours of αON-sustained retinal ganglion cells of the sham eye were like naïve, but soma area and non-phosphorylated neurofilament H increased. Current- and light-evoked responses of sham αOFF-sustained retinal ganglion cells remained stable along with somato-dendritic morphologies. In retinas directly affected by crush, light responses of αON- and αOFF-sustained retinal ganglion cells diminished compared with naïve cells along with decreased dendritic field area or branch points. Like light responses, αOFF-sustained retinal ganglion cell current-evoked responses diminished, but surprisingly, αON-sustained retinal ganglion cell responses were similar to those from naïve retinas. Optic nerve crush reduced dendritic length and area in αON-sustained retinal ganglion cells in eyes ipsilateral to injury, while crush significantly reduced dendritic branching in αOFF-sustained retinal ganglion cells. Interestingly, 1 week of intraocular pressure elevation only affected αOFF-sustained retinal ganglion cell physiology, depolarizing resting membrane potential in cells of affected eyes and blunting current-evoked responses in cells of saline-injected eyes. Collectively, our results suggest that neither saline nor sham surgery provide a true control, chronic versus acute optic neuropathies differentially affect retinal ganglion cells composing the ON and OFF pathways, and acute stress can have near-term effects on the contralateral projection.
Collapse
Affiliation(s)
- Nolan R McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Joseph M Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Marcio Ribeiro
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Andrew M Boal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - Michael L Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN 37232, USA
| | - David J Calkins
- Correspondence to: David J. Calkins, PhD AA7103 MCN/VUIIS 1161 21st Ave. S., Nashville, TN 37232, USA E-mail:
| |
Collapse
|
47
|
Peters A, Sprengell M, Kubera B. The principle of 'brain energy on demand' and its predictive power for stress, sleep, stroke, obesity and diabetes. Neurosci Biobehav Rev 2022; 141:104847. [PMID: 36067964 DOI: 10.1016/j.neubiorev.2022.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022]
Abstract
Does the brain actively draw energy from the body when needed? There are different schools of thought regarding energy metabolism. In this study, the various theoretical models are classified into one of two categories: (1) conceptualizations of the brain as being purely passively supplied, which we call 'P-models,' and (2) models understanding the brain as not only passively receiving energy but also actively procuring energy for itself on demand, which we call 'A-models.' One prominent example of such theories making use of an A-model is the selfish-brain theory. The ability to make predictions was compared between the A- and P-models. A-models were able to predict and coherently explain all data examined, which included stress, sleep, caloric restriction, stroke, type-1-diabetes mellitus, obesity, and type-2-diabetes, whereas the predictions of P-models failed in most cases. The strength of the evidence supporting A-models is based on the coherence of accurate predictions across a spectrum of metabolic states. The theory test conducted here speaks to a brain that pulls its energy from the body on-demand.
Collapse
Affiliation(s)
- Achim Peters
- Medical Clinic 1, Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | - Marie Sprengell
- Medical Clinic 1, Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Britta Kubera
- Medical Clinic 1, Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
48
|
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, Eles JR, Kozai TDY. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials 2022; 289:121784. [PMID: 36103781 PMCID: PMC10231871 DOI: 10.1016/j.biomaterials.2022.121784] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Brain computer interfaces (BCIs), including penetrating microelectrode arrays, enable both recording and stimulation of neural cells. However, device implantation inevitably causes injury to brain tissue and induces a foreign body response, leading to reduced recording performance and stimulation efficacy. Astrocytes in the healthy brain play multiple roles including regulating energy metabolism, homeostatic balance, transmission of neural signals, and neurovascular coupling. Following an insult to the brain, they are activated and gather around the site of injury. These reactive astrocytes have been regarded as one of the main contributors to the formation of a glial scar which affects the performance of microelectrode arrays. This study investigates the dynamics of astrocytes within the first 2 weeks after implantation of an intracortical microelectrode into the mouse brain using two-photon microscopy. From our observation astrocytes are highly dynamic during this period, exhibiting patterns of process extension, soma migration, morphological activation, and device encapsulation that are spatiotemporally distinct from other glial cells, such as microglia or oligodendrocyte precursor cells. This detailed characterization of astrocyte reactivity will help to better understand the tissue response to intracortical devices and lead to the development of more effective intervention strategies to improve the functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Northwestern University, USA
| | - Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Computational Modeling & Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Baracaldo-Santamaría D, Corrales-Hernández MG, Ortiz-Vergara MC, Cormane-Alfaro V, Luque-Bernal RM, Calderon-Ospina CA, Cediel-Becerra JF. Connexins and Pannexins: Important Players in Neurodevelopment, Neurological Diseases, and Potential Therapeutics. Biomedicines 2022; 10:2237. [PMID: 36140338 PMCID: PMC9496069 DOI: 10.3390/biomedicines10092237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cell-to-cell communication is essential for proper embryonic development and its dysfunction may lead to disease. Recent research has drawn attention to a new group of molecules called connexins (Cxs) and pannexins (Panxs). Cxs have been described for more than forty years as pivotal regulators of embryogenesis; however, the exact mechanism by which they provide this regulation has not been clearly elucidated. Consequently, Cxs and Panxs have been linked to congenital neurodegenerative diseases such as Charcot-Marie-Tooth disease and, more recently, chronic hemichannel opening has been associated with adult neurodegenerative diseases (e.g., Alzheimer's disease). Cell-to-cell communication via gap junctions formed by hexameric assemblies of Cxs, known as connexons, is believed to be a crucial component in developmental regulation. As for Panxs, despite being topologically similar to Cxs, they predominantly seem to form channels connecting the cytoplasm to the extracellular space and, despite recent research into Panx1 (Pannexin 1) expression in different regions of the brain during the embryonic phase, it has been studied to a lesser degree. When it comes to the nervous system, Cxs and Panxs play an important role in early stages of neuronal development with a wide span of action ranging from cellular migration during early stages to neuronal differentiation and system circuitry formation. In this review, we describe the most recent available evidence regarding the molecular and structural aspects of Cx and Panx channels, their role in neurodevelopment, congenital and adult neurological diseases, and finally propose how pharmacological modulation of these channels could modify the pathogenesis of some diseases.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - María Gabriela Corrales-Hernández
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Maria Camila Ortiz-Vergara
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Valeria Cormane-Alfaro
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Ricardo-Miguel Luque-Bernal
- Anatomy and Embriology Units, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos-Alberto Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Juan-Fernando Cediel-Becerra
- Histology and Embryology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
50
|
Claes M, Moons L. Retinal Ganglion Cells: Global Number, Density and Vulnerability to Glaucomatous Injury in Common Laboratory Mice. Cells 2022; 11:2689. [PMID: 36078097 PMCID: PMC9454702 DOI: 10.3390/cells11172689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
How many RBPMS+ retinal ganglion cells (RGCs) does a standard C57BL/6 laboratory mouse have on average and is this number substrain- or sex-dependent? Do RGCs of (European) C57BL/6J and -N mice show a different intrinsic vulnerability upon glaucomatous injury? Global RGC numbers and densities of common laboratory mice were previously determined via axon counts, retrograde tracing or BRN3A immunohistochemistry. Here, we report the global RGC number and density by exploiting the freely available tool RGCode to automatically count RGC numbers and densities on entire retinal wholemounts immunostained for the pan-RGC marker RBPMS. The intrinsic vulnerability of RGCs from different substrains to glaucomatous injury was evaluated upon introduction of the microbead occlusion model, followed by RBPMS counts, retrograde tracing and electroretinography five weeks post-injury. We demonstrate that the global RGC number and density varies between substrains, yet is not sex-dependent. C57BL/6J mice have on average 46K ± 2K RBPMS+ RGCs per retina, representing a global RGC density of 3268 ± 177 RGCs/mm2. C57BL/6N mice, on the other hand, have on average less RBPMS+ RGCs (41K ± 3K RGCs) and a lower density (3018 ± 189 RGCs/mm2). The vulnerability of the RGC population of the two C57BL/6 substrains to glaucomatous injury did, however, not differ in any of the interrogated parameters.
Collapse
Affiliation(s)
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|