1
|
Hägele L, Trachtmann N, Takors R. The knowledge driven DBTL cycle provides mechanistic insights while optimising dopamine production in Escherichia coli. Microb Cell Fact 2025; 24:111. [PMID: 40380156 DOI: 10.1186/s12934-025-02729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/24/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Dopamine is a promising organic compound with several key applications in emergency medicine, diagnosis and treatment of cancer, production of lithium anodes, and wastewater treatment. Since studies on in vivo dopamine production are limited, this study demonstrates the development and optimisation of a dopamine production strain by the help of the knowledge driven design-build-test-learn (DBTL) cycle for rational strain engineering. RESULTS The knowledge driven DBTL cycle, involving upstream in vitro investigation, is an automated workflow that enables both mechanistic understanding and efficient DBTL cycling. Following the in vitro cell lysate studies, the results were translated to the in vivo environment through high-throughput ribosome binding site (RBS) engineering. As a result, we developed a dopamine production strain capable of producing dopamine at concentrations of 69.03 ± 1.2 mg/L which equals 34.34 ± 0.59 mg/gbiomass. Compared to state-of-the-art in vivo dopamine production, our approach improved performance by 2.6 and 6.6-fold, respectively. CONCLUSION In essence, a highly efficient dopamine production strain was developed by implementing the knowledge driven DBTL cycle involving upstream in vitro investigation. The fine-tuning of the dopamine pathway by high-throughput RBS engineering clearly demonstrated the impact of GC content in the Shine-Dalgarno sequence on the RBS strength.
Collapse
Affiliation(s)
- Lorena Hägele
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Natalia Trachtmann
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of Russian Academy of Sciences, 420111, Kazan, Russia
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
2
|
Zhang H, Ling J. Serine mistranslation induces the integrated stress response through the P stalk. J Biol Chem 2025; 301:108447. [PMID: 40147769 PMCID: PMC12022490 DOI: 10.1016/j.jbc.2025.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that support robust and accurate protein synthesis. A rapidly expanding number of studies show that mutations in aaRSs lead to multiple human diseases, including neurological disorders and cancer. How aaRS mutations impact human health is not fully understood. In particular, our knowledge of how aminoacylation errors affect stress responses and fitness in eukaryotic cells remains limited. The integrated stress response (ISR) is an adaptive mechanism in response to multiple stresses. However, chronic activation of the ISR contributes to the development of multiple diseases such as neuropathies. In this study, we show that Ser misincorporation into Ala and Thr codons, resulting from either aaRS-editing defects or mutations in tRNAs, activates the ISR. We further demonstrate that activation of the ISR by Ser mistranslation does not depend on the accumulation of uncharged tRNAs but rather requires the P stalk associated with the ribosome, implying that ribosome stalling and collision are involved. Our work highlights that certain types of aminoacylation errors can lead to chronic activation of the ISR, potentially affecting fitness and disease progression.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA.
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
3
|
Grome MW, Nguyen MTA, Moonan DW, Mohler K, Gurara K, Wang S, Hemez C, Stenton BJ, Cao Y, Radford F, Kornaj M, Patel J, Prome M, Rogulina S, Sozanski D, Tordoff J, Rinehart J, Isaacs FJ. Engineering a genomically recoded organism with one stop codon. Nature 2025; 639:512-521. [PMID: 39910296 PMCID: PMC11903333 DOI: 10.1038/s41586-024-08501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/05/2024] [Indexed: 02/07/2025]
Abstract
The genetic code is conserved across all domains of life, yet exceptions have revealed variations in codon assignments and associated translation factors1-3. Inspired by this natural malleability, synthetic approaches have demonstrated whole-genome replacement of synonymous codons to construct genomically recoded organisms (GROs)4,5 with alternative genetic codes. However, no efforts have fully leveraged translation factor plasticity and codon degeneracy to compress translation function to a single codon and assess the possibility of a non-degenerate code. Here we describe construction and characterization of Ochre, a GRO that fully compresses a translational function into a single codon. We replaced 1,195 TGA stop codons with the synonymous TAA in ∆TAG Escherichia coli C321.∆A4. We then engineered release factor 2 (RF2) and tRNATrp to mitigate native UGA recognition, translationally isolating four codons for non-degenerate functions. Ochre thus utilizes UAA as the sole stop codon, with UGG encoding tryptophan and UAG and UGA reassigned for multi-site incorporation of two distinct non-standard amino acids into single proteins with more than 99% accuracy. Ochre fully compresses degenerate stop codons into a single codon and represents an important step toward a 64-codon non-degenerate code that will enable precise production of multi-functional synthetic proteins with unnatural encoded chemistries and broad utility in biotechnology and biotherapeutics.
Collapse
Affiliation(s)
- Michael W Grome
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Michael T A Nguyen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Daniel W Moonan
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kebron Gurara
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Shenqi Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Colin Hemez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Benjamin J Stenton
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Yunteng Cao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Felix Radford
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Maya Kornaj
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Jaymin Patel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Maisha Prome
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Svetlana Rogulina
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - David Sozanski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jesse Tordoff
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
| | - Farren J Isaacs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Lyu Z, Wilson C, Paul P, Ling J. Suppression of amber stop codons impairs pathogenicity in Salmonella. FEBS Lett 2025; 599:476-487. [PMID: 39666825 PMCID: PMC11848022 DOI: 10.1002/1873-3468.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Translation terminates at UAG (amber), UGA (opal), and UAA (ochre) stop codons. In nature, readthrough of stop codons can be substantially enhanced by suppressor tRNAs. Stop-codon suppression also provides powerful tools in synthetic biology and disease treatment. How stop-codon suppression affects bacterial pathogenesis is poorly understood. Here, we show that suppression of UAG codons, but not UGA or UAA codons, attenuates expression of Salmonella Pathogenicity Island 1 (SPI-1) genes, which are required for virulence. Consistently, amber suppression abolishes Salmonella infection of macrophages. Systematic genetic and biochemical analyses further show that amber suppression decreases the activity, but not the level, of the master SPI-1 regulator HilD. Our work thus demonstrates an unexpected selectivity of stop codons in regulating Salmonella virulence.
Collapse
Affiliation(s)
- Zhihui Lyu
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMDUSA
| | - Cierra Wilson
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMDUSA
| | - Prajita Paul
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMDUSA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMDUSA
| |
Collapse
|
5
|
Kozubowski L, Berman J. The impact of phenotypic heterogeneity on fungal pathogenicity and drug resistance. FEMS Microbiol Rev 2025; 49:fuaf001. [PMID: 39809571 PMCID: PMC11756289 DOI: 10.1093/femsre/fuaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/26/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025] Open
Abstract
Phenotypic heterogeneity in genetically clonal populations facilitates cellular adaptation to adverse environmental conditions while enabling a return to the basal physiological state. It also plays a crucial role in pathogenicity and the acquisition of drug resistance in unicellular organisms and cancer cells, yet the exact contributing factors remain elusive. In this review, we outline the current state of understanding concerning the contribution of phenotypic heterogeneity to fungal pathogenesis and antifungal drug resistance.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
6
|
Pawlicka K, Henek T, Uhrik L, Hernychova L, Padariya M, Faktor J, Makowiec S, Vojtesek B, Goodlett D, Hupp T, Kalathiya U. Misincorporations of amino acids in p53 in human cells at artificially constructed termination codons in the presence of the aminoglycoside Gentamicin. Front Genet 2024; 15:1407375. [PMID: 39563734 PMCID: PMC11573534 DOI: 10.3389/fgene.2024.1407375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Abstract
Readthrough of a translation termination codon is regulated by ribosomal A site recognition and insertion of near-cognate tRNAs. Small molecules exist that mediate incorporation of amino acids at the stop codon and production of full-length, often functional protein but defining the actual amino acid that is incorporated remains a challenging area. Herein, we report on the development a human cell model that can be used to determine whether rules can be developed using mass spectrometry that define the type of amino acid that is placed at a premature termination codon (PTC) during readthrough mediated by an aminoglycoside. The first PTC we analyzed contained the relatively common cancer-associated termination signal at codon 213 in the p53 gene. Despite of identifying a tryptic peptide with the incorporation of an R at codon 213 in the presence of the aminoglycoside, there were no other tryptic peptides detected across codon 213 that could be recovered; hence we constructed a more robust artificial PTC model. P53 expression plasmids were developed that incorporate a string of single synthetic TGA (opal) stop codons at S127P128A129 within the relatively abundant tryptic p53 peptide 121-SVTCTYSPALNK-132. The treatment of cells stably expressing the p53-TGA129 mutation, treated with Gentamicin, followed by immunoprecipitation and trypsinization of p53, resulted in the identification R, W, or C within the tryptic peptide at codon-TGA129; as expected based on the two-base pairing of the respective anticodons in the tRNA to UGA, with R being the most abundant. By contrast, incorporating the amber or ochre premature stop codons, TAA129 or TAG129 resulted in the incorporation of a Y or Q amino acid, again as expected based on the two base pairings to the anticodons, with Q being the most abundant. A reproducible non-canonical readthrough termination codon-skip event at the extreme C-terminus at codon 436 in the SBP-p53 fusion protein was detected which provided a novel assay for non-canonical readthrough at an extreme C-terminal PTC. The incorporation of amino acids at codons 127, 128, or 129 generally result in a p53 protein that is predicted to be 'unfolded' or inactive as defined by molecular dynamic simulations presumably because the production of mixed wild-type p53 and mutant oligomers are known to be inactive through dominant negative effects of the mutation. The data highlight the need to not only produce novel small molecules that can readthrough PTCs or C-terminal termination codons, but also the need to design methods to insert the required amino acid at the position that could result in a 'wild-type' functional protein.
Collapse
Affiliation(s)
- Kamila Pawlicka
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tomas Henek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Sławomir Makowiec
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - David Goodlett
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Ted Hupp
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
7
|
Brunel J, Paganini J, Galloux M, Charvet B, Perron H. HERV-W ENV transcription in B cells predicting symptomatic COVID-19 and risk for long COVID can express a full-length protein despite stop codon in mRNA from chromosome X via a ribosome readthrough. Microbes Infect 2024:105431. [PMID: 39419470 DOI: 10.1016/j.micinf.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The human genome comprises 8 % of endogenous retroviruses (HERVs). Though HERVS contribute to physiological functions, copies retained pathogenic potential. The HERV-W ENV protein was shown expressed in patients with worse COVID-19 symptoms and post-COVID syndrome. A significant detection of the mRNA encoding HERV-W ENV from patients with COVID-19 in B cells from RNAseq reads obtained from peripheral blond mononuclear cells. This data stratified with increased COVID-19 symptoms or with post-acute sequelae of COVID-19 (long COVID) after 3 months. The HERV-W ENV-U3R RNA was confirmed to display the best alignment with chromosome X ERVWE2 locus. However, a stop codon precluding its translation was re-addressed after recent understandings of ribosome readthrough mechanisms. Experimental results evidenced that this HERV gene can effectively express a full-length protein in the presence of molecules allowing translation via a readthrough mechanism at the ribosome level. Results not only confirm HERV-W ENV RNA origin in these patients but show for the first time how a defective HERV copy can be translated into a complete protein when specific factors make it possible at the ribosome level. The present proof of concept now requires further studies to identify the factors involved in this newly understood mechanism, following SARS-CoV-2 exposure.
Collapse
Affiliation(s)
- Joanna Brunel
- GeNeuro Innovation, 60A Avenue Rockefeller, 69008, Lyon, France
| | | | | | | | - Hervé Perron
- GeNeuro Innovation, 60A Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
8
|
Ojha R, Krug S, Jones P, Koestler BJ. Intact and mutated Shigella diguanylate cyclases increase c-di-GMP. J Biol Chem 2024; 300:107525. [PMID: 38960033 PMCID: PMC11327459 DOI: 10.1016/j.jbc.2024.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
The intracellular human pathogen Shigella invades the colonic epithelium to cause disease. Prior to invasion, this bacterium navigates through different environments within the human body, including the stomach and the small intestine. To adapt to changing environments, Shigella uses the bacterial second messenger cyclic di-GMP (c di-GMP) signaling system, synthesized by diguanylate cyclases (DGCs) encoding GGDEF domains. Shigella flexneri encodes a total of 9 GGDEF or GGDEF-EAL domain enzymes in its genome, but five of these genes have acquired mutations that presumably inactivated the c-di-GMP synthesis activity of these enzymes. In this study, we examined individual S. flexneri DGCs for their role in c-di-GMP synthesis and pathogenesis. We individually expressed each of the four intact DGCs in a S. flexneri strain, where these four DGCs had been deleted (Δ4DGC). We found that the 4 S. flexneri intact DGCs synthesize c-di-GMP at different levels in vitro and during infection of tissue-cultured cells. We also found that dgcF and dgcI expression significantly reduces invasion and plaque formation, and dgcF expression increases acid sensitivity, and that these phenotypes did not correspond with measured c-di-GMP levels. However, deletion of these four DGCs did not eliminate S. flexneri c-di-GMP, and we found that dgcE, dgcQ, and dgcN, which all have nonsense mutations prior to the GGDEF domain, still produce c-di-GMP. These S. flexneri degenerate DGC pseudogenes are expressed as multiple proteins, consistent with multiple start codons within the gene. We propose that both intact and degenerate DGCs contribute to S. flexneri c-di-GMP signaling.
Collapse
Affiliation(s)
- Ruchi Ojha
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - Stefanie Krug
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Prentiss Jones
- Department of Pathology, Western Michigan University Homer Stryker, M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Benjamin J Koestler
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA.
| |
Collapse
|
9
|
Romero Romero ML, Poehls J, Kirilenko A, Richter D, Jumel T, Shevchenko A, Toth-Petroczy A. Environment modulates protein heterogeneity through transcriptional and translational stop codon readthrough. Nat Commun 2024; 15:4446. [PMID: 38789441 PMCID: PMC11126739 DOI: 10.1038/s41467-024-48387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Stop codon readthrough events give rise to longer proteins, which may alter the protein's function, thereby generating short-lasting phenotypic variability from a single gene. In order to systematically assess the frequency and origin of stop codon readthrough events, we designed a library of reporters. We introduced premature stop codons into mScarlet, which enabled high-throughput quantification of protein synthesis termination errors in E. coli using fluorescent microscopy. We found that under stress conditions, stop codon readthrough may occur at rates as high as 80%, depending on the nucleotide context, suggesting that evolution frequently samples stop codon readthrough events. The analysis of selected reporters by mass spectrometry and RNA-seq showed that not only translation but also transcription errors contribute to stop codon readthrough. The RNA polymerase was more likely to misincorporate a nucleotide at premature stop codons. Proteome-wide detection of stop codon readthrough by mass spectrometry revealed that temperature regulated the expression of cryptic sequences generated by stop codon readthrough in E. coli. Overall, our findings suggest that the environment affects the accuracy of protein production, which increases protein heterogeneity when the organisms need to adapt to new conditions.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
- Center for Systems Biology Dresden, 01307, Dresden, Germany.
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Systems Biology Dresden, 01307, Dresden, Germany
| | - Anastasiia Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Systems Biology Dresden, 01307, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Systems Biology Dresden, 01307, Dresden, Germany
| | - Tobias Jumel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
- Center for Systems Biology Dresden, 01307, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
10
|
Girardo B, Schopfer LM, Yue Y, Lockridge O, Larson MA. Polyaminated, acetylated and stop codon readthrough of recombinant Francisella tularensis universal stress protein in Escherichia coli. PLoS One 2024; 19:e0299701. [PMID: 38683788 PMCID: PMC11057771 DOI: 10.1371/journal.pone.0299701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/14/2024] [Indexed: 05/02/2024] Open
Abstract
Recombinant Francisella tularensis universal stress protein with a C-terminal histidine-tag (rUsp/His6) was expressed in Escherichia coli. Endogenous F. tularensis Usp has a predicted molecular mass of 30 kDa, but rUsp/His6 had an apparent molecular weight of 33 kDa based on Western blot analyses. To determine the source of the higher molecular weight for rUsp/His6, post translational modifications were examined. Tryptic peptides of purified rUsp/His6 were subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) and fragmentation spectra were searched for acetylated lysines and polyaminated glutamines. Of the 24 lysines in rUsp/His6, 10 were acetylated (K63, K68, K72, K129, K175, K201, K208, K212, K233, and K238) and three of the four glutamines had putrescine, spermidine and spermine adducts (Q55, Q60 and Q267). The level of post-translational modification was substoichiometric, eliminating the possibility that these modifications were the sole contributor to the 3 kDa extra mass of rUsp/His6. LC-MS/MS revealed that stop codon readthrough had occurred resulting in the unexpected addition of 20 extra amino acids at the C-terminus of rUsp/His6, after the histidine tag. Further, the finding of polyaminated glutamines in rUsp/His6 indicated that E. coli is capable of transglutaminase activity.
Collapse
Affiliation(s)
- Benjamin Girardo
- Pathology and Microbiology Department, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Lawrence M. Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Yinshi Yue
- Pathology and Microbiology Department, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Marilynn A. Larson
- Pathology and Microbiology Department, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
11
|
Ojha R, Krug S, Jones P, Koestler BJ. Intact and Degenerate Diguanylate Cyclases regulate Shigella Cyclic di-GMP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588579. [PMID: 38645013 PMCID: PMC11030455 DOI: 10.1101/2024.04.08.588579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intracellular human pathogen Shigella invades the colonic epithelium to cause disease. Prior to invasion, this bacterium navigates through different environments within the human body, including the stomach and the small intestine. To adapt to changing environments, Shigella uses the bacterial second messenger c-di-GMP signaling system, synthesized by diguanylate cyclases (DGCs) encoding GGDEF domains. Shigella flexneri encodes a total of 9 GGDEF or GGDEF-EAL domain enzymes in its genome, but 5 of these genes have acquired mutations that presumably inactivated the c-di-GMP synthesis activity of these enzymes. In this study, we examined individual S. flexneri DGCs for their role in c-di-GMP synthesis and pathogenesis. We individually expressed each of the 4 intact DGCs in an S. flexneri strain where these 4 DGCs had been deleted (Δ4DGC). We found that the 4 S. flexneri intact DGCs synthesize c-di-GMP at different levels in vitro and during infection of tissue-cultured cells. We also found that dgcF and dgcI expression significantly reduces invasion and plaque formation, and dgcF expression increases acid sensitivity, and that these phenotypes did not correspond with measured c-di-GMP levels. However, deletion of these 4 DGCs did not eliminate S. flexneri c-di-GMP, and we found that dgcE, dgcQ, and dgcN , which all have nonsense mutations prior to the GGDEF domain, still produce c-di-GMP. These S. flexneri degenerate DGC genes are expressed as multiple proteins, consistent with multiple start codons within the gene. We propose that both intact and degenerate DGCs contribute to S. flexneri c-di-GMP signaling.
Collapse
|
12
|
Hinnu M, Putrinš M, Kogermann K, Kaldalu N, Tenson T. Fluorescent reporters give new insights into antibiotics-induced nonsense and frameshift mistranslation. Sci Rep 2024; 14:6883. [PMID: 38519558 PMCID: PMC10959953 DOI: 10.1038/s41598-024-57597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
We developed a reporter system based on simultaneous expression of two fluorescent proteins: GFP as a reporter of the capacity of protein synthesis and mutated mScarlet-I as a reporter of translational errors. Because of the unique stop codons or frameshift mutations introduced into the mScarlet-I gene, red fluorescence was produced only after a mistranslation event. These reporters allowed us to estimate mistranslation at a single cell level using either flow cytometry or fluorescence microscopy. We found that laboratory strains of Escherichia coli are more prone to mistranslation compared to the clinical isolates. As relevant for uropathogenic E. coli, growth in human urine elevated translational frameshifting compared to standard laboratory media, whereas different standard media had a small effect on translational fidelity. Antibiotic-induced mistranslation was studied by using amikacin (aminoglycoside family) and azithromycin (macrolide family). Bactericidal amikacin induced preferably stop-codon readthrough at a moderate level. Bacteriostatic azithromycin on the other hand induced both frameshifting and stop-codon readthrough at much higher level. Single cell analysis revealed that fluorescent reporter-protein signal can be lost due to leakage from a fraction of bacteria in the presence of antibiotics, demonstrating the complexity of the antimicrobial activity.
Collapse
Affiliation(s)
- Mariliis Hinnu
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
- Institute of Pharmacy, University of Tartu, 50411, Tartu, Estonia
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, 50411, Tartu, Estonia
| | - Niilo Kaldalu
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| |
Collapse
|
13
|
Zhang H, Ling J. Serine mistranslation induces the integrated stress response without accumulation of uncharged tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578812. [PMID: 38370842 PMCID: PMC10871240 DOI: 10.1101/2024.02.04.578812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that support robust and accurate protein synthesis. A rapidly expanding number of studies show that mutations in aaRSs lead to multiple human diseases, including neurological disorders and cancer. Much remains unknown about how aaRS mutations impact human health. In particular, how aminoacylation errors affect stress responses and fitness in eukaryotic cells remains poorly understood. The integrated stress response (ISR) is an adaptive mechanism in response to multiple stresses. However, chronic activation of the ISR contributes to the development of multiple diseases (e.g., neuropathies). Here we show that Ser misincorporation into Ala and Thr codons, resulting from aaRS editing defects or mutations in tRNAs, constitutively active the ISR. Such activation does not appear to depend on the accumulation of uncharged tRNAs, implicating that Ser mistranslation may lead to ribosome stalling and collision.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Shim JW, Choi JY, Shim DM, Seo SW. Novel MFSD7-ATP5I fusion promotes migration and invasion of human sarcoma. J Orthop Res 2024; 42:443-452. [PMID: 37782287 DOI: 10.1002/jor.25689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
Fusion genes have been implicated in the development and progression of several types of sarcomas, serving as valuable diagnostic and prognostic markers, as well as potential therapeutic targets. We discovered a novel major facilitator superfamily domain-containing 7 (MFSD7) and adenosine triphosphate 5I (ATP5I) gene fusion from sarcomas. In this study, the MFSD7-ATP5I fusion transcript was screened using RNA sequencing in 55 sarcoma samples and sixteen normal samples. The MFSD7-ATP5I fusion transcript was detected in 58% of sarcoma samples. The correlation between the expression of MFSD7-ATP5I fusion transcript and clinicopathological information was analyzed, and MFSD7-ATP5I expression is associated with marked pleomorphism and lower tumor necrosis. Cell migration and invasion was significantly reduced by knock-down of MFSD7-ATP5I. Cell migration and invasion was increased by overexpression of MFSD7-ATP5I. A phosphokinase assay demonstrated that MFSD7-ATP5I is involved in the GSK-3 pathway. The current study found that MFSD7-ATP5I is associated with increasing pleomorphism and decreasing necrosis of tumors. And our gain and loss of function experiments prove that MFSD7-ATP5I promotes the invasiveness of tumor cells.
Collapse
Affiliation(s)
- Jae Woo Shim
- Department of Orthopedic Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Ji-Yoon Choi
- Department of Orthopedic Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Da Mi Shim
- Department of Orthopedic Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Sung Wook Seo
- Department of Orthopedic Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
15
|
Lyu Z, Villanueva P, O’Malley L, Murphy P, Augenstreich J, Briken V, Singh A, Ling J. Genome-wide screening reveals metabolic regulation of stop-codon readthrough by cyclic AMP. Nucleic Acids Res 2023; 51:9905-9919. [PMID: 37670559 PMCID: PMC10570021 DOI: 10.1093/nar/gkad725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Translational fidelity is critical for microbial fitness, survival and stress responses. Much remains unknown about the genetic and environmental control of translational fidelity and its single-cell heterogeneity. In this study, we used a high-throughput fluorescence-based assay to screen a knock-out library of Escherichia coli and identified over 20 genes critical for stop-codon readthrough. Most of these identified genes were not previously known to affect translational fidelity. Intriguingly, we show that several genes controlling metabolism, including cyaA and crp, enhance stop-codon readthrough. CyaA catalyzes the synthesis of cyclic adenosine monophosphate (cAMP). Combining RNA sequencing, metabolomics and biochemical analyses, we show that deleting cyaA impairs amino acid catabolism and production of ATP, thus repressing the transcription of rRNAs and tRNAs to decrease readthrough. Single-cell analyses further show that cAMP is a major driver of heterogeneity in stop-codon readthrough and rRNA expression. Our results highlight that carbon metabolism is tightly coupled with stop-codon readthrough.
Collapse
Affiliation(s)
- Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Patricia Villanueva
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Liam O’Malley
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Parker Murphy
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering and Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| |
Collapse
|
16
|
Trexler M, Bányai L, Kerekes K, Patthy L. Evolution of termination codons of proteins and the TAG-TGA paradox. Sci Rep 2023; 13:14294. [PMID: 37653005 PMCID: PMC10471768 DOI: 10.1038/s41598-023-41410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
In most eukaryotes and prokaryotes TGA is used at a significantly higher frequency than TAG as termination codon of protein-coding genes. Although this phenomenon has been recognized several years ago, there is no generally accepted explanation for the TAG-TGA paradox. Our analyses of human mutation data revealed that out of the eighteen sense codons that can give rise to a nonsense codon by single base substitution, the CGA codon is exceptional: it gives rise to the TGA stop codon at an order of magnitude higher rate than the other codons. Here we propose that the TAG-TGA paradox is due to methylation and hypermutabilty of CpG dinucleotides. In harmony with this explanation, we show that the coding genomes of organisms with strong CpG methylation have a significant bias for TGA whereas those from organisms that lack CpG methylation use TGA and TAG termination codons with similar probability.
Collapse
Affiliation(s)
- Mária Trexler
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - László Bányai
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
17
|
Wong KM, Wegener E, Baradaran-Heravi A, Huppke B, Gärtner J, Huppke P. Evaluation of Novel Enhancer Compounds in Gentamicin-Mediated Readthrough of Nonsense Mutations in Rett Syndrome. Int J Mol Sci 2023; 24:11665. [PMID: 37511424 PMCID: PMC10380790 DOI: 10.3390/ijms241411665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Rett syndrome (RTT), a severe X-linked neurodevelopmental disorder, is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). Over 35% RTT patients carry nonsense mutation in MECP2, making it a suitable candidate disease for nonsense suppression therapy. In our previous study, gentamicin was found to induce readthrough of MECP2 nonsense mutations with modest efficiency. Given the recent discovery of readthrough enhancers, CDX compounds, we herein evaluated the potentiation effect of CDX5-1, CDX5-288, and CDX6-180 on gentamicin-mediated readthrough efficiency in transfected HeLa cell lines bearing the four most common MECP2 nonsense mutations. We showed that all three CDX compounds potentiated gentamicin-mediated readthrough and increased full-length MeCP2 protein levels in cells expressing the R168X, R255X, R270X, and R294X nonsense mutations. Among all three CDX compounds, CDX5-288 was the most potent enhancer and enabled the use of reduced doses of gentamicin, thus mitigating the toxicity. Furthermore, we successfully demonstrated the upregulation of full-length Mecp2 protein expression in fibroblasts derived from Mecp2R255X/Y mice through combinatorial treatment. Taken together, findings demonstrate the feasibility of this combinatorial approach to nonsense suppression therapy for a subset of RTT patients.
Collapse
Affiliation(s)
- Keit Men Wong
- Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, 07747 Jena, Germany
| | - Eike Wegener
- Department of Pediatrics and Adolescent Medicine, Division of Neuropediatrics, Pediatric Neurology University Medical Center Göttingen, Georg August University Göttingen, 37075 Göttingen, Germany
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Brenda Huppke
- Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, 07747 Jena, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, Division of Neuropediatrics, Pediatric Neurology University Medical Center Göttingen, Georg August University Göttingen, 37075 Göttingen, Germany
| | - Peter Huppke
- Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
18
|
Schuntermann DB, Fischer JT, Bile J, Gaier SA, Shelley BA, Awawdeh A, Jahn M, Hoffman KS, Westhof E, Söll D, Clarke CR, Vargas-Rodriguez O. Mistranslation of the genetic code by a new family of bacterial transfer RNAs. J Biol Chem 2023; 299:104852. [PMID: 37224963 PMCID: PMC10404621 DOI: 10.1016/j.jbc.2023.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
The correct coupling of amino acids with transfer RNAs (tRNAs) is vital for translating genetic information into functional proteins. Errors during this process lead to mistranslation, where a codon is translated using the wrong amino acid. While unregulated and prolonged mistranslation is often toxic, growing evidence suggests that organisms, from bacteria to humans, can induce and use mistranslation as a mechanism to overcome unfavorable environmental conditions. Most known cases of mistranslation are caused by translation factors with poor substrate specificity or when substrate discrimination is sensitive to molecular changes such as mutations or posttranslational modifications. Here we report two novel families of tRNAs, encoded by bacteria from the Streptomyces and Kitasatospora genera, that adopted dual identities by integrating the anticodons AUU (for Asn) or AGU (for Thr) into the structure of a distinct proline tRNA. These tRNAs are typically encoded next to a full-length or truncated version of a distinct isoform of bacterial-type prolyl-tRNA synthetase. Using two protein reporters, we showed that these tRNAs translate asparagine and threonine codons with proline. Moreover, when expressed in Escherichia coli, the tRNAs cause varying growth defects due to global Asn-to-Pro and Thr-to-Pro mutations. Yet, proteome-wide substitutions of Asn with Pro induced by tRNA expression increased cell tolerance to the antibiotic carbenicillin, indicating that Pro mistranslation can be beneficial under certain conditions. Collectively, our results significantly expand the catalog of organisms known to possess dedicated mistranslation machinery and support the concept that mistranslation is a mechanism for cellular resiliency against environmental stress.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jonathan T Fischer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jonmatthew Bile
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Sarah A Gaier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Brett A Shelley
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - Aya Awawdeh
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Martina Jahn
- Department of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | | | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| | - Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
19
|
Cai X, Qin J, Li X, Yuan T, Yan B, Cai J. LipR functions as an intracellular pH regulator in Bacillus thuringiensis under glucose conditions. MLIFE 2023; 2:58-72. [PMID: 38818337 PMCID: PMC10989752 DOI: 10.1002/mlf2.12055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 06/01/2024]
Abstract
Intracellular pH critically affects various biological processes, and an appropriate cytoplasmic pH is essential for ensuring bacterial growth. Glucose is the preferred carbon source for most heterotrophs; however, excess glucose often causes the accumulation of acidic metabolites, lowering the intracellular pH and inhibiting bacterial growth. Bacillus thuringiensis can effectively cope with glucose-induced stress; unfortunately, little is known about the regulators involved in this process. Here, we document that the target of the dual-function sRNA YhfH, the lipR gene, encodes a LacI-family transcription factor LipR as an intracellular pH regulator when B. thuringiensis BMB171 is suddenly exposed to glucose. Under glucose conditions, lipR deletion leads to early growth arrest by causing a rapid decrease in intracellular pH (~5.4). Then, the direct targets and a binding motif (GAWAWCRWTWTCAT) of LipR were identified based on the electrophoretic mobility shift assay, the DNase-I footprinting assay, and RNA sequencing, and the gapN gene encoding a key enzyme in glycolysis was directly inhibited by LipR. Furthermore, Ni2+ is considered a possible effector for LipR. In addition to YhfH, the lipR expression was coregulated by itself, CcpA, and AbrB. Our study reveals that LipR plays a balancing role between glucose metabolism and intracellular pH in B. thuringiensis subjected to glucose stress.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
- School of Life Science and EngineeringLanzhou University of TechnologyLanzhouChina
| | - Jiaxin Qin
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Xuelian Li
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Taoxiong Yuan
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Bing Yan
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Jun Cai
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjinChina
- Tianjin Key Laboratory of Microbial Functional GenomicsTianjinChina
| |
Collapse
|
20
|
Lyu Z, Wilson C, Ling J. Translational Fidelity during Bacterial Stresses and Host Interactions. Pathogens 2023; 12:383. [PMID: 36986305 PMCID: PMC10057733 DOI: 10.3390/pathogens12030383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Translational fidelity refers to accuracy during protein synthesis and is maintained in all three domains of life. Translational errors occur at base levels during normal conditions and may rise due to mutations or stress conditions. In this article, we review our current understanding of how translational fidelity is perturbed by various environmental stresses that bacterial pathogens encounter during host interactions. We discuss how oxidative stress, metabolic stresses, and antibiotics affect various types of translational errors and the resulting effects on stress adaption and fitness. We also discuss the roles of translational fidelity during pathogen-host interactions and the underlying mechanisms. Many of the studies covered in this review will be based on work with Salmonella enterica and Escherichia coli, but other bacterial pathogens will also be discussed.
Collapse
Affiliation(s)
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
21
|
Santos FB, Del-Bem LE. The Evolution of tRNA Copy Number and Repertoire in Cellular Life. Genes (Basel) 2022; 14:27. [PMID: 36672768 PMCID: PMC9858662 DOI: 10.3390/genes14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
tRNAs are universal decoders that bridge the gap between transcriptome and proteome. They can also be processed into small RNA fragments with regulatory functions. In this work, we show that tRNA copy number is largely controlled by genome size in all cellular organisms, in contrast to what is observed for protein-coding genes that stop expanding between ~20,000 and ~35,000 loci per haploid genome in eukaryotes, regardless of genome size. Our analyses indicate that after the bacteria/archaea split, the tRNA gene pool experienced the evolution of increased anticodon diversity in the archaeal lineage, along with a tRNA gene size increase and mature tRNA size decrease. The evolution and diversification of eukaryotes from archaeal ancestors involved further expansion of the tRNA anticodon repertoire, additional increase in tRNA gene size and decrease in mature tRNA length, along with an explosion of the tRNA gene copy number that emerged coupled with accelerated genome size expansion. Our findings support the notion that macroscopic eukaryotes with a high diversity of cell types, such as land plants and vertebrates, independently evolved a high diversity of tRNA anticodons along with high gene redundancy caused by the expansion of the tRNA copy number. The results presented here suggest that the evolution of tRNA genes played important roles in the early split between bacteria and archaea, and in eukaryogenesis and the later emergence of complex eukaryotes, with potential implications in protein translation and gene regulation through tRNA-derived RNA fragments.
Collapse
Affiliation(s)
- Fenícia Brito Santos
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
- Graduate Program in Bioinformatics, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Luiz-Eduardo Del-Bem
- Del-Bem Lab, Department of Botany, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
22
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
23
|
Cheratta AR, Thayyullathil F, Hawley SA, Ross FA, Atrih A, Lamont DJ, Pallichankandy S, Subburayan K, Alakkal A, Rezgui R, Gray A, Hardie DG, Galadari S. Caspase cleavage and nuclear retention of the energy sensor AMPK-α1 during apoptosis. Cell Rep 2022; 39:110761. [PMID: 35508122 PMCID: PMC9108549 DOI: 10.1016/j.celrep.2022.110761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/11/2022] [Accepted: 04/07/2022] [Indexed: 02/09/2023] Open
Abstract
AMP-activated protein kinase (AMPK) coordinates energy homeostasis during metabolic and energy stress. We report that the catalytic subunit isoform AMPK-α1 (but not α2) is cleaved by caspase-3 at an early stage during induction of apoptosis. AMPK-α1 cleavage occurs following Asp529, generating an ∼58-kDa N-terminal fragment (cl-AMPK-α1) and leading to the precise excision of the nuclear export sequence (NES) from the C-terminal end. This cleavage does not affect (1) the stability of pre-formed heterotrimeric complexes, (2) the ability of cl-AMPK-α1 to become phosphorylated and activated by the upstream kinases LKB1 or CaMKK2, or (3) allosteric activation by AMP or A-769662. Importantly, cl-AMPK-α1 is only detectable in the nucleus, consistent with removal of the NES, and ectopic expression of cleavage-resistant D529A-mutant AMPK-α1 promotes cell death induced by cytotoxic agents. Thus, we have elucidated a non-canonical mechanism of AMPK activation within the nucleus, which protects cells against death induced by DNA damage.
Collapse
Affiliation(s)
- Anees Rahman Cheratta
- Cell Death Signaling Laboratory (Division of Science), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, UAE
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory (Division of Science), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, UAE
| | - Simon A. Hawley
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Fiona A. Ross
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Abdelmajdid Atrih
- Fingerprints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Douglas J. Lamont
- Fingerprints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory (Division of Science), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, UAE
| | - Karthikeyan Subburayan
- Cell Death Signaling Laboratory (Division of Science), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, UAE
| | - Ameer Alakkal
- Cell Death Signaling Laboratory (Division of Science), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, UAE
| | - Rachid Rezgui
- Core Technology Platform, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, UAE
| | - Alex Gray
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK,Corresponding author
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory (Division of Science), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, UAE.
| |
Collapse
|
24
|
Inagaki N. Processing of D1 Protein: A Mysterious Process Carried Out in Thylakoid Lumen. Int J Mol Sci 2022; 23:2520. [PMID: 35269663 PMCID: PMC8909930 DOI: 10.3390/ijms23052520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In oxygenic photosynthetic organisms, D1 protein, a core subunit of photosystem II (PSII), displays a rapid turnover in the light, in which D1 proteins are distinctively damaged and immediately removed from the PSII. In parallel, as a repair process, D1 proteins are synthesized and simultaneously assembled into the PSII. On this flow, the D1 protein is synthesized as a precursor with a carboxyl-terminal extension, and the D1 processing is defined as a step for proteolytic removal of the extension by a specific protease, CtpA. The D1 processing plays a crucial role in appearance of water-oxidizing capacity of PSII, because the main chain carboxyl group at carboxyl-terminus of the D1 protein, exposed by the D1 processing, ligates a manganese and a calcium atom in the Mn4CaO5-cluster, a special equipment for water-oxidizing chemistry of PSII. This review focuses on the D1 processing and discusses it from four angles: (i) Discovery of the D1 processing and recognition of its importance: (ii) Enzyme involved in the D1 processing: (iii) Efforts for understanding significance of the D1 processing: (iv) Remaining mysteries in the D1 processing. Through the review, I summarize the current status of our knowledge on and around the D1 processing.
Collapse
Affiliation(s)
- Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| |
Collapse
|
25
|
Douwenga S, van Tatenhove-Pel RJ, Zwering E, Bachmann H. Stationary Lactococcus cremoris: Energetic State, Protein Synthesis Without Nitrogen and Their Effect on Survival. Front Microbiol 2021; 12:794316. [PMID: 34975819 PMCID: PMC8719527 DOI: 10.3389/fmicb.2021.794316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
During storage and ripening of fermented foods, Lactococcus cremoris is predominantly in a non-growing state. L. cremoris can become stationary due to starvation or acidification, and its metabolism in these non-growing states affects the fermented product. Available studies on the response of L. cremoris to acid and starvation stress are based on population level data. We here characterized the energetic state and the protein synthesis capacity of stationary L. cremoris cultures at the single cell level. We show that glucose starved stationary cells are energy-depleted, while acid-induced stationary cells are energized and can maintain a pH gradient over their membrane. In the absence of glucose and arginine, a small pH gradient can still be maintained. Subpopulations of stationary cells can synthesize protein without a nitrogen source, and the subpopulation size decreases with increasing stationary phase length. Protein synthesis capacity during starvation only benefits culturability after 6 days. These results highlight significant differences between glucose starved stationary and acid-induced stationary cells. Furthermore, they show that the physiology of stationary phase L. cremoris cells is multi-facetted and heterogeneous, and the presence of an energy source during stationary phase impacts the cells capacity to adapt to their environment.
Collapse
Affiliation(s)
- Sieze Douwenga
- TiFN, Wageningen, Netherlands
- Systems Biology Lab, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rinke J. van Tatenhove-Pel
- Systems Biology Lab, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Emile Zwering
- Systems Biology Lab, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Herwig Bachmann
- TiFN, Wageningen, Netherlands
- Systems Biology Lab, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- NIZO, Ede, Netherlands
- *Correspondence: Herwig Bachmann,
| |
Collapse
|
26
|
Del Toro N, Lessard F, Bouchard J, Mobasheri N, Guillon J, Igelmann S, Tardif S, Buffard T, Bourdeau V, Brakier-Gingras L, Ferbeyre G. Cellular Senescence limits Translational Readthrough. Biol Open 2021; 10:272574. [PMID: 34676390 PMCID: PMC8649927 DOI: 10.1242/bio.058688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
The origin and evolution of cancer cells is considered to be mainly fueled by DNA mutations. Although translation errors could also expand the cellular proteome, their role in cancer biology remains poorly understood. Tumor suppressors called caretakers block cancer initiation and progression by preventing DNA mutations and/or stimulating DNA repair. If translational errors contribute to tumorigenesis, then caretaker genes should prevent such errors in normal cells in response to oncogenic stimuli. Here, we show that the process of cellular senescence induced by oncogenes, tumor suppressors or chemotherapeutic drugs is associated with a reduction in translational readthrough (TR) measured using reporters containing termination codons withing the context of both normal translation termination or programmed TR. Senescence reduced both basal TR and TR stimulated by aminoglycosides. Mechanistically, the reduction of TR during senescence is controlled by the RB tumor suppressor pathway. Cells that escape from cellular senescence either induced by oncogenes or chemotherapy have an increased TR. Also, breast cancer cells that escape from therapy-induced senescence express high levels of AGO1x, a TR isoform of AGO1 linked to breast cancer progression. We propose that senescence and the RB pathway reduce TR limiting proteome diversity and the expression of TR proteins required for cancer cell proliferation. Summary: We report that senescence and the RB pathway reduce translational readthrough (TR) limiting proteome diversity and the expression of TR proteins such as Ago1X required for cancer cell proliferation.
Collapse
Affiliation(s)
- Neylen Del Toro
- Département de Biochimie et Médecine Moléculaire, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Frédéric Lessard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Jacob Bouchard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Nasrin Mobasheri
- Département de Biochimie et Médecine Moléculaire, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Jordan Guillon
- CRCHUM, 900 Saint-Denis, bureau R10.432, Montréal, Québec, H2X 0A9, Canada
| | - Sebastian Igelmann
- Département de Biochimie et Médecine Moléculaire, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada.,CRCHUM, 900 Saint-Denis, bureau R10.432, Montréal, Québec, H2X 0A9, Canada
| | - Sarah Tardif
- Département de Biochimie et Médecine Moléculaire, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Tony Buffard
- Département de Biochimie et Médecine Moléculaire, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Véronique Bourdeau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Léa Brakier-Gingras
- Département de Biochimie et Médecine Moléculaire, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Département de Biochimie et Médecine Moléculaire, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada.,CRCHUM, 900 Saint-Denis, bureau R10.432, Montréal, Québec, H2X 0A9, Canada
| |
Collapse
|
27
|
Chlamydia pecorum Ovine Abortion: Associations between Maternal Infection and Perinatal Mortality. Pathogens 2021; 10:pathogens10111367. [PMID: 34832523 PMCID: PMC8618313 DOI: 10.3390/pathogens10111367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Chlamydia pecorum is a common gastrointestinal inhabitant of livestock but infections can manifest in a broad array of clinical presentations and in a range of host species. While C. pecorum is a known cause of ovine abortion, clinical cases have only recently been described in detail. Here, the prevalence and sequence types (STs) of C. pecorum in ewes from a property experiencing high levels of perinatal mortality (PNM) in New South Wales (NSW), Australia, were investigated using serological and molecular methods. Ewes that were PNM+ were statistically more likely to test seropositive compared to PNM− ewes and displayed higher antibody titres; however, an increase in chlamydial shedding from either the rectum, vagina or conjunctiva of PNM+ ewes was not observed. Multilocus sequence typing (MLST) indicated that C. pecorum ST23 was the major ST shed by ewes in the flock, was the only ST identified from the vaginal site, and was the same ST detected within aborted foetal tissues. Whole genome sequencing of C. pecorum isolated from one abortion case revealed that the C. pecorum plasmid (pCpec) contained a unique deletion in coding sequence 1 (CDS1) that was also present in C. pecorum ST23 shed from the ewes. A further unique deletion was noted in a polymorphic membrane protein gene (pmpG) of the C. pecorum chromosome, which warrants further investigation given the role of PmpG in host cell adherence and tissue tropism.This study describes novel infection parameters in a sheep flock experiencing C. pecorum-associated perinatal mortality, provides the first genomic data from an abortigenic C. pecorum strain, and raises questions about possible links between unique genetic features of this strain and C. pecorum abortion.
Collapse
|