1
|
Laguera B, Golden MM, Wang F, Gnewou O, Tuachi A, Egelman EH, Wuest WM, Conticello VP. Amphipathic Antimicrobial Peptides Illuminate a Reciprocal Relationship Between Self-assembly and Cytolytic Activity. Angew Chem Int Ed Engl 2025:e202500040. [PMID: 40073424 DOI: 10.1002/anie.202500040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
Amphipathic character, encoded within the polar sequence patterns of antimicrobial peptides, is a critical structural feature that influences membrane disruptive behavior. Similarly, polar sequence patterns induce self-assembly of amphipathic peptides, which results in the formation of ordered supramolecular structures. The relationship between self-assembly and membrane activity remains an open question of relevance for the development of effective antimicrobial peptides. Here, we report the structural investigation of a class of lytic peptides that self-assemble into filamentous nanomaterials. CryoEM analysis was employed to determine the structure of one of the filaments, which revealed that the peptides are self-assembled into a bilayer nanotube, in which the interaction between layers of amphipathic α-helices was mediated through hydrophobic interactions. The relative stability of the filament peptide assemblies depended on the influence of sequence modifications on the helical conformation. Antimicrobial assays indicated that cytolytic activity was associated with dynamic disassociation of the filamentous assemblies under the assay conditions. Structural modifications of the peptides that stabilized the filaments abrogated lytic activity. These results illuminate a reciprocal relationship between self-assembly and antimicrobial activity in this class of amphipathic peptides and that reversible assembly was critical for the observation of biological activity.
Collapse
Affiliation(s)
- Breana Laguera
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Martina M Golden
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Fengbin Wang
- Biochemistry and Molecular Genetics Department, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ordy Gnewou
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Abraham Tuachi
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | |
Collapse
|
2
|
Xu Y, Li D, Zhang Y, Zhao Q, Sun B, Liu C, Li D, Dai B. β-Lactoglobulin Forms a Conserved Fibril Core That Assembles into Diverse Fibril Polymorphs. NANO LETTERS 2025; 25:3653-3661. [PMID: 39992798 DOI: 10.1021/acs.nanolett.5c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The β-lactoglobulin (β-LG) protein, sourced from dietary products, is notable for forming amyloid fibrils, which are increasingly recognized as valuable protein-based nanomaterials due to their superior cytocompatibility, chemical resilience, and mechanical characteristics. However, the precise atomic details of β-LG's fibril assembly are not understood. In this study, we utilized cryo-electron microscopy to elucidate the composition and architecture of β-LG fibrils. We discovered that the β-LG fibril was rapidly assembled after a short time incubation. Remarkably, these fibril cores were composed of the first 32 residues, forming four β-strands that adopted a serpentine arrangement into a single protofilament. This protofilament core's stability was reinforced by hydrophobic interactions. Two identical protofilaments then align to form four distinct structural polymorphs through unique interfacial configurations, which were stabilized by hydrophilic interactions, hydrogen bonding, and electrostatic forces. Our findings provide a structural framework for understanding β-LG fibril formation and pave the way for designing innovative β-LG-based nanomaterials.
Collapse
Affiliation(s)
- Yongyi Xu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Danni Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiling Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Academy of Natural Sciences (SANS), Fudan University, Shanghai 200433, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Dai
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Wani NA, Gazit E, Ramamoorthy A. Interplay between Antimicrobial Peptides and Amyloid Proteins in Host Defense and Disease Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25355-25366. [PMID: 39564995 DOI: 10.1021/acs.langmuir.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The biological properties of antimicrobial peptides (AMPs) and amyloid proteins and their cross-talks have gained increasing attention due to their potential implications in both host defense mechanisms and amyloid-related diseases. However, complex interactions, molecular mechanisms, and physiological applications are not fully understood. The interplay between antimicrobial peptides and amyloid proteins is crucial for uncovering new insights into immune defense and disease mechanisms, bridging critical gaps in understanding infectious and neurodegenerative diseases. This review provides an overview of the cross-talk between AMPs and amyloids, highlighting their intricate interplay, mechanisms of action, and potential therapeutic implications. The dual roles of AMPs, which not only serve as key components of the innate immune system, combating microbial infections, but also exhibit modulatory effects on amyloid formation and toxicity, are discussed. The diverse mechanisms employed by AMPs to modulate amyloid aggregation, fibril formation, and toxicity are also discussed. Additionally, we explore emerging evidence suggesting that amyloid proteins may possess antimicrobial properties, adding a new dimension to the intricate relationship between AMPs and amyloids. This review underscores the importance of understanding the cross-talk between AMPs and amyloids to better understand the molecular processes underlying infectious diseases and amyloid-related disorders and to aid in the development of therapeutic avenues to treat them.
Collapse
Affiliation(s)
- Naiem Ahmad Wani
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Ehud Gazit
- Department of Materials Science and Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Ayyalusamy Ramamoorthy
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32304, United States
| |
Collapse
|
4
|
Dey S, Kumar R, Mishra R, Bera S. Exploring cross-α amyloids: from functional roles to design innovations. Trends Biochem Sci 2024; 49:1097-1110. [PMID: 39510919 DOI: 10.1016/j.tibs.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Amyloids are filamentous protein aggregates that have traditionally been associated with neurodegenerative diseases, although they are also known to play pivotal functional roles across diverse forms of life. Although the cross-β structure has represented the hallmark of amyloidal assemblies, a cross-α structure was recently characterized as a functional microbial amyloid, and further work has shown that de novo designed sequences also assemble into cross-α amyloids, emphasizing cross-α as an alternative paradigm for self-assembly into ordered aggregates. In this review, we summarize recent discoveries of cross-α amyloids both in nature and artificially designed systems, and we describe their fundamental structural organization, self-assembly mechanisms, and biological functions. Finally, we outline the future opportunities for research and development in this potential field.
Collapse
Affiliation(s)
- Sukantha Dey
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Rohit Kumar
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Rajkumar Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India
| | - Santu Bera
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| |
Collapse
|
5
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
6
|
Myers C, Cornwall GA. Host defense amyloids: Biosensors of the immune system? Andrology 2024; 12:973-980. [PMID: 37963844 DOI: 10.1111/andr.13555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
There is considerable evidence showing that highly ordered aggregate structures known as amyloids carry out essential biological roles in species ranging from bacteria to humans. Indeed, many antimicrobial peptides/proteins form amyloids to carry out their host defense functions and many amyloids are antimicrobial. The similarity of host defense amyloids from bacterial biofilms to the mammalian epididymal amyloid matrix implies highly conserved host defense structures/functions. With an emphasis on the epididymal amyloid matrix, here we review the common properties of host defense amyloids including unique traits that would allow them to function as powerful biosensors of the immune system.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
7
|
Behbahanipour M, Navarro S, Bárcenas O, Garcia-Pardo J, Ventura S. Bioengineered self-assembled nanofibrils for high-affinity SARS-CoV-2 capture and neutralization. J Colloid Interface Sci 2024; 674:753-765. [PMID: 38955007 DOI: 10.1016/j.jcis.2024.06.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred intense research efforts to develop new materials with antiviral activity. In this study, we genetically engineered amyloid-based nanofibrils for capturing and neutralizing SARS-CoV-2. Building upon the amyloid properties of a short Sup35 yeast prion sequence, we fused it to SARS-CoV-2 receptor-binding domain (RBD) capturing proteins, LCB1 and LCB3. By tuning the reaction conditions, we achieved the spontaneous self-assembly of the Sup35-LCB1 fusion protein into a highly homogeneous and well-dispersed amyloid-like fibrillar material. These nanofibrils exhibited high affinity for the SARS-CoV-2 RBD, effectively inhibiting its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor, the primary entry point for the virus into host cells. We further demonstrate that this functional nanomaterial entraps and neutralizes SARS-CoV-2 virus-like particles (VLPs), with a potency comparable to that of therapeutic antibodies. As a proof of concept, we successfully fabricated patterned surfaces that selectively capture SARS-CoV-2 RBD protein on wet environments. Collectively, these findings suggest that these protein-only nanofibrils hold promise as disinfecting coatings endowed with selective SARS-CoV-2 neutralizing properties to combat viral spread or in the development of sensitive viral sampling and diagnostic tools.
Collapse
Affiliation(s)
- Molood Behbahanipour
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Javier Garcia-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
8
|
Arad E, Jelinek R. Catalytic physiological amyloids. Methods Enzymol 2024; 697:77-112. [PMID: 38816136 DOI: 10.1016/bs.mie.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Amyloid fibrils have been identified in many protein systems, mostly linked to progression and cytotoxicity in neurodegenerative diseases and other pathologies, but have also been observed in normal physiological systems. A growing body of work has shown that amyloid fibrils can catalyze chemical reactions. Most studies have focused on catalysis by de-novo synthetic amyloid-like peptides; however, recent studies reveal that physiological, native amyloids are catalytic as well. Here, we discuss methodologies and major experimental aspects pertaining to physiological catalytic amyloids. We highlight analyzes of kinetic parameters related to the catalytic activities of amyloid fibrils, structure-function considerations, characterization of the catalytic active sites, and deciphering of catalytic mechanisms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel; Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, United States.
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
9
|
Ragonis-Bachar P, Axel G, Blau S, Ben-Tal N, Kolodny R, Landau M. What can AlphaFold do for antimicrobial amyloids? Proteins 2024; 92:265-281. [PMID: 37855235 DOI: 10.1002/prot.26618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Amyloids, protein, and peptide assemblies in various organisms are crucial in physiological and pathological processes. Their intricate structures, however, present significant challenges, limiting our understanding of their functions, regulatory mechanisms, and potential applications in biomedicine and technology. This study evaluated the AlphaFold2 ColabFold method's structure predictions for antimicrobial amyloids, using eight antimicrobial peptides (AMPs), including those with experimentally determined structures and AMPs known for their distinct amyloidogenic morphological features. Additionally, two well-known human amyloids, amyloid-β and islet amyloid polypeptide, were included in the analysis due to their disease relevance, short sequences, and antimicrobial properties. Amyloids typically exhibit tightly mated β-strand sheets forming a cross-β configuration. However, certain amphipathic α-helical subunits can also form amyloid fibrils adopting a cross-α structure. Some AMPs in the study exhibited a combination of cross-α and cross-β amyloid fibrils, adding complexity to structure prediction. The results showed that the AlphaFold2 ColabFold models favored α-helical structures in the tested amyloids, successfully predicting the presence of α-helical mated sheets and a hydrophobic core resembling the cross-α configuration. This implies that the AI-based algorithms prefer assemblies of the monomeric state, which was frequently predicted as helical, or capture an α-helical membrane-active form of toxic peptides, which is triggered upon interaction with lipid membranes.
Collapse
Affiliation(s)
| | - Gabriel Axel
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Blau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nir Ben-Tal
- George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Center for Experimental Medicine, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| |
Collapse
|
10
|
Kristoffersen K, Hansen KH, Andreasen M. Differential Effects of Lipid Bilayers on αPSM Peptide Functional Amyloid Formation. Int J Mol Sci 2023; 25:102. [PMID: 38203273 PMCID: PMC10779341 DOI: 10.3390/ijms25010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Phenol-soluble modulins (PSMs) are key virulence factors of S. aureus, and they comprise the structural scaffold of biofilm as they self-assemble into functional amyloids. They have been shown to interact with cell membranes as they display toxicity towards human cells through cell lysis, with αPSM3 being the most cytotoxic. In addition to causing cell lysis in mammalian cells, PSMs have also been shown to interact with bacterial cell membranes through antimicrobial effects. Here, we present a study on the effects of lipid bilayers on the aggregation mechanism of αPSM using chemical kinetics to study the effects of lipid vesicles on the aggregation kinetics and using circular dichroism (CD) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) to investigate the corresponding secondary structure of the aggregates. We found that the effects of lipid bilayers on αPSM aggregation were not homogeneous between lipid type and αPSM peptides, although none of the lipids caused changes in the dominating aggregation mechanism. In the case of αPSM3, all types of lipids slowed down aggregation to a varying degree, with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) having the most pronounced effect. For αPSM1, lipids had opposite effects, where DOPC decelerated aggregation and lipopolysaccharide (LPS) accelerated the aggregation, while 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG) had no effect. For αPSM4, both DOPG and LPS accelerated the aggregation, but only at high concentration, while DOPC showed no effect. None of the lipids was capable of inducing aggregation of αPSM2. Our data reveal a complex interaction pattern between PSMs peptides and lipid bilayers that causes changes in the aggregation kinetics by affecting different kinetic parameters along with only subtle changes in morphology.
Collapse
Affiliation(s)
| | | | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Willhelm Meyer’s Allé 3, 8000 Aarhus, Denmark
| |
Collapse
|
11
|
Arad E, Pedersen KB, Malka O, Mambram Kunnath S, Golan N, Aibinder P, Schiøtt B, Rapaport H, Landau M, Jelinek R. Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics. Nat Commun 2023; 14:8198. [PMID: 38081813 PMCID: PMC10713593 DOI: 10.1038/s41467-023-43624-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Antibiotic resistance of bacteria is considered one of the most alarming developments in modern medicine. While varied pathways for bacteria acquiring antibiotic resistance have been identified, there still are open questions concerning the mechanisms underlying resistance. Here, we show that alpha phenol-soluble modulins (PSMαs), functional bacterial amyloids secreted by Staphylococcus aureus, catalyze hydrolysis of β-lactams, a prominent class of antibiotic compounds. Specifically, we show that PSMα2 and, particularly, PSMα3 catalyze hydrolysis of the amide-like bond of the four membered β-lactam ring of nitrocefin, an antibiotic β-lactam surrogate. Examination of the catalytic activities of several PSMα3 variants allowed mapping of the active sites on the amyloid fibrils' surface, specifically underscoring the key roles of the cross-α fibril organization, and the combined electrostatic and nucleophilic functions of the lysine arrays. Molecular dynamics simulations further illuminate the structural features of β-lactam association upon the fibril surface. Complementary experimental data underscore the generality of the functional amyloid-mediated catalytic phenomenon, demonstrating hydrolysis of clinically employed β-lactams by PSMα3 fibrils, and illustrating antibiotic degradation in actual S. aureus biofilms and live bacteria environments. Overall, this study unveils functional amyloids as catalytic agents inducing degradation of β-lactam antibiotics, underlying possible antibiotic resistance mechanisms associated with bacterial biofilms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Orit Malka
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Sisira Mambram Kunnath
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Polina Aibinder
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Hanna Rapaport
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Centre for Structural Systems Biology (CSSB), and European Molecular Biology Laboratory (EMBL), Hamburg, 22607, Germany
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
12
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Li D, Ma Y, Xia W, Tao Y, Zhang Y, Zhang H, Li D, Dai B, Liu C. Creating an Amyloid 'Kaleidoscope' Using Short Iodinated Peptides. Angew Chem Int Ed Engl 2023; 62:e202310737. [PMID: 37650358 DOI: 10.1002/anie.202310737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Amyloid fibrils formed by peptides with different sequences exhibit diversified morphologies, material properties and activities, making them valuable for developing functional bionanomaterials. However, the molecular understanding underlying the structural diversity of peptide fibrillar assembly at atomic level is still lacking. In this study, by using cryogenic electron microscopy, we first revealed the structural basis underlying the highly reversible assembly of 1 GFGGNDNFG9 (referred to as hnRAC1) peptide fibril. Furthermore, by installing iodine at different sites of hnRAC1, we generated a collection of peptide fibrils with distinct thermostability. By determining the atomic structures of the iodinated fibrils, we discovered that iodination at different sites of the peptide facilitates the formation of diverse halogen bonds and triggers the assembly of entirely different structures of iodinated fibrils. Finally, based on this structural knowledge, we designed an iodinated peptide that assembles into new atomic structures of fibrils, exhibiting superior thermostability, that aligned with our design. Our work provides an in-depth understanding of the atomic-level processes underlying the formation of diverse peptide fibril structures, and paves the way for creating an amyloid "kaleidoscope" by employing various modifications and peptide sequences to fine-tune the atomic structure and properties of fibrillar nanostructures.
Collapse
Affiliation(s)
- Danni Li
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yiling Zhang
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Zhang
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Dai
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
14
|
Mitra A, Paul S. Pathways of hLL-37 17-29 Aggregation Give Insight into the Mechanism of α-Amyloid Formation. J Phys Chem B 2023; 127:8162-8175. [PMID: 37707359 DOI: 10.1021/acs.jpcb.3c04742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
α-amyloids present a novel self-assembly principle that can be utilized to prepare functional biomaterials. Evidence of α-amyloid formation in the active core of the human LL-37 protein (comprising residues 17 to 29) was associated with this peptide's membranolytic property. Though mechanistic pathways of β-amyloid formation are known, such studies are scarce in α-amyloids. Modern computational techniques allow such mechanistic studies in molecular detail. Here, we propose aggregation pathways in hLL-3717-29 through molecular dynamics simulations. We first identified oligomers among peptides based on a distance criterion. The distribution of oligomers was then used to build Markov state models from which pathways were obtained using the framework of transition path theory. We checked the structural stability of the peptides during oligomerization, which is crucial from their functional point of view. We also investigated the key residues that participate in oligomer formation, the interactions between them, and the effect of residue mutations on the binding free energy of the peptides. Our findings suggest that larger oligomers are produced from the association of smaller and intermediate oligomers. The peptides retain their helical structure during aggregation with transient occurrences of 3-10 helix and turns. Hydrophobic interactions are vital in the aggregation of these peptides with Ile24 playing a crucial role. Mutation of this residue to alanine decreases the peptides' binding free energy, resulting in reduced aggregation tendency.
Collapse
Affiliation(s)
- Aritra Mitra
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
15
|
Rayan B, Barnea E, Khokhlov A, Upcher A, Landau M. Differential fibril morphologies and thermostability determine functional roles of Staphylococcus aureus PSMα1 and PSMα3. Front Mol Biosci 2023; 10:1184785. [PMID: 37469708 PMCID: PMC10353841 DOI: 10.3389/fmolb.2023.1184785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Phenol-soluble modulins (PSMs) are virulent peptides secreted by staphylococci that undergo self-assembly into amyloid fibrils. This study focuses on Staphylococcus aureus PSMα1 and PSMα3, which share homologous sequences but exhibit distinct amyloid fibril structures. Upon subjecting PSMα1 to an 80°C heat shock, it fibrillates into cross-β structures, resulting in the loss of cytotoxic activity. Conversely, PSMα3 cross-α fibrils undergo reversible disaggregation upon heat shock, leading to the recovery of cytotoxicity. The differential thermostability probably arises from the presence of hydrogen bonds along the β-strands within the β-sheets of the cross-β fibrils. We propose that the breakdown of PSMα3 fibrils into soluble species, potentially co-aggregating with membrane lipids, is crucial for its toxic process and enables the reversible modulation of its biological activity under stress conditions. In contrast, the formation of robust and irreversible cross-β fibrils by PSMα1 corresponds to its role in biofilm stability. These findings emphasize how the unique fibril morphologies and thermostability of PSMα1 and PSMα3 shape their functional roles in various environments of S. aureus.
Collapse
Affiliation(s)
- Bader Rayan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alexander Khokhlov
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Center for Experimental Medicine, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| |
Collapse
|
16
|
Ermakova E, Makshakova O, Kurbanov R, Ibraev I, Zuev Y, Sedov I. Aggregation of Amyloidogenic Peptide Uperin-Molecular Dynamics Simulations. Molecules 2023; 28:molecules28104070. [PMID: 37241811 DOI: 10.3390/molecules28104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Uperin 3.5 is a remarkable natural peptide obtained from the skin of toadlets comprised of 17 amino acids which exhibits both antimicrobial and amyloidogenic properties. Molecular dynamics simulations were performed to study the β-aggregation process of uperin 3.5 as well as two of its mutants, in which the positively charged residues Arg7 and Lys8 have been replaced by alanine. All three peptides rapidly underwent spontaneous aggregation and conformational transition from random coils to beta-rich structures. The simulations reveal that the initial and essential step of the aggregation process involves peptide dimerization and the formation of small beta-sheets. A decrease in positive charge and an increase in the number of hydrophobic residues in the mutant peptides lead to an increase in the rate of their aggregation.
Collapse
Affiliation(s)
- Elena Ermakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, Kazan 420111, Russia
| | - Olga Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, Kazan 420111, Russia
| | - Rauf Kurbanov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, Kazan 420111, Russia
| | - Ilya Ibraev
- Chemical Institute, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| | - Yuriy Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, Kazan 420111, Russia
| | - Igor Sedov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, Kazan 420111, Russia
- Chemical Institute, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420008, Russia
| |
Collapse
|
17
|
Richards L, Flores MD, Millán C, Glynn C, Zee CT, Sawaya MR, Gallagher-Jones M, Borges RJ, Usón I, Rodriguez JA. Fragment-Based Ab Initio Phasing of Peptidic Nanocrystals by MicroED. ACS BIO & MED CHEM AU 2023; 3:201-210. [PMID: 37096030 PMCID: PMC10119933 DOI: 10.1021/acsbiomedchemau.2c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 04/26/2023]
Abstract
Electron diffraction (MicroED/3DED) can render the three-dimensional atomic structures of molecules from previously unamenable samples. The approach has been particularly transformative for peptidic structures, where MicroED has revealed novel structures of naturally occurring peptides, synthetic protein fragments, and peptide-based natural products. Despite its transformative potential, MicroED is beholden to the crystallographic phase problem, which challenges its de novo determination of structures. ARCIMBOLDO, an automated, fragment-based approach to structure determination, eliminates the need for atomic resolution, instead enforcing stereochemical constraints through libraries of small model fragments, and discerning congruent motifs in solution space to ensure validation. This approach expands the reach of MicroED to presently inaccessible peptide structures including fragments of human amyloids, and yeast and mammalian prions. For electron diffraction, fragment-based phasing portends a more general phasing solution with limited model bias for a wider set of chemical structures.
Collapse
Affiliation(s)
- Logan
S. Richards
- Department
of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and
Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Maria D. Flores
- Department
of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and
Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Claudia Millán
- Crystallographic
Methods, Institute of Molecular Biology
of Barcelona (IBMB−CSIC), Barcelona Science Park, Helix Building, Baldiri
Reixach 15, 08028 Barcelona, Spain
| | - Calina Glynn
- Department
of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and
Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Chih-Te Zee
- Department
of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and
Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Michael R. Sawaya
- Department
of Biological Chemistry and Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Howard
Hughes Medical Institute (HHMI), UCLA-DOE Institute for Genomics and
Proteomics, Los Angeles, California 90095, United States
| | - Marcus Gallagher-Jones
- Correlated
Imaging, The Rosalind Franklin Institute, Harwell Science & Innovation
Campus, Rutherford Avenue, Harwell, Didcot OX11 0GD, United Kingdom
| | - Rafael J. Borges
- Crystallographic
Methods, Institute of Molecular Biology
of Barcelona (IBMB−CSIC), Barcelona Science Park, Helix Building, Baldiri
Reixach 15, 08028 Barcelona, Spain
| | - Isabel Usón
- Crystallographic
Methods, Institute of Molecular Biology
of Barcelona (IBMB−CSIC), Barcelona Science Park, Helix Building, Baldiri
Reixach 15, 08028 Barcelona, Spain
- ICREA,
Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| | - Jose A. Rodriguez
- Department
of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and
Proteomics; STROBE, NSF Science and Technology Center, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| |
Collapse
|
18
|
John T, Piantavigna S, Dealey TJA, Abel B, Risselada HJ, Martin LL. Lipid oxidation controls peptide self-assembly near membranes through a surface attraction mechanism. Chem Sci 2023; 14:3730-3741. [PMID: 37035708 PMCID: PMC10074436 DOI: 10.1039/d3sc00159h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The self-assembly of peptides into supramolecular structures has been linked to neurodegenerative diseases but has also been observed in functional roles. Peptides are physiologically exposed to crowded environments of biomacromolecules, and particularly cellular membrane lipids. Previous research has shown that membranes can both accelerate and inhibit peptide self-assembly. Here, we studied the impact of membrane models that mimic cellular oxidative stress and compared this to mammalian and bacterial membranes. Using molecular dynamics simulations and experiments, we propose a model that explains how changes in peptide-membrane binding, electrostatics, and peptide secondary structure stabilization determine the nature of peptide self-assembly. We explored the influence of zwitterionic (POPC), anionic (POPG) and oxidized (PazePC) phospholipids, as well as cholesterol, and mixtures thereof, on the self-assembly kinetics of the amyloid β (1-40) peptide (Aβ40), linked to Alzheimer's disease, and the amyloid-forming antimicrobial peptide uperin 3.5 (U3.5). We show that the presence of an oxidized lipid had similar effects on peptide self-assembly as the bacterial mimetic membrane. While Aβ40 fibril formation was accelerated, U3.5 aggregation was inhibited by the same lipids at the same peptide-to-lipid ratio. We attribute these findings and peptide-specific effects to differences in peptide-membrane adsorption with U3.5 being more strongly bound to the membrane surface and stabilized in an α-helical conformation compared to Aβ40. Different peptide-to-lipid ratios resulted in different effects. We found that electrostatic interactions are a primary driving force for peptide-membrane interaction, enabling us to propose a model for predicting how cellular changes might impact peptide self-assembly in vivo.
Collapse
Affiliation(s)
- Torsten John
- School of Chemistry, Monash University Clayton VIC 3800 Australia
- Leibniz Institute of Surface Engineering (IOM) Permoserstraße 15 04318 Leipzig Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Institute of Chemical Technology, Leipzig University Linnéstraße 3 04103 Leipzig Germany
| | | | - Tiara J A Dealey
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM) Permoserstraße 15 04318 Leipzig Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Institute of Chemical Technology, Leipzig University Linnéstraße 3 04103 Leipzig Germany
| | - Herre Jelger Risselada
- Leibniz Institute of Surface Engineering (IOM) Permoserstraße 15 04318 Leipzig Germany
- Institute for Theoretical Physics, Georg-August-Universität Göttingen Friedrich-Hund-Platz 1 37077 Göttingen Germany
| | | |
Collapse
|
19
|
Ermakova EA, Kurbanov RK. Interaction of Uperin Peptides with Model Membranes: Molecular Dynamics Study. MEMBRANES 2023; 13:370. [PMID: 37103797 PMCID: PMC10146956 DOI: 10.3390/membranes13040370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The interaction of antimicrobial and amyloid peptides with cell membranes is a critical step in their activities. Peptides of the uperin family obtained from the skin secretion of Australian amphibians demonstrate antimicrobial and amyloidogenic properties. All-atomic molecular dynamics and an umbrella sampling approach were used to study the interaction of uperins with model bacterial membrane. Two stable configurations of peptides were found. In the bound state, the peptides in helical form were located right under the head group region in parallel orientation with respect to the bilayer surface. Stable transmembrane configuration was observed for wild-type uperin and its alanine mutant in both alpha-helical and extended unstructured forms. The potential of mean force characterized the process of peptide binding from water to the lipid bilayer and its insertion into the membrane, and revealed that the transition of uperins from the bound state to the transmembrane position was accompanied by the rotation of peptides and passes through the energy barrier of 4-5 kcal/mol. Uperins have a weak effect on membrane properties.
Collapse
|
20
|
Nasi GI, Georgakopoulou KI, Theodoropoulou MK, Papandreou NC, Chrysina ED, Tsiolaki PL, Iconomidou VA. Bacterial Lectin FimH and Its Aggregation Hot-Spots: An Alternative Strategy against Uropathogenic Escherichia coli. Pharmaceutics 2023; 15:pharmaceutics15031018. [PMID: 36986878 PMCID: PMC10058141 DOI: 10.3390/pharmaceutics15031018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Type I fimbriae are the main adhesive organelles of uropathogenic Escherichia coli (UPEC), consisting of four different subunits. Their component with the most important role in establishing bacterial infections is the FimH adhesin located at the fimbrial tip. This two-domain protein mediates adhesion to host epithelial cells through interaction with terminal mannoses on epithelial glycoproteins. Here, we propose that the amyloidogenic potential of FimH can be exploited for the development of therapeutic agents against Urinary Tract Infections (UTIs). Aggregation-prone regions (APRs) were identified via computational methods, and peptide-analogues corresponding to FimH lectin domain APRs were chemically synthesized and studied with the aid of both biophysical experimental techniques and molecular dynamic simulations. Our findings indicate that these peptide-analogues offer a promising set of antimicrobial candidate molecules since they can either interfere with the folding process of FimH or compete for the mannose-binding pocket.
Collapse
Affiliation(s)
- Georgia I Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina I Georgakopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Marilena K Theodoropoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Paraskevi L Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
21
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Hydrophobic modification improves the delivery of cell-penetrating peptides to eliminate intracellular pathogens in animals. Acta Biomater 2023; 157:210-224. [PMID: 36503077 DOI: 10.1016/j.actbio.2022.11.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Infections induced by intracellular pathogens are difficult to eradicate due to poor penetration of antimicrobials into cell membranes. It is of great importance to develop a new generation of antibacterial agents with dual functions of efficient cell penetration and bacterial inhibition. In this study, the association between hydrophobicity and cell-penetrating peptide delivery efficiency was investigated by fragment interception and hydrophobicity modification of natural porcine antimicrobial peptide PR-39 and the combination of cationic cell-penetrating peptide (R6) with antimicrobial peptide fragments modified with hydrophobic residues. The chimeric peptides P3I7 and P3L7, obtained through biofunctional screening, exhibited potent broad-spectrum antibacterial activity and low cytotoxicity. Moreover, P3I7 and P3L7 can effectively penetrate cells to eliminate intracellular pathogens mainly through endocytosis. The membrane destruction mechanism makes the peptides fast sterilizers and less prone to developing drug resistance. Finally, their good biocompatibility and antibacterial infection effects were verified in mice and piglets. To conclude, the chimeric peptides P3I7 and P3L7 show great potential as affordable and effective antimicrobial agents and may serve as ideal candidates for the treatment of intracellular bacterial infections. STATEMENT OF SIGNIFICANCE: The low permeability of antibacterial drugs makes infections induced by intracellular bacteria extremely difficult to treat. To address this issue, we designed chimeric peptides with dual cell-penetrating and antibacterial functions. The active peptides P3I7 and P3L7, acquired through functional screening have strong broad-spectrum antibacterial activity and powerful bactericidal effects against intracellular Staphylococcus aureus. The membrane permeation mechanism of P3I7 and P3L7 against bacteria endows fast bactericidal activity with low drug resistance. The biosafety and antibacterial activity of P3I7 and P3L7 were also validated by in vivo trials. This study provides an ideal drug candidate against intracellular bacterial infections.
Collapse
|
23
|
Gagat P, Duda-Madej A, Ostrówka M, Pietluch F, Seniuk A, Mackiewicz P, Burdukiewicz M. Testing Antimicrobial Properties of Selected Short Amyloids. Int J Mol Sci 2023; 24:ijms24010804. [PMID: 36614244 PMCID: PMC9821130 DOI: 10.3390/ijms24010804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Amyloids and antimicrobial peptides (AMPs) have many similarities, e.g., both kill microorganisms by destroying their membranes, form aggregates, and modulate the innate immune system. Given these similarities and the fact that the antimicrobial properties of short amyloids have not yet been investigated, we chose a group of potentially antimicrobial short amyloids to verify their impact on bacterial and eukaryotic cells. We used AmpGram, a best-performing AMP classification model, and selected ten amyloids with the highest AMP probability for our experimental research. Our results indicate that four tested amyloids: VQIVCK, VCIVYK, KCWCFT, and GGYLLG, formed aggregates under the conditions routinely used to evaluate peptide antimicrobial properties, but none of the tested amyloids exhibited antimicrobial or cytotoxic properties. Accordingly, they should be included in the negative datasets to train the next-generation AMP prediction models, based on experimentally confirmed AMP and non-AMP sequences. In the article, we also emphasize the importance of reporting non-AMPs, given that only a handful of such sequences have been officially confirmed.
Collapse
Affiliation(s)
- Przemysław Gagat
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
- Correspondence: (P.G.); (M.B.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Michał Ostrówka
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Filip Pietluch
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Alicja Seniuk
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Michał Burdukiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-089 Białystok, Poland
- Correspondence: (P.G.); (M.B.)
| |
Collapse
|
24
|
Baltutis V, O'Leary PD, Martin LL. Self-Assembly of Linear, Natural Antimicrobial Peptides: An Evolutionary Perspective. Chempluschem 2022; 87:e202200240. [PMID: 36198638 DOI: 10.1002/cplu.202200240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/29/2022] [Indexed: 01/31/2023]
Abstract
Antimicrobial peptides are an ancient and innate system of host defence against a wide range of microbial assailants. Mechanistically, unstructured peptides undergo a secondary structure transition into amphipathic α-helices, upon contact with membrane surfaces. This leads to peptide binding and removal of the membrane components in a detergent-like manner or via self-organisation into trans-membrane pores (either barrel-stave or toroidal pore) thereby destroying the microbe. Self-assembly of antimicrobial peptides into oligomers and ultimately amyloid has been mostly examined in parallel, however recent findings link diseases, such as Alzheimer's disease as an aberrant activity of a protective neuropeptide with antimicrobial activity. These self-assembled oligomers can also interact with membranes. Here, we review those antimicrobial peptides reported to self-assemble into amyloid, where supported by structural evidence. We consider their membrane activities as antimicrobial peptides and present evidence of consistent self-assembly patterns across major evolutionary groups. Trends are apparent across these groups, supporting the mounting data that self-assembly of antimicrobial peptides into amyloid should be considered as synergistic to the antimicrobial peptide response.
Collapse
Affiliation(s)
- Verity Baltutis
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Paul D O'Leary
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| |
Collapse
|
25
|
Ragonis-Bachar P, Rayan B, Barnea E, Engelberg Y, Upcher A, Landau M. Natural Antimicrobial Peptides Self-assemble as α/β Chameleon Amyloids. Biomacromolecules 2022; 23:3713-3727. [PMID: 35947777 DOI: 10.1021/acs.biomac.2c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid protein fibrils and some antimicrobial peptides (AMPs) share biophysical and structural properties. This observation suggests that ordered self-assembly can act as an AMP-regulating mechanism, and, vice versa, that human amyloids play a role in host defense against pathogens, as opposed to their common association with neurodegenerative and systemic diseases. Based on previous structural information on toxic amyloid peptides, we developed a sequence-based bioinformatics platform and, led by its predictions, experimentally identified 14 fibril-forming AMPs (ffAMPs) from living organisms, which demonstrated cross-β and cross-α amyloid properties. The results support the amyloid-antimicrobial link. The high prevalence of ffAMPs produced by amphibians and marine creatures among other species suggests that they confer unique advantageous properties in distinctive environments, potentially providing stability and adherence properties. Most of the newly identified 14 ffAMPs showed lipid-induced and/or time-dependent secondary structure transitions in the fibril form, indicating structural and functional cross-α/β chameleons. Specifically, ffAMP cytotoxicity against human cells correlated with the inherent or lipid-induced α-helical fibril structure. The findings raise hypotheses about the role of fibril secondary structure switching in regulation of processes, such as the transition between a stable storage conformation and an active state with toxicity against specific cell types.
Collapse
Affiliation(s)
- Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Bader Rayan
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.,European Molecular Biology Laboratory (EMBL) and Centre for Structural Systems Biology, Hamburg 22607, Germany
| |
Collapse
|
26
|
Arad E, Jelinek R. Catalytic amyloids. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Bücker R, Seuring C, Cazey C, Veith K, García-Alai M, Grünewald K, Landau M. The Cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils. Nat Commun 2022; 13:4356. [PMID: 35896552 PMCID: PMC9329304 DOI: 10.1038/s41467-022-32039-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
The amyloid-antimicrobial link hypothesis is based on antimicrobial properties found in human amyloids involved in neurodegenerative and systemic diseases, along with amyloidal structural properties found in antimicrobial peptides (AMPs). Supporting this hypothesis, we here determined the fibril structure of two AMPs from amphibians, uperin 3.5 and aurein 3.3, by cryogenic electron microscopy (cryo-EM), revealing amyloid cross-β fibrils of mated β-sheets at atomic resolution. Uperin 3.5 formed a 3-blade symmetrical propeller of nine peptides per fibril layer including tight β-sheet interfaces. This cross-β cryo-EM structure complements the cross-α fibril conformation previously determined by crystallography, substantiating a secondary structure switch mechanism of uperin 3.5. The aurein 3.3 arrangement consisted of six peptides per fibril layer, all showing kinked β-sheets allowing a rounded compactness of the fibril. The kinked β-sheets are similar to LARKS (Low-complexity, Amyloid-like, Reversible, Kinked Segments) found in human functional amyloids.
Collapse
Grants
- Joachim Herz Foundation (Add-on fellowship, R.B.).
- This research was supported by the Ministry of Science, Research, Equalities and Districts of the Free and Hanseatic City of Hamburg (K.G., M.L., R.B.), Israel Science Foundation (grant no. 2111/20, M.L.), Israel Ministry of Science, Technology & Space (grant no. 3-15517, M.L.), U.S.-Israel Binational Science Foundation (BSF) (grant no. 2017280, M.L.),
Collapse
Affiliation(s)
- Robert Bücker
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Rigaku Europe SE, Neu-Isenburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Cornelia Cazey
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory, EMBL Hamburg, Hamburg, Germany
| | - Maria García-Alai
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, EMBL Hamburg, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Department of Chemistry, University of Hamburg, Hamburg, Germany.
- Leibniz Institute of Virology, Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Meytal Landau
- Centre for Structural Systems Biology, Hamburg, Germany.
- European Molecular Biology Laboratory, EMBL Hamburg, Hamburg, Germany.
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
28
|
Golan N, Engelberg Y, Landau M. Structural Mimicry in Microbial and Antimicrobial Amyloids. Annu Rev Biochem 2022; 91:403-422. [PMID: 35729071 DOI: 10.1146/annurev-biochem-032620-105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; .,European Molecular Biology Laboratory (EMBL) and Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
29
|
Park H, Jeon H, Lee MY, Jeon H, Kwon S, Hong S, Kang K. Designed Amyloid Fibers with Emergent Melanosomal Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7077-7084. [PMID: 35608255 DOI: 10.1021/acs.langmuir.2c00904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Short peptides designed to self-associate into amyloid fibers with metal ion-binding ability have been used to catalyze various types of chemical reactions. This manuscript demonstrates that one of these short-peptide fibers coordinated with CuII can exhibit melanosomal functions. The coordinated CuII and the amyloid structure itself are differentially functional in accelerating oxidative self-association of dopamine into melanin-like species and in regulating their material properties (e.g., water dispersion, morphology, and the density of unpaired electrons). The results have implications for the role of functional amyloids in melanin biosynthesis and for designing peptide-based supramolecular structures with various emergent functions.
Collapse
Affiliation(s)
- Hyeyeon Park
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, South Korea
| | - Hyeri Jeon
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea
| | - Min Young Lee
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, South Korea
| | - Hyojae Jeon
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, South Korea
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyoung-daero, Yongin, Gyeonggi 17104, South Korea
| |
Collapse
|
30
|
Pohl C, Effantin G, Kandiah E, Meier S, Zeng G, Streicher W, Segura DR, Mygind PH, Sandvang D, Nielsen LA, Peters GHJ, Schoehn G, Mueller-Dieckmann C, Noergaard A, Harris P. pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils. Nat Commun 2022; 13:3162. [PMID: 35672293 PMCID: PMC9174238 DOI: 10.1038/s41467-022-30462-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Self-assembly and fibril formation play important roles in protein behaviour. Amyloid fibril formation is well-studied due to its role in neurodegenerative diseases and characterized by refolding of the protein into predominantly β-sheet form. However, much less is known about the assembly of proteins into other types of supramolecular structures. Using cryo-electron microscopy at a resolution of 1.97 Å, we show that a triple-mutant of the anti-microbial peptide plectasin, PPI42, assembles into helical non-amyloid fibrils. The in vitro anti-microbial activity was determined and shown to be enhanced compared to the wildtype. Plectasin contains a cysteine-stabilised α-helix-β-sheet structure, which remains intact upon fibril formation. Two protofilaments form a right-handed protein fibril. The fibril formation is reversible and follows sigmoidal kinetics with a pH- and concentration dependent equilibrium between soluble monomer and protein fibril. This high-resolution structure reveals that α/β proteins can natively assemble into fibrils. Here the authors report the cryo-EM structure of a triple-mutant of the anti-microbial peptide plectasin, PPI42, assembling in a pH- and concentration dependent manner into helical non-amyloid fibrils. The fibrils formation is reversible, and follows a sigmoidal kinetics. The fibrils adopt a right-handed helical superstructure composed by two protofilaments, stabilized by an outer hydrophobic ring and an inner hydrophobic centre. These findings reveal that α/β proteins can natively assemble into fibrils.
Collapse
|
31
|
Kreutzberger MAB, Wang S, Beltran LC, Tuachi A, Zuo X, Egelman EH, Conticello VP. Phenol-soluble modulins PSMα3 and PSMβ2 form nanotubes that are cross-α amyloids. Proc Natl Acad Sci U S A 2022; 119:e2121586119. [PMID: 35533283 PMCID: PMC9171771 DOI: 10.1073/pnas.2121586119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are peptide-based virulence factors that play significant roles in the pathogenesis of staphylococcal strains in community-associated and hospital-associated infections. In addition to cytotoxicity, PSMs display the propensity to self-assemble into fibrillar species, which may be mediated through the formation of amphipathic conformations. Here, we analyze the self-assembly behavior of two PSMs, PSMα3 and PSMβ2, which are derived from peptides expressed by methicillin-resistant Staphylococcus aureus (MRSA), a significant human pathogen. In both cases, we observed the formation of a mixture of self-assembled species including twisted filaments, helical ribbons, and nanotubes, which can reversibly interconvert in vitro. Cryo–electron microscopy structural analysis of three PSM nanotubes, two derived from PSMα3 and one from PSMβ2, revealed that the assemblies displayed remarkably similar structures based on lateral association of cross-α amyloid protofilaments. The amphipathic helical conformations of PSMα3 and PSMβ2 enforced a bilayer arrangement within the protofilaments that defined the structures of the respective PSMα3 and PSMβ2 nanotubes. We demonstrate that, similar to amyloids based on cross-β protofilaments, cross-α amyloids derived from these PSMs display polymorphism, not only in terms of the global morphology (e.g., twisted filament, helical ribbon, and nanotube) but also with respect to the number of protofilaments within a given peptide assembly. These results suggest that the folding landscape of PSM derivatives may be more complex than originally anticipated and that the assemblies are able to sample a wide range of supramolecular structural space.
Collapse
Affiliation(s)
- Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Shengyuan Wang
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Leticia C. Beltran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Abraham Tuachi
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Vincent P. Conticello
- Department of Chemistry, Emory University, Atlanta, GA 30322
- The Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA 30322
| |
Collapse
|
32
|
Engelberg Y, Ragonis-Bachar P, Landau M. Rare by Natural Selection: Disulfide-Bonded Supramolecular Antimicrobial Peptides. Biomacromolecules 2022; 23:926-936. [DOI: 10.1021/acs.biomac.1c01353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| |
Collapse
|
33
|
Prasad AK, Tiwari C, Ray S, Holden S, Armstrong DA, Rosengren KJ, Rodger A, Panwar AS, Martin LL. Secondary Structure Transitions for a Family of Amyloidogenic, Antimicrobial Uperin 3 Peptides in Contact with Sodium Dodecyl Sulfate. Chempluschem 2022; 87:e202100408. [DOI: 10.1002/cplu.202100408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/10/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Anup K. Prasad
- IITB-Monash Research Academy Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Chandni Tiwari
- IITB-Monash Research Academy Indian Institute of Technology Bombay Powai Mumbai 400076 India
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - Sourav Ray
- IITB-Monash Research Academy Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Stephanie Holden
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - David A. Armstrong
- School of Biomedical Sciences The University of Queensland Brisbane QLD, 4072 Australia
| | - K. Johan Rosengren
- School of Biomedical Sciences The University of Queensland Brisbane QLD, 4072 Australia
| | - Alison Rodger
- Department of Molecular Sciences Macquarie University Macquarie Park NSW, 2109 Australia
| | - Ajay S. Panwar
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | | |
Collapse
|
34
|
Ha D, Kang K. Nucleophilic Regulation of the Formation of Melanin-like Species by Amyloid Fibers. ACS OMEGA 2022; 7:773-779. [PMID: 35036743 PMCID: PMC8757343 DOI: 10.1021/acsomega.1c05399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
This work examines the influences of amyloid fibers of hen egg white lysozyme (HEWL) on the formation of melanin-like species (MLS) with a rationally selected set of catechol derivatives. Catechol-amyloid interactions, which are central in melanogenesis, are complex and multifaceted, making them difficult to understand at the molecular level. The catechol derivatives are set to interact with HEWL amyloid fibers upon altering pH, and the resultant formation of MLS is characterized. For obtaining clues for the molecular mechanism by which HEWL fibers regulate the formation of MLS, putative intermolecular interactions are individually perturbed and their ramifications are analyzed. With the entire data set, we could conclude that the externally presented nucleophilic moieties of HEWL fibers play a major role in regulating the material and kinetic properties of MLS and their formation, respectively.
Collapse
|
35
|
Grishin SY, Dzhus UF, Glukhov AS, Selivanova OM, Surin AK, Galzitskaya OV. Identification of Amyloidogenic Regions in Pseudomonas aeruginosa Ribosomal S1 Protein. Int J Mol Sci 2021; 22:ijms22147291. [PMID: 34298910 PMCID: PMC8305250 DOI: 10.3390/ijms22147291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial S1 protein is a functionally important ribosomal protein. It is a part of the 30S ribosomal subunit and is also able to interact with mRNA and tmRNA. An important feature of the S1 protein family is a strong tendency towards aggregation. To study the amyloidogenic properties of S1, we isolated and purified the recombinant ribosomal S1 protein of Pseudomonas aeruginosa. Using the FoldAmyloid, Waltz, Pasta 2.0, and AGGRESCAN programs, amyloidogenic regions of the protein were predicted, which play a key role in its aggregation. The method of limited proteolysis in combination with high performance liquid chromatography and mass spectrometric analysis of the products, made it possible to identify regions of the S1 protein from P. aeruginosa that are protected from the action of proteinase K, trypsin, and chymotrypsin. Sequences of theoretically predicted and experimentally identified amyloidogenic regions were used to synthesize four peptides, three of which demonstrated the ability to form amyloid-like fibrils, as shown by electron microscopy and fluorescence spectroscopy. The identified amyloidogenic sites can further serve as a basis for the development of new antibacterial peptides against the pathogenic microorganism P. aeruginosa.
Collapse
Affiliation(s)
- Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Ulyana F. Dzhus
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Anatoly S. Glukhov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.Y.G.); (U.F.D.); (A.S.G.); (O.M.S.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence:
| |
Collapse
|
36
|
Matilla-Cuenca L, Toledo-Arana A, Valle J. Anti-Biofilm Molecules Targeting Functional Amyloids. Antibiotics (Basel) 2021; 10:antibiotics10070795. [PMID: 34210036 PMCID: PMC8300730 DOI: 10.3390/antibiotics10070795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
The choice of an effective therapeutic strategy in the treatment of biofilm-related infections is a significant issue. Amyloids, which have been historically related to human diseases, are now considered to be prevailing structural components of the biofilm matrix in a wide range of bacteria. This assumption creates the potential for an exciting research area, in which functional amyloids are considered to be attractive targets for drug development to dissemble biofilm structures. The present review describes the best-characterized bacterial functional amyloids and focuses on anti-biofilm agents that target intrinsic and facultative amyloids. This study provides a better understanding of the different modes of actions of the anti-amyloid molecules to inhibit biofilm formation. This information can be further exploited to improve the therapeutic strategies to combat biofilm-related infections.
Collapse
|
37
|
Steinberg R, Koch HG. The largely unexplored biology of small proteins in pro- and eukaryotes. FEBS J 2021; 288:7002-7024. [PMID: 33780127 DOI: 10.1111/febs.15845] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022]
Abstract
The large abundance of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes and the plethora of smORF-encoded small proteins became only apparent with the constant advancements in bioinformatic, genomic, proteomic, and biochemical tools. Small proteins are typically defined as proteins of < 50 amino acids in prokaryotes and of less than 100 amino acids in eukaryotes, and their importance for cell physiology and cellular adaptation is only beginning to emerge. In contrast to antimicrobial peptides, which are secreted by prokaryotic and eukaryotic cells for combatting pathogens and competitors, small proteins act within the producing cell mainly by stabilizing protein assemblies and by modifying the activity of larger proteins. Production of small proteins is frequently linked to stress conditions or environmental changes, and therefore, cells seem to use small proteins as intracellular modifiers for adjusting cell metabolism to different intra- and extracellular cues. However, the size of small proteins imposes a major challenge for the cellular machinery required for protein folding and intracellular trafficking and recent data indicate that small proteins can engage distinct trafficking pathways. In the current review, we describe the diversity of small proteins in prokaryotes and eukaryotes, highlight distinct and common features, and illustrate how they are handled by the protein trafficking machineries in prokaryotic and eukaryotic cells. Finally, we also discuss future topics of research on this fascinating but largely unexplored group of proteins.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
38
|
Tayeb-Fligelman E, Cheng X, Tai C, Bowler JT, Griner S, Sawaya MR, Seidler PM, Jiang YX, Lu J, Rosenberg GM, Salwinski L, Abskharon R, Zee CT, Hou K, Li Y, Boyer DR, Murray KA, Falcon G, Anderson DH, Cascio D, Saelices L, Damoiseaux R, Guo F, Eisenberg DS. Inhibition of amyloid formation of the Nucleoprotein of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.05.434000. [PMID: 33688654 PMCID: PMC7941625 DOI: 10.1101/2021.03.05.434000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 Nucleoprotein (NCAP) functions in RNA packaging during viral replication and assembly. Computational analysis of its amino acid sequence reveals a central low-complexity domain (LCD) having sequence features akin to LCDs in other proteins known to function in liquid-liquid phase separation. Here we show that in the presence of viral RNA, NCAP, and also its LCD segment alone, form amyloid-like fibrils when undergoing liquid-liquid phase separation. Within the LCD we identified three 6-residue segments that drive amyloid fibril formation. We determined atomic structures for fibrils formed by each of the three identified segments. These structures informed our design of peptide inhibitors of NCAP fibril formation and liquid-liquid phase separation, suggesting a therapeutic route for Covid-19. ONE SENTENCE SUMMARY Atomic structures of amyloid-driving peptide segments from SARS-CoV-2 Nucleoprotein inform the development of Covid-19 therapeutics.
Collapse
|